
Regular Expression Matching using Partial Derivatives

Martin Sulzmann
Informatik Consulting Systems AG
martin.sulzmann@gmail.com

Kenny Zhuo Ming Lu
Circos.com, Inc.

luzhuomi@gmail.com

Abstract
Regular expression matching is a classical and well-studied prob-
lem. Prior work applies DFA and Thompson NFA methods for the
construction of the matching automata. We propose the noveluse of
derivatives and partial derivatives for regular expression matching.
We show how to obtain algorithms for various matching policies
such as POSIX and greedy left-to-right. Our benchmarking results
show that the run-time performance is promising and that ourap-
proach can be applied in practice.

1. Introduction
Regular expression pattern matching is a natural generalization of
pattern matching known from ML and Haskell. Here is an example
written in a Haskell style language.

f :: (Space | Text)* -> Text*
f "" = ""
f (x::Space*, y::(Space | Text)*) = f y
f (x::Text+, y::(Space | Text)*) = x ++ f y

The data typeText refers to some alpha-numeric character and
Space refers to white space. The above function removes all white
space from the input string as specified by its type signaturef ::
(Space | Text)* -> Text*. For example,f " Hello Bye"
yields"HelloBye".

Removal of white space is achieved via the three pattern clauses
which are applied from top to bottom. The first clause appliesin
case the input is empty. We use strings to represent sequences of
white space and text. Therefore, the empty word is represented by
the empty string"". In the second clause, the regular expression
pattern(x::Space*, y::(Space | Text)*) matches any non-
empty string (sequence) of white space and text. The point tonote
is that via the sub-patterns we can refer to sub-parts of the input
string.

Variablex in x::Space* matches any string of white space and
variabley in y::(Space | Text)* matches any remaining input
symbol. For our example input, we find the matching[x::" ",
y::"Hello Bye"]. But this is not the only possible matching be-
causeSpace* matches also the empty string. Hence, the matching
[x::"", y::" Hello Bye"] is possible as well.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

To make pattern matching unambiguous, we usually impose a
specific pattern matching policy such as greedy or POSIX match-
ing. This guarantees that only one matching results from a success-
ful pattern match. For our running example, we assume a greedy
matching policy. Therefore, we obtain the matching[x::" ",
y::"Hello Bye"] which leads to the subsequent function callf
"Hello Bye". The last pattern clause is the only one applicable.
Under greedy matching, we obtain[x::"Hello", y::" Bye"]
which leads to yet another function callf " Bye" resulting in
”Bye”. We write ++ to denote string concatenation. Hence, we ob-
tain the final result ”HelloBye”.

There are numerous prior works, e.g. consider [7, 4, 9, 8, 6, 5],
which study regular expression pattern matching and their efficient
implementation. Our contributions to this area is the noveluse of
regular expression derivatives [2] and partial derivatives [1] for reg-
ular expression pattern matching. Derivatives and partialderiva-
tives are related to each other like DFAs and NFAs. The derivative-
based algorithm has exponential run-time complexity due toback-
tracking, while the the partial derivative-based algorithm enjoys the
optimal linear time complexity.

In summary, we make the following contributions:

• We extend the notion of derivatives of regular expressions to
patterns and thus derive an elegant algorithm for regular ex-
pression pattern matching (Section 3).
• We show how to obtain a linear time complexity regular ex-

pression matching algorithm by employing partial derivatives
(Section 4).
• We discuss how to obtain an optimized implementation with

competitive performance results (Section 5).

All of our results are stated as propositions. We provide infor-
mal explanations but omit formal proofs which we plan to provide
at some later stage. We will use Haskell as our executable specifica-
tion language and for the implementation of all algorithms.Haskell
is a natural choice because of the functional nature of the derivative-
based approach towards pattern matching. The implementations are
available via

http://code.google.com/p/xhaskell-library/

Related work is discussed in Section 6. Section 7 concludes.

2. Regular Expression Pattern Matching
We first formally introduce regular expression matching in Fig-
ure 1. The definition of words, regular expressions and languages is
standard.Σ refers to a finite set of alphabet symbolsA, B, etc. To
avoid confusion with the EBNF symbol ”|”, we write ”+” to denote
the regular expression choice operator. The pattern language con-
sists of variables, pair, choice and star patterns. Patternvariablesx
are always distinct. The treatment of extensions such as character
classes, back-references is postponed until a later section. Environ-
ments are ordered multi-sets, i.e. lists. We write⊎ to denote multi-

1 2010/4/24

Words:
w ::= ǫ Empty word

| l ∈ Σ Letters
| ww Concatenation

Regular expressions:

r ::= r + r Choice
| (r, r) Concatenation
| r∗ Kleene star
| ǫ Empty word
| φ Empty language
| l ∈ Σ Letters

Languages:

L(r1 + r2) = L(r1) ∪ L(r2)
L(r1, r2) = {w1w2 | w1 ∈ L(r1), w2 ∈ L(r2)}
L(r∗) = {ǫ} ∪ {w1...wn|wi ∈ L(r)}
L(ǫ) = {ǫ}
L(φ) = {}
L(l) = {l}

Patterns:
p ::= (x : r) Variables Base

| (x : p) Variables Group
| (p, p) Pairs
| (p + p) Choice
| p∗ Kleene Star

Environments:
Γ ::= {x : w} Variable binding

| Γ ⊎ Γ Ordered multi-set of variable bindings

Pattern matching relation:w ⊢ p ; Γ

(VarBase)
w ∈ L(r)

w ⊢ x : r ; {x : w}
(VarGroup)

w ⊢ p ; Γ

w ⊢ x : p ; {x : w} ⊎ Γ

(Pair)

w = w1w2

w1 ⊢ p1 ; Γ1

w2 ⊢ p2 ; Γ2

w ⊢ (p1, p2) ; Γ1 ⊎ Γ2

(ChoiceL)
w ⊢ p1 ; Γ1

w ⊢ p1 + p2 ; Γ1

(ChoiceR)
w ⊢ p2 ; Γ2

w ⊢ p1 + p2 ; Γ2

(Star)
w = w1...wn

wi ⊢ p ; Γi for i = 1..n

w ⊢ p∗
; Γ1 ⊎ ... ⊎ Γn

Figure 1. Regular Expressions and Matching Relation

set union, i.e. list concatenation. The reason for using multi-sets
rather than sets is that we record multiple bindings for a variablex.
See the up-coming match rule for Kleene star patterns.

Concatenation among regular expressions and patterns is often
left implicit and to omit parentheses we assume that+ has a
lower precedence than concatenation. Hence,A + AB is a short-
hand forA + (A, B) and x : A + y : AB is a short-hand for
(x : A) + (y : AB).

Matching a patternp against a wordw is defined by the match-
ing relationw ⊢ p ; Γ which results in a bindingΓ, mapping
variables to matched sub-parts of the word. The matching relation
as defined is indeterministic, i.e. ambiguous, for the following rea-
sons.

In case of choice, we can arbitrarily match a word either against
the left or right pattern. See rules (ChoiceL) and (ChoiceR). Inde-
terminism also arises in case of (Pair) and (Star) where the input
word w can be broken up arbitrarily. Next, we consider some ex-
amples to discuss these points in more detail.

For pattern(xyz : (x : A+y : AB + z : B)∗) and inputABA
the following matchings are possible:

• {xyz : ABA,x : A, z : B, x : A}.
In the first iteration, we matchA (bound byx), then B

(bound byz) , and then againA (bound byx). For each iteration
step we record a binding and therefore treat bindings as lists.
We write the bindings in the order as they appear in the pattern,
starting with the left-most binding.
• {xyz : ABA, y : AB, z : B}.

We first matchAB (bound byy) and in the final last iteration
thenB (bound byz).

For pattern(xyz : (xy : (x : A + AB, y : BAA + A), z :
AC + C)) and inputABAAC we find the following matchings:

• {xyz : ABAAC,xy : ABAA,x : A, y : BAA, z : C}.
• {xyz : ABAAC,xy : ABA,x : AB, y : A, z : AC}.

To make the matching relation deterministic, we impose a pat-
tern matching policy such as POSIX. POSIX demands that we must
always match the longest word relative to the pattern structure. See
Figure 2 where we introduce the POSIX rules (POSIX-Pair) and
(POSIX-Star). All other rules from Figure 1 remain unchanged.

2 2010/4/24

Word ordering:

|w| = length of wordw
w1 ≥ w2 = |w1| ≥ |w2|
(w1, ..., wn) ≥ (w′

1, ..., w
′

m) = (w1 > w′

1) ∨ (|w1| == |w′

1| ∧ n > 1 ∧ (w2, ..., wn) ≥ (w′

2, ..., w
′

m))

Free pattern variables:

fv(x : r) = {x}
fv(x : p) = {x} ∪ fv(p)
fv(p1, p2) = fv(p1) ∪ fv(p2)
fv(p∗) = fv(p)
fv(p1 + p2) = fv(p1) ∪ fv(p2)

baseFv(x : r) = {x}
baseFv(x : p) = baseFv(p)
baseFv(p1, p2) = baseFv(p1) ∪ baseFv(p2)
baseFv(p∗) = baseFv(p)
baseFv(p1 + p2) = baseFv(p1) ∪ baseFv(p2)

POSIX matching:

(POSIX-Pair)

w = w1w2

w1 ⊢POSIX p1 ; Γ1

w2 ⊢POSIX p2 ; Γ2

forall w′

1, w
′

2, Γ
′

1, Γ
′

2 such that
w = w′

1w
′

2

w′

1 ⊢POSIX p1 ; Γ′

1

w′

2 ⊢POSIX p2 ; Γ′

2

we have that
(w1, w2) ≥ (w′

1, w
′

2)

w ⊢POSIX (p1, p2) ; Γ1 ⊎ Γ2

(POSIX-Star)

w = w1...wn

wi ⊢POSIX p ; Γi for i = 1..n

forall w′

1, ..., w
′

m, Γ′

1, ..., Γ
′

m such that
w = w′

1...w
′

m

w′

i ⊢POSIX p ; Γ′

i for i = 1..m

we have that
(w1, ..., wn) ≥ (w′

1, ..., w
′

m)

w ⊢POSIX p∗
; Γ1 ⊎ ... ⊎ Γn

Greedy left-to-right matching:

(GLR-ChoiceL)

w ⊢glr2 p1 ; Γ1

fv(p2) = {x1, .., xn}

Γ2 = {x1 : ǫ, ..., xn : ǫ}

w ⊢glr2 p1 + p2 ; Γ1 ⊎ Γ2

(GLR-ChoiceR)

w ⊢glr2 p2 ; Γ2

fv(p1) = {x1, .., xn}

Γ1 = {x1 : ǫ, ..., xn : ǫ}

tw ⊢glr2 p1 + p2 ; Γ1 ⊎ Γ2

(GLR-Star)

w = w1...wn

wi ⊢glr2 p ; Γi for i = 1..n

forall w′

1, ..., w
′

m, Γ′

1, ..., Γ
′

m such that
w = w′

1...w
′

m

w′

i ⊢glr2 p ; Γ′

i for i = 1..m

we have that
(Γ1, ..., Γn) ≥ (Γ′

1, ..., Γ
′

m)

w ⊢glr2 p∗
; Γ1 ⊎ ... ⊎ Γn

(GLR)

w ⊢glr2 p ; Γ

forall Γ′ such thatw ⊢glr2 p ; Γ′

we have thatΓo ≥ Γ′

o where
Γo = {x : w|x : w ∈ Γ x ∈ baseFv(p)}

Γ′

o = {x : w|x : w ∈ Γ′ x ∈ baseFv(p)}

w ⊢glr p ; Γ

Figure 2. Matching Policies

The premise in rule (POSIX-Pair) implies that there exists words
w1, w2 and bindingsΓ1, Γ2 such that the following conditions
hold:

• w = w1w2, and
• w1 ⊢POSIX p1 ; Γ1, and
• w2 ⊢POSIX p2 ; Γ2

That is,w1 matchesp1 andw2 matchesp2. The additional for all
qualified conditions ensure that the first patternp1 is matched by
the longest sub-part ofw. Similarly, rule (POSIX-Star) demands

that in each iteration we match the longest sub-word. For each iter-
ation we record the binding and therefore use multi-sets, i.e. lists.

PROPOSITION2.1 (POSIX Correctness).Let w be a word,p be
a pattern andΓ a binding such thatw ⊢POSIX p ; Γ. Then,
w ⊢ p ; Γ

A different matching policy is greedy left-to-right matching.
Judgment· ⊢glr2 · ; · performs greedy left-to-right matching
for all intermediate nodes. The rules for choice and star arere-
placed by rules (GLR-ChoiceL), (GLR-ChoiceR) and (GLR-Star).
All other rules remain unchanged. In case of (GLR-ChoiceL),we

3 2010/4/24

append some empty bindingΓ2 behind the left matchΓ1. In case
of (GLR-ChoiceR), we append the empty bindingΓ1 ahead of the
right matchΓ2. This guarantees that we cover all pattern variables
even if they only contribute the empty binding and all bindings re-
flect the order of the variables in the pattern. This is the basis for
the greedy left-to-right comparison in rules (GLR-Star) and (GLR).

Rule (GLR-Star) is similar to rule (POSIX-Pair). The difference
is that we favor the earliest match and use the bindingsΓi instead
of words wi for comparison. Thus, we select the greedy left-to-
right match instead of only the longest match as in case of POSIX.
The bindings reflect the greedy left-to-right matching order. We
write (Γ1, ..., Γn) ≥ (Γ′

1, ..., Γ
′

m) as a short-hand for(x11
:

w11
, ..., xnln

: wnln
) ≥ (x′

11
: w′

11
, ..., x′

mlm
: w′

mlm
) where

(xij
: wij

) ∈ Γi and(x′

ij
: w′

ij
) ∈ Γ′

i. The sequence of variables
xij

is a suffix of the sequencex′

ij
.

Rule (GLR) finally selects the greedy left-to-right match byonly
considering the base bindings resulting fromx : r. See the use of
baseFv in the definitions. We writeΓo ≥ Γ′

o as a short-hand for
(w1, ..., wn) ≥ (v1, ..., vm) whereΓo = {x1 : w1, ..., xn : wn}
and Γ′

o = {y1 : v1, ..., ym : vm}. The bindingsxi : wi and
yj : vj correspond to the leftmost matching order which implies
thatx1...xn is a suffix ofy1...ym.

PROPOSITION2.2 (Greedy Left-To-Right Correctness).Let w be
a word,p be a pattern andΓ a binding such thatw ⊢glr p ; Γ.
Then,w ⊢ p ; Γ′ for someΓ′ such thatΓ(x) = Γ′(x) for all
x ∈ dom(Γ′).

Because we also record empty bindings resulting from choicepat-
terns, see rules (GLR-ChoiceL) and (GLR-ChoiceR), the greedy
left-to-right bindingΓ represents a superset of the bindingΓ′ com-
puted via Figure 1. Therefore, we compareΓ andΓ′ with respect
to the variable bindings inΓ′. For convenience, we treat bindings
like functions and writedom(Γ′) to denote the function domain of
Γ′. The codomain is the power set over the language of words be-
cause of repeated bindings in case of the pattern star iteration. For
instance, forΓ′′ = {x : A, x : B} we have thatΓ′′(x) = {A, B}.

Let’s revisit our earlier examples. For pattern(xyz : (x : A+y :
AB + z : B)∗) and inputABA we have that

• {xyz : ABA, y : AB, z : B} is the POSIX match, and
• {x : A, y : ǫ, z : ǫ, x : ǫ, y : ǫ, z : B, x : A, y : ǫ, z : ǫ} is the

greedy left-to-right match.

The repeated bindings forx, y andz arise because of the choice and
Kleene star pattern. The above shows that POSIX strictly favors the
longest match, regardless whether the match is in the left orright
component of a choice pattern.

We consider an additional, new example. For pattern(xy : (x :
A + y : AA)∗) and inputAA we find that

• {xy : AA, y : AA} is the POSIX match, and
• {x : A, y : ǫ, x : A, y : ǫ} is the greedy left-to-right

match. In some intermediate step, we encounter the matchings
{x : A, y : ǫ, x : A, y : ǫ} and {x : ǫ, y : AA}. Rule
(GLR-Star) then selects{x : A, y : ǫ, x : A, y : ǫ}.

For pattern(xyz : (xy : (x : A + AB, y : BAA + A), z :
AC + C)) and inputABAAC we have that

• {xyz : ABAAC,xy : ABAA,x : A, y : BAA, z : C} is the
POSIX match, and
• {xyz : ABAAC,xy : ABA,x : AB, y : A, z : AC} is the

greedy left-to-right match.

The POSIX match respects the structure of the pattern. Hence, the
first match is chosen where the bindingx : ABAA is longer than
the bindingx : ABA in the second match. The pattern structure is

data RE where
Phi :: RE -- empty language
Empty :: RE -- empty word
L :: Char -> RE -- letter
Choice :: RE -> RE -> RE -- r1 + r2
Seq :: RE -> RE -> RE -- (r1,r2)
Star :: RE -> RE -- r*

derivRE :: RE -> Char -> RE
derivRE Phi = Phi
derivRE Empty = Phi
derivRE (L l1) l2
| l1 == l2 = Empty
| otherwise = Phi

derivRE (Choice r1 r2) l =
Choice (derivRE r1 l) (derivRE r2 l)

derivRE (Seq r1 r2) l =
if isEmpty r1
then Choice (Seq (derivRE r1 l) r2) (derivRE r2 l)
else Seq (derivRE r1 l) r2

derivRE (this@(Star r)) l =
Seq (derivRE r l) this

Figure 3. Regular Expression Derivatives

ignored by the greedy left-to-right match which selects thematch
based on the base variables only. Hence, greedy chooses the second
match.

Our next goal is to implement the POSIX and greedy left-to-
right matching.

3. Derivatives for Matching
In a first step, we implement the matching relation from Figure 1
by using Brzozowski’s regular expression derivatives [2].

3.1 Regular Expression Derivatives

Derivatives provide for an elegant solution to the word problem:

lw ∈ L(r) iff w ∈ L(r\l)

wherer\l is the derivative ofr with respect tol. In language terms,
we can specify derivatives as follows:

L(r\l) = {w | lw ∈ L(r)}

Constructively, we obtainr\l from r by taking away the letter
l while traversing the structure ofr.. For example,l\l = ǫ and
(r1 + r2)\ l = r1\l + r2\l.

In Figure 3 we implement the·\· operation via the Haskell
functionderivRE. The Haskell data typeRE is a literate translation
of the expression syntaxr from Figure 1.

The pair case (Seq), checks if the first componentr1 is empty
or not. If empty, the letterl can be taken away from eitherr1 or r2.
If non-empty, we take awayl from r1. In case of the Kleene star,
we unfoldr∗ to (r, r∗) and take away the leadingl from r.

3.2 Pattern Derivatives

Our idea is to transfer derivatives to the pattern matching setting:

lw ⊢ p ; Γ iff w ⊢ p\l ; Γ

Word lw matches the patternp and yields environmentΓ iff w
matches the pattern derivative ofp with respect tol.

The construction of pattern derivatives is similar to regular
expressions. See Figure 4 for an implementation in Haskell.In
case of a pattern variable, we build the derivative of the regular
expression (base variable) or inner pattern (group variable). For
convenience, we record the pattern match in the pattern itself by
appendingl to the already matched wordw. The cases for choice

4 2010/4/24

data Pat where
PVar :: Int -> Word -> RE-> Pat
PPair :: Pat -> Pat -> Pat
PChoice :: Pat -> Pat -> Pat
PStar :: Pat -> Pat
PatVar :: Int -> Word -> Pat -> Pat

derivPat :: Pat -> Char -> Pat
derivPat (PVar x w r) l = PVar x (w ++ [l]) (derivRE r l)
derivPat (PPair p1 p2) l =

if (isEmpty (strip p1))
then PChoice (PPair (derivPat p1 l) p2)

(PPair (mkEmpPat p1) (derivPat p2 l))
else PPair (derivPat p1 l) p2

derivPat (PChoice p1 p2) l =
PChoice (derivPat p1 l) (derivPat p2 l)

derivPat (PatVar x w p) l = PatVar x (w++[l]) (derivPat p l)
derivPat (this@(PStar p)) l = PPair (derivPat p l) this

Figure 4. Pattern Derivatives

strip :: Pat -> RE
strip (PVar w r) = r
strip (PPair p1 p2) = Seq (strip p1) (strip p2)
strip (PChoice p1 p2) = Choice (strip p1) (strip p2)
strip (PStar p) = strip p
strip (PatVar w p) = strip p

mkEmpPat :: Pat -> Pat
mkEmpPat (PVar x w r)

| isEmpty r = PVar x w Empty
| otherwise = PVar x w Phi

mkEmpPat (PPair p1 p2) = PPair (mkEmpPat p1) (mkEmpPat p2)
mkEmpPat (PChoice p1 p2) =

PChoice (mkEmpPat p1) (mkEmpPat p2)
mkEmpPat (PatVar x w p) = PatVar x w (mkEmpPat p)
mkEmpPat (PStar p) = PStar (mkEmpPat p)

isEmpty :: RE -> Bool
isEmpty Phi = False
isEmpty Empty = True
isEmpty (L) = False
isEmpty (Choice r1 r2) = (isEmpty r1) || (isEmpty r2)
isEmpty (Seq r1 r2) = (isEmpty r1) && (isEmpty r2)
isEmpty (Star r) = True

Figure 5. Helper Functions

and star are similar to the regular expression case. The pattern
match for star records the binding for each iteration.

The pair case differs slightly compared to the regular expression
case. Thestrip helper function, see Figure 5, extracts the regular
expression to test if the first patternp1 is empty. If empty, all further
matchings will only considerp2. However, we can’t simply dropp1

because we record the variable binding in the pattern itself. Instead,
we make the pattern empty such that the resulting pattern can’t
match any further input. See helper functionmkEmpPat.

For example, consider the pattern

([AB]x : (A + B)∗, []y : C
∗)

For convenience, we use the pattern syntax from Figure 1 instead
of the more verbose Haskell data type syntax. Each variable starts
with the already matched word. The first pattern has already con-
sumed[AB] while the binding of the second pattern is still empty
represented by[].

type Word = [Char]
type Env = [(Int,Word)]

allMatch :: Pat -> Word -> Pat
allMatch p w = foldl (\ p → \ l → derivPat p l) p w

allBinding :: Pat -> [Env]
allBinding (PVar x w r) =
if isEmpty r then [[(x,w)]] else []

allBinding (PChoice p1 p2) =
(allBinding p1) ++ (allBinding p2) -- indet choice
allBinding (PPair p1 p2) =
[xs ++ ys | xs ← allBinding p1, ys ← allBinding p2]

allBinding (PatVar x w p) =
[(x,w):env | env ← allBinding p]

allBinding (PStar p) = allBinding p

match :: Pat -> Word -> [Env]
match p w = allBinding (allMatch p w)

Figure 6. Derivative Matching

Computation of the pattern derivative with respect toC pro-
ceeds as follows.

derivPat ([AB]x : (A + B)∗, []y : C∗) C

= ([ABC] derivPat (x : (A + B)∗) C, []y : C∗)+
([AB] mkEmpPat (x : (A + B)∗), derivPat ([]y : C∗) C)

= ([ABC]x : (derivRE (A + B) C, (A + B)∗), []y : C∗)+
([AB]x : ǫ, [C]y : (derivRE C C, C∗))

= ([ABC]x : (φ + φ, (A + B)∗), []y : C∗)+
([AB]x : ǫ, [C]y : (ǫ, C∗))

The sub-pattern(φ + φ, (A + B)∗) could be further simplified by
φ and(ǫ, C∗) by C∗. We omit this implementation step for brevity.

3.3 Derivative Matching

Figure 6 puts the pieces together and implements the matching rela-
tion from Figure 1. FunctionallMatch iterates over the input word
and applies the pattern derivative function. FunctionallBinding
computes the bindings which are recorded in the final pattern.

PROPOSITION3.1 (Pattern Derivative Soundness).Let w be a
word, p be a pattern andΓ a binding such thatw ⊢ p ; Γ.
Then,match p w = envs for someenvs andenv such that

• env is an element ofenvs, and
• for all x ∈ dom(Γ) we have thatlookup x env = Just w’

wherew′ = Γ(x).

PROPOSITION3.2 (Pattern Derivative Completeness).Let w be a
word andp be a pattern. Ifmatch p w = envs then for all ele-
mentsenv in envs we have that there existsΓ such that

• w ⊢ p ; Γ, and
• for all x ∈ dom(Γ) we have thatlookup x env = Just w’

wherew′ = Γ(x).

Thelookup function retrieves a variable binding. The construc-
tor Just indicates that the lookup is successful.

The pattern computed byallMatch represents a tree of match-
ings. For example, consider pattern(x : A∗, y : A∗) for input
AAA. In Figure 7, we visualize the resulting pattern as a tree where
every branch corresponds to a choice operator in the patternderiva-
tive. Every leaf node corresponds to a potential match result. For
convenience, we simplify(ǫ, A∗) by A∗.

5 2010/4/24

(x : A∗, y : A∗)

([A]x : A∗, y : A∗)

A

([AA]x : A∗, y : A∗)

A

L1

A

L2

A

([A]x : ǫ, [A]y : A∗)

A

L3

A

L4

A

(x : ǫ, [A]y : A∗)

A

([A]x : φ, [A]y : A∗)

A

L5

A

L6

A

(x : ǫ, [AA]y : A∗)

A

L7

A

L8

A

L1 = ([AAA]x : A∗, []y : A∗) L2 = ([AA]x : ǫ, [A]y : A∗)
L3 = ([AA]x : φ, [A]y : A∗) L4 = ([A]x : ǫ, [AA]y : A∗)
L5 = ([AA]x : φ, [A]y : A∗) L6 = ([A]x : φ, [AA]y : A∗)
L7 = ([A]x : φ, [AA]y : A∗) L8 = ([]x : ǫ, [AAA]y : A∗)

Figure 7. Match Tree Example

FunctionallBinding traverses the tree to build all valid vari-
able bindings. For example,L3 is invalid because of the non-empty
φ pattern. Overall, we obtain the bindings

{x : AAA, y : ǫ}
{x : AA, y : A}
{x : A, y : AA}
{x : ǫ, y : AAA}

For most applications, we are not interested in all matchings
but only in a specific, for example POSIX, match. We can selecta
specific match by traversing the tree in a certain order. For greedy
left-to-right we choose a depth-first traversal. A problem with this
approach is that we might have to back-track in case we hit an
invalid leaf node. As the example in Figure 7 shows, back-tracking
can take exponential time.

PROPOSITION3.3 (Pattern Derivative Complexity).The complex-
ity of match is exponential in the size of the input in the worst case.

To avoid back-tracking, and thus the exponential worst-case
complexity, we explore several match paths simultaneouslyby us-
ing a non-deterministic automata for matching.

4. Partial Derivatives for Matching
For the non-deterministic match automata construction we make
use of partial derivatives.

4.1 Regular Expression Partial Derivatives

Derivatives represent the states of a deterministic automata whereas
partial derivatives introduced by Antimirov [1] representthe states
of a non-deterministic automata. The partial derivative operation
·\p· yields a set of regular expressions via which we can express
derivatives as follows.

L(r\l) = L(r1 + ... + rn)

wherer\pl = {r1, ..., rn}

partDeriv :: RE -> Char -> [RE]
partDeriv Phi l = []
partDeriv Empty l = []
partDeriv (L l’) l
| l == l’ = [Empty]
| otherwise = []

partDeriv (Choice r1 r2) l =
nub ((partDeriv r1 l) ++ (partDeriv r2 l))

partDeriv (Seq r1 r2) l
| isEmpty r1 =

let s1 = [(Seq r1’ r2) | r1’ <- partDeriv r1 l]
s2 = partDeriv r2 l

in nub (s1 ++ s2)
| otherwise = [(Seq r1’ r2) | r1’ <- partDeriv r1 l]

partDeriv (Star r) l =
[(Seq r’ (Star r)) | r’ <- partDeriv r l]

Figure 8. Regular Expression Partial Derivatives

Partial derivatives are computed compositionally by traversing
the structure of the regular expression. For example, consider the
choice case

(r1 + r2)\pl = (r1\pl) ∪ (r2\pl)

Figure 8 implements the operator·\p· via the Haskell function
partDeriv. The definition is similar to thederivRE function but
we now put sub-results into a set instead of combining them via the
choice operator+. We use lists to represent sets and therefore use
thenub function to remove duplicate elements.

For expressionA∗ we find

partDeriv A
∗

A = [(ǫ, A∗)]

which is equivalent toA∗. Our formulation of the partial derivative
operation slightly departs from the formulation given in [1]. An-
timirov immediately computesA∗ as the partial derivative ofA∗

6 2010/4/24

data Pat where
PVar :: Int -> RE -> Pat
PPair :: Pat -> Pat -> Pat
PChoice :: Pat -> Pat -> Pat
PStar :: Pat -> Pat
PatVar :: Int -> Pat -> Pat
deriving Eq

pdPat :: Pat -> Char -> [(Pat,Env->Env)]
pdPat (PVar x r) l =

let pds = partDeriv r l
in if null pds then []

else [(PVar x (resToRE pds),
\ env -> update (x,l) env)]

pdPat (PPair p1 p2) l =
if (isEmpty (strip p1))
then nub2 ([(PPair p1’ p2,f) | (p1’,f) <- pdPat p1 l] ++

pdPat p2 l)
else [(PPair p1’ p2,f) | (p1’,f) <- pdPat p1 l]

pdPat (PChoice p1 p2) l =
nub2 ((pdPat p1 l) ++ (pdPat p2 l))

pdPat (this@(PStar p)) l =
[(PPair p’ this, f) | (p’,f) <- pdPat p l]

pdPat (PatVar x p) l =
[(PatVar x p’, f . (update (x,l))) | (p’,f) <- pdPat p l]

update :: (Int,Char) -> Env -> Env
update (x,l) [] = [(x,[l])]
update (x,l) ((y,w):env)

| (y == x) = (x,w++[l]) : env
| otherwise = (y,w) : update (x,l) env

nub2 = nubBy ((p1,) (p2,) -> p1 == p2)

Figure 9. Pattern Partial Derivatives with Matching Functions

with respect toA. This is a minor detail. Importantly, we can re-
state the following result already reported in [1].

PROPOSITION4.1 (Antimirov). For a finite alphabetΣ and regu-
lar expressionr, the set of partial derivatives ofr and its descen-
dants is finite. The size of the set is linear in the size of the regular
expression.

The above result does not hold for derivatives. For example,

derivRE A∗ A = (ǫ, A∗)
derivRE (ǫ, A∗) A = (φ, A∗) + (ǫ, A∗)

and so on. On the other hand, for partial derivatives we have that

partDeriv A∗ A = [(ǫ, A∗)]
partDeriv (ǫ, A∗) A = [(ǫ, A∗)]

we reach a fix-point. Note thatpartDeriv ǫ l = [].

4.2 Pattern Partial Derivatives

We make use of the finiteness of partial derivatives to build anon-
deterministic finite matching automaton. Each NFA transition goes
from a regular expression pattern to the set of partial derivatives
patterns. To each partial derivative we also associate a pattern
matching functionf .

p
l
−→ {(p′, f) | p′ ∈ (p\pl)} (1)

The matching functionf incrementally records that letterl is con-
sumed by some pattern variablex. As we will see shortly, the fi-
nal matching will be computed by composition of the incremental
matchings.

Figure 9 shows the implementation of the NFA transition rela-
tion (1) in terms of the Haskell functionpdPat. The construction of

isEmptyPat :: Pat -> Bool

greedy2:: [(Pat,Env)] -> Word -> [Env]
greedy2 ps [] =
[env | (p,env) <- ps, isEmptyPat p]

greedy2 ps (l:w) =
let ps2 = [(p’, f env) | (p,env) <- ps,

(p’,f) <- pdPat p l]
ps3 = nub2 ps2

in greedy2 ps3 w

greedy :: Pat -> Word -> Maybe Env
greedy p w =
case (greedy2 [(p,[])] w) of

env: -> Just env
[] -> Nothing

Figure 10. Greedy Left-To-Right Matching

pattern partial derivatives follows closely the construction of regu-
lar expression derivatives. The cases for pattern variables are the
only interesting ones. ForPVar we build the partial derivative of
the base regular expressionr. The incremental matching function
simply updates the current bindingenv by appending the letterl.
The construction is similar forPatVar. In addition, we apply the
incremental matchf of the the sub-patternp.

Antimirov’s result straightforwardly transfers to the regular ex-
pression pattern setting.

PROPOSITION4.2 (Finiteness of Pattern Partial Derivatives).For
a finite alphabetΣ and patternp, the set of pattern partial deriva-
tives ofp and its descendants computed via functionpdPat is finite.
The size of the set is linear in the size of the pattern.

The above allows us to build a finite, non-deterministic match-
ing automata.

4.3 Greedy Left-To-Right Matching

The implementation of greedy left-to-right matching is given in
Figure 10. For brevity, we omit the straightforward implementation
of isEmptyPat. The pattern partial derivatives computed bypdPat
are kept in left-to-right traversal order. We maintain thisorder while
simultaneously exploring the paths of the non-deterministic match-
ing automata. Thenub2 removes duplicate matching states inps2.
For removal of duplicates, we only consider the pattern compo-
nent. An important property is that thenubBy (andnub2) function
is stable. That is, equal elements are not re-ordered. The equality
function among patterns is derived automatically, seederiving
Eq attached to thePat data type definition. Proposition 4.2 guaran-
tees that the size of matching states inps remains finite.

We can summarize the above observations as follows.

PROPOSITION4.3 (Greedy Correctness and Complexity).Function
greedy implements the greedy left-to-right matching policy from
Figure 2 and it’s running time is linear in the size of the input.

A feature of our implementation is that individual bindingsof
Kleene star iterations will be concatenated based on the pattern
variables.

For example, for(x : A, y : B)∗ and inputABAB we compute
the final binding[x : AA, y : BB]. We could of course also
compute the individual bindings for each iteration[x : A, y :
B, x : A, y : B]. This requires a few modifications forpdPat,
in particular, the case forPStar. The details can be found in the
implementation which is available with this paper.

7 2010/4/24

-- some adjustment because of
-- right-to-left match, append to front
update (x,l) [] = [(x,[l])]

-- some adjustment, keep only last, most recent match
pdPat (this@(PStar p)) l =

[(PPair p’ this, f . (reset p)) | (p’,f) <- pdPat p l]

-- remove earlier bindings of pat
reset :: Pat -> Env -> Env

geqEnv p e1 e2 =
let xs = getVar p
in geq (map (envToWord e1) xs)

(map (envToWord e2) xs)

getVar :: Pat -> [Int]
envToWord :: Env -> [Int] -> [Word]

geq [] [] = EQ
geq (w1:ws1) (w2:ws2)

| length w1 > length w2 = GT
| length w1 == length w2 = geq ws1 ws2
| otherwise = LT

geq = LT

getVar :: Pat -> [Int]
getVar (PVar x) = [x]
getVar (PPair p1 p2) = getVar p1 ++ getVar p2
getVar (PChoice p1 p2) = getVar p1 ++ getVar p2
getVar (PStar p) = getVar p
getVar (PatVar x p) = x : getVar p

nubPosix :: Pat -> [(Pat,Env)] -> [(Pat,Env)]
nubPosix [] = []
nubPosix p ps =

let peqss = groupBy (\ (p1,) (p2,) -> p1 == p2) ps
in map (maximumBy (geqEnv p)) peqsss

-- set of all pattern partial derivatives
allPD :: Pat -> [Char] -> [Pat]
-- set of letters in pattern
sigmaPat :: Pat -> [Char]

posix :: Pat -> Word -> Maybe Env
posix init v =

let allPDs = allPD init (sigmaPat init)
finals = [(p,[]) | p <- allPDs, isEmptyPat p]
pMatch ps [] =
[maximumBy (geqEnv init)

[env | (p,env) <- ps, p == init]]
pMatch ps (l:w) =
let ps2 = [(p’,f env) | (p,env) <- ps,

p’ <- allPDs,
(p’’,f) <- pdPat p’ l,
p’’ == p]

ps3 = nubPosix init ps2
in pMatch ps3 w

in case (pMatch finals (reverse v)) of
[] -> Nothing
(env:) -> Just env

Figure 11. POSIX Right-To-Left Matching

4.4 POSIX Right-To-Left Matching

Implementing POSIX matching turns out to be more challenging.
We can’t rely anymore on a specific traversal strategy, e.g. left-
most, but must follow the POSIX matching order

Recall the earlier example(xyz : (x : A + y : AB + z : B)∗).
For inputABA, we find matchings

• {xyz : ABA, y : AB,x : A}, and
• {xyz : ABA,x : A, z : B, x : A}

The second one is the greedy left-to-right match and the firstone is
the POSIX match.

One possible strategy to compute the POSIX match is to keep
track of the individual (incremental) matchings and after asub-
pattern match is complete to perform the POSIX check. See rule
(POSIX-Star). But this strategy demands a lot of book-keeping
which in turn requires extra space [7].

The key idea is to perform the POSIX match from right-to-left
and only perform the POSIX check for the last, most recent match.
We owe this insight to [4]. Explanations of why this approach
works is missing in [4]. We finally provide some explanationsusing
our running example(xyz : (x : A + y : AB + z : B)∗).

We first build the automata derived from pattern partial deriva-
tives. For convenience, we have slightly simplified the automata by
simplifying (ǫ, r∗) to r∗. We also omit the incremental matching
functions.

• States:

p1 = (xyz : (x : A + y : AB + z : B)∗)
p2 = (xyz : (y : B, (x : A + y : AB + z : B)∗))

• Transitions:

p1

A
−→ p1

p1

A
−→ p2

p1

B
−→ p1

p2

B
−→ p1

Let’s consider the greedy left-to-right (forward) match:

[p1]
A
−→ [p1, p2] forward choice point

B
−→ [p1, p1] forward conflict point

In the second step, we encounter a conflict. The secondp1 cor-
responds to the POSIX match which in our current scheme will be
dropped. If we could foresee the future we could at the choicepoint
already favorp2 which leads to the POSIX match.

The idea by Cox is to perform the match from right-to-left
(backward):

[p1]
A
←− [p1]

B
←− [p1, p2]

A
←− [p1, p1] backward conflict point

We start off with the final statep1. We consume the input from
right-to-left. That is, we build a (backward) path from finalto initial
state. We yet again reach a conflict point.

The important insight, and something which hasn’t been previ-
ously explained, is that the backward conflict point corresponds to
the forward choice point (well, we are just slightly ahead byone
step). Recall that in case of the forward choice point, we couldn’t
make any decision yet which duplicate to keep. We haven’t seen
the future yet and therefore must consume further input. Once we
reach a forward conflict point, we can make a decision based onthe
recorded history of all matchings so far.

In case of the backward conflict point, we have already seen the
future! Simply because we are consuming the input from rightto
left. That is, we can make a decision based on the current match.
The current match is sufficient because the backward conflictpoint
represents the latest conflict point. We mean here latest in the sense
when viewed from left to right. Hence, there is no need to record
a history of all matchings so far. We aggressively resolve conflicts

8 2010/4/24

at the earliest possible point when going backwards (which is latest
when going forward).

For our example, we find the following situation

[(p1, [xyz : A]), (p1, [xyz : AB])] backward conflict point

In addition, we provide information about the incremental match
so far. We only record the last, most recent match and focus onthe
top-most pattern variable. There is now sufficient information to
decide that(p1, [xyz : AB]) is the POSIX match which we shall
keep.

Figure 11 implements this idea in Haskell. Because of the right-
to-left (backward) match, we need to make some adjustments to the
pattern partial derivative automata construction. The incremental
match appends the letterl to the front. Functionreset remove
earlier bindings. That is, we only keep the last, most recentmatch.
For brevity, we omit the straightforward implementation details.

FunctiongeqEnv compares two bindings relative to the order
of pattern variables. An important condition for our POSIX match
approach to work is that each node in the pattern tree is annotated
with a pattern variable. FunctiongetVar extracts the pattern vari-
able in top-down left-to-right order. We follow this order to select
the POSIX match. See functionnubPosix which removes all du-
plicate states with a smaller binding.

Functionposix builds the POSIX match by traversing the input
from right-to-left. For brevity, we omit the helper functionsallPD
andsigmaPat whose definitions are straightforward. In each in-
termediate (backward) step, we applynubPosix to ensure that we
keep the POSIX match. In the last step, we select the maximum
match among all initial states.

In summary, we can conclude the following.

PROPOSITION4.4 (POSIX Correctness and Complexity).Each
node in the pattern tree is annotated with a variable. Then, function
posix implements the POSIX matching policy from Figure 2 and
it’s running time is linear in the size of the input.

5. Experiments and Extensions
The matching algorithms in the previous sections are implemented
in the most straightforward manner in Haskell. They containspace
leaks and redundant computations and thus will not provide com-
petitive performance. For example, theposix function repeatedly
builds the reversed NFA transitions instead of caching themfor
faster access.

We discuss some optimizations to obtain an implementation
which is competitive in terms of performance. We report some
experimental results and also discuss extensions to deal with real-
world applications of regular expression matching.

5.1 Optimization

The following are some optimization techniques that we adopt.

5.1.1 General Techniques

• Space leak - This is a common problem in many Haskell imple-
mentations. Because Haskell is lazy, the program memory can
be swarmed by numerous unevaluated thunks. In our optimized
version, we carefully apply theseq combinator to eliminate un-
wanted lazy-computation;
• Inefficiency of theString data type - In Haskell,String

is implemented as a linked list of characters. It is a folklore
problem thatString value uses more space than its equivalent
forms in other languages such as C and Java. In the optimized
version we useByteString [3] instead ofString.

5.1.2 Specific Techniques

• pdPat - In both greedy andposix algorithms, we compute
pattern partial derivatives “on the fly” via thepdPat function,
(see in Figure 10 and Figure 11). These expensive operations
are repeated in the presence of Kleene star. In the optimized
version, we avoid this problem by pre-computing and caching
pattern partial derivatives in a hash table. At run-time thepdPat
operation is replaced by the hash operation followed by the
look-up operation which then gives usO(1) access.
• Indexed pattern partial derivatives - Another immediate perfor-

mance gain we got from the above technique is that the pattern
partial derivatives are hashed into integer values. Hence rou-
tines that require comparison among patterns are optimizedin
terms of equality test among integers;
• Pattern binding representation - In Figure 9 we store the (in-

termediate) pattern bindings in string form. In our optimized
implementations, we use aRange data type, i.e. a pair of in-
tegers, to record only the starting and the ending positionsof
the bindings. Thus, the space required is greatly reduced, and
the binding update operation is optimized. To keep track of the
bindings in each iteration of Kleene star patterns, we use a list
of Rangess.

5.2 Extensions for Real world Applications

Regular expression patterns used in the real world applications
require some extensions. The regular expression syntax appearing
in real world applications is often different from what we presented
so far. For instance, patterns with sub-match binding is expressed
implicitly in the regular expression pattern via groups, and the
concatenation requires no constructor. In the following section,
we usep (in text mode) to denote a pattern in the real world
application syntax, andp (in math mode) to denote a pattern in our
internal syntax defined earlier. The syntax ofp will be explained by
examples in the following paragraphs

5.2.1 Group Matching

In many mainstream languages that support regular expression
pattern matchings, such as Perl, python, awk and sed, programmers
are allowed to use “group operator”,(·) to mark a sub-pattern from
the input pattern, and the sub strings matched by the sub pattern can
be retrieved by making reference to integer index of the group. For
instance,(a*)(b*) is equivalent to pattern(x : a∗, y : b∗) in our
notation. Sending the input “aab” to(a*)(b*). yields[”aa”, ”b”],
where the first element in the list refers to the binding of the
first group (a*) and the second element refers to the binding
of the second group(b*). Group matching is supported in our
implementation by translating the groups into patterns with pattern
variables.

5.2.2 Character Classes

Character class is another extension we consider. For instance,
[0-9] denotes a single numeric character.[A-Za-z] denotes one
alphabet character. We translate these two types of character classes
into regular expressions via the choice operation+. There are some
other type of character classes that require more work to support.
Character classes can be negated.[^0-9] denotes any non-numeric
character. Another related extension that is available in real world
application is the dot symbol., which can be used to represent any
character. There are two different approaches to support the dot
symbol and negative character classes. One approach is to trans-
late the dot symbol into a union of all ASCII characters and to
translate negative character classes to unions of all ASCIIcharac-
ters excluding those characters mentioned in the negated character
classes. The other approach is to introduce these two notations.

9 2010/4/24

and[^l1...ln] to our internal regular expression pattern language,
such that

.\pl = {ǫ}

[^l1...ln]\pl =

{ǫ} if l ∈ {l1, ..., ln}
{} otherwise

In our implementation, we adopt the latter because the resulting
regular expressions are smaller in size hence it is more efficient.

5.2.3 Non-Greedy Match

The symbol? in the pattern(a*?)(a*) indicates that the first sub
patterna* is matched non-greedily, i.e. it matches with the shortest
possible prefix, as long as the suffix can be consumed by the sub
pattern that follows.

Non-greedy matching can be neatly handled in our implementa-
tion. To obtain a non-greedy match for a pair pattern(p1, p2) where
p1 is not greedy, we simply reorder the two partial derivativescom-
ing from (p1, p2)\pl. We extend the pair pattern case ofpdPat in
Figure 9 as follows,

pdPat (PPair p1 p2) l =
if (isEmpty (strip p1))
then if isGreedy p1

then nub2 ([(PPair p1’ p2,f) | (p1’,f)<-pdPat p1 l]
++ pdPat p2 l)

else nub2 (pdPat p2 l ++
[(PPair p1’ p2,f) | (p1’,f) <- pdPat p1 l])

else [(PPair p1’ p2,f) | (p1’,f) <- pdPat p1 l]

Extending our pattern language with the greediness symbol is
straight-forward and the definition ofisGreedy is omitted for
brevity.

5.2.4 Anchored and Unanchored Match

Given a patternp, ^p$ denotes an anchored regular expression
pattern. The match is successful only if the input string is fully
matched byp. A pattern which is not starting witĥand not ending
with $ is considered unanchored. An unanchored pattern can match
with any sub-string of the given input, under some matching policy.
Our implementationsgreedy andposix are clearly the anchored
matches. To support unanchored match, we could rewrite the unan-
chored patternp into an equivalent anchored form,^.*?p.*$, and
proceed with anchored match.

5.2.5 Repetition Pattern

Repetition patterns can be viewed as the syntactic sugar of se-
quence patterns with Kleene star.p{m} repeats the patternp for
m times;p{n,m} repeats the patternp for at leastn times and at
maximumm times. It is obvious that the repetition pattern can be
“compiled” away using the composition of sequence and Kleene
star operators.

Other extensions such as unicode encoding and back references
are not considered in this work.

5.3 Benchmarking

We benchmark ourselves against some existing regular expression
libraries available in Haskell. The set of candidates for comparison
are as follows,

• GLR - Our greedy left-to-right matching algorithm;
• GRL - A variant of the GLR algorithm, in which the input string

is matched from right to left;
• POSIX(PD) - Our POSIX right-to-left matching algorithm;
• PCRE - Text.Regex.PCRE library [11], a wrapper around the C

PCRE library;

• PCRELight - Text.Regex.PCRELight library [12];
• Parsec - Text.Regex.Parsec library [10];
• POSIX - Text.Regex.POSIX library [13];
• TDFA - Text.Regex.TDFA library [14].

The tests are conducted on an Intel Core 2 Duo machine running
Mac OSX 10.5.8 with 4 giga-byte memory. The test programs are
compiled using GHC 6.10.4. The runtime statistics are captured us-
ing the GHC run time flag-sstderr. The run times are measured
in the granularity of seconds, and the memory usage is measured in
mega-bytes.

For benchmarking, we use two typical applications of regular
expression in real world computer system. The first regular expres-
sion pattern is

^(.*) ([A-Za-z]{2}) ([0-9]{5})(-[0-9]{4})?$

which validates whether an input string is a US address. For in-
stance, sending the input string"Mountain View, CA 90410" to
the above pattern yields a match["Mountain View," , "CA",
"90410", ""] .

The inputs we use are text files, which contain multiple linesof
entries. Each entry is an address. The total numbers of entries of the
input files are ranging from 100000 to 300000. Our main program
(omitted for breivity) is reading and matching the input fileline by
line.

In Figure 12, the X-axis in the chart denotes the size of the input
files. The Y-axis captures the time taken in the matchings, which is
in logarithmic scale. As we can see from the chart, our implemen-
tations (especially GRL) are performing pretty well compared to
other implementations. In Figure 13, we record the memory usage
of the same example. In this graph, the Y-axis is measuring the the
memory usage. The chart shows that the space efficiency of our
implementation is about the same as that of Parsec, slightlyless ef-
ficient than TDFA and more efficient than the the remaining three
candidates.

In the second benchmark program, we consider the regular
expression pattern

^(([^:]+)://)?([^:/]+)(:([0-9]+))?(/.*)

which parses a HTTP request from a string which records the web
server log. The input files that we used in this benchmark case
are sharing the same number of entries. They only differ by the
lengths of individual entries. For instance, every entry inthe first
input file has 200 characters, every entry in the second one has
220 characters, and so on. The run-time performances are shown
in Figure 14. The Y-axis is measuring the run-time which is in
logarithmic scale. The X-axis is measuring the length of theentries
from the input files. In Figure 15, we benchmark the memory usage
using the same example. In this example, our implementationis
always in the middle-tier compared to the rest. We believe that
there is definitely some room to improve the performance of our
implementation.

6. Related Work and Discussion
Prior work relies on Thompson NFAs [15] for the construction
of the matching automata. For example, Frisch and Cardelli [5]
introduce a greedy matching algorithm. They first run the input
from right-to-left to prune the search space. A similar approach is
pursued in some earlier work by Kearns [6]. We adopt this ideain
the GLR version of our greedy algorithm.

Laurikari [9, 8] devises a POSIX matching automata and intro-
duces the idea of tagged transitions. A tag effectively corresponds
to our incremental matching functions which are computed aspart
of pdPat.

10 2010/4/24

Figure 12. Time comparison using the US address example

Figure 13. Space comparison using the US address example

Figure 14. Time comparison using the HTTP request example

Kuklewicz has implemented Laurikari style tagged NFAs in
Haskell. He [7] discusses various optimizations techniques to
bound the space for matching histories which are necessary in case
of (forward) left-to-right POSIX matching.

Cox [4] reports on a high-performance implementation of regu-
lar expression matching and also gives a comprehensive account of
the history of regular expression match implementations. We refer
to [4] and the references therein for further details. He introduces
the idea of right-to-left scanning of the input for POSIX matching.

11 2010/4/24

Figure 15. Space comparison using the HTTP request example

We adopt this idea to the setting of partial derivatives and provide
informal explanations why this approach works.

As said, all prior work on efficient regular expression match-
ing relies on Thompson NFAs or variants of it. To the best of our
knowledge, we are the first to transfer the concept of partialderiva-
tives to the regular expression setting. Partial deritivatives are a
form of NFA with noǫ-transitions. For a pattern of sizen, the par-
tial derivative NFA hasO(n) states andO(n2) transitions. Thomp-
son NFAs haveO(n) states as well butO(n) transitions because of
ǫ-transitions.

The work in [5] considersǫ-transitions as problematic for the
construction of the matching automata. Laurikari [9, 8] therefore
first removesǫ-transitions whereas Cox [4] builds theǫ-closure.
Cox algorithm has a better theoretical complexity in the range of
O(n ∗m) wherem is the input language. In each of them steps,
we must considerO(n) transitions. With partial derivatives we can-
not do better thanO(n2 ∗m) because there areO(n2) transitions
to consider. However, as shown in [1] the number of partial deriva-
tives states is often smaller than the number of states obtained via
other NFA constructions. Our performance comparisons indicate
that partial derivatives are competitive. We leave a more detailed
investigation of this topic for future work.

7. Conclusion
Our work tackles the regular expression matching problem from a
different angle based on a novel application of regular expression
derivatives and partial derivatives. We provide clean and elegant
matching algorithms which can be used for educational purposes.
Our benchmarks show that our approach yields competitive perfor-
mance results. In future work, we plan to consider a more detailed
study of the performance differences between matching automata
build via Thompson NFAs and partial derivative NFAs.

References
[1] V. M. Antimirov. Partial derivatives of regular expressions and finite

automaton constructions.Theoretical Computer Science, 155(2):291–
319, 1996.

[2] J. A. Brzozowski. Derivatives of regular expressions.J. ACM,
11(4):481–494, 1964.

[3] bytestring: Fast, packed, strict and lazy byte arrays with a list
interface.http://www.cse.unsw.edu.au/~dons/fps.html.

[4] R. Cox. Regular expression matching in the wild, 2010.
http://swtch.com/~rsc/regexp/regexp3.html.

[5] A. Frisch and L. Cardelli. Greedy regular expression matching. In
Proc. of ICALP’04, pages 618– 629. Spinger-Verlag, 2004.

[6] S. M. Kearns. Extending regular expressions with context operators
and parse extraction.Software - Practice and Experience, 21(8):787–
804, 1991.

[7] C. Kuklewicz. Forward regular expression matching withbounded
space, 2007.http://haskell.org/haskellwiki/RegexpDesign.

[8] V. Laurikari. Nfas with tagged transitions, their conversion to
deterministic automata and application to regular expressions. In
SPIRE, pages 181–187, 2000.

[9] V. Laurikari. Efficient submatch addressing for regularexpressions,
2001. Master thesis.

[10] regex-parsec: A better performance, lazy, powerful replacement of
text.regex and jregex.

http://hackage.haskell.org/package/regex-parsec.
[11] regex-pcre: The pcre backend to accompany regex-base.

http://hackage.haskell.org/package/regex-pcre.
[12] pcre-light: A small, efficient and portable regex library for perl 5

compatible regular expressions.
http://hackage.haskell.org/package/pcre-light.

[13] regex-posix: The posix regex backend for regex-base.
http://hackage.haskell.org/package/regex-posix.

[14] regex-tdfa: A new all haskell tagged dfa regex engine, inspired by
libtre.

http://hackage.haskell.org/package/regex-tdfa.
[15] K. Thompson. Programming techniques: Regular expression search

algorithm. Commun. ACM, 11(6):419–422, 1968.

12 2010/4/24

