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Abstract. We introduce locally stratified boolean grammars which form
a natural subclass of boolean grammars [A. Okhotin, Information and
Computation, 194 (2004) 19-48] with many desirable properties. This
new class of grammars extends the stratified ones [M. Wrona, MFCS
(2005) 801-812]. We demonstrate that the property of local stratifiabil-
ity can be tested in linear time with respect to the size of the grammar
under consideration. We then develop the semantics of locally strati-
fied grammars and demonstrate that it coincides with their well-founded
semantics [V. Kountouriotis et al., DLT (2006) 203-214]; moreover, we
show that for each such grammar the well-founded semantics is total (ie.,
two-valued). Finally, we use the new semantics in order to show that lo-
cally stratified grammars can even express certain languages that are
currently not known to be expressible by the stratified semantics (such
as for example the language {a2n | n ≥ 0}).

1 Introduction

Boolean grammars were recently proposed by A. Okhotin [Okh04] as a means to
overcome certain expressibility limitations of context-free grammars. Intuitively,
boolean grammars allow intersection and complementation to appear in the right
hand sides of rules; these two operations combined with the inherent recursion
of context-free rules, make this new formalism very powerful (but still tractable
from a parsing point of view).

As it became obvious from the very beginning, the problem of assigning a
proper semantics to boolean grammars is non-trivial. The difficulties arise due
to the fact that the rules of such grammars may contain circularities that “pass
through negation” and that are not easy to handle. Initially, two semantics
were proposed [Okh04], namely the unique solution and the naturally feasible

? This research was co-funded by the European Union in the framework of the project
”Support of Computer Science Studies in the University of Ioannina” of the ”Oper-
ational Program for Education and Initial Vocational Training” of the 3rd Commu-
nity Support Framework of the Hellenic Ministry of Education, funded by 25% from
national sources and by 75% from the European Social Fund (ESF).

437



ones; however, both of these approaches exhibit some undesirable behavior in
certain cases (see [KNR06] for more details). More recently, based on well-known
ideas from logic programming [vGRS91], Kountouriotis et al. proposed the well-
founded semantics of boolean grammars [KNR06]. This latter approach requires
the study of three-valued languages, i.e, languages in which the membership of a
string can be classified as true, false or unknown. The advantage of this approach
is that it applies to all boolean grammars, independently of their syntax.

Another direction of research which was initiated by M. Wrona [Wro05] seeks
to find subclasses of boolean grammars that are well-behaved both semantically
and from an application point of view. More specifically, in [Wro05] the class of
stratified boolean grammars is defined and their properties are investigated. The
notion of stratification also has its roots in the area of logic programming (see
for example [ABW88]).

In this paper, motivated again by ideas in logic programming [Prz88], we
propose the locally stratified boolean grammars which form a proper superset of
the stratified ones. We demonstrate that the property of local stratifiability can
be tested in linear time with respect to the size of the grammar under consider-
ation. This is a surprising fact because local stratifiability in logic programming
is undecidable (more specifically Π1

1 -complete [CB94]). We then develop the se-
mantics of locally stratified grammars and demonstrate that it coincides with
their well-founded semantics [KNR06]; moreover, we show that for each such
grammar the well-founded semantics is total (ie., two-valued). Finally, we use
the new semantics in order to show that locally stratified grammars can even
express certain languages that are currently not known to be expressible by the
stratified semantics (such as for example the language {a2n | n ≥ 0}).

2 Boolean Grammars

In [Okh01] and [Okh04] A. Okhotin introduced the classes of conjunctive and
boolean grammars respectively. Formally:

Definition 1 ([Okh04]). A boolean grammar is a quadruple G = (Σ, N, P, S),
where Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols respectively, P is a finite set of rules, each of the form

C → α1& · · ·&αm&¬β1& · · ·&¬βn (m + n ≥ 1, C ∈ N, αi, βi ∈ (Σ ∪N)∗)

and S ∈ N is the start symbol of the grammar. We will call the αi’s positive
literals and the ¬βi’s negative. A boolean grammar is called conjunctive if all its
rules contain only positive literals.

In this paper we introduce a large subclass of boolean grammars which has
a well-defined semantics. We will need the following definitions:

Definition 2. An interpretation I of a boolean grammar G = (Σ, N, P, S) is a
function I : N → 2Σ∗ .
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Notice that the above notion of interpretation is classical and not three-
valued as in the case of the well-founded semantics (see [KNR06]). In simpler
terms, the locally stratified boolean grammars that we will define shortly, do
not require the generality of the semantic machinery needed for general boolean
grammars.

In the following we denote by ⊥ the interpretation which assigns to every
non-terminal symbol of a grammar the empty set. An interpretation I can be
recursively extended to apply to expressions that appear as the right-hand sides
of boolean grammar rules:

Definition 3. Let G = (Σ, N, P, S) be a boolean grammar and I be an interpre-
tation of G. Then I can be extended to become a truth valuation Î as follows:

– Î(ε) = {ε}.
– Î(a) = {a}, for every a ∈ Σ.
– Î(A) = I(A), for every A ∈ N .
– Î(x1x2 . . . xn) = Î(x1) ◦ Î(x2) ◦ · · · ◦ Î(xn), for every sequence x1x2 . . . xn ∈

(Σ ∪N)∗ (where ◦ is the usual concatenation operator for languages).
– Î(¬α) = Σ∗ − Î(α), for every α ∈ (Σ ∪N)∗.
– Î(l1&l2& . . . &ln) = Î(l1)∩ Î(l2)∩ · · · ∩ Î(ln), for every sequence l1, l2, . . . , ln

of literals.

The locally stratified boolean grammars form a proper superset of the class
of stratified grammars introduced by M. Wrona. In the following definiton (as-
well-as elsewhere in the rest of the paper), we denote by ω the set of natural
numbers.

Definition 4 ([Wro05]). A boolean grammar G = (Σ,N,P, S) is called strat-
ified if there exists a function g : N → ω such that for every rule

C → α1& · · ·&αm&¬β1& · · ·&¬βn

in P the following conditions hold:

– for every i, 1 ≤ i ≤ m and for every A ∈ N that appears in αi, g(C) ≥ g(A)
– for every j, 1 ≤ j ≤ n and for every B ∈ N that appears in βj, g(C) > g(B).

The class of stratified boolean grammars defined above is obviously a proper
subclass of boolean grammars, but it appears to have an interest in its own right.
For example, questions of the form “are there languages that can be defined by
general boolean grammars but not from stratified ones?” do not in general have
obvious answers (and may trigger deeper investigations in the theory of these
grammars).

3 Locally Stratified Boolean Grammars

In this section we introduce a class of boolean grammars that is broader than
the stratified ones and that can express certain languages that are currently
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not known to be expressible by stratified grammars. To motivate the new class,
consider the following boolean grammar with start symbol S = Even, that
defines the (regular) set of strings of even length over the alphabet Σ = {a}:

Even → ε
Even → aOdd
Odd → ¬Even

One can easily see that the above grammar is not stratified. However, it can
easily be seen that the grammar specifies the language we mentioned above. For
example, the string aa belongs to the language corresponding to Even because
the string a belongs to the language corresponding to Odd (since it does not
belong to the language corresponding to Even).

Grammars such as the above are locally stratified. Informally, if a grammar is
locally stratified then the pairs in (N ×Σ∗) can be partitioned into a (possibly
infinite) set of strata so that if the membership of w in the language defined
by nonterminal C depends on the membership of w′ in the language defined
by nonterminal D, then (D, w′) cannot belong to a stratum higher than the
stratum of (C, w); furthermore if the above dependency is obtained through
negation, (D, w′) must belong to a stratum lower than the stratum of (C, w).
Formally:

Definition 5. A boolean grammar G = (Σ,N, P, S) is locally stratified if there
exists a function f : (N ×Σ∗) → ω such that for every rule

C → α1& · · ·&αm&¬β1& · · ·&¬βn

in P , the following conditions hold for every i, 1 ≤ i ≤ m and for every j,
1 ≤ j ≤ n:

– Suppose that αi = σ1A1σ2A2 . . . σkAkσk+1, for k ≥ 1, σp ∈ Σ∗, Ap ∈ N .
Then for every w1, w2, . . . , wk ∈ Σ∗ and for every p, 1 ≤ p ≤ k, it holds
f(C, σ1w1σ2w2 . . . σkwkσk+1) ≥ f(Ap, wp) .

– Suppose that βj = τ1B1τ2B2 . . . τ`B`τ`+1, for ` ≥ 1, τq ∈ Σ∗, Bq ∈ N .
Then for every w1, w2, . . . , w` ∈ Σ∗ and for every q, 1 ≤ q ≤ `, it holds
f(C, τ1w1τ2w2 . . . τ`w`τ`+1) > f(Bq, wq).

As we have already mentioned, local stratification is a notion that originates
from logic programming [Prz88]. There are however some crucial differences that
make the study of local stratification in boolean grammars even more interesting.
First, local stratification of logic programs in many cases requires a transfinite
number of strata (ie., the labeling of the strata can not in general be performed
solely by members of ω but may additionally require the use of ordinal numbers
that are greater than ω). Second, the problem of detecting whether a logic pro-
gram is locally stratified is in general unsolvable (see [CB94]) and one can only
hope to find subclasses of logic programs in which the notion is decidable (see
for example [Ron01,NRG05]). Surprisingly, it turns out that local stratifiability
of boolean grammars can be decided in polynomial time.
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In order to define the semantics of locally stratified boolean grammars (see
next section), it is convenient to use a stratum function that has some special
properties.

Definition 6. Let G = (Σ, N, P, S) be a boolean grammar locally stratified by a
function f . We say that f is a canonical stratum-function if

– for every w, w′ ∈ Σ∗ and for every A,B ∈ N , if |w| > |w′| then f(A,w) >
f(B,w′).

– for every w, w′ ∈ Σ∗ and for every A ∈ N , if |w| = |w′| then f(A,w) =
f(A,w′).

We can now demonstrate that local stratifiability of boolean grammars is
decidable (and actually, efficiently so). Before we state Theorem 1 that proves
this fact, we need the following definition:

Definition 7. Let G = (Σ,N, P, S) be a boolean grammar. The skeleton of G
is the grammar G′ = (Σ, N, P ′, S), where P ′ is obtained from P by removing
from the right-hand side of each rule every literal that equals ε or ¬ε, or contains
terminal symbols and then removing all rules that end up with an empty right-
hand side.

Theorem 1. A boolean grammar G = (Σ, N, P, S) is locally stratified if and
only if its skeleton G′ = (Σ,N, P ′, S) is stratified.

Proof. Suppose that G is locally stratified by f . Define a function g : N → ω
such that g(A) = f(A, ε). Let C → α1& · · ·&αm&¬β1& · · ·&¬βn be a rule
in P ′. Suppose that A ∈ N appears in some αi. Since G′ is the skeleton of
G, αi is of the form A1A2 . . . Ak, k ≥ 1 and Ap ∈ N for 1 ≤ p ≤ k, and
A = Ar for some r, 1 ≤ r ≤ k. Notice that, αi = σ1A1σ2A2 . . . σkAkσk+1,
where σ1 = σ2 = . . . = σk = σk+1 = ε. Let w1 = w2 = . . . = wk = ε. By
the definition of local stratification we get f(C, ε) ≥ f(Ar, ε), which implies
g(C) ≥ g(Ar) = g(A). Similarly it can be proved that if B ∈ N appears in some
βj , then g(C) > g(B). Consequently, G′ is stratified by g.

Conversely, suppose that the skeleton G′ is stratified by g and let s =
1+max{i ∈ ω | ∃A ∈ N such that g(A) = i}. In other words s is an upper bound
for the number of the non-empty strata according to g. Define f : (N×Σ∗) → ω
such that f(A,w) = s · |w| + g(A). It is easy to see that f is a canonical
stratum-function. Let C → α1& · · ·&αm&¬β1& · · ·&¬βn be a rule in P . Con-
sider an αi = σ1A1σ2A2 . . . σkAkσk+1 and an arbitrary sequence of strings
w1, w2, . . . , wk ∈ Σ∗. Let w = σ1w1σ2w2, . . . σkwkσk+1. If |w| > |wp|, then
f(C, w) > f(Ap, wp) by the canonicity of f . Otherwise (|w| = |wp|) it holds
σ1 = σ2 = · · · = σk = σk+1 = ε, i.e α ∈ N∗. Therefore G′ contains a rule with C
in the left-hand side and αi in the right-hand side, which implies g(C) ≥ g(Ap).
Since |w| = |wp|, by the definition of f we get f(C,w) ≥ f(Ap, wp). The case for
βj is similar. Consequently, G is locally stratified by f . ut
Corollary 1. A boolean grammar G is locally stratified if and only if it is locally
stratified by a canonical stratum-function.
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Corollary 2. If a boolean grammar G is stratified then it is locally stratified.

Proof. If G is stratified by f then its skeleton is also stratified by f . ut

The converse of Corollary 2 does not hold as the example in the beginning of
this section as well as the following one demonstrate:

Example 1. Consider the boolean grammar G = (Σ, N,P, S), where Σ = {a}
and P contains the following rules:

S → X&¬aX A → ¬X D → ¬Y &T Z → Y
S → ¬X&aX B → ¬AA E → ¬DD&T Z → aY
S → Z&¬aZ C → ¬BB F → ¬EE&T T → ε
S → ¬Z&aZ X → aCC Y → aaFF T → aaT

The above grammar defines the language L = {a2n | n ∈ ω} (see [Okh04]). This
grammar is not stratified; furthermore it is not known if L can be expressed by a
stratified grammar [Wro05]. However, G is locally stratified. To prove this claim,
consider the skeleton G′ of G which contains the following set of rules:

S → X S → Z A → ¬X C → ¬BB E → ¬DD&T Z → Y
S → ¬X S → ¬Z B → ¬AA D → ¬Y &T F → ¬EE&T

It is easy to see that G′ is stratified by the function g, such that g(X) = g(Y ) =
g(Z) = g(T ) = 0, g(A) = g(D) = g(S) = 1, g(B) = g(E) = 2 and g(C) =
g(F ) = 3. Thus G is locally stratified.

The above theorem shows that testing local stratifiability of a boolean gram-
mar G can be reduced to testing (ordinary) stratifiability of the skeleton of G.
The reduction requires time O(|G|), where |G| denotes the size of the representa-
tion of G, and produces a grammar G′ with |G′| ≤ |G|. Testing if G′ is stratified
requires time O(|G′|) [Wro05], using simple graph algorithms. Consequently lo-
cal stratifiability of a boolean grammar G can be tested in time O(|G|). Notice
that, as we have already mentioned, testing local stratifiability of logic programs
is an unsolvable problem.

4 Locally Stratified Semantics for Boolean Grammars

In this section we demonstrate how one can define the semantics of a boolean
grammar that is locally stratified. The languages defined by the non-terminal
symbols in a locally stratified boolean grammar, can be constructed in stages.
During the i-th stage, for every pair (A,w) that belongs to the i-th stratum we
decide whether w belongs to the language defined by A. The following definition
will be needed:

Definition 8. Let Σ be an alphabet. We denote by Σn the set {w ∈ Σ∗ | |w| =
n} and by Σ≤n the set

⋃n
i=0 Σi.
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Let G = (Σ, N, P, S) be a boolean grammar, I an interpretation, M ⊆ N
be a set of non-terminal symbols, and n ≥ 0 be an integer. We first define
the conjunctive grammar G/(I, M, n) that is used to decide the membership of
strings of length n, in the languages corresponding to symbols in M (as defined
by the rules in G), provided that some subsets of these languages are known and
determined by I. Formally:

Definition 9. Let G = (Σ,N,P, S) be a Boolean grammar, I be an interpreta-
tion, M ⊆ N be a set of non-terminal symbols, and n ≥ 0 be an integer. Let R
be the set of all literals that appear in the right hand sides of the rules in P in
which the left-hand side symbol is in M . We denote by G/(I, M, n) the grammar
(Σ, N ′, P ′, S), such that:

– N ′ = N ∪ {Dl | l ∈ R}, where the Dl’s are new non-terminal symbols not
belonging to N .

– For every rule of the form C → l1&l2& . . . &lm in P , such that C ∈ M , P ′

contains the rule: C → Dl1&Dl2& . . . &Dlm .
– For every literal l ∈ R and for every w ∈ (Î(l) ∩ Σn), P ′ contains the rule

Dl → w.
– if n > 0 then for every literal l = A1A2 · · ·Ak ∈ R ∩ N+ and for every i,

1 ≤ i ≤ k, if ε ∈ ⋂
1≤j≤k,j 6=i Î(Aj) then P ′ contains the rule Dl → Ai.

– if n = 0 then for every literal l = A1A2 · · ·Ak ∈ R ∩ N∗, P ′ contains the
rule Dl → l′, where l′ = α1α2 · · ·αk, with αi = ε if ε ∈ I(Ai) and αi = Ai

otherwise.

Based on the above definition and the semantics of conjunctive grammars
(see [Okh01]), we can now formally define the locally stratified semantics of
boolean grammars:

Definition 10. Let G = (Σ,N, P, S) be a boolean grammar stratified by a canon-
ical stratum-function f . Let ni be the (unique) length of strings in the i-th stra-
tum and Ni be the set of nonterminal symbols of this same stratum. The locally
stratified semantics of G is the interpretation LG =

⋃∞
i=0 Ii where I0 =⊥ and

Ii+1(A) = Ii(A) ∪ ∆i(A), for every A ∈ N , and ∆i is the interpretation that
corresponds to the semantics of the conjunctive grammar Gi = G/(Ii, Ni, ni).

We now demonstrate that the above construction is independent of the se-
lection of the canonical stratum-function f .

In the following lemmas and theorem we denote by MG the well-founded
model of G (see [KNR06]) and by LG the locally stratified semantics of G (see
Definition 10). Furthermore, we treat grammars as function from Σ∗ → {0, 1},
ie., we write I(C)(w) = 1 rather than w ∈ I(C). The proofs of the following
lemmas are rather lengthy and will appear in the full version of the paper.

Lemma 1. Let G = (Σ, N, P, S) be a locally stratified boolean grammar. Then,
for every C ∈ N and for every w ∈ Σ∗ if LG(C)(w) = 1 then MG(C)(w) = 1.

Lemma 2. Let G = (Σ, N, P, S) be a locally stratified boolean grammar. Then,
for every C ∈ N and for every w ∈ Σ∗, if MG(C)(w) = 1 then LG(C)(w) = 1.
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Lemma 3. Let G = (Σ, N, P, S) be a locally stratified boolean grammar. Then,
for every C ∈ N and for every w ∈ Σ∗, MG(C)(w) ∈ {0, 1} (ie., the well-founded
model of a locally stratified boolean grammar is total).

Theorem 2. Let G = (Σ,N,P, S) be a boolean grammar that is locally strat-
ified. Then, LG = MG and therefore LG is independent of the choice of the
canonical stratum function.

Proof. From Lemmas 1, 2, 3, we conclude that for every C ∈ N and for every
w ∈ Σ∗, LG(C)(w) = MG(C)(w), i.e. the locally stratified semantics is indepen-
dent of the choice of the stratum function and coincides with the well founded
semantics, which happens to be two-valued in the case of locally stratified gram-
mars. ut

Notice that, since LG = MG, by the results in [KNR06] we conclude that
LG is the least fixed point of an appropriate operator ΩG assosiated with the
grammar G.

5 An Application of the Locally Stratified Semantics

In this section we demonstrate that the language {a2n | n ≥ 0} is expressible
under the locally stratified semantics. Notice that it is not known whether this
language can be captured by the stratified semantics [Wro05].

Proposition 1. The language {a2n | n ≥ 0} is expressible under the locally
stratified semantics.

Proof. A boolean grammar for the language {a2n | n ≥ 0} is given in [Okh04]
(it is the grammar we have adopted in Example 1). We show below how one can
prove that this grammar defines the desired language under the locally-stratified
semantics. We restrict attention to a part of the grammar that is needed in order
to define the non-terminal X. The proof for the remaining parts of the grammar
is actually similar or simpler and is omitted.

Consider the boolean grammar G = (Σ,N,P, X), where Σ = {a} and P
contains the following rules:

X → aCC A → ¬X B → ¬AA C → ¬BB

We show that G defines the language L = {an | ∃k ≥ 0 : 23k ≤ n ≤
23k+2 − 1}. Grammar G is locally stratified by the canonical stratum-function
f with f(X, w) = 4 · |w|, f(A,w) = 4 · |w| + 1, f(B, w) = 4 · |w| + 2 and
f(C, w) = 4 · |w| + 3. We show that LG(X) = L, LG(A) = L1, LG(B) = L2,
LG(C) = L3, where:

L1 = {an | ∃k ≥ 0 : 23k+2 ≤ n ≤ 23k+3 − 1} ∪ {ε}
L2 = {an | ∃k ≥ 0 : 23k+1 − 1 ≤ n ≤ 23k+2 − 1}
L3 = {an | ∃k ≥ 0 : 23k − 1 ≤ n ≤ 23k+1 − 1}
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It is easy to check (see also [Lei94]) that L = {a} ◦ L3 ◦ L3, L1 = Σ∗ − L,
L2 = Σ∗ − (L1 ◦ L1) and L3 = Σ∗ − (L2 ◦ L2). In order to prove our claim
we will prove by induction that: Ii(X) = L ∩ Σ≤b i−1

4 c, Ii(A) = L1 ∩ Σ≤b i−2
4 c,

Ii(B) = L2 ∩ Σ≤b i−3
4 c, and Ii(C) = L3 ∩ Σ≤b i−4

4 c. The case i = 0 is trivial.
Suppose that our claim holds for i. We will show that it also holds for i + 1. Let
n = b i

4c, i.e. n is the length of the string in the unique pair in stratum i. The
proof is by a case analysis:

Case 1: i mod 4 = 0. By the induction hypothesis Ii(X) = L ∩ Σ≤n−1,
Ii(A) = L1 ∩Σ≤n−1, Ii(B) = L2 ∩Σ≤n−1, Ii(C) = L3 ∩Σ≤n−1. We will show
that: Ii+1(X) = L ∩ Σ≤n, Ii+1(A) = L1 ∩ Σ≤n−1, Ii+1(B) = L2 ∩ Σ≤n−1,
Ii+1(C) = L3 ∩ Σ≤n−1. Stratum i contains a unique pair (X, an), Ni = {X}
and Pi contains the rule X → D1. Suppose that an ∈ L. Then, an ∈ ({a} ◦
L3 ◦ L3), i.e there exist m, r, with 0 ≤ m, r ≤ n − 1, such that n = m +
r − 1 and am, ar ∈ L3. By the induction hypothesis am, ar ∈ Ii(C). Therefore,
an ∈ Îi(aCC), which implies that the rule D1 → an is in Pi. Consequently,
∆i(X) = {an} and Ii+1(X) = Ii ∪ {an} = L ∩ Σ≤n. Suppose that an /∈ L.
Then, an /∈ ({a} ◦ L3 ◦ L3), which implies, using the induction hypothesis, that
an /∈ Îi(aCC). Thus, the rule D1 → an is not in Pi. Consequently, ∆i(X) = ∅ and
Ii+1(X) = Ii∪∅ = L∩Σ≤n. Moreover, Ii+1(V ) = Ii(V ), for every V ∈ {A,B,C}.
The inductive step is proved for Case 1.

Case 2: i mod 4 = 1. By the induction hypothesis Ii(X) = L∩Σ≤n, Ii(A) =
L1 ∩ Σ≤n−1, Ii(B) = L2 ∩ Σ≤n−1, Ii(C) = L3 ∩ Σ≤n−1. We will show that:
Ii+1(X) = L∩Σ≤n, Ii+1(A) = L1∩Σ≤n, Ii+1(B) = L2∩Σ≤n−1, Ii+1(C) = L3∩
Σ≤n−1. Stratum i contains a unique pair (A, an), Ni = {A} and Pi contains the
rule A → D2. Suppose that an ∈ L1. Then, an /∈ L. By the induction hypothesis
an /∈ Ii(X). Therefore, an ∈ Îi(¬X), which implies that the rule D2 → an is in
Pi. Consequently, ∆i(A) = {an} and Ii+1(A) = Ii ∪ {an} = L1 ∩Σ≤n. Suppose
that an /∈ L1. Then, an ∈ L. By the induction hypothesis an ∈ Ii(X). Therefore,
an /∈ Îi(¬X), which implies that the rule D2 → an is not in Pi. Consequently,
∆i(A) = ∅ and Ii+1(A) = Ii ∪ ∅ = L1 ∩ Σ≤n. Moreover, Ii+1(V ) = Ii(V ), for
every V ∈ {X, B,C}. The inductive step is proved for Case 2.

Case 3: i mod 4 = 2. By the induction hypothesis Ii(X) = L∩Σ≤n, Ii(A) =
L1 ∩Σ≤n, Ii(B) = L2 ∩Σ≤n−1, Ii(C) = L3 ∩Σ≤n−1. We show that: Ii+1(X) =
L ∩ Σ≤n, Ii+1(A) = L1 ∩ Σ≤n, Ii+1(B) = L2 ∩ Σ≤n, Ii+1(C) = L3 ∩ Σ≤n−1.
Stratum i contains a unique pair (B, an), Ni = {B} and Pi contains the rule
B → D3. Suppose that an ∈ L2. Then, an /∈ (L1 ◦ L1), which by the induction
hypothesis implies that an ∈ Îi(¬AA). Therefore, the rule D3 → an is in Pi.
Consequently, ∆i(B) = {an} and Ii+1(B) = Ii(B)∪ {an} = L2 ∩Σ≤n. Suppose
that an /∈ L2. Then, an ∈ (L1 ◦ L1), ie., there exist m, r, 0 ≤ m, r ≤ n, such
that n = m + r and am, ar ∈ L1. By the induction hypothesis am, ar ∈ Ii(A).
Therefore, an /∈ Îi(¬AA), which implies that the rule D3 → an is not in Pi.
Therefore, ∆i(B) = ∅ and Ii+1(B) = Ii(B)∪∅ = L2∩Σ≤n. Moreover, Ii+1(V ) =
Ii(V ), for every V ∈ {X, A, C}. The inductive step is proved for Case 3.

Case 4: i mod 4 = 3. This case is similar to Case 3.
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6 Beyond Local Stratification

We have defined the class of locally stratified boolean grammars and have demon-
strated that they have a well-defined semantics. The class of locally stratified
grammars is broader than that of the stratified ones (see Corollary 2) and can
express a language which is not known to be captured by the stratified seman-
tics. Additionally, the locally stratified boolean grammars can be considered as
“well-behaved” and useful for applications, since their well-founded semantics is
total.

There exist however certain natural and useful boolean grammars that fail to
be locally stratified. Consider the following modified version of our motivating
example in Section 3:

Even → ε
Even → AOdd
Odd → ¬Even
A → a

Despite its obvious equivalence with the initial grammar, the above grammar is
not locally stratified since its skeleton in not stratified. This same phenomenon
occurs in a slightly different form in the area of logic programming. For example,
consider the following (locally stratified) logic program:

p ← q(b).
q(a) ← ¬p.

This program can be written in an equivalent way as:

p ← equal(X, b), q(X).
q(a) ← ¬p.
equal(X, X).

Despite the fact that the two programs above are equivalent from a semantic
point of view, the second program is not locally stratified. The reasons that lead
to the above problem are not hard to detect. Local stratification is a purely syn-
tactical notion, while the above phenomenon requires a more in-depth (namely
semantical) inspection of the grammar (or logic program).

Therefore, given a boolean grammar, if we would like to use some more
powerful notion than local stratification, we would have to perform some kind
of semantic analysis regarding the grammar under consideration. For example,
consider again the grammar given in the beginning of this section. The decision
procedure we introduced in Section 3 fails for this program because we don’t
know whether the nonterminal A can produce the empty string or not. In this
particular example this can be checked by an easy inspection of the rules of the
grammar. However, in other more complicated cases this would require a more
in-depth inspection of the rules of the grammar. It is possible that based on
semantic information one could define more general and effective tests, but it is
not immediately obvious how far this approach can take us.
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Closing, we believe that another very important subject for future research
is the classification of the expressive power of the various semantics for boolean
grammars (namely the work presented in this paper compared to the approaches
of [Okh04,Wro05,KNR06]). We believe it is possible that certain approaches
define separate classes of languages, but such an investigation seems to require
new tools to be employed.
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