Regular Expressions

&
The Myhill-Nerode Theorem

Wu Chunhan

October 20, 2010

Outline

@ Regular Expression(brief)
© Myhill-Nerode Theorem(Intro)
© FA to Regular Expressions

@ Proving Myhill-Nerode Theorem
@ Well-Founded iterating principle
@ Invariant predicate
@ Generating initial ES
@ lteration step of ES
@ Final Proof

Regular Expression(brief)

Outline

@ Regular Expression(brief)

Regular Expression(brief)

Regular Expression

@ What we may all know(in Compiling Principle)

Regular Expression(brief)

Regular Expression

@ What we may all know(in Compiling Principle)
e An alphabet ¥ where every language based

Regular Expression(brief)

Regular Expression

@ What we may all know(in Compiling Principle)

e An alphabet ¥ where every language based
e D Xe)|clnnl|nln|r

Regular Expression(brief)

Regular Expression

@ What we may all know(in Compiling Principle)

e An alphabet ¥ where every language based
e D Xe)|clnnl|nln|r

o {J [} [{lel} I LisLo | LU Ly | L

Regular Expression(brief)

Regular Expression

@ What we may all know(in Compiling Principle)

e An alphabet ¥ where every language based
e D Xe)|clnnl|nln|r

o {} I [{lel} | LiiLo | LU Ly | Lx
definition lang_seq :: "string set = string set = string set"
("5 " [100,100] 100)
where

"L1l; L2 = {s1@s2 | s1 s2. s1 € L1 A s2 € L2}"

Regular Expression(brief)

Regular Expression

@ What we may all know(in Compiling Principle)

e An alphabet ¥ where every language based
e D Xe)|clnnl|nln|r

o {J [} [{lel} I LisLo | LU Ly | L

definition lang_seq :: "string set = string set = string set"
(" 5 " [100,100] 100)
where

"L1l; L2 = {s1@s2 | s1 s2. s1 € L1 A s2 € L2}"

inductive set Star :: "string set = string set" (" _«" [101] 102)
for L :: "string set" N

where
start[intro]: "[] € Lx"

| step[intro]: "[s1 € L; s2 € Lx] = s1@s2 € Lx"

Regular Expression(brief)

Regular Expression(Formalization)

@ In Isabelle/HOL

Regular Expression(brief)

Regular Expression(Formalization)

@ In Isabelle/HOL

datatype rexp =
NULL

| EMPTY

| CHAR char

| SEQ rexp rexp

| ALT rexp rexp

| STAR rexp

Regular Expression(brief)

Regular Expression(Formalization)

@ In Isabelle/HOL

datatype rexp =
NULL

| EMPTY

| CHAR char

| SEQ rexp rexp

| ALT rexp rexp

| STAR rexp

consts L:: "a = string set"

overloading L rexp == "L:: rexp = string set"
begin -

fun L rexp :: "rexp = string set"

where

"L rexp (NULL) = {}"

"L rexp (EMPTY) = {[|}"

"L_rexp (CHAR c) = {[c]}"

"L_rexp (SEQ rl r2) = (L_rexp rl) ; (L_rexp r2)"
"L_rexp (ALT rl r2) = (L_rexp rl) U (L_rexp r2)"

"L_rexp (STAR r) = (L _rexp r)x" end

Myhill-Nerode Theorem(Intro)

Outline

© Myhill-Nerode Theorem(Intro)

Myhill-Nerode Theorem(Intro)

Myhill-Nerode theorem

@ In the theory of formal languages

Myhill-Nerode Theorem(Intro)

Myhill-Nerode theorem

@ In the theory of formal languages

e It provides a necessary & sufficient
condition for a language to be regular

Myhill-Nerode Theorem(Intro)

Myhill-Nerode theorem

@ In the theory of formal languages

e It provides a necessary & sufficient
condition for a language to be regular

e Named after John Myhill and Anil Nerode

Myhill-Nerode Theorem(Intro)

Myhill-Nerode theorem

@ In the theory of formal languages

e It provides a necessary & sufficient
condition for a language to be regular

e Named after John Myhill and Anil Nerode

e Proved at University of Chicago, in 1958

Myhill-Nerode Theorem(Intro)

Statement of the theorem

@ A equivalence relation defined by Lang

x =Lang=y = (Vz. (x @ z € Lang) = (y Q z € Lang))

Myhill-Nerode Theorem(Intro)

Statement of the theorem

@ A equivalence relation defined by Lang

x =Lang=y = (Vz. (x @ z € Lang) = (y Q z € Lang))

@ If x =Lang= y and x € Lang, then y € Lang

Myhill-Nerode Theorem(Intro)

Statement of the theorem

@ A equivalence relation defined by Lang

x =Lang=y = (Vz. (x @ z € Lang) = (y Q z € Lang))

@ If x =Lang= y and x € Lang, then y € Lang

@ If x =Lang= y, then (x@a) =Lang= (yQa)

Myhill-Nerode Theorem(Intro)

Statement of the theorem

@ A equivalence relation defined by Lang

x =Lang=y = (Vz. (x @ z € Lang) = (y Q z € Lang))

@ If x =Lang= y and x € Lang, then y € Lang

@ If x =Lang= y, then (x@a) =Lang= (yQa)

@ A equivalence class defined by Lang & x

[x]Lang = {y | x =Lang= y}

Myhill-Nerode Theorem(Intro)

Statement of the theorem

@ A equivalence relation defined by Lang

x =Lang=y = (Vz. (x @ z € Lang) = (y Q z € Lang))

@ If x =Lang= y and x € Lang, then y € Lang

@ If x =Lang= y, then (x@a) =Lang= (yQa)

@ A equivalence class defined by Lang & x

[x]Lang = {y | x =Lang= y}
e Partions of Lang’ created by Lang
Lang’ Quo Lang = {[x]Lang | x € Lang’}

Myhill-Nerode Theorem(Intro)

Statement of the theorem

@ A equivalence relation defined by Lang

x =Lang=y = (Vz. (x @ z € Lang) = (y Q z € Lang))

@ If x =Lang= y and x € Lang, then y € Lang

@ If x =Lang= y, then (x@a) =Lang= (yQa)

@ A equivalence class defined by Lang & x
[x]Lang = {y | x =Lang= y}
e Partions of Lang’ created by Lang

Lang’ Quo Lang = {[x]Lang | x € Lang’}
e Partions of Universal Language(UN/IV)

Myhill-Nerode Theorem(Intro)

Statement of the theorem

@ A equivalence relation defined by Lang

x =Lang=y = (Vz. (x @ z € Lang) = (y Q z € Lang))

@ If x =Lang= y and x € Lang, then y € Lang

@ If x =Lang= y, then (x@a) =Lang= (yQa)

@ A equivalence class defined by Lang & x
[x]Lang = {y | x =Lang= y}
e Partions of Lang’ created by Lang
Lang’ Quo Lang = {[x]Lang | x € Lang’}

e Partions of Universal Language(UN/IV)
e Universal Language(UNIV) : ¥x

Myhill-Nerode Theorem(Intro)

Statement of the theorem

@ A equivalence relation defined by Lang

x =Lang=y = (Vz. (x @ z € Lang) = (y Q z € Lang))

@ If x =Lang= y and x € Lang, then y € Lang

@ If x =Lang= y, then (x@a) =Lang= (yQa)

@ A equivalence class defined by Lang & x

[x]Lang = {y | x =Lang= y}

e Partions of Lang’ created by Lang
Lang’ Quo Lang = {[x]Lang | x € Lang’}
e Partions of Universal Language(UN/IV)

e Universal Language(UNIV) : ¥x
Lang = [J{X | UNIV Quo Lang} (VxeX. x € Lang)

Myhill-Nerode Theorem(Intro)

Statement of the theorem (cont.)

Lang is regular iff it has finite partitions of UNIV
(3fa. lang_of _fa fa = Lang) = finite (UNIV Quo Lang)

Myhill-Nerode Theorem(Intro)

Statement of the theorem (cont.)

Lang is regular iff it has finite partitions of UNIV
(3fa. lang_of _fa fa = Lang) = finite (UNIV Quo Lang)

@ lang of fais for getting language from a FA

Myhill-Nerode Theorem(Intro)

Use and consequences

Myhill-Nerode Theorem(Intro)

Use and consequences

e To show a language is regular

Myhill-Nerode Theorem(Intro)

Use and consequences

e To show a language is regular
@ prove the partition is finite

Myhill-Nerode Theorem(Intro)

Use and consequences

e To show a language is regular

@ prove the partition is finite
o from [|\|]Lang ([|[]|]Lang)& X do a exhausitive
search

Myhill-Nerode Theorem(Intro)

Use and consequences

e To show a language is regular

@ prove the partition is finite
o from [|\|]Lang ([|[]|]Lang)& X do a exhausitive
search

Y ={0,1} & Lang= L(0-(0[1))

Myhill-Nerode Theorem(Intro)

Use and consequences

e To show a language is regular

@ prove the partition is finite
o from [|\|]Lang ([|[]|]Lang)& X do a exhausitive
search

Y ={0,1} & Lang= L(0-(0[1))

[[Al]Lang

Myhill-Nerode Theorem(Intro)

Use and consequences

e To show a language is regular

@ prove the partition is finite
o from [|\|]Lang ([|[]|]Lang)& X do a exhausitive
search

Y ={0,1} & Lang= L(0-(0[1))

[IA]]Lang X # Lang #0

Myhill-Nerode Theorem(Intro)

Use and consequences

e To show a language is regular

@ prove the partition is finite
o from [|\|]Lang ([|[]|]Lang)& X do a exhausitive
search

Y ={0,1} & Lang= L(0-(0[1))

[[A[]Lang
[MLang | r#tme#0 | [l0f]Lang

Myhill-Nerode Theorem(Intro)

Use and consequences

e To show a language is regular

@ prove the partition is finite
o from [|\|]Lang ([|[]|]Lang)& X do a exhausitive
search

Y ={0,1} & Lang= L(0-(0[1))

0% Lang #1
[IA[lLang £ LZ':é #1

[IA]Lang N#Lang 20 | [|0|]Lang A Lang £0

—

Myhill-Nerode Theorem(Intro)

Use and consequences

e To show a language is regular

@ prove the partition is finite
o from [|\|]Lang ([|[]|]Lang)& X do a exhausitive
search

Y ={0,1} & Lang= L(0-(0[1))

[N St HgHLLang
ang N Lang 1 ang
[IMJLang | r#tesz0 | [lo]JLang | Azrmsz0 | [|Lf]Lang

—

Myhill-Nerode Theorem(Intro)

Use and consequences

e To show a language is regular

@ prove the partition is finite
o from [|\|]Lang ([|[]|]Lang)& X do a exhausitive
search

e To show a language is not regular

Y ={0,1} & Lang= L(0-(0[1))

[N St HgHLLang
ang N Lang 1 ang
[IMJLang | r#tesz0 | [lo]JLang | Azrmsz0 | [|Lf]Lang

—

Myhill-Nerode Theorem(Intro)

Use and consequences

e To show a language is regular
@ prove the partition is finite
o from [|\|]Lang ([|[]|]Lang)& X do a exhausitive
search
e To show a language is not regular
@ prove the partition is infinite

Y ={0,1} & Lang= L(0-(0[1))

[N S ot HgHLLang
ang N Lang 1 ang
[IMJLang | r#tesz0 | [lo]JLang | Azrmsz0 | [|1f]Lang

—

Myhill-Nerode Theorem(Intro)

Proof(brief.)

Finite partitions — Regular

Myhill-Nerode Theorem(Intro)

Proof(brief.)

Finite partitions — Regular
e Exists a k, where k partitions (equiv-classes)

Myhill-Nerode Theorem(Intro)

Proof(brief.)

Finite partitions — Regular

e Exists a k, where k partitions (equiv-classes)
e We can get a DFA (Q,X,0,qo,F)

Myhill-Nerode Theorem(Intro)

Proof(brief.)

Finite partitions — Regular

e Exists a k, where k partitions (equiv-classes)

e We can get a DFA (Q,X,0,qo,F)
e @ = UNIV Quo Lang

Myhill-Nerode Theorem(Intro)

Proof(brief.)

Finite partitions — Regular

e Exists a k, where k partitions (equiv-classes)

e We can get a DFA (Q,X,0,qo,F)

e @ = UNIV Quo Lang
o i(p,a) = qiff
exists a word x € p such that x@a € g

Myhill-Nerode Theorem(Intro)

Proof(brief.)

Finite partitions — Regular
e Exists a k, where k partitions (equiv-classes)
e We can get a DFA (Q,X,0,qo,F)

e @ = UNIV Quo Lang

o i(p,a) = qiff
exists a word x € p such that x@a € g

e qo = [|\|]Lang

Myhill-Nerode Theorem(Intro)

Proof(brief.)

Finite partitions — Regular
e Exists a k, where k partitions (equiv-classes)

e We can get a DFA (Q,X,0,qo,F)
e @ = UNIV Quo Lang
e d(p,a) = qiff
exists a word x € p such that x@a € g
e qo = [|\|]Lang
q € F iff exists a word x € g such that x € Lang

Myhill-Nerode Theorem(Intro)

Proof(brief.)

Finite partitions — Regular

e Exists a k, where k partitions (equiv-classes)

e We can get a DFA (Q,X,0,qo,F)

e @ = UNIV Quo Lang

e d(p,a) = qiff

exists a word x € p such that x@a € g

o qo = [[A]]Lang
g € F iff exists a word x € g such that x € Lang
0 is a function because:
If x =Lang= y, then (xQa) =Lang= (yQa)

Myhill-Nerode Theorem(Intro)

Proof(brief.)

Finite partitions — Regular

e Exists a k, where k partitions (equiv-classes)

e We can get a DFA (Q,X,0,qo,F)

e @ = UNIV Quo Lang

e d(p,a) = qiff

exists a word x € p such that x@a € g

o qo = [[A]]Lang
g € F iff exists a word x € g such that x € Lang
0 is a function because:
If x =Lang= y, then (xQa) =Lang= (yQa)

e For any string x, DFA ends in state [|x|]Lang

Myhill-Nerode Theorem(Intro)

Proof(brief.)

Finite partitions — Regular

e Exists a k, where k partitions (equiv-classes)

e We can get a DFA (Q,X,0,qo,F)

e @ = UNIV Quo Lang

e d(p,a) = qiff

exists a word x € p such that x@a € g

o qo = [[A]]Lang
g € F iff exists a word x € g such that x € Lang
0 is a function because:
If x =Lang= y, then (xQa) =Lang= (yQa)

e For any string x, DFA ends in state [|x|]Lang
@ x € Lang «— DFA accepts

Myhill-Nerode Theorem(Intro)

Proof (cont.)

Regular — Finite partitions

Myhill-Nerode Theorem(Intro)

Proof (cont.)

Regular — Finite partitions
e x = DFA =y iff x & y end in the same state

Myhill-Nerode Theorem(Intro)

Proof (cont.)

Regular — Finite partitions
e x = DFA =y iff x & y end in the same state
e = DFA = is an equivalence relation

Myhill-Nerode Theorem(Intro)

Proof (cont.)

Regular — Finite partitions
e x = DFA =y iff x & y end in the same state
e = DFA = is an equivalence relation

e x=DFA=y — x=lang =y

Myhill-Nerode Theorem(Intro)

Proof (cont.)

Regular — Finite partitions
e x = DFA =y iff x & y end in the same state
e = DFA = is an equivalence relation
e x=DFA=y — x=lang =y
e Finite DFA

Myhill-Nerode Theorem(Intro)

Proof (cont.)

Regular — Finite partitions
e x = DFA =y iff x & y end in the same state
e = DFA = is an equivalence relation
e x=DFA=y — x=lang =y
e Finite DFA

Myhill-Nerode Theorem(Intro)

Proof (cont.)

Regular — Finite partitions
e x = DFA =y iff x & y end in the same state
e = DFA = is an equivalence relation
e x=DFA=y — x=lang =y
e Finite DFA

Regular «—— Finite partitions

Myhill-Nerode Theorem(Intro)

Proof (cont.)

Regular — Finite partitions
e x = DFA =y iff x & y end in the same state
e = DFA = is an equivalence relation
e x=DFA=y — x=lang =y
e Finite DFA

Regular «—— Finite partitions

But if Regular is defined in Reg Exps, then ?

FA to Regular Expressions

Outline

© FA to Regular Expressions

FA to Regular Expressions

FA to Reg Exps

State Removal method

FA to Regular Expressions

FA to Reg Exps

State Removal method
e How to do?

FA to Regular Expressions

FA to Reg Exps

State Removal method
e How to do?
© Identifies patterns within the graph

FA to Regular Expressions

FA to Reg Exps

State Removal method
e How to do?

© Identifies patterns within the graph
© Removes states

FA to Regular Expressions

FA to Reg Exps

State Removal method
e How to do?
© Identifies patterns within the graph

© Removes states
© Builds up bigger regular exps

FA to Regular Expressions

FA to Reg Exps

State Removal method
e How to do?

© Identifies patterns within the graph
© Removes states
© Builds up bigger regular exps

@ Characters

FA to Regular Expressions

FA to Reg Exps

State Removal method
e How to do?

© Identifies patterns within the graph
© Removes states
© Builds up bigger regular exps
e Characters
@ Easy to visualize

FA to Regular Expressions

FA to Reg Exps

State Removal method
e How to do?

© Identifies patterns within the graph
© Removes states
© Builds up bigger regular exps

e Characters

@ Easy to visualize
© Hard to formalize

FA to Regular Expressions

FA to Reg Exps

State Removal method
e How to do?

© Identifies patterns within the graph
© Removes states
© Builds up bigger regular exps

e Characters

@ Easy to visualize
© Hard to formalize

@ Simplified patterns in textbook

FA to Regular Expressions

FA to Reg Exps

State Removal method
e How to do?
© Identifies patterns within the graph
© Removes states
© Builds up bigger regular exps
e Characters

@ Easy to visualize

© Hard to formalize
@ Simplified patterns in textbook
@ How to choose patterns ?

FA to Regular Expressions

FA to Reg Exps (cont.)

Transitive Clousre method

FA to Regular Expressions

FA to Reg Exps (cont.)

Transitive Clousre method
e Easy to formalize

FA to Regular Expressions

FA to Reg Exps (cont.)

Transitive Clousre method
e Easy to formalize
@ We have done it

FA to Regular Expressions

FA to Reg Exps (cont.)

Transitive Clousre method
e Easy to formalize
@ We have done it

Brozozowski Algebraic method

FA to Regular Expressions

FA to Reg Exps (cont.)

Transitive Clousre method
e Easy to formalize
@ We have done it

Brozozowski Algebraic method

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 1

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 1

0/1

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 1
DFA
0/1
0
Equation-System (0)
- 0f1 L=

Ry = Ry; 0+ Ry; (0[1)
Rs = Ri;1+ Rs; (0]1)
1 + is actually U

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 1

DFA
0/1

Equation-System (0)
0/1 =2
= Ry = Ry; 0+ Ry; (0]1)
Rs = Ri;1+ Rs; (0]1)
1 + is actually U

ES Subst (1)
Ry = X0+ Ry; (0[1)
Ry =\ 1+ Rs; (0[1)

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 1
DFA
011
0
Equation-System (0)
Ry =A
= /1 Ry = Ry; 0+ Ry; (0[1) ES Subst (1)
R3 = Ri; 1+ R;; (0[1) Ry = X; 0+ Ry; (0[1)
i + is actually U R3 = X\; 1+ R3;(0[1)
ES Arden (2)
Ry = (X;0)(0[1)" = X; (0 (0]1)7)
R3 = X\; 1+ R3;(0[1)

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 1

DFA
0/1

Equation-System (0)
0/1 =2
= Ry = Ry; 0+ Ry; (0]1)
Rs = Ri;1+ Rs; (0]1)
1 + is actually U

ES Subst (1)
Ry = X0+ Ry; (0[1)
Ry =\ 1+ Rs; (0[1)

ES Arden (2)
Ry = (A 0)(0]1) = X; (0- (0]1)")
Rs = A\ 14 Rs;(0]1)

Arden’s Lemma (revised.)

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 1

DFA
0/1

Equation-System (0)
0/1 =2
= Ry = Ry; 0+ Ry; (0]1)
Rs = Ri;1+ Rs; (0]1)
1 + is actually U

ES Subst (1)
Ry = X0+ Ry; (0[1)
Ry =\ 1+ Rs; (0[1)

ES Arden (2)
Ry = (A 0)(0]1) = X; (0- (0]1)")
Rs = A\ 14 Rs;(0]1)

Arden’s Lemma (revised.)

Given an equation of the form X = X; A+ B where [| € A,
the equation has the solution X = B; Ax

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 1

DFA
0/1

Equation-System (0)
0/1 =2
= Ry = Ry; 0+ Ry; (0]1)
Rs = Ri;1+ Rs; (0]1)
1 + is actually U

ES Subst (1)
Ry = X0+ Ry; (0[1)
Ry =\ 1+ Rs; (0[1)

ES Arden (2)
Ry = (A 0)(0]1) = X; (0- (0]1)")
R3 = X\; 1+ R3;(0[1)

Result
Ry : (0-(0]1))

Arden’s Lemma (revised.)

Given an equation of the form X = X; A+ B where [| € A,
the equation has the solution X = B; Ax

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 2

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 2

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 2

DFA

Equation-System (0)
= Ri=R;1+Ry;1+ A
Ry = Ry;0+ Ry; 0

v

Arden’s Lemma
X = AX + B where [| € A, solution: X = Ax B

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 2

DFA

Equation-System (0) ES Arden (1)
= Ri=R;1+R;1+ A Ry =Ry (1-1%) + A\ 1%
R, = Ry;0 + Ry; 0 R, = Ry;0 + Ry; 0

v

Arden’s Lemma
X = AX + B where [| € A, solution: X = Ax B

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 2

DFA

Equation-System (0) ES Arden (1)
= Ri=R;1+R;1+ A Ry =Ry (1-1%) + A\ 1%
Ry = Ry;0+ Ry; 0 Ry = R1;0+ Ry; 0

E'S‘ QUbsL (2)
2: ((1-1°-0)[0) + A (1 -0

=

v

Arden’s Lemma
X = AX + B where [| € A, solution: X = Ax B

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 2

DFA

Equation-System (0) ES Arden (1)
= Ri=R;1+R;1+ A Ry =Ry (1-1%) + A\ 1%
Ry = Ry;0+ Ry; 0 Ry = R1;0+ Ry; 0

E'S‘ QUbsL (2)
2: ((1-1°-0)[0) + A (1 -0

ES Arden (3)
Ry = A (1%-0- ((1-1°-0)[0)")

=

v

Arden’s Lemma
X = AX + B where [| € A, solution: X = Ax B

FA to Regular Expressions

Brzozowski Algebraic method (revised.)

Example 2

DFA
1 0 0
Equation-System (0) ES Arden (1)
= Ri=R;1+R;1+ A Ry =Ry (1-1%) + A\ 1%
Ry = Ry;0+ Ry; 0 Ry = R1;0+ Ry; 0
E'S‘ QUbsL (2) ES Arden (3)

2 (115 0)[0) + A; (1% -0 Ry= X\ (1%-0-((1-1*-0)]0))

=

Result

Ry:(17-0-((1-1*- 0)[0)")

Arden’s Lemma
X = AX + B where [| € A, solution: X = Ax B

ing Myhill-Nerode Theorem

Outline

@ Proving Myhill-Nerode Theorem
@ Well-Founded iterating principle
@ Invariant predicate
@ Generating initial ES
@ lteration step of ES
@ Final Proof

ing Myhill-Nerode Theorem

Proving thought Reg Exps

o Target:

ing Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg

ing Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg
e Main approach

Proving Myhill-Nerode Theorem

Proving thought Reg Exps

o Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg
e Main approach
o Generate initial ES derived from Lang

Proving Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg
e Main approach

o Generate initial ES derived from Lang
e Fetch the Reg Exp by Brozozowski method

Proving Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg
e Main approach

o Generate initial ES derived from Lang

e Fetch the Reg Exp by Brozozowski method
e How to prove?

Proving Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg
e Main approach

o Generate initial ES derived from Lang

e Fetch the Reg Exp by Brozozowski method
e How to prove?

@ If each equation in ES of every step has:

Proving Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg
e Main approach

o Generate initial ES derived from Lang

e Fetch the Reg Exp by Brozozowski method
e How to prove?

@ If each equation in ES of every step has:
© Language of left(equiv-class) equal with right

Proving Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg
e Main approach

o Generate initial ES derived from Lang

e Fetch the Reg Exp by Brozozowski method
e How to prove?

@ If each equation in ES of every step has:

© Language of left(equiv-class) equal with right
© Right of last equation: \;(reg)

Proving Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg
e Main approach

o Generate initial ES derived from Lang

e Fetch the Reg Exp by Brozozowski method
e How to prove?

@ If each equation in ES of every step has:

© Language of left(equiv-class) equal with right
© Right of last equation: \;(reg)

© Language of \is {[]}

Proving Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg

e Main approach

o Generate initial ES derived from Lang

e Fetch the Reg Exp by Brozozowski method
e How to prove?
@ If each equation in ES of every step has:

© Language of left(equiv-class) equal with right
© Right of last equation: \;(reg)

© Language of \is {[]}
o

Language of right is L reg

Proving Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg
e Main approach

o Generate initial ES derived from Lang

e Fetch the Reg Exp by Brozozowski method
e How to prove?

@ If each equation in ES of every step has:

© Language of left(equiv-class) equal with right

© Right of last equation: \; (reg)

© Language of \is {[]}

@ Language of right is L reg

© We find the Reg Exps for the equiv-class!

Proving Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg
e Main approach

o Generate initial ES derived from Lang

e Fetch the Reg Exp by Brozozowski method
e How to prove?

@ If each equation in ES of every step has:

© Language of left(equiv-class) equal with right
© Right of last equation: \; (reg)

© Language of \is {[]}

@ Language of right is L reg

© We find the Reg Exps for the equiv-class!

© Lang is a set of equiv-class

Proving Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg
e Main approach

o Generate initial ES derived from Lang

e Fetch the Reg Exp by Brozozowski method
e How to prove?

@ If each equation in ES of every step has:

© Language of left(equiv-class) equal with right
© Right of last equation: \; (reg)

© Language of \is {[]}

@ Language of right is L reg

© We find the Reg Exps for the equiv-class!

© Lang is a set of equiv-class

@ Based on an well-founded iterating principle

Proving Myhill-Nerode Theorem

Proving thought Reg Exps

(4] Target: finite (UNIV Quo Lang) = Jreg. Lang = L reg
e Main approach

o Generate initial ES derived from Lang

e Fetch the Reg Exp by Brozozowski method
e How to prove?
@ If each equation in ES of every step has:
© Language of left(equiv-class) equal with right
© Right of last equation: \; (reg)
© Language of \is {[]}
@ Language of right is L reg
© We find the Reg Exps for the equiv-class!
© Lang is a set of equiv-class
@ Based on an well-founded iterating principle
@ Invariant of each step of ES’ invariation

ing Myhill-Nerode Theorem

Well-Founded iterating principle

Outline

@ Regular Expression(brief)
© Myhill-Nerode Theorem(Intro)
© FA to Regular Expressions

@ Proving Myhill-Nerode Theorem
@ Well-Founded iterating principle

Proving Myhill-Nerode Theorem
oce

Well-Founded iterating principle

WEFE-iter

e Elimination of ES can be abstracted as

Proving Myhill-Nerode Theorem
oce

Well-Founded iterating principle

WEFE-iter

e Elimination of ES can be abstracted as

l:,eEIe’.Pe’/\Qe’

Proving Myhill-Nerode Theorem
oce

Well-Founded iterating principle

WEFE-iter

e Elimination of ES can be abstracted as

l:)eEIe’. PeeAnQe
@ Like while in C

Proving Myhill-Nerode Theorem
oce

Well-Founded iterating principle

WEFE-iter

e Elimination of ES can be abstracted as

l:)eEIe’. PeeAnQe
@ Like while in C
@ Property Q: termination condition

Proving Myhill-Nerode Theorem
oce

Well-Founded iterating principle

WEFE-iter

e Elimination of ES can be abstracted as

l:)eEIe’. PeeAnQe
@ Like while in C

@ Property Q: termination condition
TCon ES = card ES = 1

Proving Myhill-Nerode Theorem
oce

Well-Founded iterating principle

WEFE-iter

e Elimination of ES can be abstracted as

Pegeponqe

o Like while in C

@ Property Q: termination condition
TCon ES = card ES = 1

@ Property P is an invariant predicate

Proving Myhill-Nerode Theorem
oce

Well-Founded iterating principle

WEFE-iter

e Elimination of ES can be abstracted as

Pegeponqe

o Like while in C

@ Property Q: termination condition
TCon ES = card ES = 1

@ Property P is an invariant predicate
e What is invariant?

Proving Myhill-Nerode Theorem
oce

Well-Founded iterating principle

WEFE-iter

e Elimination of ES can be abstracted as

l:)eEIe’. PeeAnQe
@ Like while in C

@ Property Q: termination condition
TCon ES = card ES = 1
@ Property P is an invariant predicate

e What is invariant?
© Language of left equal with right

Proving Myhill-Nerode Theorem
oce

Well-Founded iterating principle

WEFE-iter

e Elimination of ES can be abstracted as

l:)eEIe’. PeeAnQe
@ Like while in C

@ Property Q: termination condition
TCon ES = card ES = 1
@ Property P is an invariant predicate

e What is invariant?

© Language of left equal with right
© ES is finite

Proving Myhill-Nerode Theorem
oce

Well-Founded iterating principle

WEFE-iter

e Elimination of ES can be abstracted as

l:)eEIe’. PeeAnQe
@ Like while in C

@ Property Q: termination condition
TCon ES = card ES = 1
@ Property P is an invariant predicate

e What is invariant?

© Language of left equal with right
© ES is finite

© Each equiv-class has only one equation

Proving Myhill-Nerode Theorem
oce

Well-Founded iterating principle

WEFE-iter

e Elimination of ES can be abstracted as

l:)eEIe’. PeeAnQe
@ Like while in C

@ Property Q: termination condition
TCon ES = card ES = 1
@ Property P is an invariant predicate

e What is invariant?

© Language of left equal with right

© ES is finite

© Each equiv-class has only one equation
© Target equiv-class exists

Proving Myhill-Nerode Theorem
oce

Well-Founded iterating principle

WEFE-iter

e Elimination of ES can be abstracted as

l:)eEIe’. PeeAnQe
@ Like while in C

@ Property Q: termination condition
TCon ES = card ES = 1
@ Property P is an invariant predicate

e What is invariant?

© Language of left equal with right

© ES is finite

© Each equiv-class has only one equation
Q Target equiv-class exists
Q-

ing Myhill-Nerode Theorem

Invariant predicate

Outline

@ Regular Expression(brief)

© Myhill-Nerode Theorem(Intro)
© FA to Regular Expressions

@ Proving Myhill-Nerode Theorem

@ Invariant predicate

Proving Myhill-Nerode Theorem
oce

Invariant predicate

Formalization of Inv

Equation-System (0)
Ri=2\

Ry = Ry; 0+ Ry; (0]1)
Rs = Ry; 1+ Ry; (0]1)

Proving Myhill-Nerode Theorem
oce

Invariant predicate

Formalization of Inv

definition Inv :: "string set = t_equas = bool"

where
"Inv X ES = finite ES A (3 rhs. (X, rhs) € ES) A distinct_equas ES A Equation-System (0)
(V X xrhs. (X, xrhs) € ES — ardenable (X, xrhs) A X # {} A Ri=2A

Ry = Ry; 0+ Ry; (0]1)
Ry = Ry; 1+ R3; (0]1)

rhs eq_cls xrhs C insert {[|} (left _eq cls ES))"

Proving Myhill-Nerode Theorem
oce

Invariant predicate

Formalization of Inv

definition distinct _equas :: "t equas = bool"
where
"distinct _equas equas = V X rhs rhs’.

(X, rhs) € equas A (X, rhs’) € equas — rhs = rhs’"

definition Inv :: "string set = t_equas = bool"

where
"Inv X ES = finite ES A (3 rhs. (X, rhs) € ES) A distinct_equas ES A Equation-System (0)
(V X xrhs. (X, xrhs) € ES — ardenable (X, xrhs) A X # {} A

Ry = Ry; 1+ Ry; (0|1)

rhs eq_cls xrhs C insert {[|} (left _eq cls ES))"

Proving Myhill-Nerode Theorem
oce

Invariant predicate

Formalization of Inv

definition
distinct _rhs :: "t_equa_rhs = bool"
where "distinct_rhs rhs = V X regy rega.
(X, reg1) € rhs A (X, regz) € rhs — regy = rega"
definition
no_EMPTY _rhs :: "t_equa_rhs = bool"
where "no_EMPTY _rhs rhs =V Xr.
(X,r)erhs AX#{[]} — [[¢L="

definition ardenable :: "t equa = bool"
where "ardenable equa = let (X, rhs) = equa in
distinct _rhs rhs A no_ EMPTY rhs rhs A X = L rhs"
definition distinct equas :: "t equas = bool"
where - B
"distinct _equas equas = V X rhs rhs’.

(X, rhs) € equas A (X, rhs’) € equas — rhs = rhs’"

definition Inv :: "string set = t_equas = bool"

where
"Inv X ES = finite ES A (3 rhs. (X, rhs) € ES) A distinct_equas ES A Equation-System (0)
(V X xrhs. (X, xrhs) € ES — ardenable (X, xrhs) A X # {} A

Ry = Ry; 14 Ry; (0|1)

rhs eq_cls xrhs C insert {[|} (left _eq cls ES))"

Proving Myhill-Nerode Theorem
oce

Invariant predicate

Formalization of Inv

definition
distinct _rhs :: "t_equa_rhs = bool"
where "distinct_rhs rhs = V X regy rega.
(X, reg1) € rhs A (X, regz) € rhs — regy = rega"
definition
no_EMPTY _rhs :: "t_equa_rhs = bool"
where "no_EMPTY _rhs rhs =V Xr.
(X,r)erhs AX#{[]} — [[¢L="

definition ardenable :: "t equa = bool"
where "ardenable equa = let (X, rhs) = equa in
distinct _rhs rhs A no_ EMPTY rhs rhs A X = L rhs"
definition distinct equas :: "t equas = bool"
where - B
"distinct _equas equas = V X rhs rhs’.

(X, rhs) € equas A (X, rhs’) € equas — rhs = rhs’
definition left _eq_cls :: "t _equas = (string set) set"
where "left_eq_cls ES = {X. 3 rhs. (X, rhs) € ES} "

definition rhs_eq_cls :: "t_equa_rhs = (string set) set"
where "rhs_eq_cls rhs = {Y. 3 r. (Y, r) € rhs}"
definition Inv :: "string set = t_equas = bool"

where

"Inv X ES = finite ES A (3 rhs. (X, rhs) € ES) A distinct_equas ES A Equation-System (0)
(V X xrhs. (X, xrhs) € ES — ardenable (X, xrhs) A X # {} A

Ry = Ry; 1+ Ry; (0|1)

rhs eq_cls xrhs C insert {[|} (left _eq cls ES))"

ing Myhill-Nerode Theorem
°0

Generating initial ES

Outline

@ Regular Expression(brief)

© Myhill-Nerode Theorem(Intro)
© FA to Regular Expressions

@ Proving Myhill-Nerode Theorem

@ Generating initial ES

Proving Myhill-Nerode Theorem
oce
Generating initial ES

Generating Initial Equation-System

Equation-System (0)
Ri=A

Ry = Ry; 0+ Ry; (0]1)
Ry = Ry; 1+ R3; (0]1)

Proving Myhill-Nerode Theorem
oce
Generating initial ES

Generating Initial Equation-System

types t_equa_rhs = "(string set x rexp) set"
types t_equa = "(string set x t_equa_rhs)"
types t_equas = "t_equa set"

Equation-System (0)
Ri=2\

Ry = Ry; 0+ Ry; (0]1)
Ry = Ry; 1+ R3; (0]1)

Proving Myhill-Nerode Theorem
oce

Generating initial ES

Generating Initial Equation-System

definition
CT :: "string set = char = string set = bool" ("_-_—_" [99,99]99)
where "X-c—Y = ((X;{[c]}) C Y)"

types t_equa_rhs = "(string set x rexp) set"
types t_equa = "(string set x t_equa_rhs)"
types t_equas = "t_equa set"

Equation-System (0)
Ri=A

Ry = Ry; 0+ Ry; (0]1)
Ry = Ry; 1+ R3;(0]1)

Proving Myhill-Nerode Theorem
oce

Generating initial ES

Generating Initial Equation-System

definition
CT :: "string set = char = string set = bool" ("_-_—_" [99,99]99)
where "X-c—Y = ((X;{[c]}) C Y)"
types t_equa_rhs = "(string set x rexp) set"
types t_equa = "(string set x t_equa_rhs)"
types t_equas = "t_equa set"
Fquation-System (0)
Ri=\
Ry = Ry; 0+ Ry; (0]1)
Ry = Ry; 1+ R3;(0]1)
definition
equation_rhs :: "(string set) set = string set = t_equa_rhs"

where "equation_rhs CS X = if (X = {[]}) then {({[]}, EMPTY)}
else {(S, folds ALT NULL {CHAR c| c. S-c—X})| S.
S e Cs}u
empty _rhs X"

Proving Myhill-Nerode Theorem
oce

Generating initial ES

Generating Initial Equation-System

definition
CT :: "string set = char = string set = bool" ("_-_—_" [99,99]99)
where "X-c—Y = ((X;{[c]}) C Y)"
types t_equa_rhs = "(string set x rexp) set"
types t_equa = "(string set x t_equa_rhs)"
types t_equas = "t_equa set"
Equation-System (0)
- Ri=\
definition X .
folds :: "(a = b = 'b) = 'b = ’a set = 'b" 22: gl(l)igzggﬁg
where "folds f z S = SOME x. fold graph f z S x" . - £l

definition
equation_rhs :: "(string set) set = string set = t_equa_rhs"
where "equation_rhs CS X = if (X = {[]}) then {({[]}, EMPTY)}
else {(S, folds ALT NULL {CHAR c| c. S-c—X})| S.
S e Cs}u
empty _rhs X"

Proving Myhill-Nerode Theorem
oce

Generating initial ES

Generating Initial Equation-System

definition
CT :: "string set = char = string set = bool" ("_-_—_" [99,99]99)
where "X-c—Y = ((X;{[c]}) C Y)"
types t_equa_rhs = "(string set x rexp) set"
types t_equa = "(string set x t_equa_rhs)"
types t_equas = "t_equa set"
definition
empty rhs :: "string set = t_equa_rhs" oS 0
where "empty rhs X = if ([] € X) then {({[]}, EMPTY)} else {}" Elui‘\;w wstem (0)
definition 1T .
folds :: "(a = b = 'b) = 'b = ’a set = 'b" 22: gl(l)igzggﬁg
where "folds f z S = SOME x. fold graph f z S x" . - £l

definition
equation_rhs :: "(string set) set = string set = t_equa_rhs"
where "equation_rhs CS X = if (X = {[]}) then {({[]}, EMPTY)}
else {(S, folds ALT NULL {CHAR c| c. S-c—X})| S.
S e Cstu
empty _rhs X"

Proving Myhill-Nerode Theorem
oce

Generating initial ES

Generating Initial Equation-System

definition
CT :: "string set = char = string set = bool" ("_-_—_" [99,99]99)
where "X-c—Y = ((X;{[c]}) C Y)"
types t_equa_rhs = "(string set x rexp) set"
types t_equa = "(string set x t_equa_rhs)"
types t_equas = "t_equa set"
definition
empty rhs :: "string set = t_equa_rhs" oS 0
where "empty rhs X = if ([] € X) then {({[]}, EMPTY)} else {}" Elui‘\;w wstem (0)
definition 1T .
folds :: "(’a = 'b = 'b) = 'b = ’a set = 'b" 22: El(l)igzggﬁg
where "folds f z S = SOME x. fold graph f z S x" . - £l

definition
equation_rhs :: "(string set) set = string set = t_equa_rhs"
where "equation_rhs CS X = if (X = {[]}) then {({[]}, EMPTY)}
else {(S, folds ALT NULL {CHAR c| c. S-c—X})| S.

S e Cstu
empty _rhs X"
definition
equations :: "(string set) set = t_equas"

where "equations CS = {(X, equation_rhs CS X) | X. X € CS}"

ing Myhill-Nerode Theorem
®00

Iteration step of ES

Outline

@ Regular Expression(brief)

© Myhill-Nerode Theorem(Intro)
© FA to Regular Expressions

@ Proving Myhill-Nerode Theorem

@ lteration step of ES

ing Myhill-Nerode Theorem
oeo

Iteration step of ES

eliminating one equation

@ Not the equation of target equiv-class

ing Myhill-Nerode Theorem
oeo

Iteration step of ES

eliminating one equation

@ Not the equation of target equiv-class
e Approach: substitution

ing Myhill-Nerode Theorem
oeo

Iteration step of ES

eliminating one equation

@ Not the equation of target equiv-class

e Approach: substitution
@ Well-formed substitutor equation

Proving Myhill-Nerode Theorem
oeo

Iteration step of ES

eliminating one equation

@ Not the equation of target equiv-class

e Approach: substitution
@ Well-formed substitutor equation

@ substitutor = an equiv-class

Proving Myhill-Nerode Theorem
oeo

Iteration step of ES

eliminating one equation

@ Not the equation of target equiv-class
e Approach: substitution
@ Well-formed substitutor equation

@ substitutor = an equiv-class
@ rhs should not contain itself

Proving Myhill-Nerode Theorem
oeo

Iteration step of ES

eliminating one equation

@ Not the equation of target equiv-class

e Approach: substitution
@ Well-formed substitutor equation

@ substitutor = an equiv-class
@ rhs should not contain itself
@ if not, use Arden’s Lemma to reform itself

Proving Myhill-Nerode Theorem
oeo

Iteration step of ES

eliminating one equation

@ Not the equation of target equiv-class

e Approach: substitution
@ Well-formed substitutor equation

@ substitutor = an equiv-class
@ rhs should not contain itself
@ if not, use Arden’s Lemma to reform itself

© Substituting

Proving Myhill-Nerode Theorem
oeo

Iteration step of ES

eliminating one equation

@ Not the equation of target equiv-class

e Approach: substitution
@ Well-formed substitutor equation

@ substitutor = an equiv-class
@ rhs should not contain itself
@ if not, use Arden’s Lemma to reform itself

© Substituting

@ if substitutor is empty-string itself

Proving Myhill-Nerode Theorem
oeo

Iteration step of ES

eliminating one equation

@ Not the equation of target equiv-class

e Approach: substitution
@ Well-formed substitutor equation

@ substitutor = an equiv-class
@ rhs should not contain itself
@ if not, use Arden’s Lemma to reform itself

© Substituting

@ if substitutor is empty-string itself
@ then do nothing

Proving Myhill-Nerode Theorem
oeo

Iteration step of ES

eliminating one equation

@ Not the equation of target equiv-class

e Approach: substitution
@ Well-formed substitutor equation
@ substitutor = an equiv-class
@ rhs should not contain itself
@ if not, use Arden’s Lemma to reform itself
© Substituting
@ if substitutor is empty-string itself
@ then do nothing
@ else replace itself with rhs of the substitutor

Proving Myhill-Nerode Theorem
oeo

Iteration step of ES

eliminating one equation

@ Not the equation of target equiv-class

e Approach: substitution
@ Well-formed substitutor equation

@ substitutor = an equiv-class
@ rhs should not contain itself
@ if not, use Arden’s Lemma to reform itself

© Substituting

@ if substitutor is empty-string itself

@ then do nothing

@ else replace itself with rhs of the substitutor
@ merging

Proving Myhill-Nerode Theorem
oeo

Iteration step of ES

eliminating one equation

@ Not the equation of target equiv-class

e Approach: substitution
@ Well-formed substitutor equation
@ substitutor = an equiv-class
@ rhs should not contain itself
@ if not, use Arden’s Lemma to reform itself
© Substituting
@ if substitutor is empty-string itself
@ then do nothing
@ else replace itself with rhs of the substitutor
@ merging

© Delete substitutor equation

Proving Myhill-Nerode Theorem
ooe

Iteration step of ES

formalization

definition

seq rths r :: "t equa rhs = rexp = t equa rhs"
where "seq_rhs_r rhs r = (A (X, reg). (X, SEQ reg r)) ¢ rhs"
definition

del_x_ paired :: "(’a x ’b) set = 'a = ("a x ’b) set"
where "del_x_paired Sx =S - {X. X € S A fst X = x}"

definition
merge_rhs :: "t_equa_rhs = t_equa_rhs = t_equa_rhs"
where "merge_rhs rhs rhs’ = {(X, r). (3 rl r2. (X,rl) € rhs A (X, r2) € rhs’ A r = ALT rl
r2) vV
(3 rl. (X, rl) € ths A (= (3 r2. (X, r2) € rhs’)) A r = rl) \Y
(3 r2. (X, r2) € rhs’ A (= (3 rl. (X, rl) € rhs)) A r = r2) "
definition
arden_variate :: "string set = rexp = t_equa_rhs = t_equa_rhs"
where "arden variate X r rhs = seq_rhs_r (del x paired rhs X) (STAR r)"
definition
rhs_subst :: "t _equa_rhs = string set = t_equa_rhs = rexp = t_equa_rhs"

where "rhs_subst rhs X xrhs r = merge rhs (del x_paired rhs X) (seq_rhs_r xrhs r)"

definition
equas_subst_f :: "string set = t_equa_rhs = t_equa = t_equa"
where "equas_subst_f X xrhs equa = let (Y, rhs) = equa in
if (3 r. (X, r) € rhs) then (Y, rhs_subst rhs X xrhs (SOME r. (X, r) € rhs)) else equa"
definition
equas_subst :: "t _equas = string set = t_equa_rhs = t_equas"
where "equas_subst ES X xrhs = del_x_ paired (equas_subst_f X xrhs ¢ ES) X"

ing Myhill-Nerode Theorem
®000

Final Proof

Outline

@ Regular Expression(brief)

© Myhill-Nerode Theorem(Intro)
© FA to Regular Expressions

@ Proving Myhill-Nerode Theorem

@ Final Proof

Proving Myhill-Nerode Theorem
0®00

Final Proof

WF-iter Usage

lemma iteration step:
assumes Inv_ES: "Inv X ES" and not T: "— TCon ES"
shows "(3 ES’. Inv X ES’ A (card ES’, card ES) € less _than)"
proof -
from Inv_ES not_T have another: "3Y yrhs. (Y, yrhs) € ES A X # Y" unfolding Inv_ def
by (clarify, rule_tac exist_another_equa[where X = X], auto)
then obtain Y yrhs where subst: "(Y, yrhs) € ES" and not_X: " X # Y" by blast
show ?thesis (is "3 ES’. 7P ES™)
proof (cases "Y = {[|}")

case True — in this situation, we pick a A equation, thus directly remove it
have "?P (ES - {(Y, yrhs)})" mnext
case False — first use arden’s lemma, then do the substitution
hence "7P (equas_subst ES Y yrhs’)"
qed B
qed

lemma iteration conc:
assumes history: "Inv X ES"
shows "3 ES’. Inv X ES’ A TCon ES™ (is "3 ES’. 7P ES™")
proof (cases "TCon ES")
case True hence "7P ES" using history by simp
thus ?thesis by blast
next
case False
thus 7thesis using history iteration_step
by (rule_tac f = card in wf_iter, simp_all)
qed

Proving Myhill-Nerode Theorem
ooeo

Final Proof

proof: every equiv-class has a Reg Exp.

lemma every eqcl has reg:
assumes finite CS: "finite (UNIV Quo Lang)" and X in CS: "X € (UNIV Quo Lang)"
shows "3 (reg:rexp). L reg = X" (is "3 r. ?E r") o
proof-
have " ES’. Inv X ES’ A TCon ES™ using finite CS X in CS
by (auto intro:init_ES_satisfy Inv iteration_conc) have "3 rhs. ES’ = {(X, rhs)}"
by (auto dest!:card Suc_Diffl simp:card _eq_0 1ff)
then obtain rhs where ES’_single_equa: "BES™ = {(X, rhs)}" ..
hence X_ardenable: "ardenable (X, rhs)" using Inv_ES’
by (simp add:Inv_def) show ?thesis
proof (cases "X = {[|}")
case True hence "7E EMPTY" by simp
thus 7thesis by blast
next
case False with X ardenable
have "3 rhs’. X = L rhs’ A rhs_eq_cls rhs’
by (drule tac ardenable prop, auto)
then obtain rhs’ where X eq rhs: "X = L rhs™"
and rhs’_eq cls "rhs eq cls rhs’ = rhs eq cls rhs - {X}"
and rhs’ dist : "distinct rhs rhs’" by blast
hence "rhs eq cls rhs’ = {{[]}}" using X not empty X eq rhs’
by (auto simp:rhs _eq_cls_def)
hence "3 r. rhs’ = {({[T}, ©)}"
then obtain r where "rhs’ = {({[]}, r)}" ..
hence "7E r" using X_eq_rhs’ by (auto simp add:lang_seq_ def)
thus ?thesis by blast

=rhs_eq_cls rhs - {X} A distinct_rhs rhs"

qed ged

Proving Myhill-Nerode Theorem
oooe

Final Proof

proof: Myhill-Nerode(one direction)

theorem myhill nerode:
assumes finite CS: "finite (UNTV Quo Lang)"
shows "3 (reg:rexp). Lang = L reg" (is "3 r. ?P r")
proof -
have has_r_each: "VCe{X € UNIV Quo Lang. Vx€X. x € Lang}. 3 (rurexp). C = L r"
using finite_ CS
by (auto dest:every eqcl_has_reg)
have "3 (rS:rexp set). finite rS A
(V C € {X € UNIV Quo Lang. Vx€X. x € Lang}. 3 r€rS.C =Lr) A
(V rerS.3 Ce {X € UNIV Quo Lang. Vx€X. x € Lang}. C = L)"
then obtain rS where finite_rS : "finite rS"
and r_each’: "V C € {X € UNIV Quo Lang. VxeX. x € Lang}. 3 r € (rS:irexp set). C = L
o
and cl_each: "V r € (rS::rexp set). 3 C € {X € UNIV Quo Lang. VxeX. x € Lang}. C =L
o
by blast
have "?P (folds ALT NULL rS)"
proof
show "Lang C L (folds ALT NULL rS)" apply (clarsimp simp:fold _alt null_eqs) by
blast
next
show "L (folds ALT NULL rS) C Lang" by (clarsimp simp:fold _alt_null_egs)
qed
thus 7thesis by blast

qed

	Regular Expression(brief)
	Myhill-Nerode Theorem(Intro)
	FA to Regular Expressions
	Proving Myhill-Nerode Theorem
	Well-Founded iterating principle
	Invariant predicate
	Generating initial ES
	Iteration step of ES
	Final Proof

