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Abstract

Conjunctive grammars are context-free grammars with an explicit conjunction
operation in the formalism of rules; Boolean grammars are further equipped with an
explicit negation. Three years have passed since the publication of the last survey of
these grammars and their open research questions (A. Okhotin,“Nine open problems
on conjunctive and Boolean grammars”, Bulletin of the EATCS, 91 (2007), 96–119).
While an updated survey is under preparation, this note is aimed to report on the
two solved problems, as well as to correct a couple of small errors. In addition, the
award for solving each of the problems is raised to $360 Canadian.
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1 Updates to the nine problems

1.1 Limitations of Boolean grammars

Problem 1. Are there any languages recognized by deterministic linear bounded au-
tomata working in time O(n2) that cannot be specified by Boolean grammars?

There is one misleading comment to be corrected. It was suggested that

Other languages possibly not representable by Boolean grammars can be sought

for in the domain of unary languages: consider {a22n

|n > 0} or {an2 |n > 0}.

The knowledge on conjunctive grammars over a one-letter alphabet has much advanced
since then, and these two examples are no longer suggested. Though it remains unknown
whether the exact language {an2 | n > 0} can be represented, a grammar for a similar
language has been found:

Proposition 1 (Jeż, Okhotin [2]). There exists a conjunctive grammar G over an alphabet
{a} generating a language {af(n) | n > 0} for an integer function f(n) = Θ(n2).

The language {a22n

| n > 0} can most probably be represented as it is. Though no
one has taken the time to construct a grammar for this particular language, there is now
a general theorem on the existence of conjunctive grammars for unary languages of an
arbitrarily fast growth rate.

Theorem 1 (Jeż, Okhotin [2]). For every infinite recursively enumerable set of natural
numbers S there exists a conjunctive grammar G over an alphabet {a}, such that the
growth function of L(G) is greater than that of S at any point. Given a Turing machine
recognizing S, the grammar G can be effectively constructed.

In light of the further results on unary conjunctive languages presented in the next
section, finding a unary language generated by no Boolean grammar is a much more
difficult problem than anticipated, and of an interest on its own. But Problem 1 would
perhaps better be approached using languages over multiple-letter alphabets.

1.2 Conjunctive grammars over a one-letter alphabet
(SOLVED)

Problem 2 (Solved negatively by Artur Jeż [1] in 2007). Do conjunctive grammars
over a one-letter alphabet generate only regular languages?

It was suggested that

If they can generate any nonregular language, this would be a surprise.

The surprise took form of the following conjunctive grammar with four nonterminal
symbols:
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Example 1 (Jeż [1]). The conjunctive grammar

A1 → A1A3&A2A2 | a
A2 → A1A1&A2A6 | aa
A3 → A1A2&A6A6 | aaa
A6 → A1A2&A3A3

with the start symbol A1 generates the language L(G) = {a4n | n > 0}. In particular,
LG(Ai) = {ai·4n | n > 0} for i = 1, 2, 3, 6.

Substituting these four languages into the first equation, one obtains

{a4i | i > 0}{a3·4j | j > 0} ∩ {a2·4k | k > 0}{a2·4` | ` > 0} =

=
(
{a4n |n > 1}∪{a4i+3·4j | i 6= j}

)
∩

(
{a4n |n > 1}∪{a2·4k+2·4` |k 6= `}

)
= {a4n |n > 1},

that is, both concatenations contain some garbage, yet the garbage in the concatenations
is disjoint, and is accordingly filtered out by the intersection. Finally, the union with {a}
yields the language {a4n | n > 0}, and thus the first equation turns into an equality. The
rest of the equations are verified similarly. Proving that this solution is the least one is
only a matter of technique [1].

The idea of manipulating positional notation of numbers was extended to the following
general result:

Theorem 2 (Jeż, Okhotin [2]). Let Ak = {0, 1, . . . , k−1} with k > 2 be an alphabet of k-
ary digits, and let L ⊆ A∗

k be a language generated by a linear conjunctive grammar, which
contains no strings starting from 0. Then there exists a conjunctive grammar generating
the language {an | the k-ary notation of n is in L}.

A similar technique was used to construct an EXPTIME-complete set of numbers with
its unary representation generated by a conjunctive grammar [3].

Based upon Theorem 2, several undecidability results for unary conjunctive languages
were found, such as the following one:

Theorem 3 (Jeż, Okhotin [2]). For every fixed unary conjunctive language L0 ⊆ a∗, the
problem of whether a given conjunctive grammar over {a} generates the language L0 is
Π0

1-complete.

Unary conjunctive grammars with a unique nonterminal symbol are already nontrivial.
The first example of their nontriviality was actually an encoding of Example 1:

Example 2 (Okhotin, Rondogiannis [8]). The following one-nonterminal conjunctive
grammar

S → a11SS&a22SS | aSS&a9SS | a7SS&a12SS | a13SS&a14SS | a56 | a113 | a181

generates the language {a4n−8 |n > 3}∪{a2·4n−15 |n > 3}∪{a3·4n−11 |n > 3}∪{a6·4n−9 |n >
3}.

A general method of encoding a given conjunctive grammar over a unary alphabet in
a one-nonterminal conjunctive grammar was subsequently given by Jeż and Okhotin [4].
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1.3 Time complexity (SOLVED)

Problem 3 (Solved positively by Alexander Okhotin [6] in 2009). Are the languages
generated by Boolean grammars contained in DTIME(n3−ε) for any ε > 0?

The original survey mentioned fast parsing for context-free grammars:

Valiant (1975) reduced context-free membership problem to matrix multiplica-
tion, which allowed him to apply Strassen’s (1969) fast matrix multiplication
algorithm to obtain a context-free recognizer working in time O(n2.807). Using
an asymptotically better matrix multiplication method due to Coppersmith and
Winograd (1990), the complexity of Valiant’s recognizer can be improved to
O(n2.376).

But then it was stated that

However, already for conjunctive grammars there seems to be no way to reduce
the membership problem to matrix multiplication.

Indeed, Valiant’s algorithm was presented in a way that it essentially relies on having
two operations in a grammar, concatenation and union. These operations give rise to the
product and the sum in a certain semiring, with the rest of the algorithm operating in
terms of this semiring. However, it turned out that using matrices over a semiring as
an intermediate abstraction is in fact unnecessary, and it is sufficient to employ Boolean
matrix multiplication to compute the concatenations only, with the Boolean operations
in the grammar evaluated separately. This led to a simpler variant of Valiant’s algorithm,
which is naturally applicable to Boolean and context-free grammars alike.

Theorem 4. For every Boolean grammar G = (Σ, N, P, S) there is an algorithm, which,
for a given string of length n, constructs the parsing table Ti,j = {A ∈ N | ai+1 . . . aj ∈
LG(A)} in time Θ(BM(n)), where BM(n) is the time needed to multiply two n×n Boolean
matrices.

Accordingly, the family of languages generated by Boolean grammars is contained in
DTIME(n2.376).

1.4 Space complexity

Problem 4. Are the languages generated by Boolean grammars contained in
DSPACE(n1−ε) for any ε > 0?

No progress made.
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1.5 Greibach normal form

Problem 5. Is it true that for every Boolean grammar there exists a Boolean grammar
in Greibach normal form that generates the same language?

For a small special case, the question has been answered affirmatively:

Theorem 5 (Okhotin, Reitwießner [7]). For every conjunctive grammar over a unary
alphabet there exists and can be effectively constructed a conjunctive grammar in Greibach
normal form generating the same language.

One previously given advice must be revoked. It was suggested to try the following
language:

The question whether the language {anb2n | n > 1} can be represented by a
Boolean grammar in Greibach normal form might be a good starting point in
approaching Problem 5. The answer to this question is likely negative, and a
negative solution to the problem can be thus obtained.

Surprisingly, there exists a conjunctive grammar for this language:

Example 3. The following conjunctive grammar generates the language {anb2n | n > 0}:

S → aSB&AB | b
A → aA | ε
B → B1 | B2

B1 → B1B3&B2B2 | b
B2 → B1B1&B2B6 | bb
B3 → B1B2&B6B6 | bbb
B6 → B1B2&B3B3

Each nonterminal Bi generates {bi·4n | n > 0} as in Example 1, and in particular B
generates {b2n | n > 0}. All strings of the form anb2n

are generated inductively by S.
The basis is the string b = a0b20

generated by the rule S → b. The rule S → aSB&AB
generates all strings of the form an+1b2n+i, in which both 2n + i and i are powers of two.
These conditions are satisfied only if i = 2n, and thus the generated strings must be of
the form an+1b2n+1

.

1.6 Complementation of conjunctive grammars

Problem 6. Is the family of conjunctive languages closed under complementation?

It is worth being added that the same problem could be separately considered for
conjunctive languages over a unary alphabet. In fact, for every unary language found to
be conjunctive in the literature, its complement could be proved conjunctive by the same
methods [2, 3], yet there are no methods of changing a given conjunctive grammar to a
grammar for the complement of the generated language.
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1.7 Inherent ambiguity

Problem 7. Do there exist any inherently ambiguous languages with respect to Boolean
grammars?

It is worth being mentioned that while it was already known that the ambiguity in a
choice of a rule can be eliminated in any given Boolean grammar, the same result has been
established for conjunctive grammars as well. This property follows from a new normal
form theorem:

Theorem 6 (Okhotin, Reitwießner [7]). For every conjunctive grammar there exists and
can be effectively constructed a conjunctive grammar generating the same language, in
which the set of rules for every nonterminal A is of the form:

A → α1& . . . &αn | w1 | . . . | wm (n > 1, m > 0, αi ∈ (Σ ∪N)∗, wj ∈ Σ∗)

1.8 Hierarchy of Boolean LL(k) languages

Problem 8. Does there exist a number k0 > 0, such that, for all k > k0, Boolean
LL(k) grammars generate the same family of languages as Boolean LL(k0) grammars?

Some weaker results on the expressive power of LL(k) Boolean grammar have been
established:

Theorem 7 (Okhotin [5]). Every Boolean LL(k) language over a unary alphabet is reg-
ular.

Theorem 8 (Okhotin [5]). For every Boolean LL(k) language L ⊆ Σ∗ there exist con-
stants d, d′ > 0 and p > 1, such that for all w ∈ Σ∗, a ∈ Σ, n > d · |w| + d′ and
i > 0,

wan ∈ L if and only if wan+ip ∈ L

These theorems, in particular, imply that there is no Boolean LL(k) grammar for the
linear conjunctive language {anb2n |n > 0} and for the conjunctive language {a4n |n > 0}.

1.9 Nonterminal complexity of Boolean grammars

Problem 9. Does there exist a number k > 0, such that every language generated by
any Boolean grammar can be generated by a k-nonterminal Boolean grammar?

Some limitations of one-nonterminal conjunctive grammars have been established by
Okhotin and Rondogiannis [8].

Theorem 9. Let L = {an1 , an2 , . . . , ani , . . .} with 0 6 n1 < n2 < · · · < ni < · · · be an
infinite unary language, for which lim infi→∞

ni

ni+1
= 0. Then L is not generated by any

one-nonterminal conjunctive grammar.
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In particular, no unary language with a super-exponential growth rate such as

{a22n

| n > 0} and {an! | n > 1}, can be represented by such grammars. The above
theorem also applies to sets like {an!+i | n > 1, i ∈ {0, 1}}.

The next theorem applies to such languages as a∗ \ {an2 | n > 0}, a∗ \ {a2n | n > 0}
and or {an | n is composite}:

Theorem 10. Let L ⊆ a∗ be a nonregular language that is dense in the sense that

if limn→∞
|L∩{ε,a,...,an−1}|

n
= 1. Then there is no one-nonterminal conjunctive grammar

generating L.

At the same time, as shown by Jeż and Okhotin [4], every conjunctive grammar G with
nonterminals {A1, . . . , Am} can be encoded in a one-nonterminal grammar G1 generating
a language with anp+di ∈ L(G1) if and only if with an ∈ LG(Ai), for some numbers
p, d1, . . . , dm depending on m. However, there seems to be no way (at least, no apparent
way) to apply this construction to representing exactly the language L(G) using a bounded
number of nonterminals.

In light of these results, one can consider the same problem for conjunctive grammars
over a unary alphabet.

2 Increase of the award

The award for solving each of the remaining seven problems is increased to $360 Canadian.
The terms remain as previously announced.
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