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Boolean grammars [A. Okhotin, Boolean grammars, Information and Computation 194 (1)

(2004) 19–48] are a promising extension of context-free grammars that supports con-

junction and negation in rule bodies. In this paper, we give a novel semantics for Boolean

grammars which applies to all such grammars, independently of their syntax. The key idea

of our proposal comes from the area of negation in logic programming, and in particular

from the so-called well-founded semantics which is widely accepted in this area to be the

“correct” approach to negation. We show that for every Boolean grammar there exists a

distinguished (three-valued) interpretation of the non-terminal symbols, which satisfies

all the rules of the grammar and at the same time is the least fixed-point of an operator

associated with the grammar. Then, we demonstrate that every Boolean grammar can be

transformed into an equivalent (under the new semantics) grammar in normal form. Based

on this normal form, we propose an O(n3) algorithm for parsing that applies to any such

normalizedBooleangrammar. In summary, themain contributionof this paper is to provide

a semantics which applies to all Boolean grammars while at the same time retaining the

complexity of parsing associated with this type of grammars.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Boolean grammars constitute a new and promising formalism, proposed by Okhotin in [8], which extends the class of

conjunctive grammars introduced by the same author in [7]. The basic idea behind this new formalism is to augment context-

free rules by allowing intersection and negation to appear in their right-hand sides. It is immediately obvious that the class

of languages that can be produced by Boolean grammars is a proper superset of the class of context-free languages.

Despite their syntactical simplicity, Boolean grammars appear to be non-trivial from a semantical point of view. As we

are going to see in the next section, the existing approaches for assigning meaning to Boolean grammars suffer from certain

shortcomings (one of which is that they do not give a meaning to all such grammars).

In this paper, we propose a new semantics (the well-founded semantics) which applies to all Boolean grammars. More

specifically, we demonstrate that for every Boolean grammar there exists a distinguished (three-valued, see below) inter-

pretation of the non-terminal symbols, which satisfies all the rules of the grammar. This interpretation is the unique least

fixed-point of an appropriate operator associatedwith the grammar. The language assigned by this interpretation to the start

symbol of the grammar, can be taken as the intended meaning of the grammar.
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Our ideas originate from an important area of research in the theory of logic programming, that has been very active for

more than two decades (references such as [1,9] provide nice surveys). In this area, there is nowadays an almost unanimous

agreement that if we seek a uniquemodel of a logic programwith negation, thenwe have to search for a three-valued one. In

other words, classical two-valued logic is not sufficient in order to assign a proper meaning to arbitrary logic programs with

negation. Actually, it can be demonstrated that every logic program with negation has a distinguished three-valued model,

which is usually termed the well-founded model [13].

We follow the same ideas here: we consider three-valued languages, namely languages in which the membership of

strings may be characterized as true, false, or unknown. As we will see, this simple extension solves the semantic problems

associated with negation in Boolean grammars. Actually we show that this extension to three values is in some sense

necessary: we prove that the problem of whether a Boolean grammar defines under the well-founded semantics a classical

(that is, two-valued) language, is undecidable. We then proceed by demonstrating that under this new semantics, every

Boolean grammar has an equivalent grammar in normal form (similar to that of [8]). Finally, we show that for every such

normalized grammar, there is an O(n3) parsing algorithm under our new semantics. Our results indicate that there may be

other fruitful connections between formal language theory and the theory of logic programming.

The rest of thepaper is organized as follows: Section2presents the basic issues regardingBoolean grammars anddiscusses

the existing approaches to their semantics. In Section 3 the notion of a three-valued formal language is proposed and the basic

tools that will be used in our semantic investigations are developed. In Section 4 the well-founded semantics of Boolean

grammars is definedand its basicproperties aredemonstrated. In Section5anormal formforBooleangrammars is introduced

based on thewell-founded semantics. In Section 6 a parsing algorithm for Boolean grammars is derived based on the normal

form introduced in Section 5. Finally, Section 7 concludes the paper giving pointers to future work.

2. Why an alternative semantics for Boolean grammars?

In [8] Okhotin proposed the class of Boolean grammars. Formally:

Definition 1 [8]. A Boolean grammar is a quadruple G = (�,N, P, S), where � and N are disjoint finite non-empty sets of

terminal and non-terminal symbols, respectively, P is a finite set of rules, each of the form

A → α1& · · ·&αm&¬β1& · · ·&¬βn (m + n ≥ 1, αi, βj ∈ (� ∪ N)∗),

and S ∈ N is the start symbol of the grammar. We will call the non-terminal A the head of the rule, the αi’s positive conjuncts

and the ¬βj ’s negative ones.

We will often use the short notation A → ϕ1| · · · |ϕk to represent k rules of the form A → ϕi.

To illustrate the use of Boolean grammars, consider the following example from [8] (presented here in a slightly modified

form):

Example 2. Let � = {a, b}. We define:

S → ¬(AB) & ¬(BA) & ¬A & ¬B

A → a|CAC
B → b|CBC
C → a|b

The above grammar defines the language Lww = {ww|w ∈ {a, b}∗}, which is well-known to be non-context-free. This can be

justifiedas follows:first, it is easy to see that the language L(A) (respectively, the language L(B)) producedby thenon-terminal

A (respectively, the non-terminal B) contains the strings of odd length inwhich the symbol in themiddle is a (respectively, b).

Consider now any string y of length 2n for some n, that is not in Lww . This implies that there exists some i, 1 ≤ i ≤ n, such that

the ith symbol of y is different from the (n + i)th symbol of y. Suppose that the ith symbol of y is a and the (n + i)th symbol

of y is b (the other case is completely symmetric). Then, y = yayb, where |ya| = 2i − 1, |yb| = 2(n − i) + 1, ya ∈ L(A) and
yb ∈ L(B) (since the ith and the (n + i)th symbol of y are the symbols in the middle of ya and yb, respectively).

Therefore, a string that is not in Lww , belongs to L(A) ∪ L(B) if it has odd length, and belongs to L(A) ◦ L(B) ∪ L(B) ◦ L(A)
if it has even length. Using De Morgan’s law, we obtain the first rule, which defines the language produced by the grammar.

Okhotin proposed two semantics intended to capture themeaning of Boolean grammars. In this section, we demonstrate

some deficiencies of these two approaches, which led us to the definition of the well-founded semantics. Both semantics

proposed in [8] are defined using a system of equations, which is obtained from the given grammar as follows: consider a

Boolean grammar G = (�,N, P, S), where N = {X1, X2, . . . , Xk}. The equation for the non-terminal Xi is

Xi = ⋃
Xi→α1&···&αm&¬β1&···&¬βn∈P

⎛
⎝ m⋂

j=1

αj ∩
n⋂

j=1

βj

⎞
⎠
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We denote the formula in the right-hand side of the above rule (which in general involves the non-terminal symbols in N)

by φi(X1, . . . , Xk). An interpretation I of G (i.e., an assignment of a language from � to every non-terminal symbol in N) is

said to be a solution of the system of equations

X1 = φ1(X1, . . . , Xk)· · ·
Xk = φk(X1, . . . , Xk)

if for every i, 1 ≤ i ≤ k, it holds I(Xi) = Î(φi(X1, . . . , Xk)), where Î is the extension of I to expressions that may appear in

the right-hand sides of equations, which can be obtained in a straightforward manner (for more details see Definition 7 of

Section 3, where the extension of three-valued interpretations is defined).

In thefirst approachproposed in [8], the semantics of a Booleangrammar is definedonly in the case that the corresponding

system of equations has a unique solution. This is a restrictive choice: actually many interesting grammars do not correspond

to systems of equations having a unique solution. For example, even simple context-free grammars (such as for example the

grammarwith a single rule S → S), may give systems of equationswhich have infinitelymany solutions. For such grammars,

it seems that the desired property is a form of minimality rather than uniqueness of the solution.

Apart from its limited applicability, the unique solution semantics also exhibits a kind of instability. For example, let

� = {0, 1} and consider the Boolean grammar consisting of the two rules A → ¬A&¬B and B → 0&1. The corresponding

system of equations has no solution and therefore the unique solution semantics for this grammar is not defined. Suppose

that we augment the above grammar with the rule B → B. Seen from a constructive point of view, the new rule does not

offer to the grammar any additional information. It is reasonable to expect that such a rule would not change the semantics

of the grammar. However, the augmented grammar has unique solution semantics, namely (A, B) = (∅,�∗). On the other

hand, suppose that we augment the initial grammar with the rule A → A. Then, the unique solution semantics is also

defined, but now the solution is (A, B) = (�∗,∅). Consequently, by adding to an initiallymeaningless grammar two different

information-free rules, we get two grammars defining complementary languages. To put it another way, three grammars

that look equivalent, have completely different semantics.

Let us now turn to the second approach proposed in [8], namely the naturally reachable solution semantics defined as

follows (for convenience, given an interpretation I of G and a finite language M we denote by I∩M the interpretation with

I∩M(A) = I(A) ∩ M for every A ∈ N):

Definition 3. Let X1 = φ1(X1, . . . , Xk), . . . , Xk = φk(X1, . . . , Xk) be a system of equations which corresponds to a Boolean

grammar G = (�,N, P, S), with N = {X1, . . . , Xk}. An interpretation I is called a naturally reachable solution of the system if

for every finite language M closed under substring and for every string u 
∈ M such that all proper substrings of u are in M,

every sequence of interpretations of the form: I(0), I(1), . . . , I(i), . . . which satisfies the properties

• I(0) = I∩M

• I(i+1) /= I(i) and

• there exists some j such that I(i+1)(Xj) = Î(i)(φj(X1, . . . , Xk)) ∩ (M ∪ {u}) and I(i+1)(X	) = I(i)(X	) for all 	 /= j

converges to I∩(M∪{u}) in finitely many steps.

Contrary to the unique solution semantics, the naturally reachable solution semantics generalizes the semantics of

context-free and conjunctive languages (see [8] [Theorem 3]). However, when negation appears, there are cases that this

approach does not behave in an expected manner. Consider for example the Boolean grammar with rules:

A → ¬B, B → C&¬D, C → D, D → A

This grammar has the naturally reachable solution (A, B, C,D) = (�∗,∅,�∗,�∗). It is reasonable to expect that composing

two rules would not affect the semantics of the grammar. For example, in context-free grammars such a composition is a

natural transformation rule that simply allows to perform two steps of the production in a single step. However, if we add

C → A to the above set of rules, then the naturally reachable solution semantics of the resulting grammar is not defined. On

the other hand, the technique we will define shortly, does not suffer from this shortcoming.

Furthermore, there exist grammars for which the naturally reachable solution semantics is undefined, although theymay

have a clear intuitive meaning. For example, let � = {a} and suppose that the grammar contains the following rules:

A → ¬B|D, B → ¬C|D, C → ¬A|D, D → aD|ε
The semantics of this grammar is clearly (A, B, C,D) = (�∗,�∗,�∗,�∗), and actually this iswhat thewell-founded semantics

will produce. On the other hand the naturally reachable solution semantics is undefined.

The problem of giving semantics to recursive formalisms in the presence of negation has been extensively studied in the

context of logic programming. Actually, the unique solution semantics can be paralleled with one of the early attempts to

give semantics to logic programs with negation, namely what is now called the Clark’s completion semantics (which actually

presents similar shortcomings as the unique solution approach). On the other hand, the naturally reachable solution can be

thought of as a first approximation to the procedure of constructing the intended minimal model of a logic program with

negation (see also Theorem 28 that will follow). Since themost broadly accepted semantic approach for logic programswith
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negation is the well-founded semantics, in this paper we investigate the possibility of applying such an approach to Boolean

grammars.

At this point we should alsomention two other recent works on the semantics of Boolean grammars, namely the stratified

semantics [14] and the locally stratifiedone [5,6]. Bothof these approaches alsohave their roots in the theoryof non-monotonic

logic programming. However, these two semantics differ from the well-founded one in the sense that they aim to identify

interesting (syntactic) subclasses of Boolean grammars that have a well-defined meaning (while the present approach aims

at providing a formal framework for the whole class of Boolean grammars).

3. Interpretations and models for Boolean grammars

In this section,we initiate our study of the semantics of Boolean grammars.We begin by defining the notions of interpreta-

tion andmodel for Boolean grammars, two concepts that have been borrowed frommathematical logic (see for example [3]).

In context-free grammars, an interpretation is a function that assigns to each non-terminal symbol of the grammar a set

of strings over the set of terminal symbols of the grammar. An interpretation of a context-free grammar is a model of the

grammar if it satisfies all the rules of the grammar. The usual semantics of context-free grammars dictate that every such

grammar has a minimummodel, which is taken to be as its intended meaning.

Whenone considers Boolean grammars, the situation becomesmuchmore complicated. For example, a grammarwith the

unique rule S → ¬S appears to be meaningless. More generally, in many cases where negation is used in a circular way, the

corresponding grammar looks problematic. These difficulties arise because we are trying to find classicalmodels of Boolean

grammars, which are based on classical two-valued logic. If howeverwe shift to three-valuedmodels, every Boolean grammar

has a well-defined meaning. We need of course to redefine many notions, starting even from the notion of a language:

Definition 4. Let � be a finite non-empty set of symbols. Then, a (three-valued) language over � is a function from �∗ to

the set
{
0, 1

2
, 1

}
.

Intuitively, given a three-valued language L and a string w over the alphabet of L, there are three cases: either w ∈ L (i.e.,

L(w) = 1), or w 
∈ L (i.e., L(w) = 0), or finally, the membership of w in L is unclear (i.e., L(w) = 1
2
). Given this extended

notion of language, it is now possible to interpret the grammar S → ¬S: its meaning is the language which assigns to every

string the value 1
2
.

The following definition, which generalizes the familiar notion of concatenation of languages, will be used in the rest of

the paper:

Definition 5. Let � be a finite non-empty set of symbols and let L1, . . . , Ln be (three-valued) languages over �. We define

the three-valued concatenation of the languages L1, . . . , Ln to be the language L such that for every w ∈ �∗:

L(w) = max
(w1,...,wn):
w=w1 ···wn

(
min
1≤i≤n

Li(wi)

)

The concatenation of L1, . . . , Ln will be denoted by L1 ◦ · · · ◦ Ln.

The above definition can be explained as follows:

• A string belongs to L1 ◦ · · · ◦ Ln (truth value 1) if it can be partitioned into n parts so that for every i ≤ n, the i′th part

belongs to Li.• A string is excluded from the concatenation (truth value 0) if in every partition, there exists some i such that the i′th part

is excluded from the language Li.• Themembership of a stringw is undefined in the concatenation (truth value 1
2
) if there exists a partition ofw such that no

part is excluded from the corresponding language, and there does not exist a partition ofw such that every part belongs

to the corresponding language.

It can be easily checked that when the languages involved are total (i.e., with no 1
2
values assigned to strings) then the

above definition reduces to the familiar definition of concatenation.

We can now define the notion of interpretation of a given Boolean grammar:

Definition 6. An interpretation I of a Boolean grammar G = (�,N, P, S) is a function I : N →
(
�∗ →

{
0, 1

2
, 1

})
.

An interpretation I can be recursively extended to apply to expressions that appear in the right-hand sides of Boolean

grammar rules:

Definition 7. Let G = (�,N, P, S) be a Boolean grammar and let I be an interpretation of G. Then, the extension Î of I is

defined as follows:
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• For every w ∈ �∗, it is Î(ε)(w) = 1 if w = ε, and Î(ε)(w) = 0 otherwise.

• Let A ∈ N. Then, for every w ∈ �∗, it is Î(A)(w) = I(A)(w).
• Let a ∈ �. Then, for every w ∈ �∗, it is Î(a)(w) = 1 if w = a, and Î(a)(w) = 0 otherwise.

• Let α = α1 · · · αn, n ≥ 2, αi ∈ � ∪ N. Then, for every w ∈ �∗, it is Î(α)(w) = (̂I(α1) ◦ · · · ◦ Î(αn))(w).
• Let α ∈ (� ∪ N)∗. Then, for every w ∈ �∗, it is Î(¬α)(w) = 1 − Î(α)(w).
• Let l1, . . . , ln be conjuncts. Then, for every w ∈ �∗, it is Î(l1& · · ·&ln)(w) = min{̂I(l1)(w), . . . , Î(ln)(w)}.

We are now in a position to define the notion of a model of a Boolean grammar:

Definition 8. Let G = (�,N, P, S) be a Boolean grammar and I an interpretation of G. Then, I is amodel of G if for every rule

A → l1& · · ·&ln in P and for every w ∈ �∗, it is I(A)(w) ≥ Î(l1& · · ·&ln)(w).

Certain explanations regarding the notion of model are needed, since this concept is not broadly used in formal language

theory – despite its fundamental applicability inmathematical logic. Amodel of a set of formulas in logic, is an interpretation

that satisfies all the formulas in the set. In the context of Boolean grammars, each rule can be thought of as a formula which

states that the membership value of a string in the language that corresponds to the head of the rule, is greater than or

equal to the membership value of the string in the language that corresponds to the body of the rule. This idea restricted to

total languages states that, for every rule, the language that corresponds to the head of a rule is a superset of the language

that corresponds to the body. Clearly, a model of a grammar does not necessarily capture the meaning of a grammar (for

example, an interpretation that assigns �∗ to every non-terminal of a grammar, is a model of the grammar). However, the

interpretation that captures the intended meaning of a grammar, has to be a model of the grammar. In other words, the first

basic property that an interpretation has to satisfy in order to be eligible as a candidate for the correct meaning of a Boolean

grammar, is to be a model of the grammar.1

In the definition of the well-founded model, two orderings on interpretations play a crucial role (see [9] for the corre-

sponding ordering in the case of logic programming). Given two interpretations, the first ordering (usually called the standard

ordering) compares their degree of truth:

Definition 9. Let G = (�,N, P, S) be a Boolean grammar and I, J be two interpretations of G. Then, we write I � J if for all

A ∈ N and for all w ∈ �∗, I(A)(w) ≤ J(A)(w).

The following lemma is easy to establish:

Lemma 10. Let G = (�,N, P, S) be a Boolean grammar and I, J be two interpretations of G such that I � J. Then, for all

α ∈ (� ∪ N)∗ and for all w ∈ �∗, Î(α)(w) ≤ Ĵ(α)(w).

Proof. The statement is obvious when α = ε or when α ∈ � ∪ N. For α = α1 · · · αn, n ≥ 2, αi ∈ � ∪ N, it is:

Î(α)(w) = (̂
I(α1) ◦ · · · ◦ Î(αn)

)
(w)

= max (w1,...,wn):
w=w1 ···wn

(
min1≤i≤n Î(αi)(wi)

)
≤ max (w1,...,wn):

w=w1 ···wn

(
min1≤i≤n Ĵ(αi)(wi)

)
= (

Ĵ(α1) ◦ · · · ◦ Ĵ(αn)
)
(w)

= Ĵ(α)(w)

This completes the proof of the lemma. �

Among the interpretations of a given Boolean grammar, there is one which is the least with respect to the � ordering and is

denoted by ⊥. That is, for all A and all w, ⊥(A)(w) = 0.

The second ordering (usually called the Fitting ordering) compares the degree of information of two interpretations. We

first need to define the corresponding numerical ordering:

Definition 11. Let v1, v2 ∈ {0, 1
2
, 1}. We write v1 ≤F v2 if and only if either v1 = v2 or v1 = 1

2
.

Definition 12. Let G = (�,N, P, S) be a Boolean grammar and I, J be two interpretations of G. Then, we write I �F J if for all

A ∈ N and for all w ∈ �∗, I(A)(w) ≤F J(A)(w).

We now establish a lemma regarding �F which is similar to Lemma 10 for �:

1 One could avoid the use of models by first transforming a Boolean grammar into a set of equations (see [8] or the corresponding definition in Section 2),

and then looking for a solution to this set of equations. We prefer to follow the model-based approach, which is closer to the logical background of Boolean

grammars.
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Lemma 13. Let G = (�,N, P, S) be a Boolean grammar and I, J be two interpretations of G such that I �F J. Then, for any conjunct
l (either positive or negative) and for any w ∈ �∗, Î(l)(w) ≤F Ĵ(l)(w).

Proof. Assume first that l is a positive conjunct.When l = ε or l ∈ � ∪ N, the result holds trivially. For l = α1 · · · αn, n ≥ 2,

αi ∈ � ∪ N, we distinguish two cases:

Case 1: Î(l)(w) = 0 or equivalently (̂I(α1) ◦ · · · ◦ Î(αn))(w) = 0. From Definition 5, this means that

max (w1,...,wn):
w=w1 ···wn

(
min1≤i≤n Î(αi)(wi)

) = 0, or equivalently that for all (w1, . . . ,wn) such thatw = w1 · · ·wn there existsαi such

that Î(αi)(wi) = 0. But for every such αi it is also Ĵ(αi)(wi) = 0, which implies that max (w1,...,wn):
w=w1 ···wn

(
min1≤i≤n Ĵ(αi)(wi)

) = 0.

Therefore, (̂J(α1) ◦ · · · ◦ Ĵ(αn))(w) = 0 or equivalently Ĵ(l)(w) = 0.

Case 2: Î(l)(w) = 1 and therefore (̂I(α1) ◦ · · · ◦ Î(αn))(w) = 1. Therefore, fromDefinition 5, there exists (w1, . . . ,wn)with

w = w1 · · ·wn such that for allαi it is Î(αi)(wi) = 1. This implies that for allαi, it is also Ĵ(αi)(wi) = 1, fromwhich it follows

that Ĵ(l)(w) = 1.

When l = ¬α is a negative conjunct the result follows from the fact that Î(¬α)(w) = 1 − Î(α)(w). This completes the

proof of the lemma. �

Among the interpretations of a given Boolean grammar, there is one which is the least with respect to the �F ordering and

is denoted by ⊥F . That is, for all A and all w, ⊥F (A)(w) = 1
2
.

Given a set U of interpretations, we will write lub�U for the least upper bound of the members of U under the standard

ordering. Formally:

(lub�U)(A)(w) =
⎧⎪⎨
⎪⎩
1, if there exists I ∈ U such that I(A)(w) = 1

0, if for all I ∈ U, I(A)(w) = 0
1
2
, otherwise

The situation changes when one wants to define lub�F
U, that is, the least upper bound of the members of U under the

Fitting ordering, since this notion cannot in general be defined for an arbitrary set of interpretations U. However, lub�F
U can

be defined if U is a directed set of interpretations, i.e., if for every I1, I2 ∈ U there exists J ∈ U such that I1 �F J and I2 �F J.

In this case lub�F
U is defined as follows:

(lub�F
U)(A)(w) =

⎧⎪⎨
⎪⎩
1, if there exists I ∈ U such that I(A)(w) = 1

0, if there exists I ∈ U such that I(A)(w) = 0
1
2
, otherwise

Obviously, an increasing sequence U = I1 �F I2 �F · · · of interpretations constitutes a directed set of interpretations, and

therefore in this case lub�F
U is well-defined.

4. Well-founded semantics for Boolean grammars

In this section, we define the well-founded semantics of Boolean grammars. The basic idea behind the well-founded

semantics is that the intended model of the grammar is constructed in stages that are related to the levels of negation used

by the grammar. At each step of this process and for every non-terminal symbol, the values of certain strings are computed

andfixed (as either true or false); at eachnew level, the values ofmore andmore strings becomefixed (and this is amonotonic

procedure in the sense that values of strings that have been fixed for a given non-terminal in a previous stage, are not altered

by the next stages). At the end of all the stages, certain strings for certain non-terminals may have not managed to get the

status of either true or false (this will be due to circularities through negation in the grammar). Such strings are classified as

unknown (i.e., 1
2
).

Consider the Boolean grammar G = (�,N, P, S). Then, for any interpretation J of Gwe define the operator [�G]J : I → I
on the set I of all three-valued interpretations of G. Intuitively, J represents information that we have already derived and is

considered stable (and therefore it can be safely used to compute the value of negative conjuncts). More specifically, given

I ∈ I, A ∈ N and w ∈ �∗, [�G]J (I)(A)(w) is the value that w gets in one stepwhen using J in order to evaluate the negative

conjuncts in rules defining A in G and I to evaluate the positive ones. More formally:

Definition 14. Let G = (�,N, P, S) be a Boolean grammar, let I be the set of all three-valued interpretations of G and let

J ∈ I. The operator [�G]J : I → I is defined as follows. For every I ∈ I, for all A ∈ N and for all w ∈ �∗:

1. [�G]J (I)(A)(w) = 1, if there exists a rule A → l1& · · ·&lr in P such that for every positive li it is Î(li)(w) = 1, and for

every negative li it is Ĵ(li)(w) = 1;

2. [�G]J (I)(A)(w) = 0, if for every rule A → l1& · · ·&lr in P, either there exists a positive li such that Î(li)(w) = 0, or there

exists a negative li such that Ĵ(li)(w) = 0;

3. [�G]J (I)(A)(w) = 1
2
, otherwise.
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Some remarks are in order. The operator [�G]J is analogous to the ones that have beenused in the logic programming domain,

but has some important differences from them. More specifically, in [10] two operators are used which produce two sets of

atoms corresponding to true and false conclusions of the program, respectively. When applied to arbitrary interpretations,

these operators may produce inconsistent sets of atoms. However, it is demonstrated in [10] that these operators when used

appropriately, never give rise to inconsistent sets of atoms. In [9], one operator �J is introduced whose definition however

is not precise in the sense that it is not truth-functional: given arbitrary interpretations I, J and atom A it is possible that

�J(I)(A) can be assigned both the values 0 and 1. Note however that this problematic case never arises in the construction

of the well-founded model. This imprecise definition was also present in the original conference version of our paper [4].

The above functional definition of [�G]J remedies this deficiency.

An important fact regarding the operator [�G]J is that it is monotonic with respect to the � ordering of interpretations:

Lemma 15. Let G = (�,N, P, S) be a Boolean grammar and let J be an interpretation of G. Then, the operator [�G]J is monotonic

with respect to the � ordering of interpretations.

Proof. Let I1, I2 be interpretations of G such that I1 � I2 and let A ∈ N andw ∈ �∗. We show by a case analysis on the value

of [�G]J (I1)(A)(w) that [�G]J (I1)(A)(w) ≤ [�G]J (I2)(A)(w). The case [�G]J (I1)(A)(w) = 0 is immediate.

Consider now the case [�G]J (I1)(A)(w) = 1. Then, from Definition 14, there is a rule A → l1& · · ·&lr in P such that

for all positive li it is Î1(li)(w) = 1 and for all negative li it is Ĵ(li)(w) = 1. But since I1 � I2, using Lemma 10 we get that

Î2(li)(w) = 1 for all positive li, which implies that [�G]J (I2)(A)(w) = 1.

Consider now the remaining case [�G]J (I1)(A)(w) = 1
2
and assume for the sake of contradiction that [�G]J (I2)(A)(w) =

0. This implies that for every rule A → l1& · · ·&lr in P, either there exists a positive li such that Î2(li)(w) = 0, or there exists

a negative li such that Ĵ(li)(w) = 0. But since I1 � I2, using Lemma 10 we get that [�G]J (I1)(A)(w) = 0 (contradiction).

Therefore, in any case [�G]J (I1)(A)(w) ≤ [�G]J (I2)(A)(w). �

The following definition will be useful in the subsequent discussion:

Definition 16. Let G = (�,N, P, S) be a Boolean grammar, let I be an interpretation of G and letw ∈ �∗. We denote by I/w
the interpretation defined as follows:

(I/w)(A)(u) =
{
I(A)(u), if u is a substring of w

0, otherwise

We now have the following lemmata:

Lemma 17. Let G = (�,N, P, S) be a Boolean grammar, w be a string in �∗, and {In}n<ω be an increasing sequence of in-

terpretations with respect to the ordering � (respectively, �F). Then there exists some m such that (lub�{In}n<ω)/w = Im/w
(respectively, (lub�F

{In}n<ω)/w = Im/w).

Proof. We give the proof for �; the proof for �F is similar.

Let J = lub�{In}n<ω . It is easy to verify that the sequence {In/w}n<ω is also increasing with respect to � and that

lub�{In/w}n<ω = J/w.Moreover, the set {I/w|I is an interpretation of G} is finite, sinceN is finite and there is afinitenumber

of substrings ofw. The above facts imply that there exists somem < ω such that Ii/w � Im/w for every i < ω, that is, Im/w
is an upper bound for {In/w}n<ω . Since J/w is the least upper bound of this sequence, we obtain that J/w � Im/w, and since

Im/w belongs to the sequence it holds Im/w � J/w. The last two inequalities imply that J/w = Im/w. �

Lemma 18. Let G = (�,N, P, S) be a Boolean grammar and let I1, I2, J1, J2 be interpretations of G. Let w ∈ �∗ and assume that

I1/w = I2/w and J1/w = J2/w. Then, for every A ∈ N, [�G]J1 (I1)(A)(w) = [�G]J2 (I2)(A)(w).

Proof. We perform a case analysis on the value of [�G]J1 (I1)(A)(w).

Case 1: [�G]J1 (I1)(A)(w) = 0. But this is equivalent to saying that for every rule A → l1& · · ·&lr in P, either there exists a

positive li such that Î1(li)(w) = 0, or there exists a negative li such that Ĵ1(li)(w) = 0. But using the fact that I1/w = I2/w
and J1/w = J2/w, this again is equivalent to the statement that for every rule A → l1& · · ·&lr in P, either there exists a

positive li such that Î2(li)(w) = 0, or there exists a negative li such that Ĵ2(li)(w) = 0. Equivalently, [�G]J2 (I2)(A)(w) = 0.

Case 2: [�G]J1 (I1)(A)(w) = 1. Entirely analogous to the proof of Case 1. �

The next definition and theorem demonstrate that in addition, [�G]J has a unique least fixed-point:

Definition 19. Let G = (�,N, P, S) be a Boolean grammar and let J be an interpretation of G. Define:
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[�G]
↑0
J = ⊥

[�G]
↑n+1
J = [�G]J

(
[�G]

↑n
J

)
[�G]

↑ω
J = lub�

{
[�G]

↑n
J |n < ω

}
.

Theorem 20. Let G = (�,N, P, S) be a Boolean grammar and let J be an interpretation of G. Then, the sequence {[�G]
↑n
J }n<ω is

increasing with respect to � and [�G]
↑ω
J is the unique least fixed-point of the operator [�G]J with respect to � .

Proof. Wefirst show by induction that the sequence {[�G]
↑n
J }n<ω is increasingwith respect to�. Obviously [�G]

↑0
J = ⊥ �

[�G]
↑1
J . Moreover, assuming that [�G]

↑k
J � [�G]

↑k+1
J and using the monotonicity of [�G]J with respect to � (Lemma 15),

we get that [�G]
↑k+1
J � [�G]

↑k+2
J .

Next we show that [�G]
↑ω
J is a fixed-point of [�G]J , i.e., that [�G]J ([�G]

↑ω
J ) = [�G]

↑ω
J . We first demonstrate that

[�G]
↑ω
J � [�G]J ([�G]

↑ω
J ). Since [�G]

↑ω
J is the least upper bound of the sequence {[�G]

↑n
J }n<ω , we have that for every

n ≥ 0, [�G]
↑n
J � [�G]

↑ω
J . Using the monotonicity of [�G]J with respect to �, we get that for every n ≥ 0, [�G]

↑n+1
J =

[�G]J ([�G]
↑n
J ) � [�G]J ([�G]

↑ω
J ), or equivalently that [�G]J ([�G]

↑ω
J ) is an upper bound of the sequence {[�G]

↑n+1
J }n<ω .

Then [�G]J ([�G]
↑ω
J ) is also an upper bound of the sequence {[�G]

↑n
J }n<ω = {⊥} ∪ {[�G]

↑n+1
J }n<ω . But we know that

[�G]
↑ω
J is the least upper bound of this sequence, and therefore [�G]

↑ω
J � [�G]J ([�G]

↑ω
J ).

We now demonstrate that [�G]J ([�G]
↑ω
J ) � [�G]

↑ω
J , or equivalently that for all A ∈ N and for every w ∈ �∗,

[�G]J ([�G]
↑ω
J )(A)(w) ≤ [�G]

↑ω
J (A)(w). Consider arbitrary A ∈ N and w ∈ �∗. Since the sequence {[�G]

↑n
J }n<ω is in-

creasing with respect to � from Lemma 17 there exists some m < ω such that [�G]
↑ω
J /w = [�G]

↑m
J /w. From Lemma 18,

it is [�G]J ([�G]
↑ω
J )(A)(w) = [�G]J ([�G]

↑m
J )(A)(w) = [�G]

↑m+1
J (A)(w) ≤ [�G]

↑ω
J (A)(w). Therefore, it holds that [�G]J

([�G]
↑ω
J ) � [�G]

↑ω
J .

It remains to show that [�G]
↑ω
J is the least fixed-point of [�G]J with respect to �. Suppose that Q is another fixed-

point of [�G]J . It suffices to show that [�G]
↑ω
J � Q . We show by induction that [�G]

↑n
J � Q for every n ≥ 0. Obviously,

⊥ = [�G]
↑0
J � Q . Assume that [�G]

↑n
J � Q . Then, [�G]

↑n+1
J � [�G]J (Q) = Q , since we have assumed that Q is a fixed-

point of [�G]J . Consequently, [�G]
↑n
J � Q for every n ≥ 0, i.e.,Q is an upper bound of the sequence {[�G]

↑n
J }n<ω . Now, since

[�G]
↑ω
J is the least upper bound of the sequence {[�G]

↑n
J }n<ω , we get that [�G]

↑ω
J � Q , which proves [�G]

↑ω
J to be the least

fixed-point of [�G]J . �

Wewill denote by
G(J) the least fixed-point [�G]
↑ω
J of [�G]J . Given a grammarG, we canuse the
G operator to construct

a sequence of interpretations whose least upper boundMG (with respect to �F ) will prove to be a distinguished model of G.

Notice that here we have an essential difference with respect to the well-founded semantics of logic programming: there,

the construction of the well-founded model may require a transfinite number of iterations which is greater than ω. An

undesirable consequence of this fact is that the well-founded semantics of logic programs is not computable in the general

case. However, in the case of Boolean grammars, the model is constructed in at most ω iterations. Intuitively, this is due to

the following reasons: (i) Boolean grammars are finite, and (ii) the membership of a string w in the language defined by a

non-terminal, depends only on the memberships of a finite number of strings (namely the substrings of w) in finitely many

languages (corresponding to the non-terminal symbols of the grammar).

The definition ofMG has as follows:

Definition 21. Let G = (�,N, P, S) be a Boolean grammar. Define:

MG,0 = ⊥F

MG,n+1 = 
G(MG,n)
MG = lub�F

{MG,n|n < ω}
From the above definition, it is not immediately obvious that MG is well-defined (since as we have remarked at the end of

Section 3, lub�F
is not always well-defined). However, as we are going to see shortly, the operator 
G is monotonic with

respect to �F and this ensures that the sequence {MG,n}n<ω is increasing (which ensures that lub�F
is well-defined).

Lemma 22. Let G = (�,N, P, S) be a Boolean grammar. Then,
G ismonotonicwith respect to the�F ordering of interpretations.
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Proof. Let J1, J2 be two interpretations of G such that J1 �F J2. We show that 
G(J1) �F 
G(J2), or equivalently that

[�G]
↑ω
J1

�F [�G]
↑ω
J2

. We first prove that for all n ≥ 0, [�G]
↑n
J1

�F [�G]
↑n
J2

. The proof is by induction on n. The basis case

obviously holds. Assume the statement holds for n; we demonstrate the case n + 1. Let A ∈ N and w ∈ �∗. We distinguish

two cases regarding the value of [�G]
↑n+1
J1

(A)(w).

Case 1: [�G]
↑n+1
J1

(A)(w) = 0, or equivalently [�G]J1 ([�G]
↑n
J1

)(A)(w) = 0. From Definition 14, this implies that for every

rule A → l1& · · ·&lr in P, either there exists a positive li such that
̂

([�G]
↑n
J1

)(li)(w) = 0, or there exists a negative li such that

Ĵ1(li)(w) = 0. In the former case, from Lemma 13 and the induction hypothesis, we obtain that there exists a positive li such

that
̂

([�G]
↑n
J2

)(li)(w) = 0. In the latter case, from Lemma 13 and the fact that J1 �F J2, we obtain that there exists a negative

li such that Ĵ2(li)(w) = 0. Therefore, [�G]
↑n+1
J2

(A)(w) = 0.

Case 2: Entirely analogous to the proof of Case 1.

We can now prove that [�G]
↑ω
J1

�F [�G]
↑ω
J2

. Suppose first that [�G]
↑ω
J1

(A)(w) = 1. Then there exists some m such

that [�G]
↑m
J1

(A)(w) = 1. Thus, it is also [�G]
↑m
J2

(A)(w) = 1, which implies that [�G]
↑ω
J2

(A)(w) = 1. Suppose now that

[�G]
↑ω
J1

(A)(w) = 0. Then [�G]
↑n
J1

(A)(w) = 0 for every n. Thus, it is also [�G]
↑n
J2

(A)(w) = 0 for every n, which implies that

[�G]
↑ω
J2

(A)(w) = 0. �
Apart fromitsmonotonicity,
G hasanother importantproperty (which is theanalogueof thepropertydescribed inLemma18

for the [�G] operator):

Lemma 23. Let G = (�,N, P, S) be a Boolean grammar and let J1, J2 be interpretations of G. Let w ∈ �∗ and assume that

J1/w = J2/w. Then, for every A ∈ N, 
G(J1)(A)(w) = 
G(J2)(A)(w).

Proof. We first prove by induction on n that for every n ≥ 0, [�G]
↑n
J1

/w = [�G]
↑n
J2

/w.

Thebasis case is trivial. For the inductionhypothesis, let us assume that [�G]
↑n
J1

/w = [�G]
↑n
J2

/w. This implies that for every

substring u ofw, it is also [�G]
↑n
J1

/u = [�G]
↑n
J2

/u. Moreover, J1/u = J2/u. From Lemma18we obtain that [�G]
↑n+1
J1

(A)(u) =
[�G]

↑n+1
J2

(A)(u), for every A ∈ N and every substring u of w. Thus, [�G]
↑n+1
J1

/w = [�G]
↑n+1
J2

/w, which completes the

inductive proof.

Therefore, for every n and every A ∈ N, [�G]
↑n
J1

(A)(w) = [�G]
↑n
J2

(A)(w). The lemma follows from the definition of 
G .

�
Theorem 24. Let G = (�,N, P, S) be a Boolean grammar. Then, the sequence {MG,n}n<ω is increasing with respect to the �F

ordering of interpretations. Moreover, MG is the least fixed-point of the operator 
G.

Proof. Using the monotonicity of 
G with respect to the �F (Lemma 22), it can be proved (by similar arguments as in

Theorem 20) that the sequence {MG,n}n<ω is increasing with respect to �F and thatMG �F 
G(MG).
In order to prove that MG is a fixed-point, it remains to prove that 
G(MG) �F MG . Consider arbitrary A ∈ N and w ∈

�∗. Since the sequence {MG,n}n<ω is increasing with respect to �F from Lemma 17 there exists some m < ω such that

MG/w = MG,m/w. From Lemma 23, 
G(MG)(A)(w) = 
G(MG,m)(A)(w) = MG,m+1(A)(w) ≤F MG(A)(w). In other words,


G(MG) �F MG .

Therefore, MG is a fixed-point of 
G . Using a similar reasoning as in Theorem 20, we can show that MG is actually the

least fixed-point of 
G with respect to the �F ordering. �
The above results lead to the following theorem, which demonstrates that MG satisfies all the rules of the grammar G:

Theorem 25. Let G = (�,N, P, S) be a Boolean grammar. Then,MG is a model of G (which will be called the well-founded model

of G).

Proof. It suffices to demonstrate that for every rule A→ l1& · · ·&lr in P and for every w∈�∗ it is MG(A)(w) ≥
M̂G(l1& · · ·&lr)(w). Let v = min{M̂G(l1)(w), . . . , M̂G(lr)(w)}. Then, for every li it is M̂G(li)(w) ≥ v. Now, since from The-

orem 24 it isMG = 
G(MG), for every li it is
̂(
G(MG))(li)(w) ≥ v. This implies that there exists k ≥ 0 such that for all n ≥ k

and for every positive li,
̂

([�G]
↑n
MG

)(li)(w)≥v. ApplyingDefinition 14weget that for everyn≥k, ([�G]
↑n+1
MG

)(A)(w)≥v, which

implies that 
G(MG)(A)(w) ≥ v. But then from Theorem 24 we get thatMG(A)(w) ≥ v. Therefore,MG is a model of G. �

We now give an example that illustrates the well-founded construction as this has been defined above:

Example 26. Let G be the grammar given in Example 2. We will demonstrate that MG = M2, i.e., that in order to converge

to the well-founded model of G we need exactly two iterations of 
G .
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First, recall that M0 =⊥F and M1 = 
G(M0) = [�G]
↑ω
⊥F

. Since C is defined by C → a|b, we easily obtain that for every

n ≥ 1 it holds [�G]
↑n

⊥F
(C)(a) = [�G]

↑n

⊥F
(C)(b) = 1 and [�G]

↑n

⊥F
(C)(w) = 0, for everyw ∈ �∗ − {a, b}. Moreover, for every

n ≥ 1 it holds

[�G]
↑n

⊥F
(A)(w) =

{
1, w = u1au2 where u1, u2 ∈ {a, b}∗ , |u1| = |u2| < n

0, otherwise

This can be proved by an easy induction on n. For the basis case (n = 1), it is [�G]
↑n

⊥F
(A)(a) = 1, which is derived from the

rule A → a. Suppose that the claim holds for n and consider a string w = c1u1au2c2, where u1, u2 ∈ {a, b}∗, c1, c2 ∈ {a, b},
|c1u1| = |c2u2| < n + 1. From the induction hypothesis it is [�G]

↑n

⊥F
(A)(u1au2) = 1 and since it is also [�G]

↑n

⊥F
(C)(a) =

[�G]
↑n

⊥F
(C)(b) = 1, from the rule A → CAC we obtain that [�G]

↑n+1

⊥F
(A)(w) = 1.

Therefore:

M1(A)(w) =
{
1, w = u1au2 where u1, u2 ∈ {a, b}∗, |u1| = |u2|
0, otherwise

and similarly:

M1(B)(w) =
{
1, w = u1bu2 where u1, u2 ∈ {a, b}∗, |u1| = |u2|
0, otherwise

Notice that the languages assigned byM1 to the non-terminalsA, B and C, which are defined by rules that are actually context-

free, coincide with the languages that would be assigned to these symbols by the standard derivation-based semantics of

context-free grammars.

On theotherhand, thedenotationof S remains completelyundefined inM1: since in theunique ruledefining S all conjuncts

are negative, in order to compute the value of [�G]
↑n

⊥F
(S)(w) for any n ≥ 1 and for any w ∈ �∗, we must use (according to

Definition 14) the interpretation⊥F in order to evaluate these conjuncts. Therefore, in all cases it is [�G]
↑n

⊥F
(S)(w) = 1

2
, and

therefore:

M1(S)(w) = 1

2

However, the situation regarding S changeswhenwe proceed to computeM2: it isM2 = 
G(M1) = [�G]
↑ω
M1

, and nowM1

contains all the information we need regarding the non-terminals A, B and C. Consider any stringw = uu, where u ∈ {a, b}∗.
Since w has an even length, it isM1(A)(w) = M1(B)(w) = 0, which implies M̂1(¬A)(w) = M̂1(¬B)(w) = 1. Moreover, for

every pair of odd length strings v1, v2 ∈ {a, b}∗ such that v1v2 = w, the symbols in the middle of v1 and v2 are identical (as

they are the ith and (i + |w|)th symbols of w, for some i). Therefore, if M1(A)(v1) = 1, then M1(B)(v2) = 0, which implies

that M̂1(AB)(w) = 0, or equivalently M̂1(¬AB)(w) = 1. Similarly we obtain that M̂1(¬BA)(w) = 1. Thus, from the rule

S → ¬(AB) & ¬(BA) & ¬A & ¬B we derive [�G]
↑n
M1

(S)(w) = 1, for every n ≥ 1. On the other hand, for any string w that is

not of the form uu, one of M̂1(¬A)(w), M̂1(¬B)(w), M̂1(¬AB)(w), M̂1(¬BA)(w) is 0, which implies that [�G]
↑n
M1

(S)(w) = 0.

In short,

[�G]
↑n
M1

(S)(w) =
{
1, w ∈ {uu|u ∈ �∗}
0, otherwise

Moreover, it holds that M2(V) = M1(V), for every V ∈ {A, B, C}, since the rules defining these symbols are negation-free.

Additionally,Mk = M2, for all k ≥ 2. Therefore,MG = M2. Notice that the language produced by this grammar is two-valued.

At this point we examine a natural question that springs to mind after the introduction of the three-valued well-founded

model. Sincemost of the currentwork in formal language theory is based on two-valued languages, it is reasonable towonder

whether the problem “Given a Boolean grammar G, is MG two-valued?” is decidable. The following theorem demonstrates

that this is not the case.

Theorem 27. The following problem is undecidable: “Given a Boolean grammar G = (�,N, P, S), decide whether for all w ∈ �∗,
MG(S)(w) ∈ {0, 1}”.
Proof. We present a reduction from the following well-known undecidable problem: “Given a context-free grammar over

an alphabet �, decide whether the language defined by this grammar is �∗”. Let G1 = (�,N1, P1, S1) be a context-free

grammar. Consider the Boolean grammar G = (�,N, P, S) where:

• N = N1 ∪ {S}, where S 
∈ N1,• P = P1 ∪ {S → S1, S → ¬S}.
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Suppose first that the language defined by G1 is �∗. We easily obtain thatMG(S1)(w) = 1 for everyw ∈ �∗, since the well-

founded semantics extends the standard semantics of context-free grammars. Since we also have the rule S → S1 in P, it

will also be the case thatMG(S)(w) = 1 for every w ∈ �∗ (and thereforeMG is trivially two-valued).

For the other direction, suppose that for everyw ∈ �∗, it isMG(S)(w) ∈ {0, 1}. Since P contains the rule S → ¬S it cannot

beMG(S)(w) = 0 for anyw. Therefore, for everyw it holds thatMG(S)(w) = 1,which implies thatMG(S1)(w) = 1. Since the

well-founded semantics extends the standard semantics of context-free grammars, we get that w belongs to the language

defined by G1. �

Closing this section, we can now state the relationship between the well-founded semantics and the naturally reachable

semantics of Boolean grammars. For the definition of the naturally reachable solution and the related terminology the reader

is referred to [8] or the definition given in Section 2.

Theorem 28. Suppose that a Boolean grammar G has a two-valued (i.e.,with values 0 and 1) well-founded semantics. Then the

naturally reachable solution for this grammar either coincides with the well-founded semantics or is undefined.

Proof. We present an outline of the proof.

Let {X1, . . . , Xn} be the set of non-terminal symbols in G and assume that G has a two-valued well-founded model MG .

Then,MG(Xi) can be thought of as a two-valued language, i.e., as a set of strings.Moreover, let X1 = φ1(X1, . . . , Xn), . . . , Xn =
φn(X1, . . . , Xn) be the system of equations that corresponds to G and assume that it has a naturally reachable solution

L = (L1, . . . , Ln).
Suppose for the sake of contradiction that L /= (MG(X1), . . . ,MG(Xn)). Let w be a string of minimum length for which

there exists an index j such that w belongs to exactly one of MG(Xj) and Lj . Consider the modulus M that consists of all

the proper substrings ofw. From the definition ofw, we have (L1 ∩ M, . . . , Ln ∩ M) = (MG(X1) ∩ M, . . . ,MG(Xn) ∩ M) and
(L1 ∩ (M ∪ {w}), . . . , Ln ∩ (M ∪ {w})) /= (MG(X1) ∩ (M ∪ {w}), . . . ,MG(Xn) ∩ (M ∪ {w})).

DefineQ ={Xi|MG(Xi)(w)=1}. For everyXi ∈Q there exist two integers ni,mi with the following properties:MG,ni(Xi)(w)

=1, MG,ni−1(Xi)(w)= 1
2
, [�G]↑mi

MG,ni−1
(Xi)(w)=1 and [�G]↑mi−1

MG,ni−1
(Xi)(w) /=1. Intuitively, ni and mi indicate the point in the

construction ofMG where the fact thatMG(Xi)(w) = 1 is obtained. For every Xi, Xj ∈Q wewrite Xi � Xj if ni < nj or ni = nj
andmi ≤ mj . Informally, Xi � Xj ifMG(Xi)(w) takes the value 1 not later than MG(Xj)(w) does in the construction of MG .

Consider now a sequence Xk0 , Xk1 , . . . , Xk|Q |−1
, such that Xkj � Xkj+1

for all j, in which every element of Q appears exactly

once. We construct a specific sequence of vectors of the form L(0), L(1), . . . , L(i), . . . , L(|Q |), where L(0) = (L1 ∩ M, . . . , Ln ∩
M) = (MG(X1) ∩ M, . . . ,MG(Xn) ∩ M) and L(i+1) is obtained from L(i) by substituting the (ki)th componentwithφki(L

(i)) ∩
(M ∪ {w}). It can be proved by induction that before the ith step the (ki)th component of L(i) is MG(Xki) ∩ M and that this

step replaces it with (MG(Xki) ∩ M) ∪ {w} = MG(Xki) ∩ (M ∪ {w}). That is, the result of the ith step is the insertion ofw in

the (ki)th component. The proof is based on two observations: the first is that all the information that was used to decide

that w ∈ MG(Xki), also appears in L(i), which implies that w ∈ φki(L
(i)); the second is that the membership of every string

inM in the (ki)th component remains unchanged after the application of φki , since L is a solution of the system of equations.

Based on the above, it is easy to prove that the selected sequence converges to (MG(X1) ∩ (M ∪ {w}), . . . ,MG(Xn) ∩ (M ∪
{w})). On the other hand, since L is a naturally reachable solution, the sequence converges to (L1 ∩ (M ∪ {w}), . . . , Ln ∩
(M ∪ {w})). Therefore, (L1 ∩ (M ∪ {w}), . . . , Ln ∩ (M ∪ {w})) = (MG(X1) ∩ (M ∪ {w}), . . . ,MG(Xn) ∩ (M ∪ {w})), which

is a contradiction. �

It is easy to see that if a Boolean grammar has a naturally reachable solution semantics, then it is possible that this

semantics differs from the well-founded one. For example, in the four-rule grammar of Section 2 (the one given just after

Definition 3), the well-founded semantics assigns the ⊥F interpretation to all the non-terminal symbols of the grammar.

Notice that although the naturally reachable semantics for this grammar is defined, it appears to be counterintuitive.

5. Normal form

In this section, we demonstrate that every Boolean grammar can be converted into an equivalent one that belongs to a

binary normal form. Based on this normal form, in Section 6 we derive an O(n3) parsing algorithm for Boolean grammars.

The binary normal form is defined as follows:

Definition 29. A Boolean grammar G = (�,N ∪ {U, T}, P, S) is said to be in binary normal form if P contains the rules

U → ¬U and T → ¬ε, where U and T are two special symbols not in N, and every other rule in P is of the form:

A → B1C1& · · ·&BmCm&¬D1E1& · · ·&¬DnEn&TT[&U] (m, n ≥ 0)
A → a[&U]
S → ε[&U] (only if S does not appear in right-hand sides of rules)

where A, Bi, Ci,Dj , Ej ∈ N, a ∈ �, and the brackets denote an optional part.
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The main theorem of this section is the following:

Theorem 30. Let G = (�,N, P, S) be a Boolean grammar. Then there exists a grammar G′ = (�,N′, P′, S) in binary normal form

such that MG(S) = MG′(S).

The proof of Theorem 30 is based on the definition of certain meaning-preserving grammar transformations. It can be easily

checked that each transformation step can be effectively performed; in other words, the normal form of a given grammar G

can be constructed from G in an algorithmic way.

The normal formwe derive, generalizes the well-known Chomsky normal form for context-free grammars as-well-as the

binary normal form for Boolean grammars introduced in [8]. Actually, certain of the steps we adopt, were initially proposed

in [8], themain difference being that the binary normal formobtained there, always produces two-valued Boolean languages.

The steps of the proposed procedure, can be summarized as follows:

• The initial Boolean grammar is first brought into pre-normal form. This is just a simpler and more manageable form of

the initial grammar.

• The grammar is then transformed into direct form. This means that if a non-terminal of the previous form of the grammar

could produce a string of length one (possibly through the use of many rules), then this fact is recorded by using a single

rule in the new grammar. The same happens even if the status of the string of length one was undefined in the previous

grammar.

• The next step is to bring the grammar into an ε-free form, i.e., a form in which no non-terminal produces the string ε.
• Thefinal step is tobring thegrammar intoabinarynormal form, i.e., a form inwhich the “long” rulesof thegrammar contain

conjunctswhichconsist of twonon-terminals (with thepossible exceptionof thenon-terminalU, seeDefinition29above).

In the rest of this section, we will describe one-by-one the above transformation steps.

5.1. Pre-normal form

Consider a Boolean grammar G = (�,N, P, S). Without loss of generality we may assume that S does not appear in the

right-hand side of any rule (otherwise we can replace S with S′ in every rule, and add a rule S → S′). Initially, we bring the

grammar into a form, which we call pre-normal form:

Definition 31. A Boolean grammar G = (�,N, P, S) is said to be in pre-normal form if every rule in P is of the form:

A → B1& · · ·&Bm&¬C1& · · ·&¬Cn (m + n ≥ 1, Bi, Cj ∈ N ∪ {ε})
A → BC (B, C ∈ N)
A → a (a ∈ �)

In order to prove that for every Boolean grammar there exists an equivalent one in pre-normal form, we need the following

lemma:

Lemma 32. Let G = (�,N, P, S), G′ = (�,N ∪ {Bβ}, P′ ∪ {Bβ → β}, S) be two Boolean grammars, such that:
• Bβ 
∈ N

• β ∈ (� ∪ N)+
• P is obtained from P′ by replacing in every rule each occurrence of Bβ with β.

Then, for every A ∈ N,MG(A) = MG′(A).

Proof. It suffices to show that for every A ∈ N, MG,n(A) = MG′ ,n(A). In order to establish this fact we will use the following

idea. Let J, J′ be interpretations for G and G′, respectively, such that J(A) = J′(A) for every A ∈ N and Ĵ(β) = J′(Bβ). We will

demonstrate that for every A ∈ N,
G(J)(A) = 
G′(J′)(A). This result will then be used in the inductive proof of the fact that

for all n,MG,n(A) = MG′ ,n(A).
We start by proving some useful facts. First notice that P′ does not contain any rule that defines Bβ , since Bβ 
∈ N.

Thus, the only rule in G′ that defines Bβ is Bβ → β , which from Definition 14 implies that for every n > 0, [�G′ ]↑n

J′ (Bβ) =̂
([�G′ ]↑n−1

J′ )(β). Moreover, since the sequence {[�G]
↑n

J′ }n<ω is increasing with respect to� (Theorem 20) and [�G′ ]↑0

J′ = ⊥,

we obtain that for every n ≥ 0 and for all w ∈ �∗ it holds [�G′ ]↑n

J′ (Bβ)(w) ≤ ̂
([�G′ ]↑n

J′ )(β)(w).

In order to show that for all A ∈ N, 
G(J)(A) = 
G′(J′)(A), we prove by induction on n that for every A ∈ N and for all

w ∈ �∗ it is [�G′ ]↑n

J′ (A)(w) ≤ [�G]
↑n
J (A)(w) ≤ [�G′ ]↑2n

J′ (A)(w).

The basis case is obvious since [�G′ ]↑0

J′ = [�G]↑0
J = ⊥. Assume the statement holds for n; we demonstrate that

[�G′ ]↑n+1

J′ (A)(w) ≤ [�G]
↑n+1
J (A)(w) ≤ [�G′ ]↑2n+2

J′ (A)(w).
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Define the intermediate interpretation I′:

I′(C) =
⎧⎨
⎩[�G′ ]↑2n

J′ (C), C ∈ N

[�G′ ]↑2n+1

J′ (C), C = Bβ

Then, [�G′ ]↑2n

J′ � I′ � [�G′ ]↑2n+1

J′ . Furthermore, I′(Bβ) = [�G′ ]↑2n+1

J′ (Bβ) = [�G′ ]↑2n

J′ (β) = Î′(β).

Consider any ruleA → γ1& · · ·&γm&¬δ1& · · ·&¬δr in P. From the definition ofG andG′, there is a rule A → γ ′
1& · · ·&γ ′

m
&¬δ′

1& · · ·&¬δ′
r in P′, such that each γi (or δj) has resulted by replacing every occurrence of Bβ in γ ′

i (respectively, δ
′
i ) withβ .

Then, it is easy to see that Î′(γi) = Î′(γ ′
i ). From the induction hypothesis, using the fact that [�G′ ]↑n

J′ (Bβ)(w) ≤̂
([�G′ ]↑n

J′ )(β)(w), we get:
̂

([�G′ ]↑n

J′ )(γ ′
i )(w) ≤ ̂

([�G′ ]↑n

J′ )(γi)(w) ≤ ̂
([�G]

↑n
J )(γi)(w) ≤ ̂

([�G′ ]↑2n

J′ )(γi)(w) ≤ Î′(γi)(w) =
Î′(γ ′

i )(w) ≤ ̂
([�G′ ]↑2n+1

J′ )(γ ′
i )(w). Furthermore, from the definition of J, J′ we have that Ĵ(δj) = Ĵ′(δj) = Ĵ′(δ′

j ).

The above facts imply that if there exists a rule A → γ1& · · ·&γm&¬δ1& · · ·&¬δr in P such that
̂

([�G]
↑n
J )(γi)(w) = 1 for

every i and Ĵ(δj)(w) = 0 for every j, then there exists a corresponding rule A → γ ′
1& · · ·&γ ′

m&¬δ′
1& · · ·&¬δ′

r in P′ such that̂
([�G′ ]↑2n+1

J′ )(γ ′
i )(w) = 1 for every i and Ĵ′(δ′

j )(w) = 0 for every j. Thus, if [�G]
↑n+1
J (A)(w) = [�G]J([�G]↑n

J )(A)(w) = 1,

then [�G′ ]↑2n+2

J′ (A)(w) = [�G′ ]J′([�G′ ]↑2n+1

J′ )(A)(w) = 1. In the same way we get that, if [�G′ ]↑2n+2

J′ (A)(w) = 0, then

[�G]
↑n+1
J (A)(w) = 0, which implies that if [�G]

↑n+1
J (A)(w) = 1

2
, then [�G′ ]↑2n+2

J′ (A)(w) ≥ 1
2
. Therefore, in any case it

holds [�G]
↑n+1
J (A)(w) ≤ [�G′ ]↑2n+2

J′ (A)(w).

In order to prove that [�G′ ]↑n+1

J′ (A)(w) ≤ [�G]
↑n+1
J (A)(w), we consider analogous cases as above (using the fact that̂

([�G′ ]↑n

J′ )(γ ′
i )(w) ≤ ̂

([�G]
↑n
J )(γi)(w) and Ĵ(δj) = Ĵ′(δ′

j )).

Therefore, for all n ≥ 0, [�G′ ]↑n

J′ (A)(w) ≤ [�G]
↑n
J (A)(w) ≤ [�G′ ]↑2n

J′ (A)(w).

From thedefinition of
G , the above two inequalities imply that
G(J)(A) = 
G′(J′)(A), for everyA ∈ N. This implies that,


̂G(J)(β) = ̂
G′(J′)(β). Since we have shown that [�G′ ]↑2n+1

J′ (Bβ) = ̂
([�G′ ]↑2n

J′ )(β), we have 
G′(J′)(Bβ) = ̂
G′(J′)(β).

Combining the last two equalities we have 
G′(J′)(Bβ) = 
̂G(J)(β).
Using the above facts and an easy induction on n, we can prove that MG,n(A) = MG′ ,n(A) from which the lemma follows.

�
Lemma 33. Let G = (�,N, P, S) be a Boolean grammar. Then, there exists a Boolean grammar G′ = (�,N′, P′, S) in pre-normal

form, such that MG(S) = MG′(S).

Proof. The Boolean grammar G′ is constructed from G, using a transformation that consists of three steps. In the first step,

terminal symbols are eliminated from rules containing Boolean connectives or concatenation. This is obtained by adding

a new rule Aa → a, for every terminal symbol a ∈ �, where Aa is a new non-terminal symbol, and then replacing every

occurrence of a in the rules of the above kind by Aa.

The second step of the transformation eliminates concatenation from the rules of the new grammar containing conjunc-

tion. In order to do this, for every β ∈ N∗ with |β| ≥ 2, such that at least one of the literals β or ¬β appears in the body of

some rule that contains conjunction, we add a new rule Bβ → β , where Bβ is a new non-terminal symbol. Then, we replace

every occurrence of literal β (or ¬β) by Bβ (respectively, ¬Bβ ) in any rule with conjunction.

Finally, the third step of the transformation eliminates long concatenations. More specifically, while there exists a rule

A → B1B2B3 . . . Bk with k ≥ 3 in the current grammar, we pick a new non-terminal D and replace this rule by the rules

A → DB3 . . . Bk and D → B1B2.

It is easy to see that the third step, after finitely many iterations, produces a Boolean grammar G′ in pre-normal form.

Moreover, fromLemma32 (which is applied several times for each stepof the transformation) it follows thatMG(S) = MG′(S).
�

5.2. Direct form

Based on the pre-normal form derived in the previous section, we now construct the direct form of the grammar: if a

string of length one can be produced by a non-terminal in the previous form of the grammar, then a rule expressing directly

this fact is inserted into the grammar.

Definition 34. Let G = (�,N, P, S) be a Boolean grammar in pre-normal form. Then, the direct form of G, denoted by Gδ ,

is the Boolean grammar Gδ = (�,N ∪ {U}, P ∪ R, S), where U /∈ N is a special non-terminal symbol that represents the set
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in which all strings have the value 1
2
and R={U → ¬U} ∪ {A → a|a ∈ �, A ∈ N andMG(A)(a) = 1} ∪ {A → a&U|a∈�,

A ∈ N and MG(A)(a) = 1
2
}.

The proof of the following lemma (as-well-as of Lemma 37 later on) are quite straightforward but rather tedious since

they require lengthy inductions and the analysis of different cases that are quite similar in their treatment. The proof given

below adapts and uses a well-known technique from the theory of programming languages (see for example [12] [pp. 209]):

in order to show that two grammars, say G1 and G2, are equivalent, it suffices to show that the well-founded model of each

grammar is a fixed-point of the 
 operator of the other grammar. In other words, it suffices to show that MG1
= 
G2

(MG1
)

and MG2
= 
G1

(MG2
). Then, since we know that the least fixed-point of 
G1

is MG1
and the least fixed-point of 
G2

is MG2
,

we get thatMG1
�F MG2

andMG2
�F MG1

, which implies thatMG1
= MG2

. The proof of the following lemma illustrates in a

more precise way this technique:

Lemma 35. Let G = (�,N, P, S) be a Boolean grammar in pre-normal form, and let Gδ = (�,N ∪ {U}, P ∪ R, S) be its direct

form. Then, for every C ∈ N and for every w ∈ �∗,MG(C)(w) = MGδ (C)(w).

Proof. We demonstrate that an appropriate extension of MG to N ∪ {U}, which we denote by M∗
G , is a fixed-point of 
Gδ .

Similarly, we argue that the restriction of MGδ to N, which we denote by M
−
Gδ
, is a fixed-point of 
G . The result then follows

easily.

DefineM∗
G so thatM∗

G(C) = MG(C) for every C ∈ N andM∗
G(U)(w) = 1

2
for everyw ∈ �∗. We claim thatM∗

G = 
Gδ (M
∗
G).

It suffices to show that for all A ∈ N ∪ {U} and all w ∈ �∗, it isM∗
G(A)(w) = 
Gδ (M

∗
G)(A)(w).

Suppose first that A = U. Since M∗
G(U)(w) = 1

2
and the only rule in P ∪ R that defines U is U → ¬U, it follows that

[�G]
↑n

M∗
G
(U)(w) = 1

2
, for every w and for every n ≥ 1. Therefore 
Gδ (M

∗
G)(U)(w) = 1

2
= M∗

G(U)(w).

Consider now the remaining case, namely A ∈ N. We know that M∗
G(A)(w) = MG(A)(w) = 
G(MG)(A)(w) (from the

definition ofM∗
G and from the fact thatMG is a fixed-point of 
G). Therefore, it suffices to prove that for every A ∈ N and for

every w ∈ �∗, 
G(MG)(A)(w) = 
Gδ (M
∗
G)(A)(w). In order to prove this, we will first show that there exists some integer

constant k such that for every n, [�G]
↑n
MG

(A)(w) ≤ [
�Gδ

]↑n

M∗
G
(A)(w) ≤ [�G]

↑n+k
MG

(A)(w). We select k as follows: consider any

B ∈ N and a ∈ �. Since MG(B)(a) = 
G(MG)(B)(a) from the definition of the 
G operator there exists a least integer kB,a

such that MG(B)(a) = [�G]
↑kB,a
MG

(B)(a). We now define k = max{kB,a|B ∈ N, a ∈ �}.
We now prove by induction on n that for every n ≥ 0, for ever A ∈ N and for every w ∈ �∗, [�G]

↑n
MG

(A)(w)

≤ [
�Gδ

]↑n

M∗
G
(A)(w) ≤ [�G]

↑n+k
MG

(A)(w). The basis case is obvious, since [�G]
↑0
MG

(A)(w) = [
�Gδ

]↑0

M∗
G
(A)(w) = 0. Assume the

statement holds for n; we first demonstrate that
[
�Gδ

]↑n+1

M∗
G

(A)(w) ≤ [�G]
↑n+k+1
MG

(A)(w).

Suppose first that
[
�Gδ

]↑n+1

M∗
G

(A)(w) = 1. If this value is obtained using a rule in P, then using the induction hypothesis

and the relationship between MG and M∗
G , we get that [�G]

↑n+k+1
MG

(A)(w) = 1. On the other hand, if this value is obtained

using a rule A → a in R, then w = a and from the construction of Gδ it is MG(A)(a) = 1. From the definition of k we have

[�G]
↑n+k+1
MG

(A)(w) = 1.

Next, suppose that
[
�Gδ

]↑n+1

M∗
G

(A)(w) = 1
2
. Suppose for the sake of contradiction that [�G]

↑n+k+1
MG

(A)(w) = 0. If w =
α ∈ �, then from the definition of k, it isMG(A)(a) = 0. Therefore, all the rules in Rwith head A are of the form A → b, with

b /= w. Using the inductionhypothesis and the relationshipbetweenMG andM∗
G ,weeasilyobtain that

[
�Gδ

]↑n+1

M∗
G

(A)(w) = 0,

which is a contradiction. Therefore, [�G]
↑n+k+1
MG

(A)(w) ≥ 1
2
.

Finally, thecase inwhich
[
�Gδ

]↑n+1

M∗
G

(A)(w)=0 is trivial. Therefore, inanycase it is
[
�Gδ

]↑n+1

M∗
G

(A)(w)≤[�G]
↑n+k+1
MG

(A)(w).

Now, in order to prove that [�G]
↑n+1
MG

(A)(w) ≤ [
�Gδ

]↑n+1

M∗
G

(A)(w), we observe that the set of rules of G that define A, is a

subset of the corresponding set of rules of Gδ . This implies, using the induction hypothesis and the relationship betweenMG

and M∗
G , that if [�G]

↑n+1
MG

(A)(w) = 1 then
[
�Gδ

]↑n+1

M∗
G

(A)(w) = 1 and if
[
�Gδ

]↑n+1

M∗
G

(A)(w) = 0 then [�G]
↑n+1
MG

(A)(w) = 0

from which our claim follows immediately.

From the definition of the 
 operator, we get 
G(MG)(A)(w) = 
Gδ (M
∗
G)(A)(w). Thus, we have proved that M∗

G =

Gδ (M

∗
G). SinceMGδ is the least fixed-point of 
Gδ with respect to �F , this implies thatMGδ �F M∗

G .

Now, let M
−
Gδ

be the restriction of MGδ to N. In order to use a similar technique as above, we need to show that for every

A ∈ N and for every a ∈ �, [�G]
↑k

M
−
Gδ

(A)(a) = MG(A)(a).

We first show that MG(A)(a) = M
−
Gδ

(A)(a). From MGδ �F M∗
G , it follows that M

−
Gδ

(A)(a) ≤F MG(A)(a). Furthermore,

MG(A)(a) ≤F M
−
Gδ

(A)(a) follows from the following two facts:
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• ifMG(A)(a) = 1, then R contains the rule A → a and

• ifMG(A)(a) = 0, then the rules in R that define A are of the form A → bwith b /= a.

Therefore, for every A ∈ N and for every a ∈ �, MG(A)(a) = M
−
Gδ

(A)(a), which by a simple induction on n, gives that

[�G]
↑n
MG

(A)(a) = [�G]
↑n

M
−
Gδ

(A)(a). In particular [�G]
↑k

M
−
Gδ

(A)(a) = [�G]
↑k
MG

(A)(a) = MG(A)(a).

Now it is easy to prove that for every n, for every A ∈ N and for every w ∈ �∗, [�G]
↑n

M
−
Gδ

(A)(w) ≤ [
�Gδ

]↑n
MGδ

(A)(w) ≤
[�G]

↑n+k

M
−
Gδ

(A)(w). This implies that 
G(M
−
Gδ

)(A)(w) = 
Gδ (MGδ )(A)(w) = MGδ (A)(w) = M
−
Gδ

(A)(w), that isM−
Gδ

is a fixed-

point of 
G . SinceMG is the least fixed-point of 
G with respect to �F , we obtain thatMG �F M
−
Gδ
. Combining withMGδ �F

M∗
G , we get that for every A ∈ N and for every w ∈ �∗, it isMG(A)(w) = MGδ (A)(w). �

5.3. ε-Free form

The direct form of the grammar can now be transformed into the ε-free form, i.e., a form in which no non-terminal

produces the string ε.

Definition 36. Let G = (�,N, P, S) be a Boolean grammar in pre-normal form and let Gδ = (�,N ∪ {U}, Pδ , S) be its direct

form. The ε-free version of G, denoted by Gε , is the Boolean grammar (�,N ∪ {U}, Pε , S) where Pε is obtained as follows:

1. For every rule of the form A → B1& · · ·&Bm&¬C1& · · ·&¬Cn, (m + n ≥ 1, Bi, Cj ∈ N ∪ {ε}) in Pδ

• If Bi = ε for some i, then the rule is ignored in the construction of Pε .• Otherwise, if Ci = ε for some i, then the rule is included in Pε as it is.

• Otherwise, Pε contains the rule A → B1& · · ·&Bm&¬C1& · · ·&¬Cn&¬ε.

2. For every rule of the form A → BC (B, C ∈ N) in Pδ

• Pε contains the rule A → BC&¬ε.
• If MG(B)(ε) = 1 (respectively, MG(C)(ε) = 1), then Pε contains the rule A → C&¬ε (respectively, the rule

A → B&¬ε).
• If MG(B)(ε) = 1

2
(respectively, MG(C)(ε) = 1

2
), then Pε contains the rule A → C&U&¬ε (respectively, the rule

A → B&U&¬ε).

3. All the other rules in Pδ (i.e., the rules of the form U → ¬U, A → a, and A → a&U, where a ∈ �) are retained in Pε .

Lemma 37. Let G = (�,N, P, S) be a Boolean grammar in pre-normal form, let Gδ = (�,N ∪ {U}, Pδ , S) be its direct form, and

let Gε = (�,N ∪ {U}, Pε , S) be its ε-free version. Then, for every A ∈ N and for every w ∈ �+,MG(A)(w) = MGε (A)(w).

Proof. We demonstrate that a slightly modified version of MGδ , which we denote by M∗
Gδ
, is a fixed-point of 
Gε . Similarly,

we argue that a slightly modified version M
+
Gε

of MGε is a fixed-point of 
Gδ . The result then follows easily.

We start by defining the interpretationM∗
Gδ
:

M∗
Gδ

(A)(w) =
{
MGδ (A)(w), w /= ε
0, otherwise

We claim that M∗
Gδ

= 
Gε (M
∗
Gδ

). It suffices to show that for all A ∈ N and all w ∈ �∗, it is M∗
Gδ

(A)(w) = 
Gε (M
∗
Gδ

)(A)(w).
We distinguish two cases. The first case is for w = ε. Since every rule that defines A in Gε has a conjunct that is either

¬ε or a terminal symbol, by an easy induction on n, we obtain that
[
�Gε

]↑n

M∗
Gδ

(A)(ε) = 0 for every A ∈ N. Therefore,


Gε (M
∗
Gδ

)(A)(ε) = 0 = M∗
Gδ

(A)(ε).

Consider now the second case, namely w /= ε. We know that M∗
Gδ

(A)(w) = MGδ (A)(w) = 
Gδ (MGδ )(A)(w) (from the

definition of M∗
Gδ

and from the fact that MGδ is a fixed-point of 
Gδ ). Thus, it suffices to prove that 
Gδ (MGδ )(A)(w) =

Gε (M

∗
Gδ

)(A)(w). In order to prove this it suffices to prove that there exists some constant k such that for every n,[
�Gδ

]↑n
MGδ

(A)(w) ≤ [
�Gε

]↑n

M∗
Gδ

(A)(w) ≤ [
�Gδ

]↑n+k
MGδ

(A)(w). We select k as follows: consider any symbol B ∈ N. Since

MGδ (B)(ε)=
Gδ (MGδ )(B)(ε) from the definition of
Gδ , there exists a least integer kB such thatMGδ (B)(ε)=
[
�Gδ

]↑kB
MGδ

(B)(ε).

We define k = max{kB|B ∈ N}.
We will prove by induction on n that for every n ≥ 0, for every A ∈ N and for all w ∈ �+ it is:

[
�Gε

]↑n

M∗
Gδ

(A)(w) ≤[
�Gδ

]↑n+k
MGδ

(A)(w).
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The basis case is obvious, since
[
�Gε

]↑0

M∗
Gδ

(A)(w) = 0. Assume the statement holds for n; we demonstrate that[
�Gε

]↑n+1

M∗
Gδ

(A)(w) ≤ [
�Gδ

]↑n+k+1
MGδ

(A)(w). We distinguish three cases:

Case 1:
[
�Gε

]↑n+1

M∗
Gδ

(A)(w) = 1. We examine in Pε the rule types that may have forced the value of
[
�Gε

]↑n+1

M∗
Gδ

(A)(w) to

become equal to 1 (notice that we need to consider only rules that do not have the conjunct U in their bodies):

• A → a. This implies that w = a. Moreover, this rule also appears in Pδ . Therefore,
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 1.

• A → B1& · · ·&Bm&¬C1& · · ·&¬Cr&¬ε,whichalso appears inPδ (possiblywithout the¬ε at theend). FromDefinition14,

we have that for all Bi it is
[
�Gε

]↑n

M∗
Gδ

(Bi)(w) = 1 and for all Cj it is M̂
∗
Gδ

(¬Cj)(w) = 1. From the induction hypothesis, we

have
[
�Gδ

]↑n+k
MGδ

(Bi)(w) = 1 for all Bi, and from the definition of M∗
Gδ

we have M̂Gδ (¬Cj)(w) = 1 for all Cj . Since Pδ also

contains this rule, we have
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 1.

• A → BC&¬ε. Then thereexistw1,w2 ∈ �∗ such thatw1w2 = w andalso
[
�Gε

]↑n

M∗
Gδ

(B)(w1) = 1and
[
�Gε

]↑n

M∗
Gδ

(C)(w2)=
1. Since

[
�Gε

]↑n

M∗
Gδ

(B)(ε) = [
�Gε

]↑n

M∗
Gδ

(C)(ε) = 0, we have that w1 /= ε and w2 /= ε. From the induction hypothesis we

have
[
�Gδ

]↑n+k
MGδ

(B)(w1) = 1 and
[
�Gδ

]↑n+k
MGδ

(C)(w2) = 1. Moreover, Pδ contains the rule A → BC, which implies that[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 1.

• A → B&¬ε, where Pδ contains the rule A → BC (or the rule A → CB) for some C such that MGδ (C)(ε) = 1. Then, it is[
�Gε

]↑n

M∗
Gδ

(B)(w) = 1. From the induction hypothesis we have
[
�Gδ

]↑n+k
MGδ

(B)(w) = 1. Furthermore, from the selection

of k we have that
[
�Gδ

]↑n+k
MGδ

(C)(ε) = 1. Consequently,
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 1.

Case 2:
[
�Gε

]↑n+1

M∗
Gδ

(A)(w) = 1
2
. Wewill show that

[
�Gδ

]↑n+k+1
MGδ

(A)(w) ≥ 1
2
, or equivalently that

[
�Gδ

]↑n+k+1
MGδ

(A)(w) /= 0.

Suppose for the sake of contradiction that
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 0. We examine the rules that define A in Pε . Each of them

has one of the following types:

• A → a[&U]. But then, this rule also exists in Pδ . Since
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 0, we have that a /= w, which implieŝ
(
[
�Gε

]↑n

M∗
Gδ

)(a)(w) = 0.

• A → B1& · · ·&Bm&¬C1& · · ·&¬Cr&¬ε,whichalso appears inPδ (possiblywithout the¬ε at theend). FromDefinition14,[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 0 implies that either there exists some Bi such that
[
�Gδ

]↑n+k
MGδ

(Bi)(w) = 0, or there exists some

Cj such that M̂Gδ (¬Cj)(w) = 0. From the induction hypothesis and the definition ofM∗
Gδ

we have that either there exists

some Bi such that
[
�Gε

]↑n

M∗
Gδ

(Bi)(w) = 0, or there exists some Cj such that M̂∗
Gδ

(¬Cj)(w) = 0.

• A → BC&¬ε. But then, Pδ contains the rule A → BC. Thus, the fact that
[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 0 implies that for

every w1,w2 such that w1w2 = w we have that either
[
�Gδ

]↑n+k
MGδ

(B)(w1) = 0 or
[
�Gδ

]↑n+k
MGδ

(C)(w2) = 0. But then,

by the induction hypothesis, together with the fact that
[
�Gε

]↑n

M∗
Gδ

(B)(ε) = [
�Gε

]↑n

M∗
Gδ

(C)(ε) = 0, we have that for

every w1,w2 such that w1w2 = w it will be either
[
�Gε

]↑n

M∗
Gδ

(B)(w1) = 0 or
[
�Gε

]↑n

M∗
Gδ

(C)(w2) = 0. This implies that

̂
(
[
�Gε

]↑n

M∗
Gδ

)(BC)(w) = 0.

• A → B[&U]&¬ε. But then, the rule A → BC (or the rule A → CB) belongs to Pδ for some C such that MGδ (C)(ε) ≥ 1
2
.

From the selection of k we have that
[
�Gδ

]↑n+k
MGδ

(C)(ε) = MGδ (C)(ε) ≥ 1
2
. Now, since

[
�Gδ

]↑n+k+1
MGδ

(A)(w) = 0 it must

be the case that
[
�Gδ

]↑n+k
MGδ

(B)(w) = 0. From the induction hypothesis, this implies that
[
�Gε

]↑n

M∗
Gδ

(B)(w) = 0.

Therefore, for each rule that defines A in Pε , there either exists a positive li such that
̂

(
[
�Gε

]↑n

M∗
Gδ

)(li)(w) = 0 or a negative

li such that M̂∗
Gδ

(li)(w) = 0. FromDefinition 14, this implies that
[
�Gε

]↑n+1

M∗
Gδ

(A)(w) = 0, which is a contradiction. Therefore,[
�Gδ

]↑n+k+1
MGδ

(A)(w) ≥ 1
2
.

Case 3:
[
�Gε

]↑n+1

M∗
Gδ

(A)(w) = 0. In this case our claim obviously holds.
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Thus, we have proved that
[
�Gε

]↑n

M∗
Gδ

(A)(w) ≤ [
�Gδ

]↑n+k
MGδ

(A)(w). By using a similar inductive proof, we can show that

for every n,
[
�Gδ

]↑n
MGδ

(A)(w) ≤ [
�Gε

]↑n

M∗
Gδ

(A)(w).

All the above lead us to the conclusion that M∗
Gδ

= 
Gε (M
∗
Gδ

). Since MGε is the least fixed-point of 
Gε with respect to

�F , this implies that MGε �F M∗
Gδ
.

Now, it remains to show that a slightly modified version of MGε is a fixed-point of 
Gδ . More specifically, define:

M
+
Gε

(A)(w) =
{
MGε (A)(w), w /= ε
MGδ (A)(w), w = ε

We claim thatM
+
Gε

= 
Gδ (M
+
Gε

). It suffices to show that for all A ∈ N and all w ∈ �∗, it isM+
Gε

(A)(w) = 
Gδ (M
+
Gε

)(A)(w).

For w = ε, using the fact that M
+
Gε

(A)(ε) = MGδ (A)(ε), we can prove by an easy induction on n that
[
�Gδ

]↑n

M
+
Gε

(A)(ε) =[
�Gδ

]↑n
MGδ

(A)(ε) for every A ∈ N. Therefore, 
Gδ (M
+
Gε

)(A)(ε) = 
Gδ (MGδ )(A)(ε) = MGδ (A)(ε) = M
+
Gε

(A)(ε).

For w /= ε, it suffices to prove that 
Gδ (M
+
Gε

)(A)(w) = 
Gε (MGε )(A)(w). In order to prove this it suffices to prove that

for every n,
[
�Gδ

]↑n

M
+
Gε

(A)(w) ≤ [
�Gε

]↑n
MGε

(A)(w) ≤ [
�Gδ

]↑n+k

M
+
Gε

(A)(w). This can be proven in an analogous way as above.

Now, since MGδ is the least fixed-point of 
Gδ with respect to �F , we obtain that MGδ �F M
+
Gε
. Combining with MGε �F

M∗
Gδ
, we get that for every A ∈ N and for every w ∈ �+,MGδ (A)(w) = MGε (A)(w).

The lemma then follows from Lemma 35. �

5.4. The final step: binary normal form

In order to obtain a grammar in binary normal form, we need to eliminate rules of the form A → B1& · · ·&Bm&¬C1& · · ·
&¬Cn&¬ε. In order to do this we need to somehow pre-compute the effect of such rules. Notice now that the membership

of a string w, where |w| ≥ 2, in MG(A) depends only on the membership of w in each of M̂G(BC), for all BC that appear in

the right-hand sides of rules. We can express this dependency directly by a set of rules. In order to do this we treat each BC

that appears in the right-hand side of a rule as a Boolean variable (see also [8]).

We start by giving a definition that will play an important role in our subsequent development:

Definition 38. Let G be a Boolean grammar in pre-normal form and let Gε = (�,N ∪ {U}, P, S) be the ε-free version of G.

Let X = {BC|A → BC&¬ε ∈ P} and let V be a function from X to
{
0, 1

2
, 1

}
. Then, the extension of Gε with respect to V is the

grammar GV
ε = (�,N′ ∪ {U}, P′, S), which is defined as follows:

• N′ = N ∪ {Q0,Q1,Q 1
2
}, where each Qi represents the language in which all strings have value i.

• P′ contains the rules Q1 → ¬ε,Q1 → ε and Q 1
2

→ ¬Q 1
2
.

• Every rule A → BC&¬ε in P is replaced in P′ by the rule A → QV(BC)&¬ε.

• All the other rules in P are retained in P′.

Intuitively, in the above definition the non-terminals Q0,Q1 and Q 1
2
correspond, respectively, to the constant languages ∅,

�∗ and the language in which all strings get the value 1
2
. Moreover, GV

ε is a grammar is which every BC has been replaced by

a non-terminal that corresponds to one of these constant languages.

It is therefore straightforward to see that given any w1,w2 ∈ �∗ with |w1| ≥ 2 and |w2| ≥ 2, and any A ∈ N, it holds

that MGV
ε
(A)(w1) = MGV

ε
(A)(w2). In other words, for every language generated by a non-terminal symbol in GV

ε , one of the

following is true:

• All the strings in �∗ of length at least 2 are included in the language.

• The membership of all strings in �∗ of length at least 2 in the language is undefined.

• All the strings in �∗ of length at least 2 are excluded from the language.

This leads to our next definition:

Definition 39. Let G be a Boolean grammar in pre-normal form and let Gε = (�,N ∪ {U}, P, S) be the ε-free version of G.

Let X = {BC|A → BC&¬ε ∈ P} and let V be a function from X to
{
0, 1

2
, 1

}
. Then, the extension of V to non-terminal symbols

in N is denoted by V̂ and is defined as follows: V̂(A) = MGV
ε
(A)(w), for any w ∈ �∗ with |w| ≥ 2.

As we mentioned in the beginning of this subsection, for every stringw with length at least 2, the value inMG(A)(w) can be

computed from the values M̂G(BC)(w) for all BC that appear in the right-hand sides of rules. This is the intuition behind the

following technical lemma that will be used in the proof of correctness of our final transformation step:
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Lemma 40. Let G be a Boolean grammar in pre-normal form and let Gε = (�,N ∪ {U}, P, S) be the ε-free version of G. Let

X = {BC|A → BC&¬ε ∈ P} and let w ∈ �∗ with |w| ≥ 2. Define the function V from X to
{
0, 1

2
, 1

}
such that for all BC ∈ X it

is V(BC) = M̂Gε (BC)(w). Then, for all A ∈ N,MGε (A)(w) = V̂(A).

Proof. It suffices to show that for all A ∈ N, MGε (A)(w) = MGV
ε
(A)(w). This fact can be proved in two steps, namely that

MGV
ε
(A)(w) ≤F MGε (A)(w) and MGε (A)(w) ≤F MGV

ε
(A)(w). We demonstrate the first direction; the second one is similar

and omitted.

We therefore prove that MGV
ε
(A)(w) ≤F MGε (A)(w). Suppose for the sake of contradiction that there exists some A ∈ N

such that MGV
ε
(A)(w) 
≤F MGε (A)(w). Then, there must exist a minimum index k > 0 such that there exists A ∈ N with the

following property:

MGV
ε ,k

(A)(w) ∈ {0, 1} and MGV
ε ,k

(A)(w) /= MGε (A)(w)

Define the following sets:

S1 = {A ∈ N|MGV
ε ,k

(A)(w) = 1 /= MGε (A)(w)}
S0 = {A ∈ N|MGV

ε ,k
(A)(w) = 0 /= MGε (A)(w)}

We distinguish the following two cases:

Case 1: S1 /= ∅. Then, for every A ∈ S1 define r(A) to be the index that satisfies the following property:[
�GV

ε

]↑r(A)

M
GVε ,k−1

(A)(w) = 1 and
[
�GV

ε

]↑r(A)−1

M
GVε ,k−1

(A)(w) /= 1

Since
[
�GV

ε

]↑0

M
GVε ,k−1

(A)(w) = 0 and MGV
ε ,k

(A)(w) = 1, r(A) is well-defined. Choose A ∈ S1 such that r(A) is minimum. We

distinguish the following two subcases:

Subcase 1.1: There exists some rule A → Q1&¬ε in grammar GV
ε . From the definition of GV

ε this implies that there exists a

rule of the form A → BC&¬ε in grammar Gε such that V(BC) = 1. From the definition of V we get that M̂Gε (BC)(w) = 1.

This implies that theremust existm, j > 0 such that
[
�Gε

]↑j
MGε ,m−1

(BC)(w) = 1which implies that
[
�Gε

]↑j+1
MGε ,m−1

(A)(w) = 1

and therefore MGε (A)(w) = 1 (contradiction from our assumption that A ∈ S1).

Subcase 1.2: There exists a rule A → B1& · · ·&Bb&¬C1& · · · ¬Cc&¬ε in grammar GV
ε such that for all 1 ≤ i ≤ b,[

�GV
ε

]↑r(A)−1

M
GVε ,k−1

(Bi)(w) = 1 and for all 1 ≤ j ≤ c, MGV
ε ,k−1(Cj)(w) = 0. Then, MGV

ε ,k
(Bi)(w) = 1 and from the minimality

of k and of r(A) we have MGε (Bi)(w) = 1, for all i. Also, MGV
ε
(Cj)(w) = 0 and from the minimality of k we have that

MGε (Cj)(w) = 0, for all j. But since MGε is a model of Gε , this implies that MGε (A)(w) = 1 (contradiction).

Case 2: S1 = ∅, which implies that S0 /= ∅. Then, for every A ∈ S0, consider the set of rules {RA1, . . . , RAnA} in GV
ε with head A.

For every such rule RAi there exists a conjunct lAi such that one of the following is true:

• lAi = Q0, or

• lAi = B and MGV
ε ,k−1(B)(w) = 0, or

• lAi = ¬C and MGV
ε ,k−1(C)(w) = 1, or

• lAi ∈ S0, or

• lAi ∈ �.

In the first of the above cases, there exists at least one rule of the form A → BC&¬ε in Gε such that V(BC) = 0. From

the definition of V we get that for every such rule it is M̂Gε (BC)(w) = 0. This implies that there exists a least integer

mA
BC > 0 such that ̂(MGε ,m

A
BC

)(BC)(w) = 0. DefinemA
i = max{mA

BC |A → BC&¬ε ∈ P, M̂Gε (BC)(w) = 0}. In the second case,

using the minimality of k we get that MGε (B)(w) = 0, which implies that there exists a least integer mA
i > 0 such that

MGε ,m
A
i
(B)(w) = 0. In the third case, using the minimality of k we get that MGε (C)(w) = 1, which implies that there exists

a least integer mA
i > 0 such that MGε ,m

A
i
(C)(w) = 1. Finally, in the last two cases, let us take mA

i = 0. Now, define m =
max{mA

i |A ∈ S0, 1 ≤ i ≤ nA} + 1.

We will demonstrate that for every A ∈ S0, it is MGε ,m(A)(w) = 0, which will immediately lead us to the contradiction

thatMGε (A)(w) = 0. Consider an arbitrary A ∈ S0. Then for every rule R defining A inGε , there exists a corresponding rule R
A
i

in GV
ε ; moreover R contains a literal lR that corresponds to lAi . More specifically, if R is contained in GV

ε , i.e., it is R = RAi , then
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lR = lAi ; otherwise R is of the form A → BC&¬ε and lR = BC. We claim that in the latter case M̂Gε (BC)(w) = 0. In order to

prove this claim, suppose (for the sake of contradiction) that M̂Gε (BC)(w) /= 0. Then, either A → Q1 or A → Q 1
2
is a rule in

GV
ε which implies that MGV

ε
(A)(w) /= 0 (contradiction). Therefore, in this case the corresponding rule of R in GV

ε is A → Q0.

We now show by induction that for every n ≥ 0 and for every A ∈ S0 it is:
[
�Gε

]↑n
MGε ,m−1

(A)(w) = 0. The basis case

is trivial. Assume the result holds for n; we demonstrate it for n + 1. Consider any rule R in Gε with head A. If lR ∈ S0,

then from the induction hypothesis it is
[
�Gε

]↑n
MGε ,m−1

(lR)(w) = 0. If lR ∈ (N − S0) ∪ � or lR = BC (where B, C ∈ N), then

from the definition ofm it holds M̂Gε ,m(lR)(w) = 0,which implies that
̂

(
[
�Gε

]↑n
MGε ,m−1

)(lR)(w) = 0. Finally, if lR = ¬C (where

C ∈ N), then from the definition ofm it holds ̂MGε ,m−1(lR)(w) = 0. Therefore,
[
�Gε

]↑n+1
MGε ,m−1

(A)(w) = 0,which completes the

inductive step. Therefore,MGε ,m(A)(w) = 0 which implies thatMGε (A)(w) = 0 (contradicting our assumption that A ∈ S0).

�

Given anon-empty setX , the functions fromX to
{
0, 1

2
, 1

}
canbeorderedby thedegree of information they contain (assuming

that the value 1
2
contains no information). The minimal and maximal functions with respect to this ordering will play an

important role in the construction of the binary normal form of a given grammar G.

Definition 41. LetX beanon-emptysetand letV ,W be functions fromX to
{
0, 1

2
, 1

}
.WedenotebyVi theset {x ∈ X|V(x) = i}.

We write V �F W if V0 ⊆ W0 and V1 ⊆ W1.

The following lemma states that the extensions of functions of the above form to non-terminal symbols, respects the above

ordering. The proof of the lemma is straightforward:

Lemma 42. Let G be a Boolean grammar in pre-normal form and let Gε = (�,N, P, S) be its ε-free version. Moreover, let

X = {BC|A → BC&¬ε ∈ P} and let V ,W be functions from X to {0, 1
2
, 1} such that V �F W . Then, V̂(A) ≤F Ŵ(A) for every

A ∈ N.

Using all the above, we can now define the transformation that brings a Boolean grammar into normal form:

Definition 43. Let G be a Boolean grammar in pre-normal form and let Gε = (�,N ∪ {U}, P, S) be the ε-free version

of G. Let X = {BC|A → BC&¬ε ∈ P} and let V be the set of all functions from X to
{
0, 1

2
, 1

}
. The normal form Gn =

(�,N ∪ {U, T}, P′, S) of G is the grammar obtained from Gε as follows:

• P′ contains all the rules in P of the form A → a and A → a&U, where a ∈ �, the ruleU → ¬U in P and the rule T → ¬ε,
where T /∈ N is a special symbol which represents the set in which all non-empty strings have value 1.

• For every A ∈ N let TA = {V ∈ V|V̂(A) = 1}. For every minimal (with respect to �F ) element V of TA, P
′ contains the

rule:

A → x1& . . .&xk&¬y1& . . .&¬ym&TT

where {x1, . . . , xk} = V1 and {y1, . . . , ym} = V0.

• For every A ∈ N let UA = {V ∈ V|V̂(A) = 1
2
}. For every maximal (with respect to �F ) element V of UA, P

′ contains the
rule:

A → x1& . . .&xk&¬y1& . . .&¬ym&z1&¬z1& . . .&zr&¬zr&TT&U

where {x1, . . . , xk} = V1, {y1, . . . , ym} = V0 and {z1, . . . , zr} = V 1
2
.

Notice that in the former case we consider only minimal elements, because if V ′ �F V and V̂ ′(A) = 1 then V̂(A) = 1.

Similarly in the latter case we consider only maximal elements, because if V ′ �F V and V̂(A) = 1
2
then V̂ ′(A) = 1

2
. These

ideas are formalized by the proof of the following lemma.

Lemma 44. Let G be a Boolean grammar in pre-normal form, let Gε = (�,N ∪ {U}, P, S) be its ε-free form and let Gn =
(�,N ∪ {U, T}, P′, S) be its binary normal form. Then, for every A ∈ N and for every w ∈ �+,MG(A)(w) = MGn

(A)(w).

Proof. Let X = {BC|A → BC&¬ε ∈ P}.We prove by induction on the length ofw that for every A ∈ N and for everyw ∈ �∗,
MGε (A)(w) = MGn

(A)(w). Then, the lemma follows fromLemma37. Forw = ε, it holdsMGε (A)(w) = MGn
(A)(w) = 0, since

every rule of Gε with head in N contains a conjunct that is either a terminal symbol in � or ¬ε and every rule of Gn with

head in N contains a conjunct that is either a terminal symbol in � or TT .

Moreover, if |w| = 1 the statement follows easily due to the fact that in Gε all the information regarding strings of length

1 is produced by simple rules (i.e., rules that have been introduced during the construction of the direct form ofG);moreover,

Gn contains these same rules regarding strings of length 1 while all its other rules concern strings of length 2 or more, since
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they contain the conjunct TT . Assume now that the statement holds for all w of length less than or equal to n for some

n ≥ 1; we demonstrate the case for n + 1. In particular, we show that for every v ∈ {1, 1
2
}, MGε (A)(w) = v if and only if

MGn
(A)(w) = v.

Consider aw ∈ �∗ with |w| ≥ 2 and define function V as follows: V(BC) = MGε (BC)(w), for all BC ∈ X . From Lemma 40,

V̂(A) = MGε (A)(w).

We first prove thatMGε (A)(w) = 1 if and only ifMGn
(A)(w) = 1.We examine the two directions of the statement. For the

left-to-right direction, assume that MGε (A)(w) = 1. Then, it is also V̂(A) = 1. Consider a minimal function V ′ with respect

to �F , such that V̂ ′(A) = 1 and V ′ �F V . By construction, in Gn there exists a rule of the form: A → x1& . . .&xk&¬y1& . . .
&¬ym&TT where {x1, . . . , xk} = V ′

1 ⊆ V1 and {y1, . . . , ym} = V ′
0 ⊆ V0. Therefore, for all 1 ≤ i ≤ k, M̂Gε (xi)(w) = 1 and for

all 1 ≤ j ≤ m, M̂Gε (yj)(w) = 0. From the induction hypothesis and the fact that for all D ∈ N it holds that MGε (D)(ε) =
MGn

(D)(ε) = 0, we get that for all 1 ≤ i ≤ k, M̂Gn
(xi)(w) = 1 and for all 1 ≤ j ≤ m, M̂Gn

(yj)(w) = 0. But this implies that

MGn
(A)(w) = 1 (sinceMGn

is a model of Gn).

In order to prove the right-to-left direction of the statement, assume that MGn
(A)(w) = 1. This implies that in Gn there

exists a rule of the form A → x1& . . .&xk &¬y1& . . .&¬ym&TT such that for all 1 ≤ i ≤ k, M̂Gn
(xi)(w) = 1, and for all

1 ≤ j ≤ m, M̂Gn
(yj)(w) = 0. From the induction hypothesis and the fact thatMGε (D)(ε) = MGn

(D)(ε) = 0 for every D ∈ N,

we get that for all 1 ≤ i ≤ k, M̂Gε (xi)(w) = V̂(xi) = 1 and for all 1 ≤ j ≤ m, M̂Gε (yj)(w) = V̂(yj) = 0. Notice now that the

existence of the rule A → x1& . . .&xk&¬y1& . . .&¬ym&TT in Gn implies that there exists a function V ′ such that for all

1 ≤ i ≤ k and for all 1 ≤ j ≤ m, V ′(xi) = 1, V ′(yj) = 0, and for every z ∈ X with z /= xi and z /= yj , V
′(z) = 1

2
; additionally,

V̂ ′(A) = 1. From the first three properties of V ′, we get that V ′ �F V . Using Lemma 42, we obtain that V̂(A) = 1, which

implies thatMGε (A)(w) = 1.

We now prove thatMGε (A)(w) = 1
2
if and only ifMGn

(A)(w) = 1
2
. For the left-to-right direction, assume thatMGε (A)(w) =

1
2
. Then, it is also V̂(A) = 1

2
. Consider a maximal function V ′ with respect to �F , such that V̂ ′(A) = 1

2
and V �F V ′. By

construction, in Gn there exists a rule:

A → x1& . . .&xk&¬y1& . . .&¬ym&z1&¬z1& . . .&zr&¬zr&TT&U

such that {x1, . . . , xk}=V ′
1, {y1, . . . , ym}=V ′

0 and {z1, . . . , zr}=V ′
1
2

. Since V �F V
′ we have that V1⊆{x1, . . . , xk} ⊆ V1 ∪ V 1

2
,

V0 ⊆ {y1, . . . , ym} ⊆ V0 ∪ V 1
2
and {z1, . . . , zr} ⊆ V 1

2
. This means that for all 1 ≤ i ≤ k, M̂Gε (xi)(w) ≥ 1

2
, for all 1 ≤ j ≤ m,

M̂Gε (yj)(w) ≤ 1
2
and for all 1 ≤ l ≤ r, M̂Gε (zl)(w) = 1

2
. From the induction hypothesis and the fact that for allD ∈ N it holds

that MGε (D)(ε) = MGn
(D)(ε) = 0, we get that for all 1 ≤ i ≤ m, M̂Gn

(xi)(w) ≥ 1
2
, for all 1 ≤ j ≤ r, M̂Gn

(yj)(w) ≤ 1
2
and

for all 1 ≤ l ≤ r, M̂Gn
(zl)(w) = 1

2
. Since MGn

is a model of Gn, we obtain that MGn
(A)(w) ≥ 1

2
. Notice now that it cannot be

MGn
(A)(w) = 1:we have shown that thiswould implyMGε (A)(w) = 1,which is a contradiction. Therefore,MGn

(A)(w) = 1
2
.

Now, consider the right-to-left direction of the statement, i.e., assume that MGn
(A)(w) = 1

2
. We have to distinguish the

following two cases:

Case 1: There exists in Gn a rule of the form:

A → x1& . . .&xk&¬y1& . . .&¬ym&z1&¬z1& . . .&zr&¬zr&TT&U

such that for all 1 ≤ i ≤ k, M̂Gn
(xi)(w) ≥ 1

2
, for all 1 ≤ j ≤ m, M̂Gn

(yj)(w) ≤ 1
2
and for all 1 ≤ l ≤ r, M̂Gn

(zl)(w) = 1
2
. From

the induction hypothesis and the fact that MGε (D)(ε) = MGn
(D)(ε) = 0 for every D ∈ N, we get that for all 1 ≤ i ≤ k it is

M̂Gε (xi)(w) = V̂(xi) ≥ 1
2
, for all 1 ≤ j ≤ m it is M̂Gε (yj)(w) = V̂(yj) ≤ 1

2
and for all 1 ≤ l ≤ r it is M̂Gε (zl)(w) = V̂(zl) = 1

2
.

Notice now that the existence of the above rule for A in Gn implies that there exists a function V ′ such that for all 1 ≤ i ≤ k it

is V ′(xi) = 1, for all 1 ≤ j ≤ m it is V ′(yj) = 0, for all 1 ≤ l ≤ r it is V ′(zl) = 1
2
, and additionally, V̂ ′(A) = 1

2
. From the first

three properties of V ′, we get that V �F V ′. Using Lemma 42, we obtain that V̂(A) = 1
2
and therefore thatMGε (A)(w) = 1

2
.

Case 2: There exists in Gn a rule of the form:

A → x1& . . .&xk&¬y1& . . .&¬ym&TT

such that for all 1 ≤ i ≤ k it is M̂Gn
(xi)(w) ≥ 1

2
, for all 1 ≤ j ≤ m it is M̂Gn

(yj)(w) ≤ 1
2
and there exists either some i,

1 ≤ i ≤ k such that M̂Gn
(xi)(w) = 1

2
or some j, 1 ≤ j ≤ m such that M̂Gn

(yj)(w) = 1
2
. From the induction hypothesis and

the fact that MGε (D)(ε) = MGn
(D)(ε) = 0 for every D ∈ N, we get that for all 1 ≤ i ≤ k it is M̂Gε (xi)(w) = V̂(xi) ≥ 1

2
, for

all 1 ≤ j ≤ m it is M̂Gε (yj)(w) = V̂(yj) ≤ 1
2
and there exists either some i such that M̂Gε (xi)(w) = V̂(xi) = 1

2
or some j such

that M̂Gε (yj)(w) = V̂(yj) = 1
2
.

Notice now that the existence of rule A → x1& . . .&xk&¬y1& . . .&¬ym&TT in Gn implies that there exists a function

V ′ such that V ′
1 = {x1, . . . , xk}, V ′

0 = {y1, . . . , ym} and additionally, V ′ is a minimal function with respect to �F with the

property V̂ ′(A) = 1. Now, define V− so that V
−
1 = V1 ∩ V ′

1 and V
−
0 = V0 ∩ V ′

0. Also define V+ so that V
+
1 = V1 ∪ V ′

1 and

V
+
0 = V0 ∪ V ′

0. Using the properties of V and V ′ it is easy to check that V
+
1 ∩ V

+
0 = ∅, that is, V+ is well-defined. Obviously,
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V− �F V ′ �F V+. Thus, from Lemma 42, we obtain that V̂+(A) = 1. Furthermore, V− /= V ′, since from the definition of V

there exists either some i, 1 ≤ i ≤ k, such that V(xi) = 1
2
or some j, 1 ≤ j ≤ m, such that V(yj) = 1

2
. From the minimality

property of V we get that V̂−(A) /= 1. Thus, from Lemma 42 we obtain that V̂−(A) = 1
2
. Moreover, V− �F V �F V+, which

implies that V̂(A) = MGε (A)(w) ∈ { 1
2
, 1}. However, it cannot beMGε (A)(w) = 1, sincewe have shown that this would imply

MGn
(A)(w) = 1, which is a contradiction. Therefore, MGε (A)(w) = 1

2
. �

Given the above lemmas, a simple step remains in order to reach the statement of Theorem30: if in the original grammarG

it isMG(S)(ε) /= 0, then a rule of the form S → ε or S → ε&U is added to the grammar that has resulted after the processing

implied by all the above lemmas. The resulting grammar is then in binary normal form and defines the same language as the

initial one.

6. Parsing under the well-founded semantics

We next present an algorithm that computes the truth value of the membership of an input stringw /= ε in the language

defined by a grammar G, which is assumed to be in binary normal form. The algorithm computes the value of MG(A)(u) for
every non-terminal symbol A and every substring u of w in a bottom-up manner. It uses two matrices M and Q to keep the

appropriate intermediate values that are needed for the computation. Suppose that the input string is w = a1 · · · an. Then
M[A, i, j] keeps the value MG(A)(ai · · · aj) and Q [B, C, i, j] keeps the value M̂G(BC)(ai · · · aj). By conventionmin0i=1vi = 1.

Algorithm for parsing under G = (�,N, P, S)

Input: string w = a1 · · · an ∈ �+

Initialization step:

for i := 1 to n do begin

for every A ∈ N do

if there exists a rule A → ai then M[A, i, i] := 1

else if there exists a rule A → ai&U then M[A, i, i] := 1
2

elseM[A, i, i] := 0

end

Main loop:

for d := 2 to n do

for i := 1 to n − d + 1 do begin

j := i + d − 1

for every B, C ∈ N such that BC appears in the right-hand side of a rule do

Q [B, C, i, j] := max
j−1

	=i min{M[B, i, 	],M[C, 	 + 1, j]}
for every A ∈ N doM[A, i, j]:=0
for every rule A → B1C1& . . .&BmCm&¬D1E1& . . .&¬DrEr&TT&U do begin

v := min{ 1
2
, minm

p=1 Q [Bp, Cp, i, j], minr
q=1(1 − Q [Dq, Eq, i, j])}

if v > M[A, i, j] then M[A, i, j] := v

end

for every rule A → B1C1& . . .&BmCm&¬D1E1& . . .&¬DrEr&TT do begin

v := min{minm
p=1 Q [Bp, Cp, i, j], minr

q=1(1 − Q [Dq, Eq, i, j])}
if v > M[A, i, j] then M[A, i, j] := v

end

end

returnM[S, 1, n]
The correctness of the above algorithm is established by the following theorem:

Theorem 45. Let G = (�,N, P, S) be a fixed Boolean grammar. Then, for every string w = a1 · · · an ∈ �+, the above algorithm

computes the correct value MG(A)(w), in time O(n3).

Proof. In order to verify the correctness of the algorithm, we will prove that after the termination of the main loop, for

every A ∈ N and for every i, j, with 1 ≤ i ≤ j ≤ n, M[A, i, j] = MG(A)(ai · · · aj). Observe that, for every i, j, if i = j then the

valueM[A, i, j] is determined in the initialization step and does not change in the main loop; if i < j then the valueM[A, i, j]
is determined in the iteration of the main loop in which d = j − i + 1 and does not change in the next iterations.
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We will prove that M[A, i, j] = MG(A)(ai · · · aj), by induction on the length k of ai · · · aj . For the basis case, suppose that

k = 1, that is, i = j.

We first show thatM[A, i, i] = 1 if and only ifMG(A)(ai) = 1. Suppose thatM[A, i, i] = 1. Then there exists a rule A → ai
in P, which immediately implies that MG(A)(ai) = 1.

Conversely, suppose thatMG(A)(ai) = 1. This value cannot be obtained by a rule containing the conjunct TT , and therefore

it is obtained by a rule A → ai. But in this case the algorithm sets M[A, i, i] = 1 in its initialization step.

It remains to show that M[A, i, i] = 1
2
if and only if MG(A)(ai) = 1

2
. Suppose that M[A, i, i] = 1

2
. Then there exists a

rule A → ai&U in P. This implies that MG(A)(ai) /= 0. Also, it cannot be MG(A)(ai) = 1, since in this case we would have

M[A, i, i] = 1. Therefore,MG(A)(ai) = 1
2
.

Conversely, suppose thatMG(A)(ai) = 1
2
. Obviously P does not contain the rule A → ai. We claim that P contains the rule

A → ai&U. Suppose, for the sake of contradiction, that our claim is not true. Then every rule in P with head A, contains in its

body either conjunct TT or some conjunct b ∈ � with b /= ai. This implies thatMG(A)(ai) = 0 (contradiction). Therefore, P

contains the rule A → ai&U and the algorithm sets M[A, i, i] = 1
2
in its initialization step.

SupposenowthatM[A, i, j] = MG(A)(ai · · · aj)holds for everyA ∈ N and for all i, jwith j − i + 1 ≤ k (i.e., for all substrings

of w of length at most k).

Consider a substring ai · · · aj of w of length k + 1 (i.e., j − i + 1 = k + 1). The value of M[A, i, j] is determined in the

iteration of the main loop in which d = k + 1. Furthermore, at this point the values of M[B, i, 	] and M[C, 	 + 1, j] have

alreadybeen computed, for everyB, C ∈ N and for every	 such that i ≤ 	 < j (since	 − i + 1 ≤ k and j − (	 + 1) + 1 ≤ k).

From the induction hypothesisM[B, i, 	] = MG(B)(ai · · · a	) andM[C, 	 + 1, j] = MG(C)(a	+1 · · · aj). This implies (using

also the fact that MG(B)(ε) = MG(C)(ε) = 0) that Q [B, C, i, j] = M̂G(BC)(ai · · · aj).
Now it is easy to prove thatM[A, i, j] = 1 if andonly ifMG(A)(ai · · · aj) = 1 andM[A, i, j] = 1

2
if andonly ifMG(A)(ai · · · aj)

= 1
2
. We give a detailed proof only for the one direction of the first argument. The remaining parts of the proof are very

similar.

Suppose that M[A, i, j] = 1. Then there exists a rule

A → B1C1& . . .&BmCm&¬D1E1& . . .&¬DrEr&TT

in P such that Q [Bp, Cp, i, j] = 1, for 1 ≤ p ≤ m and Q [Dq, Eq, i, j] = 0, for 1 ≤ q ≤ r. This implies that M̂G(BpCp)(ai · · · aj) =
1, for 1 ≤ p ≤ m and M̂G(¬DqEq)(ai · · · aj) = 1, for 1 ≤ q ≤ r. SinceMG is a model of G, we haveMG(A)(ai · · · aj) = 1.

Therefore, for everyA ∈ N, and for every i, jwith 1 ≤ i ≤ j ≤ n it isM[A, i, j] = MG(A)(ai · · · aj). In particularM[S, 1, n] =
MG(S)(a1 · · · an), that is, the algorithm is correct.

We now show that the above algorithm runs in time O(n3). The initialization step performs n iterations, each requiring

time which is independent of the input, and depends only on the grammar. Therefore the initialization step requires time

O(n).
The main loop is a nested-loop that performs O(n2) iterations. In each iteration the computation of Q [B, C, i, j] requires

time O(n), while all the remaining tasks require time which is independent of the input. Therefore, the main loop requires

time O(n3), which dominates the running time of the algorithm. �

7. Conclusions

We have presented a novel semantics for Boolean grammars which has been inspired by techniques that have been

developed in the logic programming domain. Under this new semantics every Boolean grammar has a distinguished (three-

valued) model that satisfies its rules. Moreover, we have shown that this language is the least fixed-point of an appropriate

operator that is associatedwith the grammar. Finally,wehave demonstrated that every Boolean grammar can be transformed

into an equivalent one in a binary normal form. For grammars in this normal form, we have derived an O(n3) parsing

algorithm.

We believe that the well-founded semantics will prove to be a useful tool for the further development of the theory of

Boolean grammars. In particular, two of the authors have already used the well-founded approach in order to prove that

the locally stratified construction is well-defined (see [5] for details). Also, it is expected that the well-founded semantics

and its corresponding parsing algorithm can form the basis of general implementations of Boolean grammars. On the more

theoretical side, the formal machinery behind the well-founded semantics can help to the further development of many-

valued formal language theory (see for example [2]).

It should be noted that it is possible that the well-founded model MG of a grammar G could also be obtained following

slightlydifferent constructions. For logicprogramsone suchconstruction that is basedonan infinite-valued logic, has recently

been proposed in [11]. Adapting the technique of [11] to Boolean grammars would most probably require the introduction

of infinite-valued formal languages. This is probably an interesting venue for further research.

Closing,wewould like to express our strong belief that a further investigation of the connections between formal language

theory and the theory of logic programming will prove to be very rewarding.
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