
tphols-2011

By xingyuan

February 2, 2011

Contents

1 Direction regular language ⇒finite partition 1
1.1 The scheme . 1
1.2 The proof . 6

1.2.1 The base case for NULL 6
1.2.2 The base case for EMPTY 6
1.2.3 The base case for CHAR 7
1.2.4 The inductive case for ALT 8
1.2.5 The inductive case for SEQ 8
1.2.6 The inductive case for STAR 12
1.2.7 The conclusion . 19

theory Myhill
imports Myhill-1

begin

1 Direction regular language ⇒finite partition

1.1 The scheme

The following convenient notation x ≈Lang y means: string x and y are
equivalent with respect to language Lang.

definition
str-eq :: string ⇒ lang ⇒ string ⇒ bool (- ≈- -)

where
x ≈Lang y ≡ (x , y) ∈ (≈Lang)

The main lemma (rexp-imp-finite) is proved by a structural induction over
regular expressions. While base cases (cases for NULL, EMPTY, CHAR)
are quite straight forward, the inductive cases are rather involved. What
we have when starting to prove these inductive caes is that the partitions
induced by the componet language are finite. The basic idea to show the
finiteness of the partition induced by the composite language is to attach a
tag tag(x) to every string x. The tags are made of equivalent classes from

1

the component partitions. Let tag be the tagging function and Lang be the
composite language, it can be proved that if strings with the same tag are
equivalent with respect to Lang, expressed as:

tag(x) = tag(y) =⇒ x ≈Lang y

then the partition induced by Lang must be finite. There are two arguments
for this. The first goes as the following:

1. First, the tagging function tag induces an equivalent relation (=tag=)
(defiintion of f-eq-rel and lemma equiv-f-eq-rel).

2. It is shown that: if the range of tag (denoted range(tag)) is finite, the
partition given rise by (=tag=) is finite (lemma finite-eq-f-rel). Since
tags are made from equivalent classes from component partitions, and
the inductive hypothesis ensures the finiteness of these partitions, it is
not difficult to prove the finiteness of range(tag).

3. It is proved that if equivalent relation R1 is more refined than R2 (ex-
pressed as R1 ⊆ R2), and the partition induced by R1 is finite, then
the partition induced by R2 is finite as well (lemma refined-partition-finite).

4. The injectivity assumption tag(x) = tag(y) =⇒ x ≈Lang y implies
that (=tag=) is more refined than (≈Lang).

5. Combining the points above, we have: the partition induced by lan-
guage Lang is finite (lemma tag-finite-imageD).

definition
f-eq-rel (=-=)

where
(=f =) = {(x , y) | x y . f x = f y}

lemma equiv-f-eq-rel :equiv UNIV (=f =)
by (auto simp:equiv-def f-eq-rel-def refl-on-def sym-def trans-def)

lemma finite-range-image: finite (range f) =⇒ finite (f ‘ A)
by (rule-tac B = {y . ∃ x . y = f x} in finite-subset , auto simp:image-def)

lemma finite-eq-f-rel :
assumes rng-fnt : finite (range tag)
shows finite (UNIV // (=tag=))

proof −
let ?f = op ‘ tag and ?A = (UNIV // (=tag=))
show ?thesis
proof (rule-tac f = ?f and A = ?A in finite-imageD)

— The finiteness of f -image is a simple consequence of assumption rng-fnt :
show finite (?f ‘ ?A)

2

proof −
have ∀ X . ?f X ∈ (Pow (range tag)) by (auto simp:image-def Pow-def)
moreover from rng-fnt have finite (Pow (range tag)) by simp
ultimately have finite (range ?f)

by (auto simp only :image-def intro:finite-subset)
from finite-range-image [OF this] show ?thesis .

qed
next

— The injectivity of f -image is a consequence of the definition of (=tag=):
show inj-on ?f ?A
proof−
{ fix X Y

assume X-in: X ∈ ?A
and Y-in: Y ∈ ?A
and tag-eq : ?f X = ?f Y

have X = Y
proof −

from X-in Y-in tag-eq
obtain x y

where x-in: x ∈ X and y-in: y ∈ Y and eq-tg : tag x = tag y
unfolding quotient-def Image-def str-eq-rel-def

str-eq-def image-def f-eq-rel-def
apply simp by blast

with X-in Y-in show ?thesis
by (auto simp:quotient-def str-eq-rel-def str-eq-def f-eq-rel-def)

qed
} thus ?thesis unfolding inj-on-def by auto

qed
qed

qed

lemma finite-image-finite: [[∀ x ∈ A. f x ∈ B ; finite B]] =⇒ finite (f ‘ A)
by (rule finite-subset [of - B], auto)

lemma refined-partition-finite:
fixes R1 R2 A
assumes fnt : finite (A // R1)
and refined : R1 ⊆ R2
and eq1 : equiv A R1 and eq2 : equiv A R2
shows finite (A // R2)

proof −
let ?f = λ X . {R1 ‘‘ {x} | x . x ∈ X }

and ?A = (A // R2) and ?B = (A // R1)
show ?thesis
proof(rule-tac f = ?f and A = ?A in finite-imageD)

show finite (?f ‘ ?A)
proof(rule finite-subset [of - Pow ?B])

from fnt show finite (Pow (A // R1)) by simp
next

3

from eq2
show ?f ‘ A // R2 ⊆ Pow ?B

unfolding image-def Pow-def quotient-def
apply auto
by (rule-tac x = xb in bexI , simp,

unfold equiv-def sym-def refl-on-def , blast)
qed

next
show inj-on ?f ?A
proof −
{ fix X Y

assume X-in: X ∈ ?A and Y-in: Y ∈ ?A
and eq-f : ?f X = ?f Y (is ?L = ?R)

have X = Y using X-in
proof(rule quotientE)

fix x
assume X = R2 ‘‘ {x} and x ∈ A with eq2
have x-in: x ∈ X

unfolding equiv-def quotient-def refl-on-def by auto
with eq-f have R1 ‘‘ {x} ∈ ?R by auto
then obtain y where

y-in: y ∈ Y and eq-r : R1 ‘‘ {x} = R1 ‘‘{y} by auto
have (x , y) ∈ R1
proof −

from x-in X-in y-in Y-in eq2
have x ∈ A and y ∈ A

unfolding equiv-def quotient-def refl-on-def by auto
from eq-equiv-class-iff [OF eq1 this] and eq-r
show ?thesis by simp

qed
with refined have xy-r2 : (x , y) ∈ R2 by auto
from quotient-eqI [OF eq2 X-in Y-in x-in y-in this]
show ?thesis .

qed
} thus ?thesis by (auto simp:inj-on-def)

qed
qed

qed

lemma equiv-lang-eq : equiv UNIV (≈Lang)
unfolding equiv-def str-eq-rel-def sym-def refl-on-def trans-def
by blast

lemma tag-finite-imageD :
fixes tag
assumes rng-fnt : finite (range tag)
— Suppose the rang of tagging fucntion tag is finite.
and same-tag-eqvt :

∧
m n. tag m = tag (n::string) =⇒ m ≈Lang n

— And strings with same tag are equivalent

4

shows finite (UNIV // (≈Lang))
proof −

let ?R1 = (=tag=)
show ?thesis
proof(rule-tac refined-partition-finite [of - ?R1])

from finite-eq-f-rel [OF rng-fnt]
show finite (UNIV // =tag=) .

next
from same-tag-eqvt
show (=tag=) ⊆ (≈Lang)

by (auto simp:f-eq-rel-def str-eq-def)
next

from equiv-f-eq-rel
show equiv UNIV (=tag=) by blast

next
from equiv-lang-eq
show equiv UNIV (≈Lang) by blast

qed
qed

A more concise, but less intelligible argument for tag-finite-imageD is given
as the following. The basic idea is still using standard library lemma finite-imageD :

[[finite (f ‘ A); inj-on f A]] =⇒ finite A

which says: if the image of injective function f over set A is finite, then A
must be finte, as we did in the lemmas above.

lemma
fixes tag
assumes rng-fnt : finite (range tag)
— Suppose the rang of tagging fucntion tag is finite.
and same-tag-eqvt :

∧
m n. tag m = tag (n::string) =⇒ m ≈Lang n

— And strings with same tag are equivalent
shows finite (UNIV // (≈Lang))
— Then the partition generated by (≈Lang) is finite.

proof −
— The particular f and A used in finite-imageD are:
let ?f = op ‘ tag and ?A = (UNIV // ≈Lang)
show ?thesis
proof (rule-tac f = ?f and A = ?A in finite-imageD)

— The finiteness of f -image is a simple consequence of assumption rng-fnt :
show finite (?f ‘ ?A)
proof −

have ∀ X . ?f X ∈ (Pow (range tag)) by (auto simp:image-def Pow-def)
moreover from rng-fnt have finite (Pow (range tag)) by simp
ultimately have finite (range ?f)

by (auto simp only :image-def intro:finite-subset)
from finite-range-image [OF this] show ?thesis .

qed

5

next
— The injectivity of f is the consequence of assumption same-tag-eqvt :
show inj-on ?f ?A
proof−
{ fix X Y

assume X-in: X ∈ ?A
and Y-in: Y ∈ ?A
and tag-eq : ?f X = ?f Y

have X = Y
proof −

from X-in Y-in tag-eq
obtain x y where x-in: x ∈ X and y-in: y ∈ Y and eq-tg : tag x = tag y

unfolding quotient-def Image-def str-eq-rel-def str-eq-def image-def
apply simp by blast

from same-tag-eqvt [OF eq-tg] have x ≈Lang y .
with X-in Y-in x-in y-in
show ?thesis by (auto simp:quotient-def str-eq-rel-def str-eq-def)

qed
} thus ?thesis unfolding inj-on-def by auto

qed
qed

qed

1.2 The proof

Each case is given in a separate section, as well as the final main lemma.
Detailed explainations accompanied by illustrations are given for non-trivial
cases.

For ever inductive case, there are two tasks, the easier one is to show the
range finiteness of of the tagging function based on the finiteness of compo-
nent partitions, the difficult one is to show that strings with the same tag are
equivalent with respect to the composite language. Suppose the composite
language be Lang, tagging function be tag, it amounts to show:

tag(x) = tag(y) =⇒ x ≈Lang y

expanding the definition of ≈Lang, it amounts to show:

tag(x) = tag(y) =⇒ (∀ z . x@z ∈ Lang ←→ y@z ∈ Lang)

Because the assumed tag equlity tag(x) = tag(y) is symmetric, it is suffcient
to show just one direction:∧

x y z . [[tag(x) = tag(y); x@z ∈ Lang]] =⇒ y@z ∈ Lang

This is the pattern followed by every inductive case.

6

1.2.1 The base case for NULL

lemma quot-null-eq :
shows (UNIV // ≈{}) = ({UNIV }::lang set)
unfolding quotient-def Image-def str-eq-rel-def by auto

lemma quot-null-finiteI [intro]:
shows finite ((UNIV // ≈{})::lang set)

unfolding quot-null-eq by simp

1.2.2 The base case for EMPTY

lemma quot-empty-subset :
UNIV // (≈{[]}) ⊆ {{[]}, UNIV − {[]}}

proof
fix x
assume x ∈ UNIV // ≈{[]}
then obtain y where h: x = {z . (y , z) ∈ ≈{[]}}

unfolding quotient-def Image-def by blast
show x ∈ {{[]}, UNIV − {[]}}
proof (cases y = [])

case True with h
have x = {[]} by (auto simp: str-eq-rel-def)
thus ?thesis by simp

next
case False with h
have x = UNIV − {[]} by (auto simp: str-eq-rel-def)
thus ?thesis by simp

qed
qed

lemma quot-empty-finiteI [intro]:
shows finite (UNIV // (≈{[]}))

by (rule finite-subset [OF quot-empty-subset]) (simp)

1.2.3 The base case for CHAR

lemma quot-char-subset :
UNIV // (≈{[c]}) ⊆ {{[]},{[c]}, UNIV − {[], [c]}}

proof
fix x
assume x ∈ UNIV // ≈{[c]}
then obtain y where h: x = {z . (y , z) ∈ ≈{[c]}}

unfolding quotient-def Image-def by blast
show x ∈ {{[]},{[c]}, UNIV − {[], [c]}}
proof −
{ assume y = [] hence x = {[]} using h

by (auto simp:str-eq-rel-def)
} moreover {

assume y = [c] hence x = {[c]} using h

7

by (auto dest !:spec[where x = []] simp:str-eq-rel-def)
} moreover {

assume y 6= [] and y 6= [c]
hence ∀ z . (y @ z) 6= [c] by (case-tac y , auto)
moreover have

∧
p. (p 6= [] ∧ p 6= [c]) = (∀ q . p @ q 6= [c])

by (case-tac p, auto)
ultimately have x = UNIV − {[],[c]} using h

by (auto simp add :str-eq-rel-def)
} ultimately show ?thesis by blast

qed
qed

lemma quot-char-finiteI [intro]:
shows finite (UNIV // (≈{[c]}))

by (rule finite-subset [OF quot-char-subset]) (simp)

1.2.4 The inductive case for ALT

definition
tag-str-ALT :: lang ⇒ lang ⇒ string ⇒ (lang × lang)

where
tag-str-ALT L1 L2 = (λx . (≈L1 ‘‘ {x}, ≈L2 ‘‘ {x}))

lemma quot-union-finiteI [intro]:
fixes L1 L2 ::lang
assumes finite1 : finite (UNIV // ≈L1)
and finite2 : finite (UNIV // ≈L2)
shows finite (UNIV // ≈(L1 ∪ L2))

proof (rule-tac tag = tag-str-ALT L1 L2 in tag-finite-imageD)
show

∧
x y . tag-str-ALT L1 L2 x = tag-str-ALT L1 L2 y =⇒ x ≈(L1 ∪ L2) y

unfolding tag-str-ALT-def
unfolding str-eq-def
unfolding Image-def
unfolding str-eq-rel-def
by auto

next
have ∗: finite ((UNIV // ≈L1) × (UNIV // ≈L2))

using finite1 finite2 by auto
show finite (range (tag-str-ALT L1 L2))

unfolding tag-str-ALT-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

1.2.5 The inductive case for SEQ

For case SEQ, the language L is L1 ;; L2. Given x @ z ∈ L1 ;; L2, according
to the defintion of L1 ;; L2, string x @ z can be splitted with the prefix in

8

L1 and suffix in L2. The split point can either be in x (as shown in Fig.
1(a)), or in z (as shown in Fig. 1(c)). Whichever way it goes, the structure
on x @ z cn be transfered faithfully onto y @ z (as shown in Fig. 1(b)
and 1(d)) with the the help of the assumed tag equality. The following tag
function tag-str-SEQ is such designed to facilitate such transfers and lemma
tag-str-SEQ-injI formalizes the informal argument above. The details of
structure transfer will be given their.

xa x− xa

x z

x@z ∈ L1; ;L2

(x− xa)@z ∈ L2xa ∈ L1

(a) First possible way to split x@z

ya y − ya

y z

y@z ∈ L1; ;L2

(y − ya)@z ∈ L2ya ∈ L1

(b) Transferred structure corresponding to the first way of splitting

x za z − za

z

x@z ∈ L1; ;L2

x@za ∈ L1

(c) The second possible way to split x@z

y za z − za

z

y@z ∈ L1; ;L2

y@za ∈ L1

(d) Transferred structure corresponding to the second way of splitting

Figure 1: The case for SEQ

definition
tag-str-SEQ :: lang ⇒ lang ⇒ string ⇒ (lang × lang set)

where
tag-str-SEQ L1 L2 =

(λx . (≈L1 ‘‘ {x}, {(≈L2 ‘‘ {x − xa}) | xa. xa ≤ x ∧ xa ∈ L1}))

The following is a techical lemma which helps to split the x @ z ∈ L1 ;; L2

mentioned above.

lemma append-seq-elim:
assumes x @ y ∈ L1 ;; L2

9

shows (∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ y ∈ L2) ∨
(∃ ya ≤ y . (x @ ya) ∈ L1 ∧ (y − ya) ∈ L2)

proof−
from assms obtain s1 s2

where eq-xys: x @ y = s1 @ s2
and in-seq : s1 ∈ L1 ∧ s2 ∈ L2

by (auto simp:Seq-def)
from app-eq-dest [OF eq-xys]
have

(x ≤ s1 ∧ (s1 − x) @ s2 = y) ∨ (s1 ≤ x ∧ (x − s1) @ y = s2)
(is ?Split1 ∨ ?Split2) .

moreover have ?Split1 =⇒ ∃ ya ≤ y . (x @ ya) ∈ L1 ∧ (y − ya) ∈ L2

using in-seq by (rule-tac x = s1 − x in exI , auto elim:prefixE)
moreover have ?Split2 =⇒ ∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ y ∈ L2

using in-seq by (rule-tac x = s1 in exI , auto)
ultimately show ?thesis by blast

qed

lemma tag-str-SEQ-injI :
fixes v w
assumes eq-tag : tag-str-SEQ L1 L2 v = tag-str-SEQ L1 L2 w
shows v ≈(L1 ;; L2) w

proof−
— As explained before, a pattern for just one direction needs to be dealt with:

{ fix x y z
assume xz-in-seq : x @ z ∈ L1 ;; L2

and tag-xy : tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y
havey @ z ∈ L1 ;; L2

proof−
— There are two ways to split x@z :
from append-seq-elim [OF xz-in-seq]
have (∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ z ∈ L2) ∨

(∃ za ≤ z . (x @ za) ∈ L1 ∧ (z − za) ∈ L2) .
— It can be shown that ?thesis holds in either case:
moreover {

— The case for the first split:
fix xa
assume h1 : xa ≤ x and h2 : xa ∈ L1 and h3 : (x − xa) @ z ∈ L2

— The following subgoal implements the structure transfer:
obtain ya

where ya ≤ y
and ya ∈ L1

and (y − ya) @ z ∈ L2

proof −

—

By expanding the definition of

tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y

and extracting the second compoent, we get:

10

have {≈L2 ‘‘ {x − xa} |xa. xa ≤ x ∧ xa ∈ L1} =
{≈L2 ‘‘ {y − ya} |ya. ya ≤ y ∧ ya ∈ L1} (is ?Left = ?Right)

using tag-xy unfolding tag-str-SEQ-def by simp
— Since xa ≤ x and xa ∈ L1 hold, it is not difficult to show:

moreover have ≈L2 ‘‘ {x − xa} ∈ ?Left using h1 h2 by auto

—
Through tag equality, equivalent class ≈L2 ‘‘ {x − xa}
also belongs to the ?Right :

ultimately have ≈L2 ‘‘ {x − xa} ∈ ?Right by simp
— From this, the counterpart of xa in y is obtained:

then obtain ya
where eq-xya: ≈L2 ‘‘ {x − xa} = ≈L2 ‘‘ {y − ya}
and pref-ya: ya ≤ y and ya-in: ya ∈ L1

by simp blast
— It can be proved that ya has the desired property:
have (y − ya)@z ∈ L2

proof −
from eq-xya have (x − xa) ≈L2 (y − ya)

unfolding Image-def str-eq-rel-def str-eq-def by auto
with h3 show ?thesis unfolding str-eq-rel-def str-eq-def by simp

qed
— Now, ya has all properties to be a qualified candidate:
with pref-ya ya-in
show ?thesis using prems by blast

qed
— From the properties of ya, y @ z ∈ L1 ;; L2 is derived easily.

hence y @ z ∈ L1 ;; L2 by (erule-tac prefixE , auto simp:Seq-def)
} moreover {

— The other case is even more simpler:
fix za
assume h1 : za ≤ z and h2 : (x @ za) ∈ L1 and h3 : z − za ∈ L2

have y @ za ∈ L1

proof−
have ≈L1 ‘‘ {x} = ≈L1 ‘‘ {y}

using tag-xy unfolding tag-str-SEQ-def by simp
with h2 show ?thesis

unfolding Image-def str-eq-rel-def str-eq-def by auto
qed
with h1 h3 have y @ z ∈ L1 ;; L2

by (drule-tac A = L1 in seq-intro, auto elim:prefixE)
}
ultimately show ?thesis by blast

qed
}
— ?thesis is proved by exploiting the symmetry of eq-tag :
from this [OF - eq-tag] and this [OF - eq-tag [THEN sym]]

show ?thesis unfolding str-eq-def str-eq-rel-def by blast
qed

lemma quot-seq-finiteI [intro]:

11

fixes L1 L2 ::lang
assumes fin1 : finite (UNIV // ≈L1)
and fin2 : finite (UNIV // ≈L2)
shows finite (UNIV // ≈(L1 ;; L2))

proof (rule-tac tag = tag-str-SEQ L1 L2 in tag-finite-imageD)
show

∧
x y . tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y =⇒ x ≈(L1 ;; L2) y

by (rule tag-str-SEQ-injI)
next

have ∗: finite ((UNIV // ≈L1) × (Pow (UNIV // ≈L2)))
using fin1 fin2 by auto

show finite (range (tag-str-SEQ L1 L2))
unfolding tag-str-SEQ-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

1.2.6 The inductive case for STAR

This turned out to be the trickiest case. The essential goal is to proved y @
z ∈ L1∗ under the assumptions that x @ z ∈ L1∗ and that x and y have
the same tag. The reasoning goes as the following:

1. Since x @ z ∈ L1∗ holds, a prefix xa of x can be found such that xa
∈ L1∗ and (x − xa)@z ∈ L1∗, as shown in Fig. 2(a). Such a prefix
always exists, xa = [], for example, is one.

2. There could be many but fintie many of such xa, from which we can
find the longest and name it xa-max, as shown in Fig. 2(b).

3. The next step is to split z into za and zb such that (x − xa-max) @
za ∈ L1 and zb ∈ L1∗ as shown in Fig. 2(e). Such a split always exists
because:

(a) Because (x − x-max) @ z ∈ L1∗, it can always be splitted into
prefix a and suffix b, such that a ∈ L1 and b ∈ L1∗, as shown in
Fig. 2(c).

(b) But the prefix a CANNOT be shorter than x − xa-max (as shown
in Fig. 2(d)), becasue otherwise, ma-max@a would be in the
same kind as xa-max but with a larger size, conflicting with the
fact that xa-max is the longest.

4. By the assumption that x and y have the same tag, the structure on
x @ z can be transferred to y @ z as shown in Fig. 2(f). The detailed
steps are:

(a) A y-prefix ya corresponding to xa can be found, which satisfies
conditions: ya ∈ L1∗ and (y − ya)@za ∈ L1.

12

(b) Since we already know zb ∈ L1∗, we get (y − ya)@za@zb ∈ L1∗,
and this is just (y − ya)@z ∈ L1∗.

(c) With fact ya ∈ L1∗, we finally get y@z ∈ L1∗.

The formal proof of lemma tag-str-STAR-injI faithfully follows this informal
argument while the tagging function tag-str-STAR is defined to make the
transfer in step ?? feasible.

definition
tag-str-STAR :: lang ⇒ string ⇒ lang set

where
tag-str-STAR L1 = (λx . {≈L1 ‘‘ {x − xa} | xa. xa < x ∧ xa ∈ L1?})

A technical lemma.

lemma finite-set-has-max : [[finite A; A 6= {}]] =⇒
(∃ max ∈ A. ∀ a ∈ A. f a <= (f max :: nat))

proof (induct rule:finite.induct)
case emptyI thus ?case by simp

next
case (insertI A a)
show ?case
proof (cases A = {})

case True thus ?thesis by (rule-tac x = a in bexI , auto)
next

case False
with prems obtain max

where h1 : max ∈ A
and h2 : ∀ a∈A. f a ≤ f max by blast

show ?thesis
proof (cases f a ≤ f max)

assume f a ≤ f max
with h1 h2 show ?thesis by (rule-tac x = max in bexI , auto)

next
assume ¬ (f a ≤ f max)
thus ?thesis using h2 by (rule-tac x = a in bexI , auto)

qed
qed

qed

The following is a technical lemma.which helps to show the range finiteness
of tag function.

lemma finite-strict-prefix-set : finite {xa. xa < (x ::string)}
apply (induct x rule:rev-induct , simp)
apply (subgoal-tac {xa. xa < xs @ [x]} = {xa. xa < xs} ∪ {xs})
by (auto simp:strict-prefix-def)

lemma tag-str-STAR-injI :
fixes v w

13

xa x− xa

x z

x@z ∈ L1∗

(x− xa)@z ∈ L1∗xa ∈ L1∗

(a) First split

xa max x− xa max

x z

x@z ∈ L1∗

(x− xa max)@z ∈ L1∗xa ∈ L1∗

(b) Max split

xa max x− xa max

x z

x@z ∈ L1∗

(x− xa max)@z ∈ L1∗xa ∈ L1∗

a ∈ L1 b ∈ L1∗

(c) Max split with a and b (the right situation)

xa max x− xa max

x z

x@z ∈ L1∗

(x− xa max)@z ∈ L1∗xa ∈ L1∗

a ∈ L1 b ∈ L1∗

(d) Max split with a and b (the wrong situation)

xa max x− xa max za zb

x z

x@z ∈ L1∗

(x− xa max)@za ∈ L1xa max ∈ L1∗ zb ∈ L1∗

(x− xa max)@z ∈ L1∗

(e) Last split

ya y − ya za zb

y z

y@z ∈ L1∗

(y − ya)@za ∈ L1ya ∈ L1∗ zb ∈ L1∗

(y − ya)@z ∈ L1∗

(f) Structure transferred to y

Figure 2: The case for STAR

14

assumes eq-tag : tag-str-STAR L1 v = tag-str-STAR L1 w
shows (v ::string) ≈(L1?) w

proof−
— As explained before, a pattern for just one direction needs to be dealt with:

{ fix x y z
assume xz-in-star : x @ z ∈ L1?

and tag-xy : tag-str-STAR L1 x = tag-str-STAR L1 y
have y @ z ∈ L1?
proof(cases x = [])

— The degenerated case when x is a null string is easy to prove:
case True
with tag-xy have y = []

by (auto simp add : tag-str-STAR-def strict-prefix-def)
thus ?thesis using xz-in-star True by simp

next
— The nontrival case:

case False

—

Since x @ z ∈ L1?, x can always be splitted by a prefix xa together
with its suffix x − xa, such that both xa and (x − xa) @ z are
in L1?, and there could be many such splittings.Therefore, the
following set ?S is nonempty, and finite as well:

let ?S = {xa. xa < x ∧ xa ∈ L1? ∧ (x − xa) @ z ∈ L1?}
have finite ?S

by (rule-tac B = {xa. xa < x} in finite-subset ,
auto simp:finite-strict-prefix-set)

moreover have ?S 6= {} using False xz-in-star
by (simp, rule-tac x = [] in exI , auto simp:strict-prefix-def)

—
Since ?S is finite, we can always single out the longest and
name it xa-max :

ultimately have ∃ xa-max ∈ ?S . ∀ xa ∈ ?S . length xa ≤ length xa-max
using finite-set-has-max by blast

then obtain xa-max
where h1 : xa-max < x
and h2 : xa-max ∈ L1?
and h3 : (x − xa-max) @ z ∈ L1?
and h4 :∀ xa < x . xa ∈ L1? ∧ (x − xa) @ z ∈ L1?

−→ length xa ≤ length xa-max
by blast

—
By the equality of tags, the counterpart of xa-max among y-
prefixes, named ya, can be found:

obtain ya
where h5 : ya < y and h6 : ya ∈ L1?
and eq-xya: (x − xa-max) ≈L1 (y − ya)

proof−
from tag-xy have {≈L1 ‘‘ {x − xa} |xa. xa < x ∧ xa ∈ L1?} =
{≈L1 ‘‘ {y − xa} |xa. xa < y ∧ xa ∈ L1?} (is ?left = ?right)
by (auto simp:tag-str-STAR-def)

moreover have ≈L1 ‘‘ {x − xa-max} ∈ ?left using h1 h2 by auto
ultimately have ≈L1 ‘‘ {x − xa-max} ∈ ?right by simp
with prems show ?thesis apply

(simp add :Image-def str-eq-rel-def str-eq-def) by blast

15

qed

—
The ?thesis, y @ z ∈ L1?, is a simple consequence of the following
proposition:

have (y − ya) @ z ∈ L1?
proof−

— The idea is to split the suffix z into za and zb, such that:
obtain za zb where eq-zab: z = za @ zb

and l-za: (y − ya)@za ∈ L1 and ls-zb: zb ∈ L1?
proof −

— Since xa-max < x, x can be splitted into a and b such that:
from h1 have (x − xa-max) @ z 6= []

by (auto simp:strict-prefix-def elim:prefixE)
from star-decom [OF h3 this]
obtain a b where a-in: a ∈ L1

and a-neq : a 6= [] and b-in: b ∈ L1?
and ab-max : (x − xa-max) @ z = a @ b by blast

— Now the candiates for za and zb are found:
let ?za = a − (x − xa-max) and ?zb = b
have pfx : (x − xa-max) ≤ a (is ?P1)

and eq-z : z = ?za @ ?zb (is ?P2)
proof −

—
Since (x − xa-max) @ z = a @ b, string (x − xa-max) @ z can
be splitted in two ways:

have ((x − xa-max) ≤ a ∧ (a − (x − xa-max)) @ b = z) ∨
(a < (x − xa-max) ∧ ((x − xa-max) − a) @ z = b)
using app-eq-dest [OF ab-max] by (auto simp:strict-prefix-def)

moreover {
— However, the undsired way can be refuted by absurdity:
assume np: a < (x − xa-max)

and b-eqs: ((x − xa-max) − a) @ z = b
have False
proof −

let ?xa-max ′ = xa-max @ a
have ?xa-max ′ < x

using np h1 by (clarsimp simp:strict-prefix-def diff-prefix)
moreover have ?xa-max ′ ∈ L1?

using a-in h2 by (simp add :star-intro3)
moreover have (x − ?xa-max ′) @ z ∈ L1?

using b-eqs b-in np h1 by (simp add :diff-diff-appd)
moreover have ¬ (length ?xa-max ′ ≤ length xa-max)

using a-neq by simp
ultimately show ?thesis using h4 by blast

qed }
— Now it can be shown that the splitting goes the way we desired.
ultimately show ?P1 and ?P2 by auto

qed
hence (x − xa-max)@?za ∈ L1 using a-in by (auto elim:prefixE)
— Now candidates ?za and ?zb have all the requred properteis.
with eq-xya have (y − ya) @ ?za ∈ L1

by (auto simp:str-eq-def str-eq-rel-def)

16

with eq-z and b-in prems
show ?thesis by blast

qed
— ?thesis can easily be shown using properties of za and zb:
have ((y − ya) @ za) @ zb ∈ L1? using l-za ls-zb by blast
with eq-zab show ?thesis by simp

qed
with h5 h6 show ?thesis

by (drule-tac star-intro1 , auto simp:strict-prefix-def elim:prefixE)
qed

}
— By instantiating the reasoning pattern just derived for both directions:
from this [OF - eq-tag] and this [OF - eq-tag [THEN sym]]
— The thesis is proved as a trival consequence:

show ?thesis unfolding str-eq-def str-eq-rel-def by blast
qed

lemma — The oringal version with less explicit details.
fixes v w
assumes eq-tag : tag-str-STAR L1 v = tag-str-STAR L1 w
shows (v ::string) ≈(L1?) w

proof−

—

According to the definition of ≈Lang, proving v ≈(L1?) w amounts
to showing: for any string u, if v @ u ∈ (L1?) then w @ u ∈ (L1?)
and vice versa. The reasoning pattern for both directions are the
same, as derived in the following:

{ fix x y z
assume xz-in-star : x @ z ∈ L1?

and tag-xy : tag-str-STAR L1 x = tag-str-STAR L1 y
have y @ z ∈ L1?
proof(cases x = [])

— The degenerated case when x is a null string is easy to prove:
case True
with tag-xy have y = []

by (auto simp:tag-str-STAR-def strict-prefix-def)
thus ?thesis using xz-in-star True by simp

next
— The case when x is not null, and x @ z is in L1?,

case False
obtain x-max

where h1 : x-max < x
and h2 : x-max ∈ L1?
and h3 : (x − x-max) @ z ∈ L1?
and h4 :∀ xa < x . xa ∈ L1? ∧ (x − xa) @ z ∈ L1?

−→ length xa ≤ length x-max
proof−

let ?S = {xa. xa < x ∧ xa ∈ L1? ∧ (x − xa) @ z ∈ L1?}
have finite ?S

17

by (rule-tac B = {xa. xa < x} in finite-subset ,
auto simp:finite-strict-prefix-set)

moreover have ?S 6= {} using False xz-in-star
by (simp, rule-tac x = [] in exI , auto simp:strict-prefix-def)

ultimately have ∃ max ∈ ?S . ∀ a ∈ ?S . length a ≤ length max
using finite-set-has-max by blast

with prems show ?thesis by blast
qed
obtain ya

where h5 : ya < y and h6 : ya ∈ L1? and h7 : (x − x-max) ≈L1 (y − ya)
proof−

from tag-xy have {≈L1 ‘‘ {x − xa} |xa. xa < x ∧ xa ∈ L1?} =
{≈L1 ‘‘ {y − xa} |xa. xa < y ∧ xa ∈ L1?} (is ?left = ?right)
by (auto simp:tag-str-STAR-def)

moreover have ≈L1 ‘‘ {x − x-max} ∈ ?left using h1 h2 by auto
ultimately have ≈L1 ‘‘ {x − x-max} ∈ ?right by simp
with prems show ?thesis apply

(simp add :Image-def str-eq-rel-def str-eq-def) by blast
qed
have (y − ya) @ z ∈ L1?
proof−

from h3 h1 obtain a b where a-in: a ∈ L1

and a-neq : a 6= [] and b-in: b ∈ L1?
and ab-max : (x − x-max) @ z = a @ b
by (drule-tac star-decom, auto simp:strict-prefix-def elim:prefixE)

have (x − x-max) ≤ a ∧ (a − (x − x-max)) @ b = z
proof −

have ((x − x-max) ≤ a ∧ (a − (x − x-max)) @ b = z) ∨
(a < (x − x-max) ∧ ((x − x-max) − a) @ z = b)

using app-eq-dest [OF ab-max] by (auto simp:strict-prefix-def)
moreover {

assume np: a < (x − x-max) and b-eqs: ((x − x-max) − a) @ z = b
have False
proof −

let ?x-max ′ = x-max @ a
have ?x-max ′ < x

using np h1 by (clarsimp simp:strict-prefix-def diff-prefix)
moreover have ?x-max ′ ∈ L1?

using a-in h2 by (simp add :star-intro3)
moreover have (x − ?x-max ′) @ z ∈ L1?

using b-eqs b-in np h1 by (simp add :diff-diff-appd)
moreover have ¬ (length ?x-max ′ ≤ length x-max)

using a-neq by simp
ultimately show ?thesis using h4 by blast

qed
} ultimately show ?thesis by blast

qed
then obtain za where z-decom: z = za @ b

and x-za: (x − x-max) @ za ∈ L1

18

using a-in by (auto elim:prefixE)
from x-za h7 have (y − ya) @ za ∈ L1

by (auto simp:str-eq-def str-eq-rel-def)
with b-in have ((y − ya) @ za) @ b ∈ L1? by blast
with z-decom show ?thesis by auto

qed
with h5 h6 show ?thesis

by (drule-tac star-intro1 , auto simp:strict-prefix-def elim:prefixE)
qed

}
— By instantiating the reasoning pattern just derived for both directions:
from this [OF - eq-tag] and this [OF - eq-tag [THEN sym]]
— The thesis is proved as a trival consequence:

show ?thesis unfolding str-eq-def str-eq-rel-def by blast
qed

lemma quot-star-finiteI [intro]:
fixes L1 ::lang
assumes finite1 : finite (UNIV // ≈L1)
shows finite (UNIV // ≈(L1?))

proof (rule-tac tag = tag-str-STAR L1 in tag-finite-imageD)
show

∧
x y . tag-str-STAR L1 x = tag-str-STAR L1 y =⇒ x ≈(L1?) y

by (rule tag-str-STAR-injI)
next

have ∗: finite (Pow (UNIV // ≈L1))
using finite1 by auto

show finite (range (tag-str-STAR L1))
unfolding tag-str-STAR-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

1.2.7 The conclusion

lemma rexp-imp-finite:
fixes r ::rexp
shows finite (UNIV // ≈(L r))

by (induct r) (auto)

end

19

	Direction regular language finite partition
	The scheme
	The proof
	The base case for NULL
	The base case for EMPTY
	The base case for CHAR
	The inductive case for ALT
	The inductive case for SEQ
	The inductive case for STAR
	The conclusion

