A Formalisation of the Myhill-Nerode Theorem based on Regular Expressions (Proof Pearl)

joint work with Chunhan Wu and Xingyuan Zhang from the PLA University of Science and Technology in Nanjing

Christian Urban
TU Munich

A Formalisation of the Myhill-Nerode Theorem based on Regular Expressions (Proof Pearl)

joint work with Chunhan Wu and Xingyuan Zhang from the PLA University of Science and Technology in Nanjing

Christian Urban
TU Munich

Motivation:

I want to teach students with theorem provers (especially for inductions).

Motivation:

I want to teach students with theorem provers (especially for inductions).

• fib, even and odd

Motivation:

I want to teach students with theorem provers (especially for inductions).

- fib even and odd
- formal language theory
 ⇒ nice textbooks: Kozen, Hopcroft & Ullman...

in Nuprl

- Constable, Jackson, Naumov, Uribe
- 18 months for automata theory from Hopcroft & Ullman chapters 1-11 (including Myhill-Nerode)

in Coq

- Filliâtre, Briais, Braibant and others
- multi-year effort; a number of results in automata theory, e.g.
 - Kleene's thm. by Filliâtre ("rather big")
 - automata theory by Briais (5400 loc)
 - Braibant ATBR library, including Myhill-Nerode
 (≫2000 loc)
 - Mirkin's partial derivative automaton construction (10600 loc)

in HOL

• automata \Rightarrow graphs, matrices, functions

in HOL

- automata ⇒ graphs, matrices, functions
- combining automata/graphs

$$A_1$$
 A_2

in HOL

- automata ⇒ graphs, matrices, functions
- combining automata/graphs

$$A_1$$
 A_2 A_2 A_3 A_2

in HOL

- automata ⇒ graphs, matrices, functions
- combining automata/graphs

$$A_1$$
 A_2 A_2 A_1 A_2

disjoint union:

$$A_1 \uplus A_2 \stackrel{\mathsf{def}}{=} \{ (1,x) \, | \, x \in A_1 \} \, \cup \, \{ (2,y) \, | \, y \in A_2 \}$$

in HOL

ullet automata \Rightarrow graphs, matrices, functions

Problems with definition for regularity (Slind):

$$\mathsf{is_regular}(A) \stackrel{\mathsf{def}}{=} \exists M. \ \mathsf{is_dfa}(M) \land \mathcal{L}(M) = A$$

$$A_1 \uplus A_2 \stackrel{\mathsf{def}}{=} \{ (1,x) \, | \, x \in A_1 \} \, \cup \, \{ (2,y) \, | \, y \in A_2 \}$$

in HOL

- automata ⇒ graphs, matrices, functions
- combining automata/graphs

$$A_1$$
 A_2 A_2 A_3 A_2

A solution: use nat \Rightarrow state nodes

in HOL

- automata ⇒ graphs, matrices, functions
- combining automata/graphs

$$A_1$$
 A_2 A_2 A_3 A_4

A solution: use $nat \Rightarrow state nodes$

You have to rename states!

in HOL

 Kozen's "paper" proof of Myhill-Nerode: requires absence of inaccessible states

$$\mathsf{is_regular}(A) \stackrel{\mathsf{def}}{=} \exists M. \ \mathsf{is_dfa}(M) \land \mathcal{L}(M) = A$$

A language A is regular, provided there exists a regular expression that matches all strings of A.

A language A is regular, provided there exists a regular expression that matches all strings of A.

. . . and forget about automata

A language A is regular, provided there exists a regular expression that matches all strings of A.

... and forget about automata

A language A is regular, provided there exists a regular expression that matches all strings of A.

... and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

A language A is regular, provided there exists a regular expression that matches all strings of A.

. . . and forget about automata

- pumping lemma
- closure under complementation

A language A is regular, provided there exists a regular expression that matches all strings of A.

. . . and forget about automata

- pumping lemma
- closure under complementation
- regular expression matching

A language A is regular, provided there exists a regular expression that matches all strings of A.

. . . and forget about automata

- pumping lemma
- closure under complementation
- regular expression matching (⇒Owens et al)

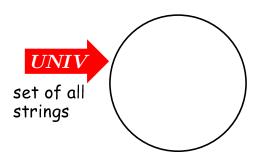
A language A is regular, provided there exists a regular expression that matches all strings of A.

. . . and forget about automata

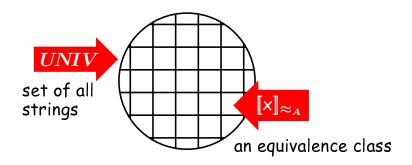
- pumping lemma
- closure under complementation
- regular expression matching (⇒Owens et al)
- most textbooks are about automata

- provides necessary and sufficient conditions for a language being regular (pumping lemma only necessary)
- key is the equivalence relation:

$$xpprox_A y\stackrel{ ext{def}}{=} orall z. \ x@z\in A \Leftrightarrow y@z\in A$$



ullet finite $(UNIV//pprox_A) \Leftrightarrow A$ is regular



ullet finite $(UNIV//pprox_A) \Leftrightarrow A$ is regular

Two directions:

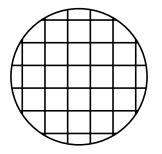
- 1.) finite \Rightarrow regular finite $(UNIV//\approx_A) \Rightarrow \exists r. \ A = \mathcal{L}(r)$
- 2.) regular \Rightarrow finite finite $(UNIV//\approx_{\mathcal{L}(r)})$

an equivalence class

• finite $(UNIV//\approx_A) \Leftrightarrow A$ is regular

Initial and Final States

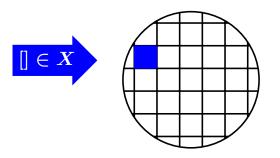
Equivalence Classes



- ullet finals $A\stackrel{\mathsf{def}}{=} \{ \|x\|_{pprox_A} \mid x \in A \}$
- we can prove: $A = \bigcup$ finals A

Initial and Final States

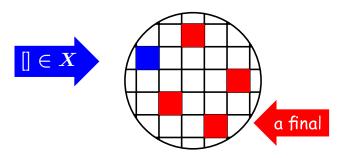
Equivalence Classes



- ullet finals $A\stackrel{\mathsf{def}}{=} \{ \|x\|_{pprox_A} \mid x \in A \}$
- ullet we can prove: $A=\bigcup$ finals A

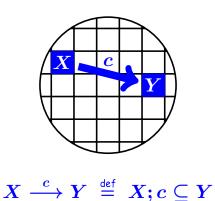
Initial and Final States

Equivalence Classes



- ullet finals $A\stackrel{\mathsf{def}}{=} \{ \|x\|_{pprox_A} \mid x \in A \}$
- ullet we can prove: $A=\bigcup$ finals A

Transitions between Eq-Classes



Systems of Equations

Inspired by a method of Brzozowski '64:

start
$$\longrightarrow$$
 X_1 X_2 X_3 X_4 X_4 X_5 X_6 X_7 X_8 X_8 X_8 X_8 X_8 X_9 X_9

Systems of Equations

Inspired by a method of Brzozowski '64:

start
$$\longrightarrow$$
 X_1 X_2 X_3 X_4 X_4 X_5 X_5 X_6 X_6 X_7 X_8 X_8 X_9 X_9

$X_1 = X_1; b + X_2; b + \lambda; [] \ X_2 = X_1; a + X_2; a$

$$X_1 = X_1; b + X_2; b + \lambda; [] \ X_2 = X_1; a + X_2; a$$

$$X_1 = X_1; b + X_2; b + \lambda; [] \ X_2 = X_1; a \cdot a^\star$$

by Arden

$$X_1 = X_1; b + X_2; b + \lambda; []$$

 $X_2 = X_1; a + X_2; a$

$$X_1=X_1;b+X_2;b+\lambda;[] \ X_2=X_1;a\cdot a^\star$$

$$X_1 = X_2; b \cdot b^\star + \lambda; b^\star \ X_2 = X_1; a \cdot a^\star$$

by Arden

by Arden

$$X_1 = X_1; b + X_2; b + \lambda; []$$

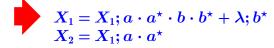
 $X_2 = X_1; a + X_2; a$

$$X_1 = X_1; b + X_2; b + \lambda; []$$

 $X_2 = X_1; a \cdot a^*$

$$X_1 = X_2; b \cdot b^* + \lambda; b^*$$

$$X_2 = X_1; a \cdot a^*$$



by Arden

by substitution

$$X_1 = X_1; b + X_2; b + \lambda; []$$

 $X_2 = X_1; a + X_2; a$

$$X_1 = X_1; b + X_2; b + \lambda; []$$

 $X_2 = X_1; a \cdot a^*$

$$X_1 = X_2; b \cdot b^\star + \lambda; b^\star \ X_2 = X_1; a \cdot a^\star$$

$$X_1 = X_1; a \cdot a^\star \cdot b \cdot b^\star + \lambda; b^\star \ X_2 = X_1; a \cdot a^\star$$

$$X_1 = \lambda; b^\star \cdot (a \cdot a^\star \cdot b \cdot b^\star)^\star \ X_2 = X_1; a \cdot a^\star$$

by Arden

by substitution

by Arden

$$X_1 = X_1; b + X_2; b + \lambda; []$$

 $X_2 = X_1; a + X_2; a$

$$X_1 = X_1; b + X_2; b + \lambda; [] \ X_2 = X_1; a \cdot a^{\star}$$

by Arden

$$X_1 = X_2; b \cdot b^\star + \lambda; b^\star \ X_2 = X_1; a \cdot a^\star$$

by substitution

$$X_1 = X_1; a \cdot a^{\star} \cdot b \cdot b^{\star} + \lambda; b^{\star}$$

 $X_2 = X_1; a \cdot a^{\star}$

by Arden

by substitution

$$egin{aligned} X_1 &= \lambda; b^\star \cdot (a \cdot a^\star \cdot b \cdot b^\star)^\star \ X_2 &= \lambda; b^\star \cdot (a \cdot a^\star \cdot b \cdot b^\star)^\star \cdot a \cdot a^\star \end{aligned}$$

$$X_1 = X_1; b + X_2; b + \lambda; []$$

 $X_2 = X_1; a + X_2; a$

$$X_1 = \lambda; b^{\star} \cdot (a \cdot a^{\star} \cdot b \cdot b^{\star})^{\star}$$

 $X_2 = X_1; a \cdot a^{\star}$

$$X_1 = \lambda; b^{\star} \cdot (a \cdot a^{\star} \cdot b \cdot b^{\star})^{\star} \ X_2 = \lambda; b^{\star} \cdot (a \cdot a^{\star} \cdot b \cdot b^{\star})^{\star} \cdot a \cdot a^{\star}$$

by Arden

by substitution

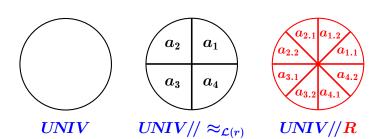
by Arden

by substitution

The Other Direction

One has to prove

by induction on r. Not trivial, but after a bit of thinking, one can find a refined relation:



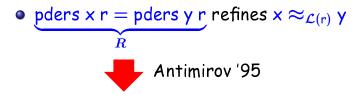
Partial Derivatives

 ...(set of) regular expressions after a string has been parsed

• pders $x = pders y r refines x \approx_{\mathcal{L}(r)} y$

Partial Derivatives

 ...(set of) regular expressions after a string has been parsed



• finite (UNIV//R)

Partial Derivatives

 ...(set of) regular expressions after a string has been parsed

- pders x = pders y r refines $x \approx_{\mathcal{L}(r)} y$ Antimirov '95
- finite (UNIV//R)
- Therefore finite($UNIV//\approx_{\mathcal{L}(r)}$). Qed.

ullet finite $(UNIV/\!/pprox_A) \ \Leftrightarrow \ A$ is regular

- ullet finite $(UNIV//pprox_A) \Leftrightarrow A$ is regular
- regular languages are closed under complementation; this is now easy $UNIV//\approx_A = UNIV//\approx_{\overline{A}}$

$$x \approx_A y \stackrel{\mathsf{def}}{=} \forall z. \ x@z \in A \Leftrightarrow y@z \in A$$

- ullet finite $(UNIV//pprox_A) \Leftrightarrow A$ is regular
- regular languages are closed under complementation; this is now easy

$$UNIV//\approx_A = UNIV//\approx_{\overline{A}}$$

• non-regularity (a^nb^n)

If there exists a sufficiently large set \boldsymbol{B} (for example infinitely large), such that

$$orall x,y\in B.\ x
eq y\ \Rightarrow\ x
otpprox_A y.$$
 then A is not regular.

- ullet finite $(UNIV//pprox_A) \Leftrightarrow A$ is regular
- regular languages are closed under complementation; this is now easy

$$UNIV//\approx_A = UNIV//\approx_{\overline{A}}$$

• non-regularity (a^nb^n)

If there exists a sufficiently large set \boldsymbol{B} (for example infinitely large), such that

$$\forall x, y \in B. \ x \neq y \ \Rightarrow \ x \not\approx_A y.$$

then A is not regular.

$$(B \stackrel{\mathsf{def}}{=} \bigcup_n a^n)$$

 We have never seen a proof of Myhill-Nerode based on regular expressions.

- We have never seen a proof of Myhill-Nerode based on regular expressions.
- great source of examples (inductions)

- We have never seen a proof of Myhill-Nerode based on regular expressions.
- great source of examples (inductions)
- no need to fight the theorem prover:
 - first direction (790 loc)
 - second direction (400 / 390 loc)

- We have never seen a proof of Myhill-Nerode based on regular expressions.
- great source of examples (inductions)
- no need to fight the theorem prover:
 - first direction (790 loc)
 - second direction (400 / 390 loc)
- I have not yet used it in teaching for undergraduates.

We have never seen a proof of Myhill-Nerode

Bold Claim: (not proved!)

95% of regular language theory can be done without automata!

... and this is much more tasteful; o)

 I have not yet used it in teaching for undergraduates.

Thank you! Questions?