
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Logic Programming and Negation: A Survey

K.R. Apt, R. Bol

Computer Science/Department of Software Technology

CS-R9402 1994

Logic Programming and Negation: A SurveyKrzysztof R. AptCWIP.O. Box 94079, 1090 GB Amsterdam, The NetherlandsandFaculty of Mathematics and Computer ScienceUniversity of Amsterdam, Plantage Muidergracht 241018 TV Amsterdam, The NetherlandsRoland BolDepartment of Mathematics and Computer ScienceEindhoven University of TechnologyP.O. Box 513, 5600 MB Eindhoven, The NetherlandsAbstractWe survey here various approaches which were proposed to incorporate negation in logicprograms. We concentrate on the proof-theoretic and model-theoretic issues and the rela-tionships between them.1991 Mathematics Subject Classi�cation: 68Q40, 68T15.CR Categories: F.3.2., F.4.1, H.3.3, I.2.3.Keywords and Phrases: negation, general logic programs, non-monotonic reasoning.Notes. The work of the �rst author was partly supported by ESPRIT Basic Research Action6810 (Compulog 2). The work of the second author was partly supported by the NetherlandsOrganization for Scienti�c Research (NWO). This paper will appear in Journal of LogicProgramming.1 Introduction1.1 MotivationNon-monotonic reasoning grew out of attempts to capture the essential aspects of commonsensereasoning. It resulted in a number of important formalisms, the most known of them being thecircumscription method of McCarthy [107], the default theory of Reiter [145] and autoepistemiclogic of Moore [111]. (For a systematic comparison of these approaches see the recently publishedMarek and Truszczy�nski [104].)One of the striking features of logic programming is that it can naturally support non-monotonic reasoning | by means of negative literals. Many concepts introduced in the area ofnon-monotonic reasoning have a natural counterpart within logic programming in spite of itslimited syntax. The dual interpretation of logic programs| as a computational mechanism andas a formalism for knowledge representation | provided a fertile ground for a study of prooftheory and semantics of programs which support non-monotonic reasoning.1

This paper attempts to survey the outcome of this research. This subject, or some fragmentsof it, were already discussed in no less than �ve previous survey articles: Shepherdson [158],Shepherdson [159], Przymusinska and Przymusinski [120], Bidoit [20] and Clark [38]. Moreover,while writing this paper we learned of another survey { that of Dix [47] who focuses on the non-monotonic reasoning aspects of logic programming. However, this �eld is so fast growing { abouthalf of the references cited here were published during the last 3 years { that another survey ofit might be justi�ed. We provide here an alternative overview of this area by concentrating onthe main developments in the proof theory and model theory and on the relationships betweenthem.No uni�ed picture emerges from this endevour. A number of interesting proposals weremade dealing with proof theory and semantics. The multifarious relationship between them,revealed by often intricate mathematical arguments, brings to light the complex nature of logicprogramming and of non-monotonic reasoning in the logic programming setting.1.2 Setting the StageThe SLD-resolution of Kowalski [85] allows us to derive only positive consequences (namelyconjunctions of atoms) from a (positive) program. However, in many circumstances it is alsouseful to derive negative consequences. As we shall see in the next subsection, this naturallyleads to non-monotonic reasoning.A classic example for the usefulness of negative consequences is the timetable, which statesconnections explicitly, but the absence of connections only implicitly. In the case of positiveprograms three approaches to derive negative information became most known. Each of themis treated more extensively for the case of general programs (called normal programs in Lloyd[93]).1. Use the negation as �nite failure rule of Clark [39], which states that :Q is a consequenceof a program P if a �nitely failed SLD-tree for the query Q w.r.t. P exists (in short, if Q�nitely fails),2. use program completion of Clark [39], which strengthens the program by | informally |interpreting implications as equivalences,3. use the closed world assumption (in short CWA) of Reiter [144], which states that for aground atom A, :A is a consequence of a program P if A cannot be proved from P .The relationships between these concepts for positive programs are by now well-understood(see e.g. Lloyd [93] or Apt [2] for an overview of these results).Once negative consequences can be derived from a positive program, it is natural to extendthe syntax of programs and allow negative assumptions. This leads to the class of generalprograms in which negative literals are allowed in the bodies of the clauses. However, whentrying to extend the above approaches to the case of general programs several complicationsarise. The approaches become self-referential, and thereby potentially paradoxical. Moreover,as we shall see, a naive amalgamation of the SLD-resolution and the negation as �nite failurerule yields an unsound reasoning method, completion of a general program can be inconsistent,and the closed world assumption can yield an inconsistent theory. So to treat this subject wehave to carefully review the concepts it relies upon. Let us start by discussing some relevantaspects of non-monotonic reasoning. 2

1.3 Non-monotonic Inference RelationsProperties of non-monotonic inference relations have been extensively studied, for example byKraus, Lehmann and Magidor [86]. (For an overview of this topic see Makinson [100].) Dix[44] de�ned how a (proof- or model-theoretic) semantics for logic programs can be viewed as aninference relation (consequence relation). Given a particular semantics SEM , he de�ned theinference relation j�SEMP of a program P as a relation between sets of ground atoms1 and setsof ground literals:fA1; : : : ; Angj�SEMP fL1; : : : ; Lmg if SEM(P [fA1; : : : ; Ang) j= L1; : : : ; Lm:2One way of classifying semantics for logic programming is by studying which properties theysatisfy (a property is satis�ed by SEM if it is satis�ed by j�SEMP for all programs P for whichSEM is de�ned). Eventually, if one agrees on which properties are desirable and which onesare not, this study can be one of the reasons for considering one semantics better than another(another one could be for example computability).A very strong property of inference relations is monotonicity . Below we use the symbol j�to denote an arbitrary inference relation, � for a set of atoms, A for an atom and L for a literal.De�nition 1.1 (Monotonicity) An inference relation is monotonic if it satis�es:� j� L implies � [�0 j� L: 2Classical logic is monotonic, thus so is the inference relation determined by the SLD-resolution, as it is a subset of classical logic. The negation as �nite failure rule, the program com-pletion, and the closed world assumption all introduce non-monotonicity when deriving negativeliterals from positive programs, since ; j�fp qg :p, whereas fqg j6�fp qg :p. Consequently,all semantics for logic programs with negation considered in this paper are non-monotonic.The study of non-monotonic logics is such a large area, that it is impossible to give a completeoverview of it in this paper. Therefore, we limit ourselves here to observations that are relevantfor logic programming. One may wonder what makes an inference relation logical when it is notmonotonic. Kraus, Lehmann and Magidor [86] considered the following properties desirable (weomit a number of simple properties that are satis�ed by all logic programming semantics in thispaper).Cut: � j� A and �[fAg j� L imply � j� LCautious Monotonicity: � j� A and � j� L imply �[fAg j� LRationality: � j6� :A and � j� L imply �[fAg j� LCautious monotonicity is weaker than rationality (in the presence of simple properties).A logic that satis�es cautious monotonicity and cut is called cumulative. We shall use theseproperties in Sections 4.3, 7.4 and 10.Dix calls these properties strong principles [47, 48], as opposed to certain weak principleshe identi�es [47, 49]; these weak principles are more speci�c to logic programs, and shouldbe satis�ed by every reasonable semantics. Examples of weak principles are the Principle ofPartial Evaluation (PPE), which roughly means that a positive body literal can be replaced by1Disjunctions of ground atoms in the case of disjunctive logic programs, see Section 10.2SEM can return a single model, a set of models or a theory. In the case of a set of models, the scepticalapproach is chosen: SEM(P) j= L if L is true in all models in SEM(P).3

its de�nition, and Relevance, which means that the truth value of an atom is determined solelyby the part of the program that atom depends on (the notion made precise in De�nition 2.2).There are a number of good reasons for adopting a non-monotonic semantics for negation.� Historically, a classical interpretation of negation was ruled out, because it would resultin full �rst-order theorem proving, with too high a complexity. This argument is hardlyvalid any more, as the semantics for logic programs with negation studied in this paperare highly undecidable to various degrees in the �rst-order case (see e.g. Apt and Blair[5], and Cadoli and Schaerf [28] for an overview), but some of them can be computed inpolynomial time in the propositional case (see e.g. Van Gelder, Ross and Schlipf [66]).� In many situations, for example in databases, it is natural to record only positive infor-mation, leaving all negative information implicit.� Recently, researchers in arti�cial intelligence recognised that commonsense reasoning isnon-monotonic. Therefore non-monotonic logics, that is, logics with a non-monotonic in-ference relation, became popular. Logic programs with non-monotonic negation constitutea small, yet quite expressive class of non-monotonic logics, which is of particular interestbecause they are implementable. We observed that most motivating examples in paperson the semantics of negation in logic programming are taken from commonsense reasoning.We distinguish these last two reasons as `static', respectively `dynamic' non-monotonicity.Non-monotonicity is used statically, when the available information is complete and can betheoretically, though not practically, captured as classical logic consequences of a theory. Thestandard example for this case is the already mentioned timetable problem for which it is possiblethough not practical to list all existing connections and all absent connections. This form ofnon-monotonicity justi�es directly the Closed World Assumption, introduced in Section 1.2.Non-monotonicity is used dynamically for `jumping to conclusions' when the available infor-mation is incomplete. If, later, more information becomes available, it may turn out that theconclusion is no longer justi�ed, and must be withdrawn. The standard example for this caseis that, if we learn that Tweety is a bird, we jump to the conclusion that it can y, but if wesubsequently �nd out that Tweety is a penguin, we withdraw that conclusion. This use of logic,called belief revision, is clearly non-monotonic.In this example, there is apparently a default assumption, namely that birds can y, unlessthere is evidence to the contrary. Reiter [145] proposed Default Logic as a framework for formal-izing such defaults. Also, the example reasons about the beliefs of an agent, for which Moore[111] proposed auto-epistemic logic. In fact, some semantics for negation in logic programmingare closely related to these proposals.One way of using negation in logic programming for belief revision is by means of abnormal-ity-relations. The example of the penguin Tweety can be described by the addition of the factpenguin(Tweety) to the program TWEETY:bird(Tweety) % Tweety is a bird.fly(x) bird(x),:abnormalfly;bird(x) % Normal birds can fly.abnormalfly;bird(x) penguin(x) % Penguins are abnormal birdsw:r:t: flying:We return to this program in Section 11.1; all semantics mentioned in this paper coincide on thisprogram: they derive fly(Tweety) from TWEETY, but not from TWEETY[fpenguin(Tweety) g.4

1.4 Plan of This PaperThis paper is organized as follows. In the next section we introduce the syntax and discussthe choice of the underlying �rst-order language. In Section 3 we introduce the basic resolutionprocedure used for general programs | the SLDNF-resolution. Next, in Section 4 we discussanother classical concept, that of program completion, and discuss soundness and completenessof SLDNF-resolution w.r.t. program completion. Then in Section 5 we return to the SLDNF-resolution by discussing some of its variants and extensions.In Section 6 we study semantics of general programs by concentrating on 2-valued candidatesfor a natural model which were proposed in the literature. Then in Section 7 we consider 3-valued options. In Section 8 we relate these special models to various modi�cations of programcompletion. Next, in Section 9 we return to the study of proof-theoretic issues and analyzeanother form of resolution, called SLS-resolution. In particular we discuss there soundness andcompleteness of SLS-resolution w.r.t. the semantics considered in Section 7 and the issue of itsimplementation. In Section 10 we discuss disjunctive logic programs, i.e. programs built fromclauses whose heads are disjunctions of atoms and relate various approaches to their semanticsto the case of general programs.Finally, in Section 11 we summarize the results of the paper by indicating for which classesof programs all the considered approaches coincide. We also indicate there which topics werenot treated in this paper.2 Preliminaries2.1 SyntaxWe recall the usual de�nitions. A literal is an atom or its negation. A positive literal is asynonym for an atom and a negative literal is a negated atom. Literals are denoted here byletters L;M . A general query is a �nite conjunction of literals. (Instead of general queries,one usually considers general goals which are expressions L where L is a query.) The emptygeneral query is denoted by 2. To adhere to the syntax of logic programming, we write thegeneral query L1 ^ : : : ^ Ln as L1; : : :; Ln.A general clause is a construct of the form H L where H is an atom and L query; His called its head and L its body . When the body is empty, the general clause is called a unitclause. Finally, a general program is a �nite set of general clauses. We say that a relation p isde�ned in P if it occurs in a head of a general clause of P and that P uses a relation q if qoccurs in the body of a general clause of P .As in the paper we shall deal exclusively with general queries, clauses and programs, we omitfrom now on the quali�cation \general", unless some confusion arises. When all literals used inthe bodies of the program clauses are positive, we call the program positive.As in the case of queries we often use bold letters to denote �nite sequence of syntacticobjects. Given two sequences of terms s = s1; : : : ; sn and t = t1; : : : ; tn of the same length weabbreviate s1 = t1 ^ : : :^ sn = tn to s = t.We recall now a number of auxiliary notions.De�nition 2.1 By an expression we mean here a term, atom, literal, query, negation of aquery or a clause. Var(E) is the set of variables occurring in the expression E, 8E denotes theuniversal closure of E, and 9E the existential closure of E.A substitution � is a function from variables to terms with a �nite domain. Its domain isdenoted by Dom(�), the set of variables occurring in the terms forming its range by Ran(�), and5

its restriction to the set of variables V by � jV . For an expression E we abbreviate � jVar(E) to� jE. We write E� for the result of applying the substitution � to the expression E. � is called arenaming substitution for E, if for some substitution � we have A�� = A. � denotes the identitysubstitution.The application of a substitution to a (set of) expression(s) and the relation "more generalthan" between the substitutions is de�ned in the usual way. Given two atoms A and B, asubstitution � is called a uni�er of A and B if A� � B�, and is called a most general uni�er(in short: mgu) of A and B if it is a uni�er which is more general than all uni�ers of A and B.Finally, an mgu � of two atomsA and B is called relevant ifDom(�)[Ran(�)� V ar(A)[V ar(B).2When studying programs the relationship between the relations used is of importance.De�nition 2.2 (Dependency) Consider a program P .� The dependency graph DP for P is a directed graph with signed edges. Its nodes arethe relations occurring in P . For every clause in P which uses relation p in its head andrelation q in a positive (resp. negative) literal in its body there is a positive (resp. negative)edge (p; q) in DP . We say then that P uses q positively (resp. negatively).� We say that p depends positively (resp. negatively) on q if there is a path in DP from p toq with only positive edges (resp. at least one negative edge).� We say that p depends evenly (resp. oddly) on q if there is a path in DP from p to q withan even (resp. odd) number of negative edges. 22.2 The Universal Query ProblemA simple completeness result for SLD-resolution reads as follows:Let P be a positive program, A an atom and � a substitution. If P j= 8A�, thenP `SLDA�, for some substitution � such that A� is more general than A�.We shall not use classical logic as the semantics for general logic programs, for reasonsexplained in Section 1.3. In some cases, the semantics of a program will be given by a logicaltheory, such as the program completion. In many other cases, the semantics of a program will begiven by some canonical Herbrand model, such as the least Herbrand model MP for a positiveprogram P . The relative merits of both approaches are discussed in Wallace [172], among others.When using the canonical model approach, restricting ones attention to Herbrand models oftenleads to considerable technical simpli�cations. Yet the following statement is false:Let P be a positive program, A an atom and � a substitution. If MP j= 8A�, thenP `SLDA�, for some substitution � such that A� is more general than A�.As a counterexample, take P = fp(a) g, A = p(x) and � = �. Since a is the only term inthe Herbrand Universe, MP = fp(a)g j= 8x p(x). There are essentially two ways to avoid thisproblem.1. Ensure that the language under consideration has su�ciently many terms. This can bedone by� adding a clause p(f(c)) to the program P , where p, f and c do not occur in P (ase.g. in Ross [147]). 6

� postulating, as in Kunen [88], an in�nite `universal' language in which all programsand queries are expressed.2. Consider arbitrary models instead of only Herbrand models. This approach is taken byKunen [87] and by Przymusinski [125], who also termed the above problem the universalquery problem.In this paper we adopt the `universal language' approach, as it gives rise to simpler formu-lations of results than the other approaches. It also solves the problem of how to deal formallywith language elements that occur in the query but not in the program. Each approach hasits merits and drawbacks. For example, in the case of the approach here adopted, taking theprogram P = fp(a) g again, :8x p(x) holds in the least Herbrand model of P w.r.t. the uni-versal language, whereas it does not hold in all models of P . So now we have the \opposite" ofthe universal query problem: given the program fp(a) ; q :p(x)g, should q be \true"? Weleave this problem aside, and for a more detailed discussion of this issue, we refer to Shepherdson[158].In the sequel, BP denotes the Herbrand Base of P ,MP the least Herbrand model of a positiveprogram P , and ground(P) the set of all ground instances of clauses from P , all considered w.r.t.this universal language. Finally, by LP we denote the language de�ned by the program P , thatis the language whose constants, function and relation symbols are those occurring in P .3 Proof Theory I: SLDNF-resolution3.1 A DiscussionIn order to compute with general programs, one needs to be able to resolve negative literals. Anatural idea is to use the closed world assumption, that is to stipulate for an atom A:A succeeds i� A cannot be proved.The problem with this rule is that it is in general undecidable whether an atom can (cannot)be proved, even if we restrict our attention to positive programs. Later, in Section 9 we shallconsider an ine�ective form of resolution which formalizes the above idea.To make the above rule e�ective Clark [39] proposed to replace the statement \A cannot beproved" by its �nitary version, the negation as �nite failure rule, which makes this rule decidable.So, according to Clark [39], the statement \A cannot be proved" should be interpreted as \A�nitely fails".However, for general programs the considered trees for a query A can contain negative literals,so the question now arises when these literals fail. A natural idea is to stipulate that for anatom A, :A fails i� A can be proved.Interpreting the statement \A can be proved" as \there exists a successful derivation for thequeryA", we end up with a resolutionmethod, called SLDNF-resolution, which is appropriate forgeneral programs and general queries. It should be mentioned here that another interpretationof the above statement is possible which leads to another form of resolution. We shall considerit in Section 5.1.Thus according to the SLDNF-resolution, when the selected literal is positive, the usualSLD-like procedure is used to obtain a new resolvent, and when the selected literal, say :A, isnegative, the following rule is used to obtain the new resolvent:7

:A succeeds i� A �nitely fails,:A �nitely fails i� A succeeds.That is, if :A succeeds, it is deleted from the query, and if it �nitely fails the query fails.As in the case of the SLD-resolution, this notion of resolution can be used not only to provebut also to compute. Let us introduce the following notation.- P `SLDNF 8 Q� if there exists a successful SLDNF-derivation of P [fQg with computedanswer �,- P `SLDNF 8 :Q if there exists a �nitely failed SLDNF-tree for P [fQg.Without any restrictions the above notion of SLDNF-resolution becomes a problematic con-cept. Indeed, take the following program NUMBERS = fpositive(x) :zero(x); zero(0) g.Then the query zero(x) succeeds, so :zero(x) �nitely fails and consequently positive(x) �nitelyfails, as well. Thus NUMBERS `SLDNF 8 x:positive(x). However, for any ground term t di�erentfrom 0, zero(t) �nitely fails, so positive(t) succeeds. Thus NUMBERS `SLDNF positive(t). Thisexcludes any soundness results. In fact, these conclusions will be drawn by most Prolog systems.So Prolog is not \sound".The problem is caused by the use of variables in nonground negative literals. To ensuresoundness Clark [39] imposed the restriction that only ground negative literals can be selected.However, the de�nition of the SLDNF-resolution sketched above is di�cult to formalize.Consider for example the program P = fp pg. The query :p neither succeeds nor �nitelyfails, since the query p neither succeeds nor �nitely fails. So it is not clear whether there is aresolvent. (This also shows that SLDNF-resolution is incomplete, since neither P `SLDNF pnor P `SLDNF :p holds here.) The problem is that success and �nite failure are not the onlypossible outcomes of an evaluation: also an unsuccessful tree which is not �nitely failed can begenerated.This problem was not properly taken care of in the de�nition of SLDNF-resolution given inClark [39] and reproduced in Lloyd [92]. In Lloyd [93] a revised de�nition of SLDNF-resolutionwas proposed according to which the SLDNF-trees are constructed \bottom-up" by inductionon the number of alternations through negation. Unfortunately, according to this de�nition forthe above mentioned example and some other problematic cases no SLDNF-trees or SLDNF-derivations exist. This is clearly undesirable, especially if one reasons about \run time" proper-ties of the SLDNF-resolution, like termination.These problems were �rst tackled by Martelli and Tricomi [106] who proposed a revision ofthe original de�nition in which the subsidiary trees used to resolve negative literals are built\inside" the main tree. The solution presented here is due to Apt and Doets [11].3.2 A New De�nitionDe�nition 3.1 (Resolvent)(i) We say that Q resolves to Q0 via � w.r.t. �, or: Q0 (more explicitly, the pair (�;Q0)) is aresolvent of Q w.r.t. �, notation: Q �=) Q0 (�), ifeither: � = (L;R), L is (an occurrence of) a positive literal in Q, R is a program clause, andfor some variant H L (the input clause) of R: � is mgu of L and H and Q0 = Q�[L� := L�]is obtained from Q� by replacing L� by L�,or: � is (an occurrence of) a negative literal in Q, � = �, and Q0 = Q � f�g is obtained fromQ by removing �. 8

(ii) A clause R is called applicable to an atom if it has a variant the head of which uni�es withthe atom. 2De�nition 3.2 (Pseudo derivation) A (�nite or in�nite) sequence Q0 �1=)� � �Qn �n+1=) Qn+1 � � �of resolution steps is a pseudo derivation if for every step involving a program clause:� (\standardisation apart") the input clause employed does not contain a variable from theinitial query Q0 or from an input clause used at some earlier step,� (\relevance") the mgu employed is relevant. 2Intuitively, an SLDNF-derivation is a pseudo derivation in which the deletion of every(ground) negative literal is justi�ed by means of a subsidiary (�nitely failed SLDNF-) tree.This brings us to consider special types of trees.De�nition 3.3 A tree is called� successful if it contains a leaf marked as success,� �nitely failed if it is �nite and all its leaves are marked as failed. 2In the sequel we consider systems of trees called forests.De�nition 3.4 (Forest) A forest is a system F = (F ; T; subs) where� F is a set of trees,� T is an element of F called the main tree,� subs is a function assigning to some nodes of trees in F a (\subsidiary") tree from F .By a path in F we mean a sequence of nodes N0; : : :; Ni; : : : such that for all i, Ni+1 is either achild of Ni in some tree in F or the root of the tree subs(Ni). 2Thus a forest is a special directed graph with two types of edges | the \usual" ones stemmingfrom the tree structures, and the ones connecting a node with the root of a subsidiary tree.An SLDNF-tree is a special type of a forest built as a limit of certain �nite forests: pre-SLDNF trees. The nodes of these trees are labeled by queries. Below we shall identify a nodewith its label.The construction begins with the main tree which consists of just one node { the originalquery. During the construction new, subsidiary, trees can be added. In each \round" thebranches of all trees are extended in parallel. The �nal object is an SLDNF-tree. As in theoriginal de�nition of Clark [39] the subsidiary trees are kept \aside" of the \main" tree. Thedi�erence is that their construction is no longer viewed as an atomic step in the resolutionprocess. If a subsidiary tree T becomes successful or �nitely failed, this information is used inthe \next round" of the extension process to determine the status of the query which originatedthe construction of T .For the rest of this section, we �x a program P . The next de�nition is crucial.De�nition 3.5 (Pre-SLDNF-tree) A pre-SLDNF-tree (relative to P) is a forest whose nodesare (possibly marked) queries of (possibly marked) literals. (For queries, there are markers failed,success, and oundered; for literals, we have the marker selected.) The function subs assigns tonodes containing a marked negative ground literal :A a tree in F with root A. The class ofpre-SLDNF-trees is de�ned inductively. 9

� For every query C, the forest consisting of the main tree which has the single node C is apre-SLDNF-tree (an initial pre-SLDNF tree),� If F is a pre-SLDNF-tree, then any extension of F is a pre-SLDNF-tree.Here, an extension of a pre-SLDNF-tree F is de�ned by performing the following actions forevery non-empty query C which is an unmarked leaf in some tree T 2 F :First, if no literal in C is marked yet as selected, mark one as selected. Let L be the selectedliteral of C.� L is positive.{ C has no resolvents w.r.t. L and a clause from P .Then C is marked as failed .{ C has such resolvents.For every clause R from P which is applicable to L, choose one resolvent (�;D) of Cw.r.t. L and R and add this as child of C in T . These resolvents are chosen in sucha way that all branches of T remain pseudo derivations.� L = :A is negative.{ A is nonground. Then C is marked as oundered .{ A is ground.� subs(C) is unde�ned.Then a new tree T 0 with the single node A is added to F and subs(C) is set toT 0.� subs(C) is de�ned and successful.Then C is marked as failed .� subs(C) is de�ned and �nitely failed.Then the resolvent (�; C � fLg) of C is added as the only child of C in T .Additionally, all empty queries are marked as success. 2Note that, if no tree in F has unmarked leaves, then trivially F is an extension of itself, andthe extension process becomes stationary.Every pre-SLDNF-tree is a tree with two types of edges between possibly marked nodes, sothe concepts of inclusion between such trees and of limit of a growing sequence of such treeshave clear meaning.De�nition 3.6 (SLDNF-tree)� An SLDNF-tree is a limit of a sequence F0; : : :;Fi; : : : such that F0 is an initial pre-SLDNF-tree, and for all i, Fi+1 is an extension of Fi.� An SLDNF-tree for C is an SLDNF-tree in which C is the root of the main tree.� A (pre-)SLDNF-tree is called successful (resp. �nitely failed) if the main tree is successful(resp. �nitely failed).� An SLDNF-tree is called �nite if no in�nite paths exist in it. 210

Next, we de�ne the concept of SLDNF-derivation.De�nition 3.7 (SLDNF-derivation) A (pre-) SLDNF-derivation for C is a branch in themain tree of a (pre-) SLDNF-tree F for C together with the set of all trees in F whose rootscan be reached from the nodes of this branch. It is called successful if it ends with the emptyquery. An SLDNF-derivation is called �nite if all paths of F fully contained within this branchand these trees is �nite. 2Finally, we de�ne the notion of a computed answer substitution.De�nition 3.8 (Computed answer substitution) Consider a branch in the main tree of a(pre-) SLDNF-tree F for C which ends with the empty query. Let �1; : : :; �n be the consecutivesubstitutions along this branch.Then the restriction (�1 � � ��n)jC of the composition �1 � � ��n to the variables of C is calleda computed answer substitution (c.a.s. for short) of C in F . 2Let us illustrate the above de�nitions by depicting the SLDNF-trees for two \di�cult" cases.Example 3.9 (In�nite SLDNF-trees)(i) Consider the \problematic" case of P = fp pg and C = :p mentioned in Section 3.1. Theonly SLDNF-tree has then the following form::p pp� � �D D D!! ��������������(ii) It is important to realize that according to this de�nition the construction of a subsidiarytree can go on forever even if the information about its \status" has already been passed to themain tree. The following program illustrates this point.
11

Consider P = fp :q; q ; q qg. Then the only SLDNF-tree for p looks as follows:p:qfailed q2success q2success � � �
������� W W W W W W W W W W W W W W W W ++wwnnnnnnnnnnnn IIIIIIIIIIII$$}}zzzzzzzzz >>>>>>> ��Here the subsidiary tree with the root q grows forever. However, once an extension of the initialsubsidiary tree with the single node q becomes successful, in the next extension the node :qis marked as failed. Consequently, the SLDNF-tree for p is �nitely failed even though it is not�nite. 2Now note the following simple result.Theorem 3.10 (Limit)(i) Every SLDNF-tree is the limit of a unique sequence of pre-SLDNF-trees.(ii) If the SLDNF-tree F is the limit of the sequence F0; : : :;Fi; : : :, then for all �(a) F is successful and yields � as c.a.s. i� some Fi is successful and yields � as c.a.s.,(b) F is �nitely failed i� some Fi is �nitely failed. 2This result allows us to associate with every successful or �nitely failed SLDNF-tree F anatural number, rank(F ; �), which is the least i for which the corresponding equivalence in (ii)holds, with � = � when F is �nitely failed. This measure is useful for carrying out inductiveproofs about SLDNF-resolution.Finally, let us mention that it is straightforward to show that if a successful SLDNF-derivation or �nitely failed SLDNF-tree exists according to the de�nition given in Lloyd [93],then so it does according to the de�nition here presented.3.3 FlounderingFor further discussion it is useful to introduce the following notion. An SLDNF-tree F is viaa selection rule R if in the sequence of pre-SLDNF-trees whose limit is F all the markings ofliterals as selected are performed according to R. A selection rule is a function which givena pre-SLDNF-tree F selects a literal in every non-empty unmarked leaf in some tree of F. Aselection rule is called safe if it never selects a nonground negative literal.12

One of the complications concerning SLDNF-resolution is so-called \oundering" | a gen-eration of a node which consists exclusively of nonground negative literals, as then selection ofany literal ends the derivation in an abnormal way. In the de�nition here provided ounderingis treated di�erently | it arises as soon as a nonground negative literal is selected. Clearly,this small change has no e�ect on the theory of SLDNF-resolution, since the original notion ofoundering can be easily de�ned.De�nition 3.11 (Floundering)� We call a query blocked if it consists exclusively of nonground negative literals.� We say that P and Q ounder if some SLDNF-tree for P and Q contains a blocked node.2Note the di�erence between a blocked node and a node marked as oundered. Thus anSLDNF-tree via a safe selection rule does not ounder. B�orger [27] (see Apt [2] for a more directproof) proved that it is undecidable whether P and Q ounder. In the literature a number ofsyntactic conditions was proposed which ensure that a program and a query do not ounder.The following notion due to Lloyd and Topor [95] (see also Lloyd [93]) has become best known.De�nition 3.12 (Allowedness)� A query L is called allowed if every variable of it occurs in a positive literal.� A clause H L is called allowed if :H;L is.� A program is called allowed if all its clauses are. 2Thanks to the use of the new de�nition, the following result of Lloyd and Topor [95] nowrefers to a larger class of SLDNF-trees.Theorem 3.13 Suppose that P and Q are allowed. Then� P and Q do not ounder.� if � is a c.a.s. of Q, then Q� is ground. 2When � is a c.a.s. of Q such that Q� is ground, we say that � is a ground computed answersubstitution. Actually, the de�nition of allowedness proposed in Lloyd and Topor [95] is slightlymore general than the one we considered. Even this stronger version excludes many natural logicprograms, because every allowed unit clause is ground and every computed answer is grounding.Decker and Cavedon [43] and Decker [42] proposed more general syntactic conditions whichprevent oundering.3.4 Kunen's De�nitionKunen [88] provided a much simpler de�nition of the computed answer substitutions and �nitelyfailed queries of the SLDNF-resolution and used it to prove completeness in the sense discussedin the next section for allowed programs and allowed queries. We now present his de�nition andcompare it with the one given before. 13

De�nition 3.14 The set F of queries and the set R of pairs (C; �), where C a query and � asubstitution for which Dom(�)� V ar(C), are de�ned by a simultaneous inductive de�nition asfollows.0) 2R�,R+) if C resolves to D via � w.r.t. some positive literal of C and a clause from P and DR�,then CR(��)jC,R{) if A is a ground atom in F and (C;C 0)R�, then (C;:A;C 0)R�,F+) if L is a positive literal in C and for every clause R from P which is applicable to L thereexist � and D 2 F such that C �=) D (L, R), then C 2 F,F{) if A is a ground atom such that AR�, then (C;:A;C 0) 2 F. 2Recall that for a query C, � jC stands for the restriction of the substitution � to the variablesof C. The intention here is that R is the set of pairs (C; �) such that � is a c.a.s. for C and Fis the set of queries C such that there is a �nitely failed tree for C.Note that the formulation of R+) does not ensure that the resulting answer substitutionsare most general. Indeed, consider the following programQ(x; y) Q(y; y);Q(x; x) .Then 2R� by 0), Q(y; y)Rfy=xg by R+) and the second clause and consequently Q(x; y)Rfy=xgby R+), since Q(x; y) resolves to Q(y; y) via � and the �rst clause. But fy=xg is not a c.a.s. forQ(x; y) whereas fy=x0g is.In order that R+) produces most general answer substitutions, we amend it as follows:yR+) if C resolves to D via � w.r.t. some positive literal of C and a clause from P , DR�, andV ar(C�)\ V ar(D�)� V ar(D);then CR(��)jC.The following theorem of Apt and Doets [11] shows the equivalence between the SLDNF-resolution and Kunen's de�nition as modi�ed above.Theorem 3.15 (Equivalence) If C is a query, then� CR� i� � is a c.a.s. for C,� C 2 F i� C has a �nitely failed SLDNF-tree. 23.5 TerminationIt is natural to ask then what is the use of the de�nition of SLDNF-resolution given in Section 3.2.To show its usefulness we now consider the issue of termination which cannot be handled usingKunen's approach.De�nition 3.16 (Terminating program) A program is called terminating if all its SLDNF-trees for ground queries are �nite. 214

Of course, in general one is actually interested in proving termination of a given program notonly for all ground queries but also for a class of nonground queries constituting the intendedqueries. The approach to prove termination discussed here allows us to identify for each programsuch a class of nonground queries. To characterize terminating programs, following Cavedon [29]and Apt and Bezem [4] we introduce the following notions.De�nition 3.17 (Acyclic program)� A level mapping for a program P is a function j j : BP ! N of ground atoms to naturalnumbers. For A 2 BP , jAj is the level of A.� Given a level mapping j j, we extend it to ground negative literals by putting j:Aj = jAj.� A clause of P is called acyclic with respect to a level mapping j j, if for every groundinstance A K; L;L of it jAj > jLj:� A program P is called acyclic with respect to a level mapping j j, if all its clauses are. Pis called acyclic if it is acyclic with respect to some level mapping. 2De�nition 3.18 (Boundedness)� A literal L is called bounded with respect to a level mapping j j, if j j is bounded on the set[L] of ground instances of L. For L bounded w.r.t. j j, we de�ne jLj, the level of L w.r.t.j j, as the maximum j j takes on [L].� A query is called bounded with respect to a level mapping j j, if all its literals are. ForQ = L1; : : : ; Ln bounded w.r.t. j j, we de�ne jQj, the level of Q w.r.t. j j, as the multisetbag (jL1j; : : :; jLnj). 2The following result explains why bounded queries are relevant.Lemma 3.19 (Finiteness) Let P be an acyclic program and Q a bounded query. Then everySLDNF-tree for P and Q is �nite. 2This leads to the following conclusion.Corollary 3.20 Every acyclic program is terminating. 2Further work on this subject was done by Ross [149] and on termination of programs w.r.t.SLDNF-resolution with the leftmost selection rule of Prolog by Apt and Pedreschi [6]. We returnto acyclic programs in Section 11.1.4 Program Completion4.1 De�nitionIn �rst-order logic the soundness and completeness results equate the notions of semantic andproof-theoretic implication: for every set of formulas T [f�g we haveT j= � i� T ` �:15

A similar result cannot be established for the SLDNF-resolution and the programs. Indeed,using SLDNF-resolution we can prove ground negative literals, but all of them are false in thelargest Herbrand model of a program, BP .Clark [39] proposed to solve this problem by strengthening a program P to its completion,comp(P) and compare the SLDNF-resolution with comp(P). Intuitively, in the completionthe implications are replaced by equivalences. The formal de�nition is a bit subtle, since thisreplacement has to be made at the right moment, and the equality relation has to be interpretedin an appropriate way. We recall here the de�nition.First, assume that \=" is a new binary relation symbol not appearing in P . We write s 6= tas an abbreviation for :(s = t). \=" is interpreted as identity in all models.We perform successively the following steps, where x1; : : : ; xn; : : : are new variables.Step 1: Transform each clause p(t) L of P into p(x) x = t ^ L.Step 2: Transform each formula p(x) F obtained in the previous step into p(x) 9yF ,where y are the variables of the original clause.Step 3: Let p(x) 9yF1, : : :, p(x) 9yFk be all formulas obtained in the previous step witha relation p on the left-hand side. Replace them by one formula p(x) F1 _ : : :_ Fk: IfF1 _ : : :_ Fk is empty, replace it by true.Step 4: For each relation symbol q not appearing in a head of a clause in P add a formulaq(x) false:Step 5: Replace each formula p(x) F by 8x(p(x) F):Step 6: In each formula replace \ " by \$ ".Additionally, we add the following free equality axioms, EQ, which enforce that the equalitytheory of comp(P) is the same as that of Herbrand universe:(1) f(x) = f(y)! x = y for each function symbol f ,(2) f(x) 6= g(y) for all function symbols f and g such that f 6= g,(3) x 6= t for each variable x and term t such that x 6� t and x occurs in t,and call the resulting set of formulas comp(P).Additionally, we interpret \=" in all 2-valued and 3-valued interpretations as identity. Thisallows us to dispose of the usual equality axioms.4.2 Two-valued Model TheoryWhile program completion is a natural concept in the case of positive programs, in the case ofgeneral programs things dramatically change, due to the following disturbing observation.Note 4.1 For P = fp :pg, comp(P) is inconsistent. 2As inconsistent program completion allows us to derive arbitrary �rst-order formulas fromthe program, the above note seems to rule out the use of program completion to model negativeinformation.Before we discuss some ways of resolving this di�culty, it is useful to recall the immediateconsequence operator TP of Van Emden and Kowalski [169] which acts on Herbrand interpre-tations of a given program. This operator plays an important role in the theory of positiveprograms. 16

De�nition 4.2 (Immediate consequence operator) For a program P and a Herbrandinterpretation I for P we de�neTP (I) = fH j 9 L (H L 2 ground(P); I j= L)g: 2The following simple observation (originally made for positive programs) by Van Emden andKowalski [169] explains the interest in this operator by characterizing the Herbrand models ofP in terms of the operator TP .Lemma 4.3 For every Herbrand interpretation I, I j= P i� TP (I) � I. 2A bit more complicated argument (originally made for positive programs) by Apt and VanEmden [8] characterizes the Herbrand models of comp(P) in terms of the operator TP .Lemma 4.4 (Fixpoint) For every Herbrand interpretation I, I j= comp(P) i� TP (I) = I. 2For positive programsTP exhibits a very regular behaviour {w.r.t. the set inclusion it is mono-tonic (I � J implies TP (I)� TP (J)) and continuous (for every in�nite sequence I0 � I1 � : : :,TP (S1n=0 In) = S1n=0 TP (In)). Thanks to the �rst property the least Herbrand model MP isthe � -least �xpoint of TP and thanks to the second property this model can be reached in !iterations of TP starting with the empty Herbrand interpretation.For general programs both properties of TP are lost. Indeed, consider again P = fp :pg.Then TP (;) = fpg, whereas TP (fpg) = f;g, so TP is not monotonic and a fortiori not continous.Consequently, for general programs the well-known Knaster-Tarski theorem cannot be used to�nd a �xpoint of TP . In fact, the �xpoints need not to exist: just take TP for P = fp :pg.A natural question is under what conditions completion is consistent. The following resultwas established by Sato [153].De�nition 4.5 (Call-consistent) A program is called call-consistent if no relation dependsoddly on itself.Theorem 4.6 If P is call-consistent, then comp(P) has a Herbrand model. 2Further work on the subject of consistency of comp(P) can be found in Kunen [88], Cavedon[30] Cortesi and Fil�e [40], Cortesi and Fil�e [41], Baratella [17] and Fages [60].An alternative solution is to use three valued logic.4.3 Three-valued Model TheoryFitting [61] proposed to use a 3-valued logic to provide semantics to programs and their com-pletions. The idea is that a query can yield three outcomes: it may succeed, it may fail, and itmay also diverge. The third value is meant to capture the last possibility.Fitting [61] based his approach on a logic due to Kleene [83], in which 3 values are assumed:f0; 12 ; 1g, 0 representing false, 12 representing unknown and 1 representing true. Assume nowa mapping j j from BP to f0; 12 ; 1g. To de�ne the meaning of the programs we put for groundquanti�er-free formulas j:Aj = 1� jAj;jA ^ Bj = min(jAj; jBj);jA Bj = (1 if jAj � jBj;0 if jAj < jBj17

and identify the programwith the set ground(P). Note that \ " received here a 2-valued inter-pretation. (Actually in Fitting [61] the valuation of \ " is not used. The above interpretationdi�ers from that of Kleene [83] and was later added in Przymusinski [130].)For the moment the meaning of other connectives is not needed. When a ground formulaevaluates to 1, we say it is true relative to j j, and when it evaluates to 0, we say it is falserelative to j j.The mapping j j can be conveniently presented in the form of a 3-valued Herbrand interpre-tation.De�nition 4.7 A pair I = (I+; I�), with I+; I� � BP , is called a 3-valued Herbrand interpre-tation. I+ are atoms assumed true, and I� are atoms assumed false. 2For example when I = (fAg; fBg), then A and :B are true in I , B and :A are false in I ,and C and :C are unde�ned in I .De�nition 4.8� I is total if I+ [I� = BP ,� I is consistent if I+ \ I� = ;. 2Note that every (2-valued) Herbrand interpretation I can be identi�ed with the 3-valued,total, consistent Herbrand interpretation (I; BP �I) in the sense that truth and falsity coincidesin both interpretations for all formulas.The following natural ordering on 3-valued on Herbrand interpretationsI � J i� I+ � J+ and I� � J�formalizes the intuition: J containsmore information than I (determines status of more literals).This ordering is usually called \information ordering". Other natural orderings can be considered{ see e.g. Section 7.Note that both truth and falsity behave monotonically w.r.t. the information ordering in thefollowing sense.Lemma 4.9 Let I � J. Then for a ground query Q, Q is true (false) in I implies that Q istrue (false) in J. 2These two implications do not hold for 2-valued Herbrand interpretations and � interpretedas set-theoretical inclusion. Also, in contrast to 2-valued Herbrand interpretations, consistent3-valued Herbrand interpretations with the � ordering do not form a lattice. Indeed, if I andJ are total and I 6= J , then I [J does not exist. However, consistent 3-valued Herbrandinterpretations do form a cpo, that is a partial ordering in which the limits of growing chainsexist. This is su�cient for building 3-valued models inductively.Following Fitting [61] we now introduce a 3-valued analogue of the TP operator (originallydenoted by �P), which acts on 3-valued Herbrand interpretations of a given program.De�nition 4.10 (Immediate consequence operator) For a program P and a 3-valuedHerbrand interpretation I for P we de�neT3P (I) = (T; F);where T = fH j 9 L (H L 2 ground(P); L is true in I)g;F = fH j 8 L (H L 2 ground(P) implies L is false in I)g: 218

The following lemma summarizes the relevant properties of the T3P operator.Lemma 4.11� If I consistent, then T3P (I) consistent,� T3P is monotonic,� In general T3P is not continuous. 2Let us return now to the program completion. To de�ne its meaning in 3-valued logic weneed also to assign meaning to disjunction, equivalence and quanti�ers. We do it as follows:jA _ Bj = max(jAj; jBj);jA$Bj = (1 if jAj = jBj;0 if jAj 6= jBj;so \$ " as \ " receives a 2-valued interpretation. The quanti�ers are interpreted in thestandard way. This de�nition allows us to determine when a �rst-order formula � is true in anarbitrary 3-valued interpretation I , written as I j=3 �. In analogy with the 2-valued semantics,we also use the j=3 relation to state that a formula is true in all 3-valued models of a theory(e.g. comp(P) j=3 Q).The Fixpoint Lemma 4.4 has a counterpart for the 3-valued case.Lemma 4.12 (Fixpoint) For every Herbrand interpretation I, I j=3 comp(P) i� T3P (I) = I.2Consequently, by Lemma 4.11 and the generalization of the Knaster-Tarski Theorem to cpo'swe getCorollary 4.13 The �-least �xpoint of T3P is a consistent 3-valued model of comp(P). 2For example, for the program P = fp :pg we now get a 3-valued model, namely (;; ;),in which every ground atom is unde�ned, and consequently in which p$:p is true. Thus the3-valued logic approach o�ers a solution to the problem of possible inconsistency of completionw.r.t. 2-valued logic.A natural question is for which programs the 3-valued and 2-valued semantics of comp(P)coincide. An answer was provided by Kunen [88].De�nition 4.14 (Strictness) Consider a program P and a query Q. We say that P is strictw.r.t. Q if no relation occurring in Q depends both evenly and oddly on a relation de�ned inthe program.Theorem 4.15 (Equivalence) Suppose that P is call-consistent and P is strict w.r.t. Q. Thencomp(P) j=3 Q i� comp(P) j= Q: 2It was shown by Dix [44] that the two-valued completion semantics does not satisfy cautiousmonotonicity, but that the three-valued completion semantics is rational. For the �rst statementconsider the following program P = fq :p; q r; p q; p r; r rg. Then comp(P) j=fp; q; rg but comp(P [fpg) = Th(fp; q$ rg) 6j= fq; rg.For a further discussion of the program completion we refer the reader to Section 8.19

4.4 Soundness and Completeness ResultsLet us relate now SLDNF-resolution and program completion. Clark [39] proved soundness of theSLDNF-resolution w.r.t. 2-valued semantics of program completion. In fact (see Shepherdson[158] for a sketch and Doets [50] for a complete proof), soundness holds also w.r.t. 3-valuedsemantics. More precisely, we have the following result.Theorem 4.16 (Soundness) Given a program P and a query Q we have� if � is a c.a.s. for Q, then comp(P) j=3 8 Q� ,� if there is a �nitely failed SLDNF-tree for Q, then comp(P) j=3 8 :Q. 2A lot of e�ort has been devoted to establish some sort of completeness of SLDNF-resolution.Already Clark [39] noticed that when comparing SLDNF-resolution with comp(P) some restric-tions are necessary. For example, for P = fp q; p :q; q qg we have comp(P) j= p but nosuccessful SLDNF-derivation exists. In this example p depends both positively and negativelyon q. The de�nition of strictness was designed to avoid this type of situations. Cavedon andLloyd [31] established a conjecture of Apt, Blair, Walker [9] and proved completeness of SLDNF-resolution w.r.t. 2-valued semantics of comp(P) for allowed P and Q such that P is strict w.r.t.Q and P is strati�ed (the concept to be introduced in Section 6). Independently Kunen [88]established the following stronger result which refers to 3-valued semantics.Theorem 4.17 (Completeness I) Suppose that P and Q are allowed. Then� if comp(P) j=3 8Q�, then QR�,� if comp(P) j=3 8:Q, then Q 2 F. 2A crucial lemma for establishing this completeness theorem, and numerous generalizationsof it discussed further in the text, is the following result of Kunen [87] which allows us to set upinduction in a proper way.Lemma 4.18 For every �rst-order formula � not containing and $ we havecomp(P) j=3 � i� T3P " n j=3 � for some �nite n. 2T3P " n denotes here the n-fold iteration of the operator T3P starting at the empty 3-valuedinterpretation (;; ;). In this lemma non-Herbrand models of comp(P) are used in an essentialway. Also, as noted by Shepherdson [158] this lemma critically depends on the existence ofin�nitely many function symbols (counting constants as 0-ary function symbols), a propertysatis�ed by the universal language adopted in this paper. When the used language has only�nitely function symbols the free equality axioms have to be appropriately strenghtened.Recently, Doets [50] provided a simpler presentation of its proof. See also St�ark [161] foranother proof.When comp(P) j= 8Q� (resp. comp(P) j=3 8Q�) we say that � is a 2-valued (resp. 3-valued)correct answer substitution forQ. Additionally, when Q� is ground, we say that � is a ground cor-rect answer substitution. The Completeness I Theorem 4.17 in conjunction with Theorems 3.13and the Equivalence Theorem 3.15 implies that 3-valued correct answer substitutions for allowedprograms and queries are ground. Shepherdson [157] showed that this claim also holds for the2-valued case for allowed programs whose completion is consistent.20

A problem with the above completeness result is that, as already mentioned at the end ofSection 3.3, the class of allowed programs is quite restricted and excluded many natural Prologprograms. So a natural question arises how to generalize the above completeness result to alarger class of programs. This problem was studied by several researchers.By providing more general conditions preventing oundering Decker and Cavedon [43] andDecker [42] generalized the Completeness I Theorem 4.17 to a larger class of programs. Cave-don [30] proved completeness of SLDNF-resolution for acyclic programs which subsumes anearly result of Clark [39] who (essentially) proved completeness w.r.t. 2-valued completion forrecursion-free programs which satisfy a syntactic condition which prevents oundering. Nu-merous other extensions of the Completeness I Theorem 4.17 were obtained by modifying theunderlying computation mechanism, so the SLDNF-resolution.5 Proof Theory II: SLDNF-resolution RevisitedWe explained in Section 3.1 why in the de�nition of SLDNF-resolution only ground negativeliterals are allowed to be selected. In this section we discuss how this restriction can be imposedor modi�ed.5.1 Modi�cations of SLDNF-resolutionAn interesting theoretical alternative is to modify the SLDNF-resolution by allowing the selectionof nonground negative literals under certain circumstances. Consider the following modi�cationof the de�nition of SLDNF-resolution, already mentioned in Clark [39]. Let L = :A be theselected literal of a query C. If there exists an empty c.a.s. for the query A, then C is markedas failed . If the subsidiary tree subs(C) is de�ned and �nitely failed, then C � fLg is the onlychild of C. In terms of Kunen's de�nition (De�nition 3.14) this modi�cation simply amounts todropping in clauses R{) and F{) the quali�cation \ground".Call the resulting notion SLDNFE-resolution (for SLDNF extended). Then for the SLDNFE-resolution the Soundness Theorem 4.16 still holds.Shepherdson [156] further generalized this form of resolution by allowing a preliminary sub-stitution � to be applied to nonground negative literals when trying to build a �nitely failedsubsidiary tree. In terms of De�nition 3.14 this modi�cation amounts to changing the clauseR{) toR'{) if A is an atom such that for some �, A� 2 F and (C;C 0)R�, then (C;:A;C 0)R��,and dropping the quali�cation \ground" in clause F{). He called this form of resolution SLDNFS(for SLDNF with substitution) and established its soundness in the sense of the SoundnessTheorem 4.16. Also, he proved its completeness w.r.t. a rather involved semantics.St�ark [162] observed that the same soundness and completeness results hold for simple gen-eralizations of SLDNF- and SLDNFS-resolution, called, respectively, ESLDNF- and ESLDNFS-resolution. In these resolution methods the quali�cation \ground" is dropped in clause R{) andclause F{) is replaced byF'{) if A is an atom such that for a renaming � for A, AR�, then (C;:A;C 0) 2 F.He also studied transformation of proofs in the sequent calculus into proofs using these resolutionmethods.Moreover St�ark [162] proved completeness of ESLDNF-resolution for a syntactically de�nedclass of decomposable programs which includes the positive programs and allowed programs. As21

allowed programs and allowed queries by Theorem 3.13 do not ounder, the ESLDNF-resolution(with the selection of negative literals delayed until no more positive literals are available)coincides with the SLDNF-resolution. Consequently, this result generalizes the Completeness ITheorem 4.17.Recently, St�ark [165] proved a much stronger and more natural generalization of the Com-pleteness I Theorem 4.17. The point of departure for St�ark is the observation that completenessdepends on certain closure properties.De�nition 5.1 Let C+ and C� be two sets of queries. A program is called a (C+; C�) - programif the following conditions are satis�ed, where inst(P) denotes the set of all instances of clausesfrom P :(A1) If Q 2 C+ then Q� 2 C+.(A2) If K; A;M 2 C+ and A L 2 inst(P) then K;L;M 2 C+.(A3) If (:A1; : : :;:AK) 2 C+ then for i 2 [1; k] Ai is ground and Ai 2 C�.(B1) If Q 2 C� then Q� 2 C�.(B2) If K; A;M 2 C� and A L 2 inst(P) then K;L;M 2 C�.(B3) If K;:A;M 2 C� then A 2 C+. 2The following result of St�ark [165] explains the importance of this notion. Here yet anothermodi�cation of the SLDNF-resolution is used according to which in De�nition 3.14 clause F{)is replaced by F'{).Theorem 5.2 (Completeness II) Suppose that P is a (C+; C�) - program. Then for a queryQ � if comp(P) j=3 8Q� and Q 2 C+, then for some substitution �, QR� and Q� is moregeneral than Q�,� if comp(P) j=3 8:Q and Q 2 C�, then Q 2 F. 2This result generalizes the Completeness I Theorem 4.17 because for C+ = fQ j Q is allowedgand C� the set of all queries we get that an allowed program is a (C+; C�) - program and byTheorems 3.13 and 4.17 both computed and 3-valued correct answer substitutions for allowedprograms and queries are ground. St�ark found a systematic way of reducing previous com-pleteness results to the Completeness II Theorem 5.2 by means of modes, that is input/outputspeci�cations.Another modi�cation was proposed by Di Pierro, Martelli and Palamidessi [119]. Theirapproach is based on a rule termed \negation as instantiation" according to which in the case ofSLD-resolution a query consisting of one (possibly nonground) atom fails if all the branches inthe SLD-tree either fail or instantiate the atom. This rule is then incorporated into a resolutionmethod for general programs. The resulting method, called SLDNI-resolution, was proved soundw.r.t. 2-valued semantics of program completion.Finally, let us mention here Shepherdson [160], where an extension of the SLDNF-resolutionwith uni�cation w.r.t. an equality is studied. 22

5.2 Prolog and its VariantsLet us consider now Prolog. From the pure theoretical point of view it is an implementationof SLDNF-resolution with the leftmost selection rule with the exception that the selection ofnonground negative literals is allowed, that is oundering is ignored. This leads to variousdi�culties.As already noted in Section 3.1, we obtain undesired conclusions for the program NUMBERS =fpositive(x) :zero(x); zero(0) g, as both 8x:positive(x) and positive(t), for any groundterm t di�erent from 0, can be established. However, for its completioncomp(NUMBERS) = f8x (positive(x)$:zero(x)); 8x (zero(x)$ x = 0g [EQwe do get the intended conclusions, since comp(NUMBERS) j= 8x (positive(x)$ x 6= 0).In turn, consider the following program SINK where G is a �nite graph:p(a,b) for (a; b) 2 G,sink(x) :p(x,y) .Then for a constant a, the query sink(a) succeeds i� for no b, (a; b) 2 G, that is i�:9y p(a; y).On the other hand, the completion interpretation of the sink relation is: 8x(sink(x)$ 9y:p(x; y)).Thus for some programs the right interpretation is provided by its completion and for others byits computation mechanism. In general, it is not clear whether to interpret the negative literal:A in a clause as 9y :A or :9yA, where y stands for the sequence of local variables of :A.A natural solution is to �nd conditions which prevent selection of nonground negative literalsin Prolog computations. This problem was studied by Apt and Pellegrini [7] and, independently,Stroetman [166]. Using the notion of modes they introduced a syntactically de�ned class ofprograms and queries for which they proved absence of oundering w.r.t. the SLDNF-resolutionwith the leftmost selection rule.However, it is useful to note that in some restricted situations the choice of nongroundnegative literals does not lead to any complications. Namely, the following result is a directconsequence of the soundness of SLDNFE-resolution, where by SLDNF+ resolution we meanSLDNF-resolution with oundering ignored.Theorem 5.3 Given a positive program P and a general query Q we have� if P `SLDNF+ 8Q� , then comp(P) j=3 8Q� . 2The Soundness Theorem 4.16 states that SLDNF-resolution is sound for all safe selectionrules, i.e. selection rules which never select a nonground negative literal. In MU-Prolog of Naish[113], a safe selection rule is used by delaying the nonground negative literals until they becomeground. In other words, MU-Prolog implements SLDNF-resolution with the \leftmost admissibleliteral" selection rule, where a literal is admissible if it is negative and ground, or positive. Evenmore complicated selection rules are allowed in NU-Prolog, the successor of MU-Prolog, of Naish[114] and in G�odel, the language proposed by Hill and Lloyd [76]. In these languages so-calleddelay control declarations cause certain literals to be delayed until they become su�cientlyinstantiated. L�uttringhaus-Kappel [99] provides a thorough theoretical account of such delaydeclarations.The restriction of the SLDNF-resolution to the leftmost selection rule results in loss ofcompleteness, even for very simple programs. Indeed, take P = fp pg and Q = p; q. Thencomp(P) j= :Q, but the only SLDNF-derivation of Q w.r.t. the leftmost selection rule diverges.23

Still, some limited forms of completeness can be obtained here by restricting one's attention toterminating programs { see Apt and Pedreschi [6] and Stroetman [166]. Lately, another aproachto this issue was proposed in St�ark [163] { see Section 8.3.In Prolog negation can be applied to an arbitrary query, and not only to an atom, as in theSLDNF-resolution and its variants. Also disjunction can be used in queries and bodies of theclauses. Lloyd and Topor [94] (see also Lloyd [93]) modelled these syntactic extensions by meansof a more general syntax in which the queries and bodies of clauses can be arbitrary �rst-orderformulas. These generalized queries and programs can be interpreted by means of a syntactictransformation which transforms them to a general query and a general program combined withthe SLDNF-resolution. Lloyd and Topor [94] showed that this transformation preserves programcompletion (which is de�ned for the generalized programs in the expected way).This syntactic extension of general programs allows us to deal properly with the programSINK discussed above { to enforce its right interpretation w.r.t. program completion it su�cesto replace its second clause by sink(x) :9p(x,y).This extended syntax is used in the language G�odel of Hill and Lloyd [76] mentioned above.5.3 Constructive NegationIn SLDNF-resolution only positive literals can generate a computed answer substitution. InSLDNFS-resolution negative literals can generate answers, as well. Unfortunately, these answersubstitutions need to be guessed and subsequently veri�ed. Chan [34] suggested a modi�cationof SLDNF-resolution in which nonground negative literals can be selected and can generateanswers but, in contrast to the SLDNFS-resolution, these answers can be e�ectively computed.This way of using negative literals is called constructive negation and the resulting form ofresolution SLD-CNF-resolution.First, let us introduce the following helpful notation. For a substitution � = fx1=t1; : : : ; xn=tng,let �̂ denote the formula 9y(x1 = t1 ^ : : : ^ xn = tn), where y is the sequence of variables fromRan(�)� Dom(�).The departure point for Chan's approach is the following property of SLD-resolution (essen-tially proved by Clark [39]).Consider a �nite SLD-tree for a query Q. Let �1; : : : ; �k be all c.a.s's for Q presentin this SLD-tree. Denote by FQ the formula �̂1 _ : : : _ �̂k. Then comp(P) j=8(Q$ FQ).Consequently comp(P) j= 8(:Q$:FQ), which suggests to interpret :FQ as the computedanswers generated by :Q.There are two problems which have to be solved for this interpretation. First, the formula:FQ cannot be interpreted as a set of substitutions any more. Thus it has to be de�ned whatit means to apply this formula to a query. Secondly, FQ is not always de�ned. To solve the�rst problem Chan [34] extended the language of logic programs by allowing equalities s = tand inequalities 8(s 6= t) in the queries and bodies of the clauses, and provided a normalizationalgorithm which transforms every formula of the form :FQ to a disjunction of simple equalityformulas, that is existentially quanti�ed conjunctions of equalities or their negations.The second problem is that Chan's de�nition is based on the original de�nition of SLDNF-resolution due to Clark [39], according to which, as noted as noted in Section 3.2, for some24

problematic cases no SLDNF-trees exists. It was adequately solved in Marchiori [103] whoprovided a formal de�nition of SLD-CNF resolution in the style of Apt and Doets [11].Chan [34] noticed that SLD-CNF-resolution is sound w.r.t. program completion (for the 2-valued semantics). In particular, SLD-CNF-resolution allows us to treat correctly the previouslymentioned program NUMBERS { the query positive(x) succeeds with the desired answer x 6= 0.Marchiori [103] studied termination of programs w.r.t. constructive negation and amongothers proved completeness of the SLD-CNF-resolution for acyclic programs w.r.t. programcompletion for bounded queries. Further generalizations of constructive negation were proposedby Stuckey [167], and more recently by Drabent [51]. Both of them proved completeness resultswhich subsume the Completeness I Theorem 4.17.6 2-valued Alternatives for the Least Herbrand ModelIn the case of positive logic programs the least Herbrand model of the program exists. This modelenjoys a number of natural properties. For example, it is the least pre-�xpoint of the operatorTP and also its least �xpoint. Consequently it is customary to view it as the standard model ofthe program. In the case of general programs the situation dramatically changes because thereis no least Herbrand model. Just take P = fp :qg. Then fpg, fqg are the only minimalHebrand models but none is the least. Thus by Lemma 4.3 TP may have no least pre-�xpointand at the end of Subsection 4.2 we already noted that TP may have no �xpoint at all.So what is then the standard model of a general program? There is no generally agreed uponanswer to this question. With this section we begin a review of some of the plausible answerssuggested in the literature.6.1 Strati�ed Programs and the Standard ModelLet us �rst agree on the desired properties of the natural model. Clearly, for every fact inthe model we would like to have some explanation why it is there. The following de�nitionsuggested by Apt, Blair and Walker [9] and Bidoit and Froidevaux [21] attempts to formalizethis requirement.De�nition 6.1 (Supported interpretation) A Herbrand interpretation I is called supportedif A 2 I) 9 L (A L 2 ground(P); I j= L): 2Intuitively, L is an explanation for A. We clearly haveLemma 6.2 I is a supported model of P i� TP (I) = I. 2Thus in view of the observation on the behaviour of the TP operator we see that for someprograms no supported models exist. One possible approach is to accept that some programshave no natural, supported model and to identify classes of programs for which a \natural"supported model exists.The following notion was �rst considered in the context of database queries by Chandra andHarel [35] and was introduced in the area of logic programming by Apt, Blair and Walker [9]and Van Gelder [170].De�nition 6.3 (Strati�ed program) A program is called strati�ed if no cycle with a negativeedge exists in its dependency graph. 225

In other words, a program is strati�ed if no negative recursion, that is recursion \through"negation is used in it. For example, the program P = fp :q; q rg is strati�ed, whereasP = fp :pg is not. Note that every strati�ed program is call-consistent, but not conversely.The following equivalent formulation shows that in a strati�ed program the use of negation isrestricted to already known (i.e. de�ned) relations.De�nition 6.4 (Strati�cation) Consider a program P . P = P1 [: : :[Pn is called a strati-�cation of P if for i 2 [1; n] Pi uses- positively only relations de�ned in Sij=1 Pj ,- negatively only relations de�ned in Si�1j=1 Pj .P1 can be empty. For convenience, when some relations used in P are not de�ned, we assumethat they are de�ned (by the empty set of clauses) in P1. 2Lemma 6.5 A program is strati�ed i� it admits a strati�cation. 2Note that a program can admit several strati�cations. Following the intuition on the use ofnegation the following model was de�ned for strati�ed programs.De�nition 6.6 (Standard model) Consider a strati�ed program P . Assume a strati�cationP = P1 [: : :[Pn. Denote by I j R - the restriction of the interpretation I to relations in R.Each Pi de�nes a set of relations reli. De�ne a sequence of Herbrand interpretations as follows:M1 = the least model of P1,M2 = the least model of P2 such that M2 j rel1 = M1,: : :Mn = the least model of Pn such that Mn j rel1;: : :;n�1 = Mn�1.We call MP = Mn the standard model of P . 2For example, consider P = fp :q; q rg and its strati�cation P = fq rg [fp :qg.Then M1 = ; and M2 = MP = fpg.The following result of Apt, Blair, Walker [9] explains why the model MP is of interest.Theorem 6.7 (Standard model) Consider a strati�ed program P . Then� MP does not depend on the strati�cation of P ,� MP is a minimal model of P ,� MP is a supported model of P . 2Thus, by the Fixpoint Lemma 4.4 completion of a strati�ed program has a Herbrand model.6.2 Locally Strati�ed Programs and Perfect ModelsStill, the above theorem does not uniquely characterize the standard model MP since for somestrati�ed programs more than one supported model exists. Just take P = fp :q; q qg.Then both fpg and fqg are supported.To provide a unique characterization of the model MP , Przymusinski [128] introduced thenotion of preferable models. Fix a program P and a well-founded ordering < on BP . If A < B,then we say that A has a higher priority than B.26

De�nition 6.8 (Perfect model) Let M;N be Herbrand interpretations of P . We call Npreferable to M , and write N � M , if for every B 2 N �M there exists A 2M �N such thatA < B. We write N �M if N = M or N �M . We call a Herbrand model of P perfect if thereare no Herbrand models of P preferable to it. 2Thus a perfect model of P is a �-minimal Herbrand model of P . The intuition behindthese de�nitions is the following. N is preferable to M if it is obtained from M by possibleadding/removing some atoms and an addition of an atom (B) to N is always compensated bythe simultaneous removal from M of an atom (A) of higher priority. This reects the fact thatwe are determined to minimize higher priority atoms even at the cost of adding atoms of lowerpriority. A model is then perfect if this form of minimization of higher priority atoms is achievedin it.The following lemma clari�es the status of perfect models.Lemma 6.9 Let P be a program and < a well-founded ordering on BP .� Every perfect model of P is minimal.� The relation \N is preferable to M" is a partial order. 2The standard modelMP of a strati�ed programP is related to perfect models by the followingtheorem of Przymusinski [128].Theorem 6.10 Let P be a strati�ed program and let for A;B 2 BP : A < B i� the relationsymbol of B depends negatively on the relation symbol of A. Then MP is a unique perfect modelof P . 2In other words, MP is the �-smallest Herbrand model of P . This theorem provides analternative proof of the �rst claim of the Standard Model Theorem 6.7. Thus the notion of aperfect model turns out to be the key concept in assessing the character of MP .The previous result immediately suggests a generalization of the concept of strati�cationwhich was, again, proposed by Przymusinski [128]. He observed that some programs that arenot strati�ed still have an intuitively clear meaning. The standard example is the program EVEN:even(0) even(s(X)) :even(X)The program EVEN is clearly not strati�ed, as the relation even depends negatively on itself.Yet, if we consider all ground instances of the clauses of EVEN, then we see that no ground atomdepends negatively on itself. In other words, if we consider the ground atoms as propositionsymbols, then the instantiated program is strati�ed (albeit in�nite). A program that has thisproperty is locally strati�ed .De�nition 6.11 (Local strati�cation)� A local strati�cation for a program P is a function stratum from BP to the countableordinals.� Given a local strati�cation stratum, we extend it to ground negative literals by puttingstratum(:A) = stratum(A) + 1. 27

� A clause of P is called locally strati�ed with respect to a local strati�cation stratum, if forevery ground instance A K; L;L of itstratum(A) � stratum(L):� A program P is called locally strati�ed with respect to a local strati�cation, if all its clausesare. P is called locally strati�ed if it is locally strati�ed with respect to some local strati-�cation. 2Lemma 6.12� An acyclic program is locally strati�ed.� A strati�ed program is locally strati�ed. 2Instead of comparing ground atoms by their relation symbols, a local strati�cation of aprogram P immediately induces a well-founded ordering on BP . The following theorem, dueto Przymusinski [128], shows that perfect models unambiguously de�ne a semantics for locallystrati�ed programs.Theorem 6.13 (Unique perfect model) Let P be a locally strati�ed program and let forA;B 2 BP : A < B i� stratum(A) < stratum(B). Then P has a unique perfect model. 2It was soon realised, that some programs are not locally strati�ed but still have a clearmeaning. For example, we could rewrite the program EVEN to EVEN':even(X) zero(X)even(Y) successor(X,Y),:even(X)zero(0) successor(X,s(X)) (In this program, we can change the representation of numbers without changing the clausesde�ning the relation even.) This program is no longer locally strati�ed, aseven(0) successor(0,0),:even(0)is an instance of the second clause.Of course, the premise successor(0,0) of this instance is false, but that is part of thesemantics of the program, while (local) strati�cation is a syntactic property. There are two pro-posals for adapting local strati�cation and perfect model semantics to capture this phenomenon:weak strati�cation by Przymusinska and Przymusinski [123, 124] and e�ective strati�cation byBidoit and Froidevaux [22].For weak strati�cation, it is observed that for each iteration in the construction of the model,only the next lowest stratum must be identi�ed. The truth values obtained for the atoms in thisstratum can then be used to discard clauses with false premises. This in turn may remove somedependencies, thereby allowing identi�cation of the next lowest stratum. We omit the formalde�nition. For the program EVEN', the lowest stratum consists of the zero- and successor-atoms. Discarding clauses with false zero- and successor-premises yields the (already locallystrati�ed) program even(0) zero(0)even(s(X)) successor(X,s(X)),:even(X)zero(0) successor(X,s(X)) 28

Theorem 6.14 (Przymusinska and Przymusinski [123, 124]) A locally strati�ed program isweakly strati�ed. 2Bidoit and Froidevaux [22] de�ne the notion of e�ective strati�cation, which takes this ap-proach even further. As it is closely related to the (still to be introduced) well-founded models,we discuss it in Section 7.6.3 Well-supported or Stable ModelsIn Section 6.2, we noted that, for a program P = fp :q; q qg, both fpg and fqg aresupported models. However, the support for q is unfounded, in the sense that q is the explanationwhy q is true. So we would like to rule out the second supported model. The following approachof Fages [59] makes this idea precise.De�nition 6.15 (Well-supported interpretation) For a query L, denote by pos(L) thesequence of positive literals of L. A Herbrand interpretation I is called well-supported if forsome well-founded ordering < on BPA 2 I implies 9L(A L 2 ground(P); I j= L; and B < A for B 2 pos(L)): 2Intuitively, I is well-supported if every A 2 I has an explanation which does not use A.For example, for P = fp :q; q qg, the model fpg is well-supported, whereas fqg is not.It should be noted that some programs have no well-supported models. Take for exampleP = fp q; p :q; q p; q :pg. Its only Herbrand model, fp; qg, is not well-supported.By using the intuition of \rational beliefs" from autoepistemic logic, Gelfond and Lifschitz[68] introduced an important notion of a stable model. We begin with the following auxiliarynotions.De�nition 6.16 (Gelfond-Lifschitz transformation) For a query L, denote by neg(L) thesequence of negative literals of L. Let P be a program and I an interpretation. LetH(P; I) = fH pos(L) j H L 2 ground(P); I j= neg(L):gNow de�ne �P (I) = MH(P;I): 2Thus H(P; I) is the positive program obtained from P by removing all clauses that containone or more negative literals that are false in I , and by deleting all negative literals that aretrue in I . In turn, �P (I) is a Herbrand model equal to the least Herbrand model of the positiveprogram H(P; I).De�nition 6.17 (Stable model) A Herbrand interpretation I of a program P is called stableif �P (I) = I . 2Gelfond and Lifschitz [68] explain the intuition behind the de�nition of a stable model asfollows. Consider a \rational agent" with a set of beliefs I and a set of premises P . Then anyclause that has a literal :A with A 2 I in its body is useless, so it can be removed. Moreover, anyliteral :A with A 62 I is trivial, so it can be deleted. This yields the simpli�ed programH(P; I).If now I happens to be precisely the set of atoms that follow logically from this simpli�ed set29

of premises, then the set of beliefs I is stable. Thus stable models are \possible sets of belief arational agent might hold".The following theorem of Fages [59] shows that the concepts of well-supported and stablemodels coincide. It was independently established by Elkan [57] for the case of propositionalprograms.Theorem 6.18 Suppose that I is a model of P . Then I is stable i� it is well-supported. 2Thus, a fortiori stable models of a program P are supported models and consequently, bythe Fixpoint Lemma 4.4 they are also models of comp(P). The converse is in general not true(see the beginning of this section), but for certain programs the Herbrand models of comp(P)and stable models coincide. Namely, we have the following corollary to the above theorem, dueto Fages [60] and, independently, Ben-Eliyahu [19].Corollary 6.19 Suppose that no cycle with only positive edges exists in the dependency graphof P . Then the Herbrand models of comp(P) coincide with the stable models of P . 2The following results of Gelfond and Lifschitz [68] clarify the relation between stable modelsand the notions introduced in Sections 6.1 and 6.2.Theorem 6.20 (Unique stable model) Consider a program P . Then� any stable model of P is a minimal model of P ,� if P is locally strati�ed, then it has a unique stable model which coincides with its perfectmodel considered in the Unique perfect model Theorem 6.13. 2In particular, if P is strati�ed, then by Theorem 6.10 it has a unique stable model whichcoincides with its standard model MP . Thus, similarly to the notion of a perfect model, theconcept of a stable model allows us to characterize the notion of a standard model for strati�edprograms in a unique way.The second result also shows that a su�cient condition for the existence of a stable model ofa program is that it is locally strati�ed. Dung [53] proves that call-consistency is also su�cient.More results can be found in Dung [53] and Fages [60].7 Three-valued Alternatives for the Least Herbrand ModelStable model semantics allows more than one stable model, or none at all. This reects someuncertainty about the conclusions that should be drawn from a program. In some cases, a`local' uncertainty can destroy too much information. For example, if P is a strati�ed programin which the relation symbol p does not occur, then P [fp :pg has no stable models. Thusthe information contained in P is not reected in the stable model semantics, although it is notrelated to the uncertainty about the truth value of p.Well-founded semantics (WFS) avoids this problem, by producing one 3-valued model, in-stead of multiple 2-valued ones. In contrast to Section 4.3, 3-valued logic (that is, a 3-valuedinterpretation of the connectives) is not needed to obtain these 3-valued models. There arenumerous characterizations of the well-founded semantics; we present here a few of them. Apartfrom the information ordering � on 3-valued interpretations, as de�ned in Section 4.3, we some-times use the truth ordering: I is truth-less than J i� I+ � J+ and I� � J�.30

7.1 Iterated Least Fixpoint Characterization of WFSSuppose that one prefers the least Herbrand model/closed world assumption (rather than thecompletion or classical negation) to decide whether a negative literal holds w.r.t. a positiveprogram. Then, given a general program, one can observe that regardless of the semantics ofnegative literals in clause bodies , some atoms must be true in its semantics (e.g., facts in theprogram), and some must be false (e.g., atoms that do not unify with the head of any clause).One of the weaknesses of the proposals in Section 6 is, that such information is lost if no modelis produced. When `guessing' an interpretation to see if it is a stable model, we know whatguess to make for those atoms. We can also use those atoms to simplify the program, as inthe example on weak strati�cation. As a result of this simpli�cation, more atoms may becomecertainly true or certainly false.If the truth value of all atoms can be decided in this way, then the program is called e�ectivelystrati�able by Bidoit and Froidevaux [22]. If some atoms remain undecided, then we might startguessing, in order to �nd stable models. But another interesting option is to stop just there,and to return a 3-valued model. This model shows which atoms are true, respectively false,regardless of the semantics of negation, and which atoms cannot be decided in this way. It iscalled the well-founded model.The original de�nition of the well-founded semantics is usually attributed to Van Gelder,Ross and Schlipf [66]. Here, we loosely follow the somewhat more constructive de�nition ofBidoit and Froidevaux [22]. Two signi�cantly di�erent characterizations of the well-foundedmodel are presented in the next sections.The �rst step of our de�nition is to derive from a program P which atoms are certainlytrue, respectively false, in its semantics. An atom is certainly true, if it can be derived withoutusing clauses that contain negative literals. An atom is possibly true, if it cannot be derived,even when ignoring all negative premises. An atom is certainly false if it is not possibly true.We collect the `certain' atoms in a 3-valued interpretation I3(P), leaving the `uncertain' atomsunknown.De�nition 7.1 Let P be a program. By P+ we denote the program obtained from P bydeleting all clauses that contain a negative literal. By P� we denote the program obtained fromP by deleting all negative literals. Let I3(P) = (MP+ ;MP�). 2Here M denotes the complement ofM w.r.t. the set of ground atoms in the considered universallanguage, which is larger than the language LP de�ned by P .Bidoit and Froidevaux [22] call MP+ the set of de�ned atoms (Def(P)) and MP� the set ofpotentially de�ned atoms (PotDef(P)). Van Gelder, Ross and Schlipf [66] call the atoms in MP+well-founded and MP� an unfounded set (see below).In this section, we use a simpli�cation of a program w.r.t. a set of certain literals thatdi�ers from the Gelfond-Lifschitz transformation (De�nition 6.16) in a signi�cant way: not onlynegative literals, but also positive literals are considered for simpli�cation. A generalization ofDe�nition 6.16 to 3-valued interpretations is considered in the next section.De�nition 7.2 Let P be a program and I a 3-valued interpretation. By PnI , we denote theprogram that is obtained from ground(P) by deleting all clauses that contain one or more literalsthat are false in I , and by deleting all literals that are true in I . Furthermore,�P (I) = I3(PnI): 231

Lemma 7.3 (Przymusinski [130]) The �P -operator is monotonic w.r.t. the information order-ing. 2This lemma implies that the least �xpoint of �P exists, and that it can be reached byiterating the �P -operator from (;; ;), taking the pairwise union at limit ordinals.De�nition 7.4 (Well-Founded model) The information-least �xpoint of �P is called thewell-founded model of P , WFM(P). 2As �P is in general not continuous, more than ! iterations are usually needed to reachthe least �xpoint. However, if the number of atoms in the language is �nite, say n, then thecomputation ofWFM(P) in this way takes O(n2) iterations, as shown by Van Gelder, Ross andSchlipf [66].The original de�nition of the well-founded model by Van Gelder, Ross and Schlipf [66] slightlydi�ers from this one. Instead of �P , they de�ne and iterate the operatorVP (I) = (the set of facts in (PnI)+;M(PnI)�):Thus, the derivation of positive facts using VP goes much `slower' than using �P . Moreover, theyde�ne M(PnI)� in another, non-constructive way, namely, as the largest unfounded set, where anunfounded set is a set of ground atoms U such that for all atoms A 2 U , all instances of clausesthat conclude A have a premise in U (thus, if we assume the atoms in U to be false, no clausethat could derive them remains applicable, which justi�es the assumption).The well-founded model is related to stable models, and hence to the other models in Sec-tion 6, in the following way.Theorem 7.5 (Extension) (Van Gelder, Ross and Schlipf [66]) All stable models of a programextend3 its well-founded model. 2Corollary 7.6 If the well-founded model of a program is total, then it is its unique stable model.2The converse of this implication is not true: the program fp :p; p :q; q :pg hasfpg as its unique stable model, but its well-founded model is (;; ;). But Theorem 6.14 impliesthat the well-founded model of a locally (weakly) strati�ed program is total.Corollary 7.7 The well-founded model of a locally strati�ed program coincides with its uniqueperfect model. 2We can now de�ne the generalization of the notion of weak strati�cation, already mentionedin Section 6.2, due to Bidoit and Froidevaux [22].De�nition 7.8 (E�ective strati�cation) A program P is e�ectively strati�able ifWFM(P)is total. 2Theorem 7.9 (Bidoit and Froidevaux [22]) A weakly strati�ed program is e�ectively strati�able.2 3I.e., the well-founded model is lower in the information ordering than any stable model. This notion ofextension should not be confused with another one: a semantics S de�ned for a class of programs P is sometimessaid to extend a semantics S 0 de�ned for a smaller class P 0 � P if S and S 0 coincide on P 0. To avoid confusion,we shall not use the word `extend' in this sense. 32

7.2 Stationary Models and Stationary ExpansionsIn this section we present an alternative characterization of the well-founded model, due to Przy-musinski [136], which relies somewhat more on 3-valued logic, but stays closer to the de�nitionof stable models. Moreover, this characterization also suggests other interesting 3-valued modelsof the program, which extend the well-founded model.De�nition 6.16 presents a function H(P; I) that simpli�es a program P with respect to a 2-valued interpretation I . In fact, this function replaces each negative literal in the program by thetruth-value it has in the interpretation. The result is a positive program, except that the logicalconstants true and false occur in it. When considering the semantics of such a program, i.e.,its least Herbrand model, the constants true can be ignored. A constant false in a clause bodymeans, that this clause is never applicable, so the whole clause can be ignored. By syntacticallyremoving the parts of the program that can be ignored, we bypassed the introduction of thelogical constants, and de�ned the result of the function to be a positive program.It is straightforward to generalize this function so that it simpli�es a program with respectto a 3 -valued interpretation. The result is a positive program, in which the constants true,false and unknown occur. We can get rid of the constants true and false again, but theconstants unknown remain. This is not a problem: the truth-least partial Herbrand model ofsuch programs is well-de�ned.De�nition 7.10 (u-program) A u-program is a positive program in which the constantstrue, false and unknown may occur. M3(P) denotes the truth-least 3-valued Herbrand modelof a u-program P .4Let P be a program and I a 3-valued interpretation. The u-program H3(P; I) is obtainedfrom ground(P) by replacing every negative literal in P by the truth value it has in I .�3P (I) = M3(H3(P; I)): 2Analogously to the stable models of Section 6.3, the �xpoints of �3P are considered as possible`meanings' of the program P . Przymusinski called these models partial, extended or 3-valuedstable models, or stationary models [133, 136, 135, 127, 138]. From now on, we shall refer tothem as stationary models; by `stable models' we shall always mean 2-valued ones.De�nition 7.11 (Stationary model) Let P be a program. A stationary model of P is a3-valued Herbrand interpretation I such that �3P (I) = I . 2In contrast to stable models, each program has at least one stationary model. Moreover,the set of stationary models of a program has an information-least element, which happens tocoincide with the well-founded model.Theorem 7.12 (Least stationary model) (Przymusinski [136]) Let P be a program. Theinformation-least stationary model of P exists and coincides with WFM(P). 2If I is a 2-valued interpretation, then �3P (I) obviously coincides with �P (I). Thus all stablemodels of a program are also (information-maximal) stationary models of it. This clari�es theExtension Theorem 7.5.4Note that M3(P) coincides with I3(P), if we get rid of occurrences of true and false as before, and treatoccurrences of unknown as negative literals. 33

Instead of considering the information-minimal stationary model, we can also considerinformation-maximal ones as plausible `belief states' associated with the program. Among theseare the stable models of a program, if it has any. But, while the stable model semantics ofa program is easily destroyed by local `impossibilities', maximal stationary model semantics ismuch more robust. A local impossibility simply means that some atoms remain unknown inall models; it does not a�ect the (global) existence of the models.Neither the de�nition of a stable model or of a stationary model is constructive|it involves a\guess" of an interpretation which is then checked whether it is a stable, respectively, stationarymodel. Sacc�a and Zaniolo [150] characterized all stable models by means of �xpoints of abacktracking operator which generates all stable models of a program. This work was furtherextended and generalized by Teusink [168], who characterized all stationary models by meansof �xpoints of another nondeterministic, non-monotonic operator.The following characterization of stationary models, proposed by Przymusinski [126], stayswithin 2-valued logic. First we identify a program with the program obtained by replacing everyoccurrence of a negative literal :A by the new atom not A. This gives a positive program, inwhich the atoms of the form not A occur only in the bodies of clauses. A stationary expansionis obtained by adding to such a program a suitable set of not A atoms: these fully determine astationary model.De�nition 7.13 (Stationary expansion) Let P be a positive program with not A atoms inbodies of clauses. Let C be a set of not A atoms.� A Herbrand interpretation for P is a set of atoms (containing both ordinary atoms andnot A atoms, in general).� By the minimal models of P [C, we mean the Herbrand interpretations that are minimalw.r.t. set inclusion for the ordinary atoms (but not necessarily w.r.t. not A-atoms) amongthose interpretations I that satisfy:{ I j= P [C (in the classical sense), and{ if P [C j= A, then not A 62 I .� For a negative literal :A, P [C j=min :A if :A is true in all minimal models of P [C.� A stationary expansion of P is a consistent theory E(P) which satis�esE(P) = P [fnot A j E(P) j=min :Ag:� The least stationary expansion of P is called its stationary completion. 2Theorem 7.14 (Correspondence) (Przymusinski [126]) Let P be a program. There is thefollowing one-to-one correspondence between stationary models and stationary expansions of P .� If M is a stationary model of P , then P [fnot A jM j=3 :Ag is a stationary expansionof P .� If E(P) is a stationary expansion of P , then fA j E(P) j= Ag [f:A j E(P) j=min :Ag isa stationary model of P .In this way, the well-founded model of P corresponds with the stationary completion of P . 234

The information-least stationary model (i.e., the well-founded model) of a program can becomputed by iterating �3P from (;; ;). This corresponds to the following theorem.Theorem 7.15 (Przymusinski [126]) Let P be a program.Let P0 = P .For a successor ordinal �+ 1, let P�+1 = P� [fnot A j P� j=min :Ag.For a limit ordinal �, let P� = S�<� P�.The sequence P0; P1; : : : ; P�; : : : has a �xpoint which coincides with the stationary completion ofP . 2We shall discuss a generalization of stationary expansions to the class of general disjunctiveprograms in Section 10.3.7.3 The Alternating Fixpoint Characterization of WFSYet another characterization of the well-founded model is the one given by Van Gelder [65]. Itis based solely on 2-valued interpretations, which only in the end are combined into a 3-valuedmodel.As observed by Van Gelder [65], �P is an antimonotonic operator (on 2-valued interpreta-tions, thus w.r.t. the truth ordering). Thus �2P , i.e., �P iterated twice, is monotonic and, on thelattice we work on, has a least �xpoint, say IP . Then �P (IP) is the greatest �xpoint of �2P .Theorem 7.16 (Alternating �xpoint I) (Van Gelder [65]) Let P be a program. Then theleast �xpoint IP of �2P exists and WFM(P) = (IP ;�P (IP)): 2The Extension Theorem 7.5 is also a corollary of this theorem. The following theorem is amore general version of the Alternating �xpoint Theorem 7.16.Theorem 7.17 (Alternating �xpoint II) (Przymusinska and Przymusinski [121]) Let P bea program and I a 2-valued interpretation. (I;�P (I)) is a stationary model of P i� �2P (I) = I ��P (I). 2Note that, for P = fp :p; q :qg, �P oscillates between fpg and fqg, but that thereis no corresponding stationary model, because the interpretations (fpg; fqg) and (fqg; fpg) areinconsistent.Such pairs of interpretations are generalized to �nite sets by Baral and Subrahmanian [16].De�nition 7.18 (Stable class) Let P be a program. A stable class of P is a �nite set of(2-valued) interpretations A such that A = f�P (I) j I 2 Ag. 2If a program P has a stable model M , then fMg is a stable class of P . An interpretation Iis a �xpoint of �2P i� fI;�P (I)g is a stable class of P .This approach of Van Gelder has been generalized in another direction by Fitting [62], namelyto the case of programs interpreted over 4-valued models, or more generally, bilattices.35

7.4 Properties of the Well-Founded Semantics and its ExtensionsWell-founded semantics has as a drawback, that it does not infer all atoms that one would expectto be true. Consider for example the program P = fp :q; q :p; r p; r qg. It has twostable models: p is true in one and q in the other. In both p _ q, and therefore r, is true. Yet ris unknown in the well-founded model.Numerous semantics have been proposed that extend the well-founded semantics: WFS0,WFS+ and EWFS by Dix [46], GWFS by Baral, Lobo and Minker [13], WFSC by Schlipf [154](equivalent to WFS+), WFSE by Hu and Yuan [77], WFSS by Chen and Kundu [36] and �nallythe O-semantics by Pereira, Apar��cio, and Alferes[118]. The properties of these semantics wereinvestigated in Dix [48] and Dix [49].Theorem 7.19 (Properties) Dix [48, 49]� The well-founded semantics, WFS 0 and WFS+ are rational.� EWFS and O-semantics are cautious, but not rational.� EWFS, WFSE and WFSS do not satisfy the cut-rule.� GWFS is not cautious and moreover does not satisfy the Principle of Partial Evaluation.28 Program Completion RevisitedIn the previous two sections, we have de�ned semantics for negation by means of canonicalmodels: stable models and well-founded models. The question arises whether these semanticscan be characterized by some form of completion as well | the stationary completion (De�ni-tion 7.13) is technically a logical theory, but, as all negative conclusions are stated as facts, it isstill very close to a model. Wallace [172] answered this question a�rmatively. In this section wesummarize his results, which are obtained by de�ning two simple program transformations, andconsidering the completion of the transformed programs. Then we discuss briey recent resultsof St�ark [164, 163].8.1 Tightened CompletionThe standard program completion, as discussed in Section 4 results in a \loose" interpretationof negation, corresponding to the negation as �nite failure rule (the Soundness Theorem 4.16and the Completeness Theorem 4.17). In order to obtain a \tight" interpretation of negation,Wallace encoded the iterations of the TP -operator into the program.De�nition 8.1 (Tightened program) Let P be a program. The tightened program PT isderived from P as follows, where N is a variable:� The language of PT consists of LP augmented with a new relation symbol p of arity n+ 1for every relation symbol p of arity n in LP . A new unary function symbol s is also added.� In each clause of P , the head p(t) is replaced by p(t; s(N)) and each positive literal p(t)in the body is replaced by p(t; N).� For each relation symbol p in LP , the clause p(x) p(x; N) is added. 236

The tightened completion of a program P is de�ned as the completion of PT . The followingresult clari�es the relation between the stable models of a program and its tightened completion.Theorem 8.2 (Tightened completion) (Wallace [172]) The stable models of a program Pare precisely the restrictions of the Herbrand models of comp(PT) to LP . 28.2 Rounded CompletionAs a special case of the previous theorem, one can observe that the tightened completion of aprogram is inconsistent if and only if the program has no stable models.One of the motivations for considering 3-valued models of the completion in Section 4.3and well-founded semantics in Section 7 was avoiding inconsistency. The following programtransformation, suggested independently by Drabent and Martelli [52] and Wallace [172], resultsalways in a call-consistent program, thus by Theorem 4.6 its completion is consistent.De�nition 8.3 (Doubled program) Let P be a program. The doubled program (called splitprogram in [52]) PD is derived from P as follows.� The language of PD consists of LP augmented with a new relation symbol p0 of arity n forevery relation symbol p of arity n in LP .� Each clause of P is replaced by two new clauses:{ in the �rst clause, each occurrence of a relation symbol p in a negative literal isreplaced by p0.{ in the second clause, each occurrence of a relation symbol p in a positive literal orthe head of a clause is replaced by p0. 2The doubled completion (called strict completion in [52]) of a program P is de�ned as thecompletion of PD. There is a close connection between the doubled completion of a programand the 3-valued interpretation of its standard completion.Theorem 8.4 (Doubled completion) (Drabent and Martelli [52]) Let P be a program andL and atom or a ground negative literal. Thencomp(PD) j= L i� comp(P) j=3 L: 2The tightening and doubling program transformations are orthogonal: (PT)D = (PD)T iscalled the rounded program derived from P ; its completion is called the rounded completion.The following result clari�es the relation between the well-founded model of a program and itsrounded completion.Theorem 8.5 (Rounded completion) (Wallace [172]) The well-founded model of a programP consists exactly of those ground literals from LP that are true in all Herbrand models of therounded completion of P . 2Intuitively, one can explain this relation between the rounded completion of a program and itswell-founded model through the alternating �xpoint characterization of the latter. We can splita Herbrand model of the rounded completion into two sets, one containing the dashed atoms,37

the other the undashed atoms. By removing the dashes in the �rst one, two interpretations areobtained. It can be easily seen that �P oscillates between them.Finally, Wallace describes yet another completion, the full completion of a program, whichis obtained from the rounded completion by dropping the free equality axioms, and adding, foreach relation p, the induction axiom:p(x; 0)^ 8N(:p(x; N)! :p(x; s(N)))! 8N:p(x; N):The result is that the e�ect of the counter in the tightened program is weakened: a loopstill leads to failure, but an in�nite descending chain does not. For example, the full completionof the program fp(f(x)) p(x)g entails :p(t) for each ground term t, but it does not entail8x p(x), as there exists a model with in�nitely many individuals a1; a2; : : : such that, for all i,ai = f(ai+1). This semantics coincides with the one presented by Van Gelder [170].8.3 Other ApproachesWe conclude this section by mentioning two other modi�cations of completion, proposed bySt�ark. The �rst one is called partial completion. As in the de�nition of a doubled program(De�nition 8.3) for each relation symbol p a new relation symbol p0 of the same arity is intro-duced. The relations p0 are used in a modi�ed Step 6 of building the completion. Now insteadof replacing \ " by \$ " the formulas 8x(� p(x) � F) are added. Here � behaves likethe classical negation with the exception that � p(t) is p0(t) and � p(t) is p0(t).The resulting theory is called partcomp(P) for partial completion. The usual completionis obtained by adding the axiom 8x(p0(x)$:p(x)) for each relation p. St�ark [164] showedthat the Completeness II Theorem 5.2 holds when comp(P) j=3 is replaced by partcomp(P) j=.This result generalizes Theorem 5.2 because St�ark also showed that for all queries Q we havepartcomp(P) j= 8Q i� comp(P) j=3 8Q and partcomp(P) j= 8 � Q i� comp(P) j=3 8:Q.Then, in St�ark [163] a modi�cation of this approach dealing with Prolog is proposed. Tothis end the SLDNF-resolution with the leftmost selection rule is related to a theory called`comp(P). This theory is a modi�cation of comp(P) obtained by introducing for each relationsymbol p three new relation symbols: ps, pf and pt, with the intuitive meaning \p succeeds",\p (�nitely) fails" and \p terminates". `comp(P) is built in a similar way as partcomp(P), butnow the construction involves three operators, S, F and T, which transform the queries of theoriginal language into formulas of the enriched language which includes the relation symbols ps,pf ,pt. A typical and crucial law is F(L1^L2) = FL1 _ (TL1 ^FL2), which intuitively expresseswhen the query L1; L2 �nitely fails w.r.t. the SLDNF-resolution with the leftmost selection rule.The corresponding result connects this resolution method with `comp(P) in a way analogous tothe Completeness II Theorem 5.2. This generalizes in an essential way a completeness result ofStroetman [166], where only terminating programs are considered.9 Proof Theory III: SLS-resolutionSLS-resolution is a modi�ed version of SLD-resolution that can deal with strati�ed programsrather than just de�nite (i.e., positive) programs (hence the second `S' replacing the `D'). Infact, similar resolution methods for all general programs are also called SLS-resolution. Firstwe present the de�nition for strati�ed programs due to Przymusinski [125] (or more precisely amild generalization to locally strati�ed programs adapted from Bol [24]).The main di�erence with SLDNF-resolution is, that the computation-oriented negation as�nite failure rule is replaced by the more idealistic negation as (not necessarily �nite) failure rule.38

As a consequence, SLS-resolution is not e�ective: an implementation can only approximate it.In contrast, SLDNF-resolution can be implemented, but not in a straightforward way: the setsof SLDNF-successful and �nitely failed queries are recursively enumerable, but not by buildingSLDNF-trees via all (possibly in�nitely many) selection rules.Example 9.1 (SLDNF versus SLS-resolution) Let P = fp :q; q :r;:s; r r;s g. For the query p we have the following trees (where needed, selected literals are underlined;=) denotes the subs relation between nodes and trees).p p pj j j:q=)q :q =)q :q =)qj j j j j:r;:s=)r 2 :r;:s=)s 2 :r;:s=)rj fail j j jr 2 s (=:s rj j fail jr 2 r... ...SLS-tree SLS-treeunsuccessful SLDNF-tree successful SLDNF-treeWe see (in the middle picture) that using the rightmost selection rule yields a �nite andsuccessful SLDNF-tree, which is also an SLS-tree. But using the leftmost selection rule yieldsan in�nite and unsuccessful SLDNF-tree (left picture). Thus the value of the completenessresults for SLDNF-resolution, stating the existence of a successful SLDNF-tree, is limited. Therightmost picture shows that the SLS-tree via the leftmost selection rule is successful, althoughin�nite. 29.1 SLS-resolution for Locally Strati�ed ProgramsWe now provide a formal de�nition of SLS-resolution, for locally strati�ed programs using theconcepts introduced in Section 3.2 when de�ning SLDNF-resolution.De�nition 9.2 (Stratum) Let P be a program that is locally strati�ed w.r.t. stratum.� For an atom A, not necessarily ground, we de�nestratum(A) = supfstratum(Ag) j Ag is a ground instance of Ag;� For a negative literal :A, not necessarily ground, we de�nestratum(:A) = stratum(A) + 1;� We de�ne stratum(2) = 0 and for a query Q = L1; : : : ; Ln (n > 0),stratum(Q) = maxfstratum(Li) j i 2 [1; n]g: 239

De�nition 9.3 (SLS-tree) An SLS-tree is a forest F , whose nodes are (possibly marked)queries of (possibly marked) literals. (The markers are the same as in SLDNF-trees.) Thefunction subs assigns to nodes containing a marked negative ground literal :A a tree in F withroot A.A tree is successful if it has a leaf marked as success . A tree is oundered if it has a leafmarked as oundered . Hence a tree may be both successful and oundered. A tree is failed if itis neither successful nor oundered.Let P be a locally strati�ed program and R a selection rule. For every query Q, we de�nethe SLS-tree F for P and Q via R by induction on stratum(Q). The root of the main tree T ofF is Q. For any node N in T we have:� If N is the empty query, then N is marked as success and has no children.� If R selects a positive literal L in N , then N has as children the nodes that are obtainedby extending T at N in the sense of De�nition 3.5. If no children can be obtained in thisway, then N is marked as failed .� If R selects a negative literal :A in N , then{ If A is nonground, then N has no children and is marked as oundered .{ If A is ground, then stratum(A) < stratum(Q), thus the SLS-tree (F 0; T 0; subs0) forP and A via R is already de�ned. Then set subs(N) to T 0, extend subs by subs0 andextend F by F 0.� If T 0 is successful, then N has no children and is marked as failed .� Otherwise, if T 0 is oundered, thenN has no children and is marked as oundered .� Otherwise, T 0 is failed, and the resolvent (�; N � f:Ag) is the only child of N .(Thus, in contrast to SLDNF-trees, �niteness of F 0 is not required here.) 2De�nition 9.4 (Computed answer substitution) Let P be a locally strati�ed programand Q a query. Consider a branch in the main tree T of an SLS-tree for P and Q which endswith the empty query. Let �1; : : :; �n be the consecutive substitutions along this branch.Then the restriction (�1 � � ��n)jQ of the composition �1 � � ��n to the variables of Q is calledan SLS-computed answer substitution (c.a.s. for short) for Q in T . 2We saw in Section 4.4 that SLDNF-resolution is sound w.r.t. the program completion,comp(P). A natural question arises: w.r.t. which semantics is SLS-resolution sound? The an-swer was provided by Przymusinski [125] | it turns out that SLS-resolution is a proof-theoreticcounterpart of the perfect model semantics. More precisely, he established the following results.Theorem 9.5 (Soundness) Let P be a locally strati�ed program, Q a query and R a selectionrule. Let MP be the unique perfect Herbrand model of P . Consider the main tree T of theSLS-tree for P and Q via R.� If � is a c.a.s. for Q in T , then MP j= 8Q� ,� if T is failed, then MP j= 8:Q. 2Corollary 9.6 SLS-resolution for locally strati�ed programs is also sound w.r.t. the uniquestable model semantics and well-founded semantics. 240

Theorem 9.7 (Completeness) Let P be a locally strati�ed program, Q a query and R a se-lection rule. Let MP be the unique perfect model of P . Consider the main tree T of the SLS-treefor P and Q via R. Suppose T does not ounder.� If MP j= 8Q� , then there is a c.a.s. � for Q in T such that Q� is more general than Q� ,� if MP j= 8:Q, then T is failed. 2Corollary 9.8 SLS-resolution for locally strati�ed programs is also complete in the absence ofoundering w.r.t. the unique stable model semantics and well-founded semantics. 29.2 SLS-resolution for General ProgramsAlthough its name suggests that SLS-resolution can only be used for strati�ed programs, severalproposals for top-down computation of the well-founded semantics are also called SLS-resolution.The ones we found in the literature, which we discuss in this section, all have the disadvantageof requiring a positivistic selection rule. This means that a negative literal is selected only if nomore positive literals are available.Przymusinski [130] observed that (a suitable variant of) the iterated least �xpoint de�nitionof the well-founded semantics suggests a dynamic strati�cation of the program: if a ground atomA is decided (becomes true or false) in iteration �, then � is the dynamic stratum of A. AnSLS-derivation for an atom A in stratum � is de�ned by induction on � and consists now of twophases.In the �rst phase, positive literals are selected, and the derivation proceeds like an SLD-derivation. This derivation fails if it is �nitely failed or diverges. If the derivation does not failin this phase, then it ends in a query with only negative literals (possibly none).In the second phase, ground negative literals :B for which the stratum of B is less than �are selected one by one. By induction on stratum, the SLS-tree T for B is already de�ned. Thiscase is handled as in De�nition 9.3:� if T is contains the empty query, then the derivation fails,� otherwise, if T contains a oundering derivation, then the derivation ounders,� otherwise, :B is removed; the derivation continues with the remaining negative literals.If the derivation completes both phases, then there are three possible outcomes:� if the derivation ends in the empty query, then it is successful,� if the derivation ends in a query containing a nonground negative literal, then it ounders,� otherwise, the derivation ends in an unde�ned leaf .In addition to the ine�ective negation as failure rule, here also the criteria for the selectionrule seem to be very ine�ective: how can we compare the strata of atoms without computingtheir truth value in the well-founded model? Przymusinski remarks ([130], Remark 9.1) thatthe requirement translates into `no negative recursion is allowed in the derivation'. Thus aninterpreter implementing this form of resolution may select a `wrong' negative literal, �nd thatit leads to negative recursion and `backtrack' over the selection. A problem with this approach isthat in this way, part of the search of the interpreter is not represented in the resulting SLS-tree.41

In later versions [122, 140], a sequence of `SLS-trees of rank �' is created, in which negativeliterals are decided on the basis of an SLS-tree of a one lower rank, if possible, and skippedotherwise. Skipping here means that another literal is selected. The selection rule is not explicitlyrequired to be positivistic, but in the SLS-tree of rank 1, all negative selected literals will beskipped, thus the e�ect is that of a positivistic selection rule. (An SLS-tree of rank �+1 extendsthe tree of rank � only at its nodes that contain exclusively skipped negative literals.)Another hidden property of this selection mechanism is that negative literals are e�ectivelyselected in parallel: for each of them it is tried at each rank if it can be resolved (until one fails,or until they have all succeeded). A positivistic selection rule that is negatively parallel (selectsall negative literals at once) is explicitly used by Ross [147]; it is called preferential.Ross de�nes SLP-trees (the `P' stands for `Positivistic') as the result of the �rst phasedescribed above. Then he de�nes Global SLS-resolution by means of global SLS-trees as follows.De�nition 9.9 (Global SLS-Tree) A global tree � for a query Q has three types of nodes:� tree nodes, which are labeled by SLP-trees for intermediate goals,� negation nodes, which are labeled by a query with only negative literals (possibly none),and� nonground nodes, which have no label. 2The root of � is the SLP-tree for Q.Each tree node T in �G has as its children negation nodes: if Q is a leaf of T that containsonly negative literals, then Q is a child of T in �G.Each negation node Q = :A1; : : : ;:An (n � 0) has n children: for i 2 [1; n] if Ai is ground,then the child is a tree node, namely the SLP-tree for Ai, otherwise the child is a nongroundnode. 2Every node in a global tree has a status : successful, failed, indeterminate or oundered.De�nition 9.10 (Status of nodes) Consider a global tree.� A nonground node is always oundered .� A negation node is failed if one of its children is successful,successful if all its children are failed,oundered if none of its children is successful,and at least one is oundered.� A tree node is failed if all its children are failed,successful if one of its children is successful,oundered if one of its children is oundered.� Nodes that are not assigned a status according to these rules are indeterminate. 2A tree node can be both successful and oundered, but no other pair of status is possiblefor a single node.De�nition 9.11 Let Q be a query. Let T be the root node of a global SLS-tree � for Q (thusT is an SLP-tree for Q). A successful branch of T is a branch that ends in a leaf labeledN , such that the corresponding negation node labeled N is successful. The computed answersubstitution of a successful branch is, again, the composition of the consecutive substitutionsalong the branch, restricted to the variables of Q. 242

Ross [147] proved the following results.Theorem 9.12 (Soundness) Let P be a program and Q a query. Let � be a global SLS-treefor Q.� If � is a computed answer substitution in �, then WFM(P) j= 8(Q�),� if the root of � is failed, then WFM(P) j= 8(:Q). 2Theorem 9.13 (Completeness) Let P be a program and Q a query. Let � be a non-ounderingglobal SLS-tree for Q.� If WFM(P) j= 9Q, then the root of � is successful,� if WFM(P) j= 8(:Q), then the root of � is failed,� if WFM(P) j= 8(Q�), then there is a computed answer substitution � in � such that G�is more general than G�. 29.3 SLS-resolution for General Programs via all Selection RulesIn this section we present a de�nition of SLS-resolution that deals with all general programsand all selection rules; it is new to the best of our knowledge. As the �rst step, we de�ne oracleSLS-trees; in these trees we resolve selected positive literals against program clauses, as usual,but ground negative literals are resolved by using the well-founded model as an oracle. Thuswe eliminate all negative recursion. The oracle produces one of the answers true, false andunknown. In order to record the last case properly, substitutions may be annotated by u inthe following de�nitions.De�nition 9.14 (Oracle SLS-tree) Let P be a program and R a selection rule. For a queryQ, we de�ne the oracle SLS-tree T for P and Q via R as follows. The root of T is Q. For anynode N in T we have:� If N is the empty query, then N is marked as success and has no children.� If R selects a positive literal L in N , then N has as children those nodes that can beobtained by extending T at N in the sense of De�nition 3.5. If no children can be obtainedin this way, then N is marked as failed .� If R selects a negative literal :A in N , then{ If A is nonground, then N has no children and is marked as oundered .{ If A is ground, then� if A is true in WFM(P), then N has no children and is marked as failed ,� if A is false in WFM(P), then the resolvent (�; N � f:Ag) is the only child ofN ,� if A is unknown in WFM(P), then the resolvent ((u; �); N �f:Ag) is the onlychild of N . 243

De�nition 9.15 (Oracle answer substitution) Let P be a program and Q a query. Considera branch in an oracle SLS-tree T for P and Q which ends with the empty query. Let �1; : : :; �nbe the consecutive substitutions along this branch.Then the restriction (�1 � � ��n)jQ of the composition �1 � � ��n to the variables of Q is calledan oracle SLS-computed answer substitution (o.c.a.s. for short) for Q in T , if none of the substi-tutions �i is annotated by u; otherwise it is called an oracle SLS-unknown answer substitution(o.u.a.s. for short) for Q in T .An oracle SLS-tree T for a query Q is� successful, if it gives an o.c.a.s. for Q,� oundered, if it contains a leaf marked as oundered,� indeterminate, if it is not successful and not oundered, and gives an o.u.a.s. for Q,� failed, otherwise. 2The following results relate oracle SLS-trees to the well-founded semantics.Lemma 9.16 (Soundness) Consider an oracle SLS-tree T for a program P and a query Q.� If � is a o.c.a.s. for Q in T , then WFM(P) j=3 8Q� ,� if � is a o.u.a.s. for Q in T , then WFM(P) 6j=3 :8Q� ,� if T is failed, then WFM(P) j=3 8:Q. 2Lemma 9.17 (Completeness) Consider an oracle SLS-tree T for a program P and a queryQ. Suppose T does not ounder.� If WFM(P) j=3 8Q� , then there is an o.c.a.s. � for Q in T such that Q� is more generalthan Q� ,� if WFM(P) 6j=3 :8Q� , then there is an o.c.a.s. or an o.u.a.s. � for Q in T such that Q�is more general than Q� ,� if WFM(P) j=3 8:Q, then T is failed. 2Proving these lemmas is straightforward: negative literals are given their correct truth valueby de�nition; positive literals are treated as in SLD-resolution.These results allow the second step of the construction of the SLS-tree. For all nodes N wherea ground negative literal :A is selected and the oracle is used, we can `justify' the outcome ofthe oracle by a subsidiary oracle SLS-tree for A. Either this tree produces the same answer asthe oracle, or it ounders. In the latter case, the descendants of N are removed and N becomesa ounder leaf. By recursively adding subsidiary trees for all nodes where the oracle was used,no step involving a selected ground negative literal will remain unjusti�ed.De�nition 9.18 (SLS-tree) Let P be a program, Q a query and R a selection rule. AnSLS-tree for P and Q via R is de�ned as the limit of a sequence of oracle SLS-trees of depthn (n � 1). These are de�ned by induction. An oracle SLS-tree of depth 1 for P and Q via Rconsists of only one tree, which is the oracle SLS-tree for P and Q via R. For n > 1, an oracleSLS-tree of depth n for P and Q via R is a forest (F ; T; subs) obtained as follows.44

The main tree T is the oracle SLS-tree for P and Q via R, of which some nodes can beremoved. From the root, follow each branch and for every ground negative literal :A selectedin a node N in T : let (F 0; T 0; subs0) be the oracle SLS-tree of depth n�1 for P and A via R, setsubs(N) to T 0, extend subs by subs0 and F by F 0; if T 0 is oundered and not successful, thenmark N as oundered and remove the children of N , if any. 2The following results relate SLS-trees to the well-founded semantics.Theorem 9.19 (Soundness) Consider the main tree T of an SLS-tree for a program P and aquery Q.� If � is a o.c.a.s. for Q in T , then WFM(P) j=3 8Q� ,� if � is a o.u.a.s. for Q in T , then WFM(P) 6j=3 :8Q� ,� if T is failed, then WFM(P) j=3 8:Q. 2Theorem 9.20 (Completeness) Consider the main tree T of an oracle SLS-tree for a programP and a query Q. Suppose T does not ounder.� If WFM(P) j=3 8Q� , then there is an o.c.a.s. � for Q in T such that Q� is more generalthan Q� ,� if WFM(P) 6j=3 :8Q� , then there is an o.c.a.s. or an o.u.a.s. � for Q in T such that Q�is more general than Q� ,� if WFM(P) j=3 8:Q, then T is failed. 2Remark 9.21 Instead of the well-founded model of the program, any stationary model can beused as the oracle in the above de�nitions. The (oracle) SLS-trees, obtained using the stationarymodel M as the oracle, will be sound and complete (in the above sense) w.r.t. M . 2Although we have de�ned SLS-trees in such a way that they are sound and complete w.r.t.the well-founded semantics, it is not at all clear how an interpreter could construct these treesin a top-down way. This brings us to the issue of implementation.9.4 ImplementationAs mentioned before, SLS-resolution is not e�ective, thus it is not fully implementable. But itis possible to make a sound implementation that is complete for a limited class of programs, e.g.programs without function symbols. It is then essential to capture those in�nite derivations thathave the form of a loop. This can be done by simple loop checking techniques, or by tabulation(also known as memo-ization or lemma resolution).For locally strati�ed programs, loop checking was studied by Bol [24]. Tabulation for strat-i�ed programs was studied by Kemp and Topor [81] for SLS-resolution and Seki and Itoh [155]for SLDNF-resolution. By de�nition, in this setting only positive loops have to be dealt with.So their approach can remain close to tabulation for positive programs, by maintaining a tablefor each stratum.Chen and Warren [37] added a tabulation mechanism to the form of SLS-resolution proposedby Przymusinski and Warren [130, 140] in order to detect positive loops. Negative loops aredetected by maintaining a negative context : the set of negative literals that may be assumed45

unde�ned, because they are encountered in a loop. In this way the tables must be constructed forall relevant negative contexts. This gives many redundant computations, and a rather complexresult (the �nal construction is a forest of forests : : :). Bidoit and Legay [23] proposed a similarsystem, computing the de�ned atoms and the potentially de�ned atoms separately.Recently, Bol and Degerstedt [25] proposed a simpler method that uses tabulation to detectboth positive and negative loops. Only one table needs to be constructed, but their de�nitionof failure is somewhat complicated.Finally, it should be mentioned that a top-down computation of the well-founded semanticsfor ground programs is described by Pereira, Apar��cio and Alferes [117]; instead of tabulation,it uses both positive and negative contexts. Such use of positive contexts does not generalize tothe nonground case (as was shown by Apt, Bol and Klop [10]).10 Disjunctive ProgramsIn a disjunctive logic program, the heads of clauses can be disjunctions of one or more atoms.Numerous semantics were proposed for such programs. They are classi�ed in Dix [45].Positive disjunctive programs allow the expression of inde�nite (incomplete) knowledge,which is impossible in de�nite programs. As examples consider the following natural state-ments: mother(X) _ father(X) parent(X),red(X) _ blue(X) _ green(X) primary colour(X).The addition of negation allows us to express inde�nite knowledge, as well, so one maywonder whether there is any use in allowing disjunctions in general logic programs. Indeedthere is: as negation in logic programming is not classical negation, the e�ect of a clause p :qis quite di�erent from p_ q. The pair fp :q; q :pg is a better approximation | at least itretains the symmetry between p and q | but it is still not adequate. It introduces a loop throughnegation, which renders some semantics inapplicable and causes obvious problems in the prooftheory. Furthermore, the well-founded model of the program fp :q; q :p; r p; r qgdoes not contain r, as one might expect.10.1 Positive Disjunctive ProgramsLobo, Minker and Rajasekar [98] recently published a book about the foundations of disjunctivelogic programming, of which the larger part deals with positive programs. We shall briey recallsome semantics for positive disjunctive programs; for a more elaborate discussion, motivationand proof theory, we refer to this book.An important distinction, which can be made already for positive disjunctive programs, isthat between an inclusive and exclusive interpretation of disjunctions. For example, if we havethe program fp ; p _ q g, then the exclusive reading concludes that q is false, whereas theinclusive reading does not conclude anything about q.Recall that, for de�nite programs, the negation as (�nite or in�nite) failure rule can beviewed as the application of the Closed World Assumption (see Section 1.2)P j=CWA :A i� P 6j= A:This rule must be rephrased for disjunctive programs, as in this form it gives rise to inconsis-tencies. Indeed we have p _ q j=CWA :p and p _ q j=CWA :q, so P [f:A j P j=CWA :Ag isinconsistent. 46

The Generalized Closed World Assumption (GCWA) of Minker [108] is such a rephrasing; itsays: P j=GCWA :A i� :A is true in all minimal models of P:GCWA gives rise to an exclusive interpretation of disjunctions.The Weak Generalized Closed World Assumption (WGCWA) was developed independentlyby Lobo, Minker and Rajasekar [141] and by Ross and Topor [148]. It was originally de�nedas a computational simpli�cation of GCWA, that infers less negative literals. Let P � be theprogram obtained from P by replacing _ by ^, i.e., a clause A1 _ : : :An B in P yields theclauses A1 B : : : An B in P �. ThenP j=WGCWA :A i� P � j=CWA :AWGCWA gives rise to an inclusive interpretation of disjunctions. Notice that CWA, GCWAand WGCWA coincide on de�nite programs.Even less negative literals than from WGCWA can be inferred from the completion of adisjunctive program, which was de�ned by Lobo, Rajasekar and Minker [97, 98]. It consists ofP , augmented with EQ and the only-if (i.e. !) part of the completion of P �.Theorem 10.1 (Dix [45]) WGCWA is rational, GCWA is cumulative, but not rational. 2The program P = fp_ q ; r p; s q; rg is a counterexample against the rationality ofGCWA. The minimal models of P are fp; rg and fqg, thus P 6j=GCWA :r and P j=GCWA :s.But P [frg has the minimal models fp; rg and fq; r; sg, thus P [frg 6j=GCWA :s. Notice thatP 6j=WGCWA :s.10.2 Locally Strati�ed Disjunctive ProgramsThe de�nition of locally strati�ed programs can be generalized to disjunctive programs: if twoatoms are disjuncts in the head of a ground instance of a program clause, then these atoms mustbe in the same stratum. The de�nition of perfect models (De�nition 6.8) generalizes immediatelyto locally strati�ed disjunctive programs. Of course, a disjunctive program may have more thanone perfect model.De�nition 10.2 (Perfect model semantics) Przymusinski [128] The perfect model seman-tics of a disjunctive program P is de�ned by putting for a ground atom A:A is true (false), if A is true (false) in all perfect models of P . 2De�nition 10.3 (Weak perfect model semantics) (Dix [45]) The weak perfect model se-mantics of a disjunctive program P is de�ned by putting for a ground atom A:A is true (false), if A is true (false) in all perfect models of P and in the perfect model of P �.52Again, perfect model semantics interprets disjunctions exclusively, whereas weak perfectmodel semantics inclusively. Perfect model semantics extends GCWAS, the Generalized ClosedWorld Assumption for Strati�ed programs, which was de�ned by Rajasekar and Minker [142].A weak version of GCWAS, called WGCWAS, was de�ned by Dix [45]; weak perfect modelsemantics extends it.5Notice that P � is a locally strati�ed program, because P is a locally strati�ed disjunctive program.47

Theorem 10.4 (Dix [45])� Perfect model semantics and GCWAS coincide with GCWA on positive disjunctive pro-grams.� Weak perfect model semantics and WGCWAS coincide with WGCWA on positive disjunc-tive programs.� Perfect model semantics and GCWAS, Weak perfect model semantics and WGCWAS arecumulative.� Of these semantics, only WGCWAS is rational. 210.3 General Disjunctive ProgramsSemantics for all general disjunctive programs that coincide with the well-founded semantics ongeneral programs, and that also coincide with the perfect (or weak perfect) model semantics onlocally strati�ed disjunctive programs, have been proposed by Przymusinski [126] and by Dix[45].Przymusinski de�nes stationary expansions of disjunctive programs by generalizing De�ni-tion 7.13 in the following ways.� Instead of a set of not A atoms, a set C of disjunctions of not A atoms is added to theprogram P .� The second condition on interpretations that are considered when determining minimalmodels is generalized to the disjunctive inference rule:if P [C j= A1 _ : : :_ An, then I j= not A1 ^ : : :^ not Ak ! Ak+1 _ : : :_An;where 1 � k � n and the empty disjunction is interpreted as false.� For a negative disjunction F = :A1 _ : : :_:An, P [C j=min F if F is true in all minimalmodels of P [C (according to this particular notion of minimality).� The �xpoint equation that de�nes stationary expansions becomesE(P) = P [fnot A1 _ : : :_ not An j E(P) j=min :A1 _ : : :_ :Ang:In another version of the semantics, Przymusinski usedif P [C j=min :A1 _ : : :_ :An, then I j= A1 ^ : : :^ Ak ! not Ak+1 _ : : :_ not Anas the disjunctive inference rule (which implicitly makes the de�nition of j=min recursive). Dix[45] reformulates and compares these two versions, together with a third version (using essentiallythe �rst disjunctive inference rule, restricted to k = n). This third version is weaker than theperfect model semantics on locally strati�ed disjunctive programs.Dix also de�nes weak stationary semantics : a weak stationary extension satis�es the �xpointequation E(P) = P [fnot A1 _ : : :_ not An j E(P)� j=min :A1 _ : : :_ :Ang:(The disjunctive inference rule is the third one of those mentioned above.) Weak stationarysemantics interprets disjunctions inclusively. 48

Theorem 10.5 (Dix [45])� Stationary semantics for disjunctive programs is not cumulative.� Weak stationary semantics is cumulative, but not rational.� For locally strati�ed disjunctive programs, weak stationary semantics decides more atomsthan WGCWAS, but less than weak perfect semantics. 2Finally, Dix [45] de�nes a semantics, DWFS, which coincides with the well-founded semanticson general programs, and with the perfect model semantics on locally strati�ed disjunctiveprograms. It is weaker than the stationary semantics, and cumulative. A weak version of it,WDWFS, also coincides with the well-founded semantics on general programs, and with theweak perfect model semantics on locally strati�ed disjunctive programs. It is stronger thanweak stationary semantics, and cumulative.A rather di�erent approach is taken by Ross [146]: he de�nes a semantics for general dis-junctive programs through a top-down procedure generalizing De�nition 9.9. He de�nes threeversions: Strong well-founded semantics, with an exclusive interpretation of disjunctions; Weakwell-founded semantics, with an inclusive interpretation of disjunctions; and �nally Optimalwell-founded semantics, where the program(mer) de�nes the inclusive or exclusive nature sep-arately for each clause. On general programs, these semantics coincide with the well-foundedsemantics. However, when restricted to locally strati�ed disjunctive programs, the strong ver-sion is weaker than perfect model semantics and the weak version is weaker than weak perfectmodel semantics.Two �xpoint semantics that extend the stationary semantics are GDWFS and WF3 byBaral, Lobo and Minker [14, 98], respectively [15]. WF3 extends GDWFS; both coincide withGWFS on general programs (thus they are not cautious and do not satisfy PPE, the propertiesde�ned in Section 1.3). They are incomparable with perfect model semantics on locally strati�eddisjunctive programs.Sakama and Inoue [152] de�ned GCWA: and WGCWA:, based on an extension of stablemodels to disjunctive programs. These semantics coincide with perfect, respectively weak perfectmodel semantics on locally strati�ed disjunctive programs.Clearly, the issue of what is the right semantics for general disjunctive programs is far frombeing decided. Its seems that the weaker semantics have some advantages:� they are cumulative and satisfy Dix's weak principles,� the complexity of computing them is sometimes lower (for example WGCWA has lowercomplexity than GCWA, but the complexity of perfect and weak perfect model semanticsis the same, see also M�uller and Dix [112]),� uncertainty is safe, that is, if the semantics draws more conclusions from the program thanthe programmer intended, then the results are probably worse than when some intendedconclusions are missed.11 Final RemarksWe introduced in this paper two lines of research dealing with semantics of general programs.The �rst one was considered in Section 4 and focused on the completion of a program. Thesecond line was considered in Sections 6 and 7 and focused on various attempts of extending49

the concept of a \special" Herbrand model to general programs. In each category we studied anumber of proposals which resulted in quite an array of possibilities.11.1 ReconciliationIt is useful to characterize a class of programs for which these approaches coincide. This problemwas considered by Apt and Bezem [4] who showed that for acyclic programs practically allapproaches considered in this paper coincide. More speci�cally, they proved the following result.Theorem 11.1 Let P be an acyclic program. Then� the TP operator has a unique �xpoint, NP ,� NP is a unique �xpoint of the T3P operator,� NP is a unique perfect model of P ,� NP is a unique Herbrand model of comp(P),� SLDNF- and SLS-trees coincide for bounded queries. 2Consequently, by the Fixpoint Lemma 4.12 NP is also a unique 3-valued Herbrand model ofcomp(P). Additionally, as every acyclic program is locally strati�ed, by the Unique stablemodel Theorem 6.20 NP is also a unique stable model of P , and consequently by Corollary 7.7it is the well-founded model of P , as well.These results were generalized by Apt and Pedreschi [6] to a larger class of programs cor-responding with termination w.r.t. the leftmost selection rule, as opposed to termination w.r.t.all selection rules (in the sense of the Terminating Program De�nition 3.16). Recently, Fitting[63] provided an alternative proof of these results by means of metrics and Banach ContractionTheorem.A number of interesting programs turn out to be acyclic. By the above theorem all ap-proaches to their semantics coincide. For instance, the program TWEETY of Section 1.3, and theprograms SINK, NUMBERS and EVEN of Sections 3.1, 5 and 6.2 are acyclic. Another example isa natural formalization of the so-called Yale shooting problem of Hanks and McDermott [75],which is an example of temporal reasoning, an instance of non-monotonic reasoning. This prob-lem was extensively discussed in the literature and its formalizations in various formalisms fornon-monotonic reasoning were studied. In relation to logic programming we note three inde-pendent references { that of Apt and Bezem [4], who proved that the translation of the YaleShooting Problem to a logic program results in an acyclic program, Elkan [56], who showedthat this translation results in a locally strati�ed program, and Evans [58], who observed thatSLDNF-resolution can be used to compute desired consequences of the original formulation ofthe problem in �rst-order logic.In contrast, the program EVEN' of Section 6.2 is not locally strati�ed, so a fortiori notacyclic. However, it is possible to apply to it a result of Apt and Pedreschi [6] and draw thesame conclusions as for the above programs.11.2 Topics not TreatedThe range of topics that fall within `Logic Programming and Negation' is so enormous, thatinevitably we have to refrain from treating them all. Here follows a short list of topics we leftout. 50

Deductive databases form an extension of relational databases in which some of the relationsare implicitly de�ned. Ignoring the built-in relations, their syntax coincides with that of logicprograms. In the area of deductive databases, negation also formed an important researchsubject. Parts of this research (like strati�cation and the use of perfect model semantics) overlapwith that of logic programming. Some other topics are more intrinsic for the �eld, in particularquery processing (see e.g. Kemp and Topor [82] and Balbin et al. [12]), integrity constraintchecking (see e.g. Lloyd, Sonenberg and Topor [96] and Sadri and Kowalski [151]), handlingof updates (see e.g. Naqvi and R. Krishnamurthy [115]) and comparison of expressive powerbetween various query languages (see e.g. Chandra and Harel [35]). More recent research in thisarea is surveyed in Kanellakis [80] and Bidoit [20].Classical Negation, also called explicit or strong negation, was introduced by Gelfond andLifschitz [70, 71]. It involves a second kind of negation that may occur both in the head and inthe body of clauses. Their motivation was to capture in logic programming more complicatedforms of temporal reasoning, than the one exempli�ed in the usual formalization of the Yaleshooting problem.When both kinds of negation are present, : usually denotes classical negation; negation byfailure is then denoted by �. Semantically, classically negated atoms are usually treated as newatoms. However, in the process of selecting `intended' models, the `inconsistent' ones (that is,the ones containing an atom A and its classical negation :A) are discarded. Overviews of thisarea can be found in Alferes and Pereira [1], Wagner [171] and and Minker and Ruiz [110].Abductive Logic Programming views, roughly speaking, the query as an observation, whichmust be explained by means of additional hypotheses. Explanations can be found by followingthe rules of the program `backwards', as in SLD-resolution and its generalizations. A survey onabductive logic programming, by Kakas, Kowalski and Toni [79] appeared recently.Truth Maintenance Systems can be viewed as an extension of (propositional) general logicprograms, where some clauses (called constraints) have the constant false as the head. Semanticshave been proposed for truth maintenance systems by generalizing stable and well-foundedsemantics to deal with constraints. We mention here work by Elkan [55], Reinfrank [143],Giordano and Martelli [73], Witteveen [174] and Jonker [78]. The area is related to classicalnegation and to abduction.Relations with Other Non-monotonic Formalisms are abundant (see e.g. Nerode et al.[116] and Przymusinski [131, 134]). As negation as failure is a non-monotonic inference rule, therehas been a cross-fertilization between semantics for non-monotonic logics and logic programming.In one direction, stable expansions of auto-epistemic logic (Moore [111]) inspired Gelfond[67, 68] to de�ne the stable semantics. A parallel work on connections between the default logicof Reiter [145] and stable model semantics was carried out by Marek and Truszczy�nski [105]and by Bidoit and Froidevaux [21]. Recently, Przymusinski [135, 127] explained the stationarysemantics by means of auto-epistemic logic (see also Bonatti [26]).In the other direction, Przymusinski [139] introduced 3-valued versions of default logic andauto-epistemic logic, based on the well-founded semantics for logic programs. For default logic,this semantics was generalized further by Baral and Subrahmanian [16], Li and You [90] andPrzymusinska and Przymusinski [121]. A unifying framework for the semantics of auto-epistemiclogic, based on stationary semantics for logic programs, was presented by Przymusinski [137].The relation between logic programming and circumscription (McCarthy [107]) was studiedby Lifschitz [91, 69] and Gelfond, Przymusinski and Przymusinska [72].51

Recursion Theoretic Analysis of the concepts disscussed here attracted a lot of interest. Thecomplexity of the syntactic notions (like (local) strati�ability), of the proof theory (like SLS-resolution), and of semantics (like well-founded model) were studied both in the propositionaland �rst-order case. These results are surveyed in Cadoli en Schaerf [28].Intensional Negation is an approach to negation that transforms a program P (without localvariables) into a program P , de�ning a relation p for every relation p in P , such that p(t)succeeds from P i� p(t) �nitely fails from P , and vice versa. Intensional negation was mainlystudied by Mancarella et al. [101, 102, 18].Linear Logic is a modi�cation of the classical Gentzen sequent calculus which was developedby Girard [74] to capture reasoning about resources. In particular linear logic is sensitive tohow many times a formula is used as hypothesis in a proof. Cerrito [32, 33] showed that linearlogic can be used to reason about logic programs by providing a translation of logic programsand program completions to linear logic theories for which soundness and completeness of theSLDNF-resolution for allowed programs can be established and for which SLDNF-resolutionwith the leftmost selection rule can be adequately interpreted.AcknowledgementsWe would like to thank all �ve referees for useful comments, Rachel Ben-Eliyahu and J�urgen Dix for extensive suggestions, and Kees Doets, Marco Schaerf and RobertSt�ark for helpful discussions on the subject of this paper.References[1] J.J. Alferes and L.M. Pereira. On logic program semantics with two kinds of negation. InApt [3], pages 574{589.[2] K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of TheoreticalComputer Science, pages 493{574. Elsevier, 1990. Vol. B.[3] K. R. Apt, editor. Proc. of the Joint International Conference and Symposium on LogicProgramming, Washington, 1992. ALP, MIT Press.[4] K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing, 29(3):335{363,1991.[5] K. R. Apt and H. A. Blair. Arithmetic classi�cation of perfect models of strati�ed pro-grams. Fundamenta Informaticae, 13:1{18, 1990. Addendum in vol. 14, pages 339-344,1991.[6] K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog programs.Information and Computation, 106(1):109{157, 1993.[7] K. R. Apt and A. Pellegrini. On the occur-check free Prolog programs. Technical ReportCS-R9238, CWI, Amsterdam, 1992. To appear in ACM Toplas .[8] K. R. Apt and M.H. van Emden. Contributions to the theory of logic programming.Journal of the ACM, 29(3):841{862, 1982.[9] K.R. Apt, H. Blair, and A. Walker. Towards a Theory of Declarative Knowledge. InMinker [109], pages 193{216. 52

[10] K.R. Apt, R.N. Bol, and J.W. Klop. On the safe termination of Prolog programs. In Leviand Martelli [89], pages 353{368.[11] K.R. Apt and H.C Doets. A new de�nition of SLDNF-resolution. ILLC PrepublicationSeries CT-92-03, Department of Mathematics and Computer Science, University of Ams-terdam, The Netherlands, 1992. To appear in Journal of Logic Programming .[12] I. Balbin, G.S. Port, Ramamohanarao K., and K. Meenakshi. E�cient bottom-up com-putation of queries on strati�ed databases. J. of Logic Programming, 11:295{344, 1991.[13] C. Baral, J. Lobo, and J. Minker. Generalized well-founded semantics for logic programs.In M. Stickel, editor, Proc. 10th International Conference on Automated Deduction, LNAI449, pages 102{116, July 1989.[14] C. Baral, J. Lobo, and J. Minker. Generalized disjunctive well-founded semantics for logicprograms. In Z.W. Ras and M. Zemankova, editors, Proceedings of the Fifth InternationalSymposium on Methodologies for Intelligent Systems, pages 456{473, October 1990.[15] C. Baral, J. Lobo, and J. Minker. WF3: A semantics for negation in normal disjunctivelogic programs. In Proceedings of the Sixth International Symposium on Methodologies forIntelligent Systems, Charlotte, NC, 1991.[16] C. Baral and V.S. Subrahmanian. Stable and extension class theory for logic programsand default logics. J. of Automated Reasoning, 8(3):345{366, 1992.[17] S. Baratella. Models of completion for some classes of logic programs. Fundamenta Infor-maticae, 14,:323{339, 1991.[18] R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. A transformational approach tonegation in logic programming. J. of Logic Programming, 8:201{228, 1990.[19] R. Ben-Eliyahu. From program completion to default logic. In IAICVNN-93: proceedingsof the 10th Israeli symposium on arti�cial intelligence, computer vision, and neural net-works, Ramat Gan, Israel, December 1993. Also a poster in the 2nd International workshopon Logic programming and nonmonotonic reasoning, Lisbon, Portugal, June 1993.[20] N. Bidoit. Negation in rule-based database languages: a survey. Theoretical ComputerScience, 78:3{83, 1991.[21] N. Bidoit and C. Froidevaux. General logical databases and programs: Default logicsemantics and strati�cation. Information and Computation, 91:15{54, 1991.[22] N. Bidoit and C. Froidevaux. Negation by default and unstrati�able logic programs.Theoretical Computer Science, 78:85{112, 1991.[23] N. Bidoit and P. Legay. WELL!: An evaluation procedure for all logic programs. InProceedings of the International Conference on Database Technology, pages 335{348, 1990.[24] R.N. Bol. Loop checking and negation. J. of Logic Programming, 15(2):147{175, 1993.Extended abstract in Eijck [54], pages 121{138.[25] R.N. Bol and L. Degerstedt. Tabulated resolution for well-founded semantics. In D. Miller,editor, Proc. of the 1993 International Logic Programming Symposium, pages 199{219,1993. 53

[26] P.A. Bonatti. Auto-epistemic logics as a unifying framework for the semantics of logicprograms. In Apt [3], pages 417{430.[27] E. B�orger. Unsolvable decision problems for Prolog programs. In Computation Theoryand Logic, Lecture Notes in Computer Science 270, pages 3{48. Springer-Verlag, 1987.[28] M. Cadoli and M. Schaerf. A survey on complexity results for non-monotonic logics.Journal of Logic Programming, 17(2,3 & 4):127{160, 1993.[29] L. Cavedon. Continuity, consistency, and completeness properties for logic programs. InG. Levi and M. Martelli, editors, Proceedings of the Sixth International Conference onLogic Programming, pages 571{584. The MIT Press, 1989.[30] L. Cavedon. Acyclic programs and the completenss of SLDNF-resolution. TheoreticalComputer Science, 86(1):81{92, 1991.[31] L. Cavedon and J.W. Lloyd. A completeness theorem for SLDNF resolution. The Journalof Logic Programming, 7:177{191, 1989.[32] S. Cerrito. A linear semantics for allowed logic programs. In Proceedings of the 5thSymposium on Logic in Computer Science (LICS '90), pages 219{227, Philadelphia, PA.,USA, 1991.[33] S. Cerrito. A linear axiomatization of negation as failure. Journal of Logic Programming,12(1 & 2):1{24, 1992.[34] D. Chan. Constructive negation based on the completed database. In Kowalski and Bowen[84], pages 111{125.[35] A.K. Chandra and D. Harel. Horn clause queries and generalizations. Journal of LogicProgramming, 2(1):1{15, 1985.[36] J. Chen and S. Kundu. The strong semantics for logic programs. In Z.W. Ras andM. Zemankova, editors, Proc. of the Sixth International Symposium on Methodologies forIntelligent Systems LNAI 542, pages 490{499, Charlotte, NC, 1991. Springer-Verlag.[37] W. Chen and D. S. Warren. A goal-oriented approach to computing well-founded seman-tics. In Apt [3], pages 589{603.[38] K. Clark. Logic-programming schemes and their implementation. In J.L. Lassez andG. Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson, pages 487{541. The MIT Press, Cambridge, Massachussets, 1991.[39] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases,pages 293{322. Plenum Press, New York, 1978.[40] A. Cortesi and G. Fil�e. Classes of programs with consistent completion. Technical report,Universit�a di Padova, Dip. di Matematica Pura e Applicata, 1992.[41] A. Cortesi and G. Fil�e. Graph properties for normal logic programs. Theoretical ComputerScience, 107(2):277{303, 1993.[42] H. Decker. On generalized cover axioms. In Furukawa [64], pages 693{707.54

[43] H. Decker and L. Cavedon. Generalizing Allowedness While Retaining Completeness ofSLDNF Resolution. In E. B�orger, G. J�ager, H. Kleine-B�uning, and M.M. Richter, editors,CSL '89, 3rd Workshop on Computer Science Logic, Kaiserslautern, FRG, LNCS 440,pages 98{125, 1989.[44] J. Dix. Classifying Semantics of Logic Programs. In Anil Nerode, Wiktor Marek, and V. S.Subrahmanian, editors, Logic Programming and Non-Monotonic Reasoning, Proceedingsof the �rst International Workshop, pages 166{180. Washington D.C, MIT Press, July1991.[45] J. Dix. Classifying semantics of disjunctive logic programs. In Apt [3], pages 589{603.[46] J. Dix. A framework for representing and characterizing semantics of logic programs. InB. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowledge Representation andReasoning: Proceedings of the Third International Conference (KR92), San Mateo, CA,1992. Morgan Kaufmann.[47] J. Dix. Semantics of Logic Programs: Their Intuitions and Formal Properties. AnOverview. In Andre Fuhrmann and Hans Rott, editors, Logic, Action and Information.Proceedings of the Konstanz Colloquium in Logic and Information (LogIn '92). DeGruyter,1993.[48] J. Dix. A Classi�cation-Theory of Semantics of Normal Logic Programs: I. Strong Prin-ciples. Fundamenta Informaticae, forthcoming, 1994.[49] J. Dix. A Classi�cation-Theory of Semantics of Normal Logic Programs: II. Weak Prin-ciples. Fundamenta Informaticae, forthcoming, 1994.[50] H. C. Doets. Levationis laus. Journal of Logic and Computation, 3(5):487{516, 1993.[51] W. Drabent. What is failure? An approach to constructive negation. Draft, 1992. Provi-sionally accepted by Acta Informatica.[52] W. Drabent and M. Martelli. Strict completion of logic programs. New Generation Com-puting, 9(1):69{79, 1991.[53] Phan Minh Dung. On the relation between stable and well-founded semantics of logicprograms. Theoretical Computer Science, 105(1):7{25, 1992.[54] J. van Eijck, editor. Logics in AI { JELIA'90, LNAI 478. Springer Verlag, 1990.[55] C. Elkan. Logical characterizations of non-monotonic TMSs. In A. Kreczmar andG. Mirkowska, editors,Mathematical Foundations of Computer Science, LNCS 379, pages218{224. Springer-Verlag, 1989.[56] C. Elkan. A perfect logic for reasoning about action, 1989. Manuscript. University ofToronto.[57] C. Elkan. A rational reconstruction of nonmonotonic truth maintenance systems. Arti�cialIntelligence, 43:219{234, 1990.[58] C. Evans. Negation-as-failure as an approach to the Hanks and McDermott problem. InProceedings of the Second International Symposium on Arti�cial Intelligence, Monterrey,Mexico, 1989. 55

[59] F. Fages. A new �xpoint semantics for general logic programs compared with the well-founded and the stable model semantics. New Generation Computing, 9(4), 1991.[60] F. Fages. Consistency of Clark's completion and existence of stable models. Methods ofLogic in Computer Science, 2, 1993. to appear.[61] M. Fitting. A Kripke-Kleene semantics for general logic programs. Journal of LogicProgramming, 2:295{312, 1985.[62] M. Fitting. The family of stable models. J. of Logic Programming, 17(2,3 & 4):197{226,1993.[63] M. Fitting. Metric methods; three examples and a theorem. J. of Logic Programming,1993. To appear.[64] K. Furukawa, editor. Proceedings of the Eighth International Conference on Logic Pro-gramming, Paris, France, 1991. MIT Press.[65] A. van Gelder. The Alternating Fixpoint of Logic Programs with Negation. In Proc. ofthe Symposium on Principles of Database Systems, pages 1{10. ACM SIGACT-SIGMOD,1989.[66] A. van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general logicprograms. J. of the ACM, 38(3):620{650, 1991.[67] M. Gelfond. On strati�ed auto-epistemic theories. In Proceedings AAAI-87, pages 207{211.American Association for Arti�cial Intelligence, Morgan Kaufmann, 1987.[68] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. InKowalski and Bowen [84], pages 1070{1080.[69] M. Gelfond and V. Lifschitz. Compiling circumscriptive theories into logic programs. InReinfrank, De Kleer, Ginsberg, and Sandewall, editors, Non-Monotonic Reasoning LNAI346, pages 74{99. Springer-Verlag, January 1989.[70] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren andSzeredi [173], pages 579{597.[71] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctivedatabases. New Generation Computing, 9, 1991.[72] M. Gelfond, H. Przymusinska, and T.C. Przymusinski. On the relationship between cir-cumscription and negation as failure. Arti�cial Intelligence, 38:75{94, 1989.[73] L. Giordano and A. Martelli. Generalized stable models, truth maintenance and conictresolution. In Warren and Szeredi [173], pages 427{441.[74] Y. Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.[75] S. Hanks and D. McDermott. Nonmonotonic logic and temporal projection. Arti�cialIntelligence, 33:379{412, 1987.[76] P.M. Hill and J.W. Lloyd. The G�odel programming language. Technical Report CSTR-92-27, Department of Computer Science, University of Bristol, 1992. Revised May 1993.To appear in The MIT Press. 56

[77] Y. Hu and L.Y. Yuan. Extended well-founded model semantics for general logic programs.In Furukawa [64], pages 412{425.[78] C.M. Jonker. Cautious backtracking and well-founded semantics in truth maintenancesystems. Technical Report RUU-CS-91-26, Utrecht University, 1991.[79] A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive logic programming. Journal of Logicand Computation, 2(6):719{770, 1993.[80] P. Kanellakis. Elements of relational database theory. In J. van Leeuwen, editor, Handbookof Theoretical Computer Science, pages 1073{1156. Elsevier, 1990. Vol. B.[81] D. B. Kemp and R. W. Topor. Completeness of a top-down query evaluation procedurefor strati�ed databases. In Kowalski and Bowen [84], pages 178{194.[82] D.B. Kemp and R.W. Topor. Completeness of a top-down query evaluation procedure forstrati�ed databases. In R.A. Kowalski and K.A. Bowen, editors, Proceedings of the FifthInternational Conference on Logic Programming, pages 178{194. The MIT Press, 1988.[83] S. C. Kleene. Introduction to Metamathematics. van Nostrand, New York, 1952.[84] R. A. Kowalski and K. A. Bowen, editors. Proc. of the Fifth International Conference andSymposium on Logic Programming, Seattle, 1988. ALP, MIT Press.[85] R.A. Kowalski. Predicate logic as a programming language. In Proceedings IFIP'74, pages569{574. North-Holland, 1974.[86] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential modelsand cumulative logics. Arti�cial Intelligence, 44(1):167{207, 1990.[87] K. Kunen. Negation in logic programming. J. of Logic Programming, 4:289{308, 1987.[88] K. Kunen. Signed data depedencies in logic programs. Journal of Logic Programming,7:231{246, 1989.[89] G. Levi and M. Martelli, editors. Proc. of the Sixth International Conference on LogicProgramming, Lisbon, Lisbon, Portugal, 1989. ALP, MIT Press.[90] L. Li and J.H. You. Making default inferences from logic programs. J. of ComputationalIntelligence, 7:142{153, 1991.[91] V. Lifschitz. On the declarative semantics of logic programs with negation. In Minker[109], pages 177{192.[92] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1984.[93] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second edition,1987.[94] J. W. Lloyd and R. W. Topor. Making PROLOG more expressive. Journal of LogicProgramming, 1:225{240, 1984.[95] J. W. Lloyd and R. W. Topor. A Basis for Deductive Database Systems II. Journal ofLogic Programming, 3(1):55{67, 1986. 57

[96] J.W. Lloyd, E.A. Sonenberg, and R.W. Topor. Integrity constraint checking in strati�eddatabases. Journal of Logic Programming, 4(4):331{345, 1987.[97] J. Lobo, J. Minker, and A. Rajasekar. Weak completion theory for Non-Horn programs.In Kowalski and Bowen [84], pages 828{842.[98] J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming.MIT Press, 1992.[99] S. L�uttringhaus-Kappel. Laziness in Logic Programming. PhD thesis, Universit�at Bonn,1992.[100] D. Makinson. General Patterns in Nonmonotonic Reasoning. In D.M. Gabbay, C.J. Hog-ger, and J.A. Robinson, editors, Handbook of Logic in Arti�cial Intelligence and LogicProgramming Vol. 2, Nonmonotonic and Uncertain Reasoning, chapter 2.2. Oxford Uni-versity Press, 1993.[101] P. Mancarella. Intensional Negation of Logic Programs (in Italian). PhD thesis, Universit�adi Pisa, 1988.[102] P. Mancarella and D. Pedreschi. An algebra of logic programs. In Kowalski and Bowen[84], pages 1006{1023.[103] E. Marchiori. Proving run-time properties of general logic programs w.r.t. constructivenegation. Res. Report CS-R9245, CWI, Amsterdam, 1992.[104] V.W. Marek and M. Truszczy�nski. Nonmonotonic logics; context-dependent reasoning.Berlin: Springer-Verlag, 1993.[105] W. Marek and M. Truszczy�nski. Stable semantics for logic programs and default theories.In E.Lusk and R. Overbeek, editors, Proceedings of the North American conference onlogic programming, pages 243{256, Cambridge, MA., 1989. MIT Press.[106] M. Martelli and C. Tricomi. A new SLDNF-tree. Information Processing Letters, 43(2):57{62, 1992.[107] J. McCarthy. Circumscription { a form of non-monotonic reasoning. Arti�cial Intelligence,13:27{39, 1980.[108] J. Minker. On inde�nite data bases and the closed world assumption. In Proc. of theSixth Conference on Automated Deduction, LNCS 138, pages 292{308. Springer Verlag,New York, 1982.[109] J. Minker, editor. Foundations of Deductive Databases and Logic Programming. MorganKaufmann, Los Altos, CA, 1988.[110] J. Minker and C. Ruiz. Semantics for Disjunctive Logic Programs with Explicit andDefault Negation. Fundamenta Informaticae, forthcoming, 1994.[111] R. Moore. Semantical considerations on non-monotonic logic. Arti�cial Intelligence,25(1):75{94, 1985. 58

[112] M. M�uller and J. Dix. Implementing Semantics for Disjunctive Logic Programs UsingFringes and Abstract Properties. In Luis Moniz Pereira and Anil Nerode, editors, LogicProgramming and Non-Monotonic Reasoning, Proceedings of the Second InternationalWorkshop, pages 43{59. Lisbon, MIT Press, July 1993.[113] L. Naish. An Introduction to MU-PROLOG. Technical Report TR 82/2, Dept. of Com-puter Science, Univ. of Melbourne, 1982.[114] L. Naish. Negation and Quanti�ers in NU-Prolog. In Third International Conference onLogic Programming, pages 624{634, London, July 1986.[115] S. Naqvi and R. Krishnamurthy. Database updates in logic programming. In Proc. of theSeventh ACM Symposium on Principles of Database Systems, 1988.[116] A. Nerode, W. Marek, and V.S. Subrahmanian, editors. Proceedings of the First Inter-national Workshop on Logic Programming and Non-monotonic Reasoning, Washington,D.C., July 1991. MIT Press.[117] L.M. Pereira, J.N. Apar��cio, and J.J. Alferes. Derivation procedures for extended stablemodels. In Proc. of 12th International Conference on Arti�cial Intelligence, pages 863{868.Morgan Kaufmann, 1991.[118] L.M. Pereira, J.N. Apar��cio, and J.J. Alferes. Adding Closed World Assumptions to WellFounded Semantics. In ICOT, editor, Proc. of the International Conference on FifthGeneration Computer Systems 92, June 1992.[119] A. Di Pierro, M. Martelli, and C. Palamidessi. Negation as instantiation. Technical report,Dipartimento di Informatica e Scienze dell'Informazione, Universit�a di Genova, 1993.[120] H. Przymusinska and T. C. Przymusinski. Semantic issues in deductive databases andlogic programs. In R. Banerji, editor, Formal Techniques in Arti�cial Intelligence, pages321{367. North-Holland, Amsterdam, 1990.[121] H. Przymusinska and T. C. Przymusinski. Stationary extensions of default theories. InProc. of the Fourth Workshop on Non-Monotonic Reasoning, Plymouth, Vermont, 1992.To appear in Fundamenta Informaticae.[122] H. Przymusinska, T. C. Przymusinski, and H. Seki. Soundness and completeness of partialdeductions for well-founded semantics. In A. Voronkov, editor, Proc. of the InternationalConference on Automated Reasoning, LNAI 624, St. Petersburg, Russia, July 1992.[123] H. Przymusinska and T.C. Przymusinski. Weakly perfect model semantics for logic pro-grams. In Kowalski and Bowen [84], pages 1106{1120.[124] H. Przymusinska and T.C. Przymusinski. Weakly strati�ed logic programs. FundamentaInformaticae, 13:51{65, 1990.[125] T. C. Przymusinski. On the declarative and procedural semantics of logic programs. J. ofAutomated Reasoning, 5:167{205, 1989.[126] T. C. Przymusinski. Stationary semantics for normal and disjunctive logic programs. InC. Delobel, M. Kifer, and Y. Masunaga, editors, DOOD'91, Proc. of the Second Interna-tional Conference, LNCS 566, M�unchen, December 1991. Springer.59

[127] T. C. Przymusinski. Well-founded completions of logic programs. In Furukawa [64], pages726{741.[128] T.C. Przymusinski. On the declarative semantics of logic programs with negation. InMinker [109], pages 193{216.[129] T.C. Przymusinski. On the relationship between logic programming and non-monotonicreasoning. In Proc of AAAI-88, St. Paul, pages 444{448, 1988.[130] T.C. Przymusinski. Every logic program has a natural strati�cation and an iterated �xedpoint model. In Proc. of the 8th Symposium on Principles of Database Systems, pages11{21. ACM SIGACT-SIGMOD, 1989.[131] T.C. Przymusinski. Non-monotonic formalisms and logic programming. In Levi andMartelli [89], pages 655{674.[132] T.C. Przymusinski. Three-valued Formalizations of Non-Monotonic Reasoning and LogicProgramming. In R. Brachman, H. Leveque, and R. Reiter, editors, Proceedings of theFirst International Conference on Principles of Knowledge Representation and Reasoning,pages 341{348, Toronto, Canada, 1989. Morgan Kaufmann.[133] T.C. Przymusinski. Extended stable semantics for normal and disjunctive programs. InWarren and Szeredi [173], pages 459{477.[134] T.C. Przymusinski. Non-monotonic reasoning vs. logic programming: A new perspec-tive. In D. Partridge and Y. Wilks, editors, The Foundations of Arti�cial Intelligence. ASourcebook, pages 49{71. Cambridge University Press, London, 1990. Extended abstractappeared as [129].[135] T.C. Przymusinski. Stationary semantics for disjunctive logic programs and deductivedatabases. In S. Debray and M. Hermenegildo, editors, Proceedings of the 1990 NorthAmerican Conference on Logic Programming, pages 40{59, Austin, TX, 1990. ALP, MITPress.[136] T.C. Przymusinski. The Well-founded Semantics Coincides with the Three-valued StableSemantics. Fundamenta Informaticae, 13(4):445{463, 1990.[137] T.C. Przymusinski. Auto-epistemic logics of closed beliefs and logic programming. InNerode et al. [116], pages 3{20.[138] T.C. Przymusinski. Stable Semantics for Disjunctive Programs. New Generation Com-puting, 9:401{424, 1991. Extended abstract appeared as [133].[139] T.C. Przymusinski. Three-Valued Non-Monotonic Formalisms and Semantics of LogicPrograms. Arti�cial Intelligence, 49:401{424, 1991. Extended abstract appeared as [132].[140] T.C. Przymusinski and D.S. Warren. Well-Founded Semantics: Theory and Implementa-tion. Draft, 1992.[141] A. Rajasekar, J. Lobo, and J. Minker. Weak generalized closed world assumption. J. ofAutomated Reasoning, 5:293{307, 1989. 60

[142] A. Rajasekar and J. Minker. A Strati�cation Semantics for General Disjunctive Programs.In E.L. Lusk and R.A. Overbeek, editors, Proceedings of the North American Conferenceon Logic Programming, pages 573{586, Cleveland, Ohio, USA, 1989.[143] M. Reinfrank. Fundamentals and Logical Foundations of Truth Maintenance. PhD thesis,Link�oping University, 1989. ISBN 91-7870-546-0.[144] R. Reiter. On Closed World Data Bases. In H. Gallaire and J. Minker, editors, Logic andDatabases, pages 55{76. Plenum, 1978.[145] R. Reiter. A logic for default theory. Arti�cial Intelligence, 13:81{132, 1980.[146] K. Ross. The well-founded semantics for disjunctive logic programs. In Proc. of the FirstInternational Conference on Deductive and Object Oriented Databases, pages 352{369,Kyoto, Japan, December 1989.[147] K. Ross. A procedural semantics for well-founded negation in logic programs. J. of LogicProgramming, 13(1):1{22, 1992.[148] K. Ross and R.A. Topor. Inferring negative information from disjunctive databases. J. ofAutomated Reasoning, 4:397{424, 1988.[149] K.A. Ross. Modular acyclicity and tail recursion in logic programs. In Proceedings of theTenth ACM Symposium on Principles of Database Systems, 1991.[150] D. Sacc�a and C. Zaniolo. Stable models and non-determinism in logic programs withnegation. In Proceedings of the ACM Symposium on Principles of Database Systems,page 16, 1990.[151] F. Sadri and R. Kowalski. A Theorem-Proving Approach to Database Integrity. In Minker[109], pages 313{362.[152] C. Sakama and K. Inoue. Negation in Disjunctive Logic Programs. In D. Warren and PeterSzeredi, editors, Proceedings of the 10th Int. Conf. on Logic Programming, Budapest, pages703{719. MIT, July 1993.[153] T. Sato. Completed logic programs and their consistency. Journal of Logic Programming,9(1):33{44, 1990.[154] John S. Schlipf. The Expressive Powers of the Logic Programming Semantics. In Proceed-ings of the Ninth ACM Symposium on Principles of Databases, pages 196{204, 1990.[155] H. Seki and H. Itoh. A query evaluation method for strati�ed programs under the extendedCWA. In Kowalski and Bowen [84], pages 195{211.[156] J. C. Shepherdson. A sound and complete semantics for a version of negation as failure.Theoretical Computer Science, 65(3):343{371, 1989.[157] J. C. Shepherdson. Correct answers to allowed queries are ground. Journal of LogicProgramming, 11(3 & 4):359{362, 1991.[158] J.C. Shepherdson. Negation in logic programming for general logic programs. In Minker[109], pages 19{88. 61

[159] J.C. Shepherdson. Negation as failure, completion and strati�cation. draft; to appear inHandbook of Arti�cial Intelligence and Logic Programming, 1990.[160] J.C. Shepherdson. SLDNF resolution with equality. J. of Automated Reasoning, 8(2):297{306, 1992.[161] R. St�ark. A complete axiomatization of the three-valued completion of logic programs.Journal of Logic and Computation, 1(6):811{834, 1991.[162] R. St�ark. The Proof Theory of Logic Programs with Negation. PhD thesis, University ofBerne, 1992.[163] R. St�ark. The declarative semantics of the Prolog selection rule. Technical report, CIS,Universit�at M�unchen, 1993.[164] R. St�ark. From logic programs to inductive de�nitions. Technical report, CIS, Universit�atM�unchen, 1993.[165] R. St�ark. Input/output dependencies of normal logic programs. Journal of Logic andComputation, 1993. To appear.[166] K. Stroetman. A completeness result for SLDNF resolution. The Journal of Logic Pro-gramming, 15:337{357, 1993.[167] P.J. Stuckey. Constructive negation for constraint logic programming. In Proceedings of the6th Annual Symposium on Logic in Computer Science (LICS), pages 328{339, Amsterdam,The Netherlands, 1991.[168] F. Teusink. A characterization of stable models using a non-monotonic operator. In L. M.Pereira and A. Nerode, editors, Proceedings of the 1993 workshop on Logic Programmingand Non -Monotonic Reasoning, pages 206{222, 1993.[169] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programminglanguage. Journal of the ACM, 23(4):733{742, 1976.[170] A. van Gelder. Negation as Failure Using Tight Derivations for General Logic Programs.In Minker [109], pages 149{176.[171] G. Wagner. Vivid Logic { Knowledge-Based Reasoning with Two Kinds of Negation. PhDthesis, Freie Universit�at Berlin, 1993.[172] M. Wallace. Tight, consistent, and computable completions for unrestricted logic pro-grams. Journal of Logic Programming, 15:243{273, 1993.[173] D.H.D. Warren and P. Szeredi, editors. Proceedings of the Seventh International Confer-ence on Logic Programming, Jerusalem, 1990. MIT Press.[174] C. Witteveen. Partial semantics for truth maintenance. In Eijck [54], pages 544{561.62

