
Journal of Automata, Languages and Combinatorics u (v) w, x–y
c© Otto-von-Guericke-Universität Magdeburg

CONJUNCTIVE GRAMMARS 1

Alexander Okhotin

Faculty of Computational Mathematics and Cybernetics, Moscow State University 2

e-mail: okhotin@aha.ru

ABSTRACT

This paper introduces a class of formal grammars made up by augmenting the formalism
of context-free grammars with an explicit set-theoretic intersection operation.

It is shown that conjunctive grammars can generate some important non-context-
free language constructs, including those not in the intersection closure of context-free
languages, and that they can provide very succinct descriptions of some context-free
languages and finite intersections of context-free languages.

On the other hand, it is proved that conjunctive grammars can still be parsed in
cubic time and that the notion of the derivation tree is retained, which gives reasonable
hope for their practical applicability.

Keywords: Conjunctive grammar, context-free grammar, intersection, descriptional
complexity, parsing.

1. Introduction

It is a classical result that the family of context-free languages is not closed under
intersection, and that most decision problems concerning intersection of context-free
languages are undecidable.

However, intersection, as well as other set-theoretic operations, is an essential part
of any kind of formalized reasoning, since it actually denotes an object that satisfies
several conditions simultaneously.

The family of finite intersections of context-free languages (intersection closure of
the context-free languages, intersective context-free languages) was introduced in [8],
where it was proved that they form an infinite hierarchy. Its proper inclusion in the
family of deterministic context-sensitive languages was shown in [3]. Intersection and
general Boolean closures of deterministic and nondeterministic context-free languages
were studied in [10, 11].

The intersective context-free languages were further investigated in [7], where they
were suggested as a formal grammatical model for linguistic applications, in which

1Full version of a submission presented at the Second International Workshop on Descriptional
Complexity of Automata, Grammars and Related Structures held in London, Ontario, Canada,
July 27–29, 2000.

2Present address: Department of Computing and Information Science, Queen’s University,
Kingston, Ontario, Canada K7L 3N6.

2 A. Okhotin

several conditions, such as morphology, syntax and semantics, are imposed on a single
natural language sentence. However, the two-layer structure of a tuple of context-free
grammars, where finitely many intersections come on the top with normal context-free
grammars operating at the bottom, limits the applicability of the concept to practical
tasks; for instance, their closure under concatenation and Kleene star remains an open
problem, which indicates that these operations cannot be carried out at will when
needed; similarly, while the family is closed under union, this operation may lead to
quadratic grow of the length of description (at least no better upper bound is known),
which is also unconvenient from a practical point of view.

Conjunctive grammars represent a different approach to the problem, which is free
from the mentioned drawback of the intersective context-free grammars: the context-
free grammars are being generalized by introducing an explicit intersection operation
within the formalism of grammar rules. While context-free grammars have all rules
in the form A → α (A ∈ N , α ∈ V ∗), rules in conjunctive grammars are written as

A → α1& . . . &αn (A ∈ N ; n > 1; for each i, αi ∈ V ∗), (1)

where the conjunction has semantics of set-theoretic intersection, i.e. the rule (1)
means that if some string of terminal symbols can be derived from each αi individually,
then that string is derivable from A.

A quite similar-looking concept, the alternating context-free grammar, was in-
troduced in [9]; in [6], a subclass of alternating context-free grammars was proved
equivalent to alternating pushdown automata and therefore to exponential time lan-
guages. The set of nonterminals in an alternating context-free grammar is separated
into two classes of existential and universal nonterminals, where existential nontermi-
nals work essentially the same as in the context-free grammars, while the expansion
of a universal nonterminal causes the whole derivation to be splitted into a number
of independent branches, which are required to come up with the same string in the
end. This subtle difference in semantics (in conjunctive grammars it is not the whole
computation, but only the derivation of a substring from a single nonterminal which
is being splitted) makes two generative devices entirely different.

This paper is aimed to introduce a new generative device, the conjunctive gram-
mars, and investigate its descriptional and computational complexity. Section 2 for-
mally defines the conjunctive grammars and gives several examples, showing that some
important non-context-free language constructs can be denoted by conjunctive gram-
mars. Section 3 introduces two normal forms: a normal form for general conjunctive
grammars similar to Chomsky normal form, and another normal form for a subclass
of linear conjunctive grammars; these normal forms allow to devise polynomial-time
recognition algorithms, which are presented in Section 4. Section 5 deals with the
descriptional complexity of the conjunctive grammars, showing that they can provide
dramatically more succinct descriptions of context-free languages and of their finite
intersections than the context-free grammars and the tuples of context-free grammars
that denote intersection of languages. Section 6 gives a very preliminary survey of
general properties of the language family generated by conjunctive grammars and
poses several research problems.

Conjunctive grammars 3

2. Basic Notions

2.1. Definitions

Definition 1 A conjunctive grammar is a quadruple G = (Σ, N, P, S), where (i) Σ
and (ii) N are disjoint finite nonempty sets of terminal and nonterminal symbols
respectively; (iii) P is a finite set of grammar rules (productions), each formally
defined as an ordered pair (A, {α1, . . . , αn}) of a nonterminal and a finite set of strings
over Σ ∪ N , and written in the form A → α1& . . . &αn, where the order of αs is
considered to be in some way fixed; (iv) S ∈ N is a nonterminal designated as the
start symbol.

Let V be the union of Σ and N . We shall use three special symbols: “(”, “&” and
“)”; it is assumed that none of them is in V . Define V̄ =Σ ∪N ∪ {“(”, “&”, “)”}.

For each rule A → α1& . . . &αn ∈ P and for each i (1 6 i 6 n), a pair of the
form (A,αi) is called a conjunct; in cases where that will not cause confusion with
productions, a conjunct (A,αi) will be denoted just as A → αi.

The following notation will be used for a collection of rules for a single nonterminal:
A → α11& . . . &α1n1 | . . . | αm1& . . . &αmnm .

A derivation in conjunctive grammar is a nondeterministic rewriting of formulae
over the basis of concatenation, conjunction and symbols from V . We shall write
these formulae as strings over V̄ , formally defined as follows:

Definition 2 Let G = (Σ, N, P, S) be a conjunctive grammar.

i. Any string over V is a conjunctive formula.

ii. If A and B are formulae, then AB is a formula.

iii. If A1, . . . ,An (n > 1) are formulae, then (A1& . . . &An) is a formula.

We shall use script capital Latin letters from the beginning of the alphabet to
denote conjunctive formulae: A,B, C,

Definition 3 Let G = (Σ, N, P, S) be a conjunctive grammar. Define G=⇒, a relation
of immediate derivability on the set of conjunctive formulae:

i. A nonterminal can be rewritten by the body of some rule enclosed in parentheses,
i.e. for all s1, s2 ∈ V̄ ∗ and for all A ∈ N , if s1As2 is a formula, then for all
A → α1& . . . &αn ∈ P

s1As2
G=⇒ s1(α1& . . . &αn)s2 (2)

ii. Conjunction of several identical terminal strings enclosed in parentheses can be
replaced by one such string, i.e. for all s1, s2 ∈ V̄ ∗, for all w ∈ Σ∗ and for all
n > 1, if s1(w& . . . &w︸ ︷︷ ︸

n

)s2 is a formula, then

s1(w& . . . &w︸ ︷︷ ︸
n

)s2
G=⇒ s1ws2 (3)

4 A. Okhotin

Let G=⇒∗ be the reflexive transitive closure of G=⇒.

It can easily be proved that right parts of (2) and (3) are indeed formulae, which
makes the definition consistent.

Definition 4 Let G = (Σ, N, P, S) be a grammar, let A be a formula. The language
generated by A is a set of all strings over Σ derivable from A:

LG(A) = {w | w ∈ Σ∗, A G=⇒∗ w} (4)

The language generated by the grammar is a set of all strings over Σ derivable from
its start symbol: L(G) = LG(S).

A language L is called conjunctive, if it is generated by some conjunctive grammar.
Let L& be the set of all conjunctive languages.

2.2. Language Generated by a Formula

The language generated by a formula inductively depends on its structure, as shown
in the following theorem:

Theorem 1 Let G = (Σ, N, P, S) be a conjunctive grammar. Let A1, . . . ,An,B be
formulae, let A ∈ N , let u ∈ Σ∗. Then,

LG((A1& . . . &An)) =
n⋂

i=1

LG(Ai) (5a)

LG(AB) = LG(A) · LG(B) (5b)

LG(A) =
⋃
{LG((α1& . . . &αm)) |A → α1& . . . &αm ∈ P} (5c)

LG(u) = {u} (5d)

The proof is purely technical and is omitted. It follows that conjunction has se-
mantic of intersection of languages, concatenation of formulae concatenates languages
generated by them, nonterminal symbols generate what is generated by their rules,
and terminal strings generate themselves. This corresponds to the intuitive meaning
of these symbols and operations.

One important corollary of Theorem 1 is that the order of conjuncts has no influence
on the language generated by a formula, and consequently that the order of conjuncts
in a grammar rule does not affect the generated language; this immediately follows
from (5a).

It should also be observed that if every rule in some conjunctive grammar consists
of a single conjunct, then this grammar generates the same language as a similarly
notated context-free grammar.

Conjunctive grammars 5

2.3. Examples

We shall consider two classical examples of non-context-free languages (see, for
instance, [1], p.179-180) and show that each of them is generated by a conjunctive
grammar.

Example 1 A conjunctive grammar for the language {anbncn | n > 0}:
S → AB&DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

It is obvious that A, B, C and D generate the languages {ai | i > 0}, {bjcj | j > 0},
{cl | l > 0} and {akbk | k > 0} respectively. Therefore, S generates

{aibjcj | i, j > 0} ∩ {akbkcl | k, l > 0} = {anbncn | n > 0} (6)

Example 2 A conjunctive grammar for the language {wcw | w ∈ {a, b}∗}:
S → C&D
C → aCa | aCb | bCa | bCb | c
D → aA&aD | bB&bD | cE
A → aAa | aAb | bAa | bAb | cEa
B → aBa | aBb | bBa | bBb | cEb
E → aE | bE | ε

C ensures that the string consists of two equal-length parts separated by a center
marker; formally we say that C generates {xcy | x, y ∈ {a, b}∗; |x| = |y|}.

D takes one symbol from the left and uses A or B to compare it to the corresponding
symbol at the right. At the same time, D recursively calls itself in order to process
the rest of the string in the same way.

Formally, A generates {xcvay | x, v, y ∈ {a, b}∗, |x| = |y|}, B generates
{xcvby | x, v, y ∈ {a, b}∗, |x| = |y|} and therefore D produces {uczu | u, z ∈ {a, b}∗}
(the last result may be obtained by a straightforward induction over the length of the
string). Finally,

{xcy | x, y ∈ {a, b}∗, |x| = |y|} ∩ {uczu} = {wcw | w ∈ {a, b}∗} (7)

It has been proved in [10] that the language {wcw | w ∈ {a, b}∗} cannot be ex-
pressed as a finite intersection of context-free languages. On the other hand, it is clear
that every such intersection is generated by some conjunctive grammar. Thus, the
family of conjunctive languages properly contains the intersection closure of context-
free languages.

It is important to note that the grammar from Example 2 essentially uses the
center marker, and therefore this method cannot be applied to writing a conjunctive
grammar for the language {ww | w ∈ {a, b}∗}.

6 A. Okhotin

Example 3 For each Turing machine M over the work alphabet Σ that cannot print
a blank, let IDi(w) be the instantaneous description of M on the input w after i steps
of computation, written as −uaqv−, −−qv− or −u−q−, where u, v ∈ Σ∗, a ∈ Σ, q
is a state of M , “−” is a symbol that denotes a blank tape square, and at the moment
the machine scans the square that precedes the symbol q in the string.

The language of all valid accepting computations of M ,

VALC[M] = {ID0(w)#ID1(w)# . . . #IDk(w) | w ∈ Σ∗,
IDk(w) is an accepting configuration}, (8)

is a conjunctive language.

The construction of the grammar is generally based upon the idea given in Example
2 and is omitted.

2.4. Derivation Tree

The representation of a context-free derivation in the form of a tree is a very important
property of context-free grammars, since it gives birth to the syntactical analysis.

It turns out that the notion of derivation tree can be extended to conjunctive
grammars, where it will actually be a tree with shared leaves.

Let G = (Σ, N, P, S) be a conjunctive grammar, let w ∈ L(G). Consider some
derivation from S to w; assume that it is organized as follows: first, rules from P are
applied until there are no nonterminals left in the formula; second, rules of the form
(u& . . . &u) → u are applied until all parentheses and conjunction signs are removed.
There is no loss of generality in this assumption, because an existing derivation can
always be reconstructed to match the required sequence of steps.

The construction of the derivation tree is done in two steps: initially, a context-free
derivation tree is made from the first part of the derivation (as if there was a context-
free rule A → α1α2 . . . αm instead of each conjunctive rule A → α1&α2& . . . &αm);
then, terminal leaves of the tree are glued in accordance with the second part of the
derivation. Thus, terminal leaves of the resulting tree can possibly have more than
one incoming arc. Internal nodes of the tree are labeled with rules rather than with
nonterminals.

Example 4 Consider the grammar for {anbncn | n > 0} from Example 1, the string
w = abc and its derivation:

S
G=⇒ (AB&DC) G=⇒ ((aA)B&DC) G=⇒ ((a())B&DC) G=⇒

((a())(bBc)&DC) G=⇒ ((a())(b()c)&DC) G=⇒
((a())(b()c)&(aDb)C) G=⇒ ((a())(b()c)&(a()b)C) G=⇒
((a())(b()c)&(a()b)(cC)) G=⇒ ((a())(b()c)&(a()b)(c())) G=⇒
((a)(b()c)&(a()b)(c())) G=⇒ (a(b()c)&(a()b)(c())) G=⇒
(a(bc)&(a()b)(c())) G=⇒ (abc&(a()b)(c())) G=⇒ (abc&(ab)(c())) G=⇒
(abc&ab(c())) G=⇒ (abc&ab(c)) G=⇒ (abc&abc) G=⇒ abc

Conjunctive grammars 7

The corresponding derivation tree is shown in Figure 1(b). Figure 1(a) shows
an intermediate tree corresponding to the first part of the derivation (from S to the
underlined formula).

S AB&DC

a b cc a b

A aA B bBc D aDb C cC

a b c

ε εεε

A ε C εD εB ε

S AB&DC

A ε
B ε D ε

ε ε

εε

C ε

A aA C cCD aDbB bBc

Figure 1: Derivation tree: (a) before gluing; (b) after gluing

2.5. Linear Conjunctive Grammars

The notion of linearity of a context-free grammar can be naturally extended to the
conjunctive grammars:

Definition 5 A conjunctive grammar G = (Σ, N, P, S) is said to be linear, if each
rule in P is of the form

A → u1B1v1& . . . &umBmvm (ui, vi ∈ Σ∗, Bi ∈ N) (9a)
A → w (w ∈ Σ∗) (9b)

The grammar from Example 2 is linear; the grammar from Example 1 is not. It
will be shown later in Section 4.2 that linear conjunctive grammars can be parsed as
efficiently as linear context-free grammars.

3. Normal Forms

3.1. Epsilon Conjuncts

Definition 6 Let G = (Σ, N, P, S) be a conjunctive grammar. A conjunct of the
form A → ε, where A ∈ N , is called an epsilon conjunct.

In this section we shall show that, exactly like in the context-free case, for any
given conjunctive grammar one can construct an equivalent (with the exception of
the membership of ε) grammar without epsilon conjuncts.

Let us consider the set of all nonterminals capable of generating the empty string:

8 A. Okhotin

Definition 7 Let G = (Σ, N, P, S) be a conjunctive grammar. Define

Nullable(G) = {A |A ∈ N, A
G=⇒∗ ε}, (10)

There is a algorithm to compute the set Nullable(G) for any given conjunctive
grammar G, which uses the same nested-set technique as the classical algorithm for
the context-free case.

Using the set Nullable(G), it is possible to remove all epsilon conjuncts from the
grammar. The construction again follows the context-free case: nullable nonterminals
are removed from rule bodies in all possible combinations, and, afterwards, all rules
containing an epsilon conjunct are discarded.

Theorem 2 (Elimination of epsilon conjuncts) For any conjunctive grammar
G = (Σ, N, P, S) there exists a conjunctive grammar G′ = (Σ, N, P ′, S), free of epsilon
conjuncts (i.e. without rules of the form A → α1& . . . &αk−1&ε&αk+1& . . . &αm,
where m > 1, 1 6 k 6 m and αi ∈ Σ+), such that

L(G′) = L(G) \ {ε} (11)

3.2. Unit Conjuncts

The context-free notion of a chain rule (or unit rule) A → B is inherited by the
conjunctive grammars in the form of so-called unit conjunct :

Definition 8 (Unit conjunct) Let G = (Σ, N, P, S) be a conjunctive grammar. A
conjunct of the form A → B, where A,B ∈ N , is called a unit conjunct.

In the context-free case, the task of removing chain rules from the grammar is
usually solved by first precomputing all chain derivations, storing them in the form
of the sets Chain(A) = {B | A =⇒∗B} (for all A ∈ N) and then using these sets to
replace each chain rule by immediately determinable non-chain rules.

In the case of conjunctive grammars, this task is a bit more involved, since a
rule may contain multiple unit conjuncts (consider A → B&C&α), and thus there
is no direct equivalent of the sets Chain(A) and the corresponding transformation
technique. A slightly different approach is suggested, which does not use any global
information about the grammar, such as precomputed derivations, and is confined to
local substitutions.

Lemma 1 (Substitution of unit conjuncts) Let G = (Σ, N, P, S) be a conjunc-
tive grammar. Let

A → α1& . . . &αk−1&B&αk+1& . . . &αm (m > 1, 1 6 k 6 m, αi ∈ Σ∗) (12)

be some rule for A that contains a unit conjunct. Let B → β11& . . . &β1l1 , . . . ,
B → βr1& . . . &βrlr be all rules for B that do not contain the unit conjunct B → B
(βij 6= B).

Conjunctive grammars 9

If A 6= B, then the rule (12) can be replaced with the collection of rules

A → α1& . . . &αk−1&βi1& . . . &βili&αk+1& . . . &αm, (1 6 i 6 r), (13)

without altering the language generated by the grammar.
If A = B, then the rule (12) may be just removed.

Definition 9 Let G = (Σ, N, P, S) be a grammar without epsilon conjuncts. A di-
rected graph Γ = (N, {(A,B) | there is a conjunct A → B in G}) is called a graph
of immediate reachability by unit conjuncts.

Lemma 2 Let Γ = ({A1 . . . An}, E) be a directed graph without multiple arcs. Then,
using the transformation rules

i. Any arc (A, B) can be substituted with a possibly empty set of arcs
{(A,C) | (B,C) ∈ E, C 6= B},

ii. Any loop (A,A) can be removed,

it is possible to remove all arcs from the graph in finite number of steps.

Proof. First, all the arcs (Ai, Aj), such that i > j, are removed by the first transfor-
mation rule in the following order:

(A2, A1),
(A3, A1),(A3, A2),

...
(An, A1), . . . , (An, An−1).

(14)

Let us prove that the removal of neither of them leads to restoration of any previously
removed arc; the proof is an induction over the position of the arc in the list (14).

Basis. Since the arc (A2, A1) is the first in the list (14), no other arc could have
been removed prior to it.

Induction step. Consider the removal of an arc (Ai, Aj) (i > j). A new arc
(Ai, Ak) appears in course of such a removal iff k 6= j and the arc (Aj , Ak) is in the
graph. Let us consider the following three cases:

i. If k < j < i, then the arc (Aj , Ak) was removed earlier, and, by induction
hypothesis, it has not been restored since then; therefore, this case is impossible.

ii. If j < k < i, then the arc (Ai, Ak) appears in the list (14) after the current arc
(Ai, Aj), and hence it could not have been removed earlier.

iii. If i 6 k, then the arc (Ai, Ak) is not in the list (14).

After all the arcs (14) are removed, all loops are discarded by the second rule.
Afterwards there will be no oriented cycles left in the graph, and it is possible to
remove arcs leading to sink nodes one by one, until none will remain in the graph. 2

10 A. Okhotin

Theorem 3 For each conjunctive grammar G = (Σ, N, P, S) without epsilon con-
juncts there exists a conjunctive grammar G′ = (Σ, N, P ′, S) without epsilon and unit
conjuncts, such that L(G′) = L(G).

Proof. Note that grammar transformations carried out by Lemma 1 are equivalent to
graph transformations done by Lemma 2. Since the latter provides a way to remove
all arcs from the graph of immediate reachability by unit conjuncts in finite number
of steps, there is a corresponding sequence of grammar transformations by Lemma 1,
which leads to removal of all unit conjuncts from the grammar. No epsilon conjuncts
will appear, because right parts of conjuncts are not altered. 2

3.3. Binary Normal Form

We propose a normal form that naturally extends Chomsky normal form for the case
of conjunctive grammars.

Definition 10 A conjunctive grammar G = (Σ, N, P, S) is said to be in the binary
normal form, if each rule in P is in form

A → B1C1& . . . &BmCm, where m > 1; A,Bi, Ci ∈ N (15a)
A → a, where A ∈ N, a ∈ Σ, (15b)
S → ε, only if S does not appear in right parts of rules (15c)

Theorem 4 For each conjunctive grammar G = (Σ, N, P, S) there exists and can
be effectively constructed a conjunctive grammar G′ = (Σ, N ′, P ′, S′) in the binary
normal form, such that L(G) = L(G′).

Proof. First, epsilon conjuncts are removed by Theorem 2 and then unit conjuncts
are removed by Theorem 3. At this point each conjunct in the grammar is of the form

(a) A → a, where A ∈ N , a ∈ Σ, or

(b) A → α, where A ∈ N , α ∈ V ∗, |α| > 2.

All rules that contain conjuncts of both types generate empty language and therefore
are removed. The same applies to the rules that contain more than one conjunct of
type (a) (recall that the conjuncts in every rule are distinct and therefore A → a&a
cannot be the case). Every appearance of a terminal in a conjunct of type (b) is
eliminated by moving that terminal into a separate rule. All conjuncts of type (b)
that are more than two nonterminals long are splitted in two by introducing new
nonterminals. Finally, if ε ∈ L(G), then a new start symbol S′ is introduced, S′ → ε
is added to P ′, and for each rule S → σ1& . . . &σk ∈ P ′, a rule S′ → σ1& . . . &σk is
added to P ′ as well. 2

Conjunctive grammars 11

3.4. Linear Normal Form

A linear conjunctive grammar G = (Σ, N, P, S) is said to be in the linear normal
form, if each rule in P is of the form

A → bB1& . . . &bBm&C1c& . . . &Cnc (m + n > 1; A,Bi, Cj ∈ N ; b, c ∈ Σ), (16a)
A → a (A ∈ N, a ∈ Σ), (16b)
S → ε, only if S does not appear in right parts of rules (16c)

Every linear conjunctive grammar can be effectively transformed to an equivalent
grammar in the linear normal form [?] by first removing ε conjuncts and unit conjuncts
using the same transformations of grammar as in Section 3.3 (these transformations
are known to preserve linearity of the grammar), and then cutting long conjuncts
until all of them are of the form A → a, A → bB and A → Cc, and finally removing
the rules that ***, which obviously cannot be using in any successful derivation.

4. Recognition and Parsing

4.1. Algorithm for Grammars in Binary Normal Form

Conjunctive grammars in the binary normal form can be parsed by a variation of
Cocke–Kasami–Younger algorithm. Like in the context-free case, we define a so-called
recognition matrix, an upper-triangular matrix of sets of nonterminals that derive the
substrings of the input string.

Definition 11 Let G = (Σ, N, P, S) be a conjunctive grammar in the binary normal
form. Let w = a1 . . . an ∈ Σ+ (n > 1) be some string. Let 1 6 i 6 j 6 n. Define

Tij = {A |A ∈ N, A
G=⇒∗ ai . . . aj} (17)

It is clear that w ∈ L(G) if and only if S ∈ T1n. The task of computing each Tij

(i < j) can be reduced to computing all Tik (i 6 k < j) and Tlj (i < l 6 j), as shown
in the following theorem.

Theorem 5 Let G = (Σ, N, P, S) be a conjunctive grammar in the binary normal
form. Let w = a1 . . . an ∈ Σ∗ (n > 2) be some string. Let 1 6 i < j 6 n. Then,

Tij = {A |A ∈ N, there is a rule A → B1C1& . . . &BmCm ∈ P, such that
for any p (1 6 p 6 m) there exists l (i 6 l < j): Bp ∈ Ti,l, Cp ∈ Tl+1,j}

(18)

Proof. Nonterminal A is in Tij if and only if A
G=⇒∗ ai . . . aj . The first step of

the derivation cannot be an application of rule A → a, because i < j. Hence,
A =⇒ (B1C1& . . . &BmCm)=⇒∗ ai . . . aj for some rule A → B1C1& . . . &BmCm ∈ P .
By the first part of Theorem 1, that holds if and only if for any p (1 6 p 6 m)
BpCp =⇒∗ ai . . . aj , which, by the second part of Theorem 1, holds if and only if
for any p there is l (i 6 l < j), such that Bp =⇒∗ ai . . . al (i. e. Bp ∈ Ti,l) and
Cp =⇒∗ al+1 . . . aj (i. e. Cp ∈ Tl+1,j), which completes the proof. 2

12 A. Okhotin

The following algorithm computes all Tij starting from T11, . . . , Tnn and ending
with T1n:

Algorithm 1 Let G = (Σ, N, P, S) be a conjunctive grammar in the binary normal
form. For each R ⊆ N ×N denote

f(R) = {A |A ∈ N, there is a rule A → B1C1& . . . &BmCm ∈ P,

such that for any p (1 6 p 6 m) (Bp, Cp) ∈ R} (19)

Let w = a1 . . . an ∈ Σ∗ (n > 1) be the input string. For all i, j, such that
1 6 i 6 j 6 n, compute Tij.

for i = 1 to n
Tii={A |A ∈ N, A → ai ∈ P}

for k = 1 to n− 1
for i = 1 to n− k
{

let j = k + i
let R=∅ (R ⊆ N ×N)
for l = i to j − 1

R = R ∪ Til × Tl+1,j

Tij = f(R)
}

The first loop of the algorithm computes the diagonal of the matrix. Each k-th
iteration of the second outer loop deals with the computation of all Tij such that
j − i = k, and the nested loop by i goes through all Ti,k+i. For each of these Tij we
compute the set R of pairs of nonterminals (B, C), such that BC =⇒∗ ai . . . aj ; this
is being done by the inner loop, which considers all factorizations of ai . . . aj into two
nonempty substrings.

Then, the mapping f is used to determine all nonterminals that have rules com-
prised entirely from the conjuncts whose right parts are contained in R. This set f(R)
is, by Theorem 5, exactly the set of nonterminals that derive ai . . . aj .

The difference between Algorithm 1 and the original Cocke–Kasami–Younger algo-
rithm is that in the case of conjunctive grammars one has to accumulate all the pairs
(B, C) from the different factorizations of the current substring, and only the full set
of such pairs can be used to determine the membership of nonterminals in Tij .

However, that does not increase the complexity of the algorithm.

Theorem 6 For each conjunctive grammar G = (Σ, N, P, S), the Algorithm 1 com-
putes {Tij} as in Definition 11 for any input string w ∈ Σ+, and w ∈ L(G) iff S is
in the constructed set T1,|w|.

When implemented on a RAM, the algorithm works in O(n3) time and uses O(n2)
space.

Once the string is recognized, all of its derivation trees may be constructed by
analyzing the recognition matrix in the way similar to the context-free case.

Conjunctive grammars 13

4.2. Algorithm for Grammars in Linear Normal Form

Let Tij be as in Definition 11. Exactly like in the case of linear context-free grammars,
Tij (i < j) is a function of Ti+1,j , Ti,j−1, ai and aj . The following theorem is proved
very much like Theorem 5:

Theorem 7 Let G = (Σ, N, P, S) be a conjunctive grammar in the linear normal
form. Let w = a1 . . . an ∈ Σ∗ (n > 2) be some string. Let 1 6 i < j 6 n. Then,

Tij = {A |A ∈ N, there is a rule A → bB1& . . . &bBm&C1c& . . . &Cnc ∈ P,

such that b = ai, c = aj , for all p (1 6 p 6 m) Bp ∈ Ti+1,j and
for all q (1 6 q 6 n) Cq ∈ Ti,j−1}

(20)

Algorithm 2 Let G = (Σ, N, P, S) be a conjunctive grammar in the linear normal
form. Let w = a1 . . . an ∈ Σ∗ (n > 1) be the string being recognized. Compute T1n.

for i = 1 to n
Tii={A |A ∈ N, A → ai ∈ P}

for k = 1 to n− 1
for i = 1 to n− k
{

let j = k + i
Tij = (as in (20))

}

It is easily seen that each iteration of the outer loop depends only on the input
string and the products of the previous iteration. That allows us to discard earlier
portions of the matrix in course of the computation and thus use only O(n) space.
The time complexity of the algorithm is quadratic, since the computation of (20)
takes constant time.

5. Descriptional Complexity

In this section we shall investigate the relative succinctness of representation of
context-free languages by context-free grammars and conjunctive grammars, as well
as the succinctness of representation of finite intersections of context-free languages
by conjunctive grammars.

We shall consider two descriptional complexity measures: the cardinality of the
set of nonterminals and the total number of symbols used in the description of the
grammar. The latter is denoted |G| and defined as

|G| =
∑

A→α1&...&αn∈P

(n + 1 +
n∑

i=1

|αi|) (21)

for any conjunctive grammar G = (Σ, N, P, S).

14 A. Okhotin

Let us consider the following sequence of context-free languages:

L(k) = {wcnwdn | n > 1, w ∈ {a, b}∗, |w| = k}, k > 0 (22)

Theorem 8 For any k > 0 the minimal context-free grammar for L(k) has exactly
2k + 1 nonterminals.

Proof. The construction of such a grammar is straightforward and is omitted.
Let us prove that any grammar generating L(k) must have at least 2k + 1 nonter-

minals. Consider an arbitrary context-free grammar G = ({a, b, c, d}, N, P, S), such
that L(G) = L(k). For each string u ∈ {a, b}k, define the set

Nu = {A |A ∈ N, A =⇒∗ ciAdi (i > 0), A =⇒∗ cpudq (p, q > 0)} (23)

The collection of sets (23) has the following properties:

• For each u ∈ {a, b}k, Nu 6= ∅. In order to prove that, we fix some string u and
consider a sufficiently large n, such that the conditions of the pumping lemma
hold for ucnudn. It is easily seen that the nonterminal and the factorization
promised by the lemma satisfy (23).

• For each u, v ∈ {a, b}k (u 6= v), Nu ∩ Nv = ∅ (otherwise the grammar would
generate strings of the form ucivdj).

• S does not belong to any Nu (otherwise the grammar would generate strings
which begin with c).

Since there are 2k different strings in {a, b}k, it holds that |N | > 2k + 1. 2

On the other hand, for every k there exists a conjunctive grammar for L(k), in
which the number of nonterminals does not depend upon k. Consider a quite natural
representation of L(k) as a language of strings satisfying three conditions:

L(k) = {ucivdj | i = j} ∩ {ucivdj | u = v} ∩ {ucivdj | |u| = k}, (24)

The first language is context-free; the second can be obtained by modifying the gram-
mar from Example 2; the third can be generated by a grammar with a constant
number of nonterminals and O(k) length of description.

This allows to conclude that the transition from conjunctive grammars to context-
free grammars may lead to unbounded growth in the number of nonterminals.

In order to investigate the succinctness of the total length of description, we shall
use the method of [4, 5] to show that the length of description of intersective context-
free languages by the tuples of context-free grammars (which denote intersection of
languages) is not bounded by any recursive function of the length of their description
by conjunctive grammars.

First we shall prove an auxiliary result about the language of all valid computations
of a given Turing machine, which was discussed in Example 3.

Lemma 3 Let M be a deterministic Turing machine that cannot print a blank and
makes at least one move before halting. Then VALC[M] is in the intersection closure
of the context-free languages iff L(M) is finite.

Conjunctive grammars 15

Proof. If L(M) is finite, then there are only finitely many accepting computations
of M . On the other hand, if L(M) is infinite, then for input strings of unbounded
length the first two configurations of the Turing machine must be related, which gives
an unbounded number of cross-dependencies and therefore implies that VALC[M]
cannot be represented as a finite intersection of context-free languages. 2

Let us consider some effective enumeration {Gi} of the conjunctive grammars. Let
LICF denote the intersection closure of the context-free languages.

Lemma 4 The language L = {Gi | L(Gi) /∈ LICF } is not recursively enumerable.

Proof. Due to Lemma 3, if L were recursively enumerable, then the set of Turing
machines generating infinite languages would also be recursively enumerable, which
contradicts Rice’s theorem. 2

In accordance with a theorem by Hartmanis ([5], Theorem 4), our Lemma 4, to-
gether with the decidability of the membership problem for conjunctive languages
shown in Sections 3 and 4, implies the following result:

Theorem 9 The relative succinctness of representing languages from LICF by con-
junctive grammars and by tuples of context-free grammars is not bounded by any
recursive function.

6. General Properties of Conjunctive Languages

6.1. Decision Problems

Since many decision problems are known to be unsolvable for finite intersections of
context-free languages, the same negative results also hold for conjunctive languages.
Namely, emptiness, finiteness, regularity, context-freeness, inclusion and equivalence
are undecidable.

On the contrary, membership is polynomially decidable, as shown in Section 4.

6.2. Closure Properties

It is easily established that the family of conjunctive languages is closed under union,
intersection, concatenation and Kleene star, because each of these operations is ex-
plicitly (or, in case of the star, almost explicitly) included in the grammar formalism.
L& is also closed under reversal.

Nonclosure under homomorphism follows from [2] (Theorem 3.1), since L& is ob-
viously not equal to the whole family of recursively enumerable sets. L& is also
not closed under prefix, suffix and substring, which can easily be deduced from the
conjunctiveness of a language of all valid computations of a given Turing machine.
It is an open problem whether the family of conjunctive languages is closed under
complement and under ε-free homomorphism.

16 A. Okhotin

It must be noted that if L1 = {ww | w ∈ {a, b}∗} is not a conjunctive language,
then that would imply nonclosure of L& under both ε-free homomorphism and com-
plement. If L2 = {an2 | n > 1} is not conjunctive, then L& is not closed under ε-free
homomorphism, because L2 is an ε-free homomorphic image of the conjunctive lan-
guage {ab2ab4ab6a . . . b2na |n > 0}. However, no method to prove nonconjunctiveness
of a given language has been developed so far.

6.3. Relationship to Other Language Families

Obviously, the intersection closure of the context-free languages is a subset of L&. It
follows from [10] and Example 2 that this inclusion is strict.

On the other hand, L& is properly contained in the family of languages generated
by the alternating context-free grammars, since L& ⊂ P ⊂ EXPTIME.

The languages generated by conjunctive grammars cannot be classified as mildly
context-sensitive, since they do not necessary have constant growth property. More-
over, the sequence of lengths of the strings from a conjunctive language can grow
arbitrarily fast (this follows from the conjunctiveness of the language of all valid com-
putations of a given Turing machine). In this connection, it must be noted that Parikh
theorem does not hold for the conjunctive languages.

It can be proved by direct construction of a linear bounded automaton that every
conjunctive language can be recognized in nondeterministic linear space and therefore
is context-sensitive. Under the assumption that P 6= PSPACE, it is easily obtained
that L& is properly included in the family of context-sensitive languages. But, since
no particular context-sensitive language is known to be nonconjunctive, there is still
no “real” proof of strictness of this inclusion.

It might be reasonable to expect that conjunctive grammars over unary alpha-
bet generate regular languages, since context-free grammars over unary alphabet do;
however, the proof from the context-free case heavily relies upon the properties of the
context-free languages, which are missing in our case, and thus this question requires
further study.

7. Conclusion

We have introduced a generalization of the context-free grammars, which adds an
explicit intersection operation to the formalism of rules, extends the model’s descrip-
tive power beyond the intersection closure of the context-free languages, and allows
to denote important language constructs, thus meeting the needs of many practical
applications.

It turned out that conjunctive grammars retain the notion of derivation tree and
some efficient recognition algorithms from the context-free grammar theory, which
allows to carry on the existing context-free parsing to the new class of grammars.

However, many important language-theoretic properties of conjunctive grammars
remain uncovered, and in light of the practical importance of the model, these issues
seem to be worth further investigation.

Conjunctive grammars 17

Acknowledgements

I wish to thank Kai Salomaa, Larisa I. Stanevichene, Alexey A. Vylitok, Detlef
Wotschke and Vladimir A. Zakharov for their helpful and valuable comments on
different versions of this paper.

I am grateful to my referees from both DCAGRS and JALC for their pertinent
remarks.

References

[1] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: principles, techniques and tools,
Addison-Wesley, Reading, Mass., 1986.

[2] S. Ginsburg, S. A. Greibach and M. A. Harrison, “One-way stack automata”.
Journal of the ACM, 14:2 (1967) 389–418.

[3] I. Gorun, “A hierarchy of context-sensitive languages”, Lecture Notes in Com-
puter Science, 45 (1976), 299–303.

[4] J. Hartmanis, “On the succinctness of different representations of languages”,
SIAM Journal on Computing, 9 (1980), 114–120.

[5] J. Hartmanis, “On Gödel speed-up and succinctness of language representations”,
Theoretical Computer Science, 26 (1983), 335–342.

[6] O. H. Ibarra, T. Jiang, H. Wang, “A characterization of exponential-time lan-
guages by alternating context-free grammars”, Theoretical Computer Science, 99
(1992) 301–313.

[7] M. Latta, R. Wall, “Intersective context-free languages”, Lenguajes Naturales y
Lenguajes Formales IX, Barcelona, 1993, 15–43.

[8] L. Y. Liu and P. Weiner, “An infinite hierarchy of intersections of context-free
languages”. Mathematical Systems Theory, 7 (1973) 187–192.

[9] E. Moriya, “A grammatical characterization of alternating pushdown automata”,
Theoretical Computer Science, 67 (1989) 75–85.

[10] D. Wotschke, “The Boolean closures of deterministic and nondeterministic
context-free languages”, Lecture Notes in Computer Science, 1 (1973), 113–121.

[11] D. Wotschke, “Nondeterminism and Boolean operations in PDAs”, Journal of
Computer and Systems Sciences, 16:3 (1978), 456–461.

