Regular Expressions \mathcal{R} The Myhill-Nerode Theorem

Wu Chunhan

October 20, 2010

◆ロト ◆伊ト ◆ミト → ミト

 \mathbb{B}

 $2Q$

KEL KARIK KEL KEL KARIK

Outline

- ¹ [Regular Expression\(brief\)](#page-2-0)
- ² [Myhill-Nerode Theorem\(Intro\)](#page-12-0)
- **[FA to Regular Expressions](#page-57-0)**
- [Proving Myhill-Nerode Theorem](#page-88-0)
	- [Well-Founded iterating principle](#page-104-0)
	- **o** [Invariant predicate](#page-117-0)
	- **•** [Generating initial ES](#page-123-0)
	- **o** [Iteration step of ES](#page-131-0)
	- [Final Proof](#page-145-0)

K ロ K K @ K K 할 K K 할 K (할

 $2Q$

Outline

¹ [Regular Expression\(brief\)](#page-2-0)

- [Myhill-Nerode Theorem\(Intro\)](#page-12-0)
- **[FA to Regular Expressions](#page-57-0)**
- ⁴ [Proving Myhill-Nerode Theorem](#page-88-0) [Well-Founded iterating principle](#page-104-0)
	- **·** [Invariant predicate](#page-117-0)
	- **[Generating initial ES](#page-123-0)**
	- [Iteration step of ES](#page-131-0)
	- [Final Proof](#page-145-0)

Regular Expression

What we may all know(in Compiling Principle)

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Regular Expression

What we may all know(in Compiling Principle) • An alphabet Σ where every language based

KORK STRATER STRAKES

Regular Expression

What we may all know(in Compiling Principle)

• An alphabet Σ where every language based

KORK STRATER STRAKES

 $\emptyset \mid \lambda (\epsilon) \mid c \mid r_1\!\cdot\! r_2 \mid r_1 | r_2 \mid r^*$

Regular Expression

What we may all know(in Compiling Principle)

• An alphabet Σ where every language based

KOD KARD KED KED E VOOR

- $\emptyset \mid \lambda (\epsilon) \mid c \mid r_1\!\cdot\! r_2 \mid r_1 | r_2 \mid r^*$
- $\bullet \ \{\}\ |\ \{\|\}\ |\ \{\{c\}\}\ |\ L_1; L_2 \ | \ L_1 \cup L_2 \ | \ L_*$

Regular Expression

What we may all know(in Compiling Principle)

• An alphabet Σ where every language based $\emptyset \mid \lambda (\epsilon) \mid c \mid r_1\!\cdot\! r_2 \mid r_1 | r_2 \mid r^*$ \bullet {} | {[]} | {[c]} | L₁; L₂ | L₁ ∪ L₂ | L*

KEL KARIK KEL KEL KARIK

definition lang_seq :: "string set \Rightarrow string set \Rightarrow string set" $\binom{n}{-}$; $\binom{n}{-}$ [100,100] 100) where $"L1 : L2 = {s1@s2 | s1 s2, s1 \in L1 \land s2 \in L2}$

Regular Expression

What we may all know(in Compiling Principle)

• An alphabet Σ where every language based $\emptyset \mid \lambda (\epsilon) \mid c \mid r_1\!\cdot\! r_2 \mid r_1 | r_2 \mid r^*$ \bullet {} | {[]} | {[c]} | L₁; L₂ | L₁ ∪ L₂ | L*

KORK (FRAGE) KEY GRAN

```
definition lang_seq :: "string set \Rightarrow string set \Rightarrow string set"
 \binom{n}{-}; \binom{n}{-} [100,100] 100)
where
    "L1 : L2 = {s1@s2 | s1 s2, s1 \in L1 \land s2 \in L2}
```

```
inductive set Star :: "string set \Rightarrow string set" (" \star" [101] 102)
 for L :: "string set"
where
 start[intro]: "[] \in L*"
\vert step[intro]: "[s1 \in L; s2 \in L\star] \Longrightarrow s1@s2 \in L\star"
```
Regular Expression(Formalization)

• In Isabelle/HOL

KORK (FRAGE) KERK EL POLO

Regular Expression(Formalization)

• In Isabelle/HOL

 $datatype$ rexp = NULL | EMPTY | CHAR char | SEQ rexp rexp | ALT rexp rexp STAR rexp

KEL KARIK KEL KEL KARIK

Regular Expression(Formalization)

\bullet In Isabelle/HOL

```
datatype rexp =
   NULL
| EMPTY
 | CHAR char
 | SEQ rexp rexp
 | ALT rexp rexp
| STAR rexp
consts L:: "'a \Rightarrow string set"
overloading L_rexp == "L:: rexp \Rightarrow string set"
begin
fun L_rexp :: "rexp \Rightarrow string set"
where
    "L_rexp (NULL) = \{\}"
  | "L_rexp (EMPTY) = {[]}"<br>| "L_rexp (CHAR c) = {[c]}"<br>| "L_rexp (SEQ r1 r2) = (L_rexp r1) ; (L_rexp r2)"
  \int "L<sup>-</sup>rexp (ALT r1 r2) = (L<sup>-</sup>rexp r1) \cup (L<sup>-</sup>rexp r2)"
 \| "L_rexp (STAR r) = (L_rexp r)\star" end
```
K ロ K K @ K K 할 K K 할 K (할

 $2Q$

Outline

[Regular Expression\(brief\)](#page-2-0)

- ² [Myhill-Nerode Theorem\(Intro\)](#page-12-0)
- **[FA to Regular Expressions](#page-57-0)**
- ⁴ [Proving Myhill-Nerode Theorem](#page-88-0) [Well-Founded iterating principle](#page-104-0)
	-
	- **·** [Invariant predicate](#page-117-0)
	- **[Generating initial ES](#page-123-0)**
	- [Iteration step of ES](#page-131-0)
	- [Final Proof](#page-145-0)

Myhill-Nerode theorem

• In the theory of formal languages

- \bullet It provides a necessary $\&$ sufficient condition for a language to be regular
- Named after John Myhill and Anil Nerode

 $2Q$

Myhill-Nerode theorem

- In the theory of formal languages
- It provides a necessary $\&$ sufficient condition for a language to be regular
- Named after John Myhill and Anil Nerode

 $2Q$

Myhill-Nerode theorem

- In the theory of formal languages
- It provides a necessary $\&$ sufficient condition for a language to be regular
- Named after John Myhill and Anil Nerode

 2990

Myhill-Nerode theorem

- In the theory of formal languages
- It provides a necessary $\&$ sufficient condition for a language to be regular
- Named after John Myhill and Anil Nerode

K ロ X × 個 X × 変 X × 変 X → 変

 2990

Statement of the theorem

• A equivalence relation defined by Lang

 $x \equiv \text{Lang} \equiv y = (\forall z. (x \& z \in \text{Lang}) = (y \& z \in \text{Lang}))$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Statement of the theorem

• A equivalence relation defined by Lang

 $x \equiv \text{Lang} \equiv y = (\forall z. (x \& z \in \text{Lang}) = (y \& z \in \text{Lang}))$

KOD KARD KED KED E VOOR

 \bigcirc If x \equiv Lang \equiv y and x \in Lang, then y \in Lang

Statement of the theorem

- A equivalence relation defined by Lang
	- $x \equiv \text{Lang} \equiv y = (\forall z. (x \& z \in \text{Lang}) = (y \& z \in \text{Lang}))$

KOD KARD KED KED E VOOR

- \bigcirc If x \equiv Lang \equiv y and x \in Lang, then y \in Lang
- **O** If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

Statement of the theorem

• A equivalence relation defined by Lang

 $x \equiv \text{Lang} \equiv y = (\forall z. (x \& z \in \text{Lang}) = (y \& z \in \text{Lang}))$

A DIA K PIA K E A LE A DIA K E A VION

• If
$$
x \equiv \text{Lang} \equiv y
$$
 and $x \in \text{Lang}$, then $y \in \text{Lang}$

• If
$$
x \equiv \text{Lang} \equiv y
$$
, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• A equivalence class defined by $\text{Lang} \& x$ $\llbracket x \rrbracket$ Lang $\equiv \{y \mid x \equiv \text{Lang} \equiv y\}$

Statement of the theorem

• A equivalence relation defined by Lang

 $x \equiv \text{Lang} \equiv y = (\forall z. (x \& z \in \text{Lang}) = (y \& z \in \text{Lang}))$

KORKA REPARATION ADD

• If
$$
x \equiv \text{Lang} \equiv y
$$
 and $x \in \text{Lang}$, then $y \in \text{Lang}$

• If
$$
x \equiv \text{Lang} \equiv y
$$
, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• A equivalence class defined by $\text{Lang} \& x$ $\llbracket x \rrbracket$ Lang $\equiv \{y \mid x \equiv \text{Lang} \equiv y\}$ Partions of Lang' created by Lang Lang' Quo Lang $\equiv \{\llbracket x \rrbracket \text{Lang} \mid x \in \text{Lang'}\}$

Statement of the theorem

• A equivalence relation defined by Lang

 $x \equiv \text{Lang} \equiv y = (\forall z. (x \& z \in \text{Lang}) = (y \& z \in \text{Lang}))$

KORKA REPARATION ADD

• If
$$
x \equiv \text{Lang} \equiv y
$$
 and $x \in \text{Lang}$, then $y \in \text{Lang}$

O If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• A equivalence class defined by $\text{Lang} \& x$ $\llbracket x \rrbracket$ Lang $\equiv \{y \mid x \equiv \text{Lang} \equiv y\}$ Partions of Lang' created by Lang

Lang' Quo Lang $\equiv \{\llbracket x \rrbracket \text{Lang} \mid x \in \text{Lang'}\}$ • Partions of Universal Language (UNIV)

Statement of the theorem

• A equivalence relation defined by Lang

 $x \equiv \text{Lang} \equiv y = (\forall z. (x \& z \in \text{Lang}) = (y \& z \in \text{Lang}))$

• If
$$
x \equiv \text{Lang} \equiv y
$$
 and $x \in \text{Lang}$, then $y \in \text{Lang}$

O If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

- A equivalence class defined by $\text{Lang} \& x$ $\llbracket x \rrbracket$ Lang $\equiv \{y \mid x \equiv \text{Lang} \equiv y\}$
- Partions of Lang' created by Lang

Lang' Quo Lang $\equiv \{\llbracket x \rrbracket \text{Lang} \mid x \in \text{Lang'}\}$ • Partions of Universal Language (UNIV) • Universal Language($UNIV$) : Σ^*

Statement of the theorem

• A equivalence relation defined by Lang

 $x \equiv \text{Lang} \equiv y = (\forall z. (x \& z \in \text{Lang}) = (y \& z \in \text{Lang}))$

• If
$$
x \equiv \text{Lang} \equiv y
$$
 and $x \in \text{Lang}$, then $y \in \text{Lang}$

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

- A equivalence class defined by $\text{Lang} \& x$ $\llbracket x \rrbracket$ Lang $\equiv \{y \mid x \equiv \text{Lang} \equiv y\}$
- Partions of Lang' created by Lang

Lang' Quo Lang $\equiv \{\llbracket x \rrbracket \text{Lang} \mid x \in \text{Lang'}\}$ • Partions of Universal Language (UNIV) • Universal Language($UNIV$) : Σ^* Lang= $\bigcup \{ X \mid UNIV \text{ Quo Lang} \}$ ($\forall x \in X$. $x \in Lang$)

Statement of the theorem (cont.)

Theorem

Lang is regular iff it has finite partitions of $UNIV$

KEL KARIK KEL KEL KARIK

 $(\exists$ fa. lang of fa fa = Lang) = finite (UNIV Quo Lang)

Statement of the theorem (cont.)

Theorem

Lang is regular iff it has finite partitions of $UNIV$ $(\exists$ fa. lang of fa fa = Lang) = finite (UNIV Quo Lang)

• lang of fa is for getting language from a FA

KORKA REPARATION ADD

Use and consequences

To show a language is regular

-
-

To show a language is not regular

 4 (D) 4 6) 4 \pm) 4 \pm) 4 \pm)

 Ω

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $\lceil |\lambda| \rceil$ *Lang* $(\lceil |\cdot| \rceil \lceil \lfloor \ln n \rfloor)$ & $\lceil \sum$ do a exhausitive \bullet search
- To show a language is not regular
	-

◆ロト→ ←同ト→ ←ヨト→ ∈ヨト

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $\lceil |\lambda| \rceil$ *Lang* $(\lceil |\cdot| \rceil \lceil \lfloor \ln n \rfloor)$ & $\lceil \sum$ do a exhausitive \bullet search
- To show a language is not regular
	-

◆ロト → 伊ト → ヨト → ヨト

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $\frac{||\lambda||}{Lang}$ ($\frac{|||||}{Lang}$) $\&$ Σ do a exhausitive search

• To show a language is not regular

 $(1 - 4)$

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $\frac{||\lambda|| \text{Lang } (|||||| \text{Lang })$ & Σ do a exhausitive search

• To show a language is not regular

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $\frac{||\lambda|| \text{Lang } (|||||| \text{Lang })$ & Σ do a exhausitive search

• To show a language is not regular

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

Use and consequences

To show a language is regular

- prove the partition is finite
- from $\frac{||\lambda||}{Lang}$ ($\frac{|||||}{Lang}$) $\&$ Σ do a exhausitive search

To show a language is not regular

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $\frac{||\lambda||}{Lang}$ ($\frac{|||||}{Lang}$) $\&$ Σ do a exhausitive search

To show a language is not regular

KOD KOD KED KED E YORA

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $\frac{||\lambda||}{Lang}$ ($\frac{|||||}{Lang}$) $\&$ Σ do a exhausitive search

• To show a language is not regular

KEL KARIK KEL KEL KARIK
Use and consequences

• To show a language is regular

- prove the partition is finite
- from $\frac{||\lambda||}{Lang}$ ($\frac{|||||}{Lang}$) $\&$ Σ do a exhausitive search

• To show a language is not regular

Use and consequences

- To show a language is regular
	- prove the partition is finite
	- from $\frac{||\lambda||}{Lang}$ ($\frac{|||||}{Lang}$) $\&$ Σ do a exhausitive search
- To show a language is not regular
	- prove the partition is infinite

Use and consequences

- To show a language is regular
	- prove the partition is finite
	- from $\frac{||\lambda||}{Lang}$ ($\frac{|||||}{Lang}$) $\&$ Σ do a exhausitive search
- To show a language is not regular
	- prove the partition is infinite

Proof(brief.)

Finite partitions \longrightarrow Regular

- -
	- -
	-
	-

 $(1 + 4)$

 Ω

- -
-

Proof(brief.)

Finite partitions \longrightarrow Regular

- \bullet Exists a k, where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
	-
	-
	-
	-

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할)

 2990

• For any string x, DFA ends in state $\lfloor |x| \rfloor$ Lang

Proof(brief.)

Finite partitions \longrightarrow Regular

- Exists a k , where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
	- \odot Q $=$ UNIV Quo Lang
	- $\delta(p, a) = q$ iff exists a word $x \in p$ such that $x \mathbf{Q} a \in q$
		- $q_0 = [|\lambda|]$ Lang
	- $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$

KORKA SERKER SHORA

 \bullet δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• For any string x, DFA ends in state $\lfloor |x| \rfloor$ Lang

Proof(brief.)

Finite partitions \longrightarrow Regular

- Exists a k , where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
	- \bullet $Q = UNIV$ Quo Lang
	- $\delta(p, a) = q$ iff

exists a word $x \in p$ such that $x \mathbf{Q} a \in q$

- $q_0 = [|\lambda|]$ Lang
- $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$

KORKA SERKER SHORA

 \bullet δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• For any string x, DFA ends in state $\lfloor |x| \rfloor$ Lang

Proof(brief.)

Finite partitions \longrightarrow Regular

- Exists a k , where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
	- \bullet $Q = UNIV$ Quo Lang
	- $\delta(p, a) = q$ iff exists a word $x \in p$ such that $x \mathbb{Q} a \in q$
	- $q_0 = [|\lambda|]$ Lang
	- $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

 \bullet δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• For any string x, DFA ends in state $\lfloor |x| \rfloor$ Lang

Proof(brief.)

Finite partitions \longrightarrow Regular

- Exists a k , where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
	- \bullet $Q = UNIV$ Quo Lang
	- $\delta(p, a) = q$ iff exists a word $x \in p$ such that $x \mathbb{Q} a \in q$
	- $q_0 = [|\lambda|]$ Lang
	- $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

 \bullet δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• For any string x, DFA ends in state $\lfloor |x| \rfloor$ Lang

Proof(brief.)

Finite partitions \longrightarrow Regular

- Exists a k , where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
	- \bullet $Q = UNIV$ Quo Lang
	- $\delta(p, a) = q$ iff exists a word $x \in p$ such that $x \mathbb{Q} a \in q$
	- $q_0 = [|\lambda|]$ Lang
	- $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$

KORKA SERKER SHORA

 δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• For any string x, DFA ends in state $\lfloor |x| \rfloor$ Lang

Proof(brief.)

Finite partitions \longrightarrow Regular

- Exists a k , where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
	- \bullet $Q = UNIV$ Quo Lang
	- $\delta(p, a) = q$ iff exists a word $x \in p$ such that $x \mathbb{Q} a \in q$
	- $q_0 = [|\lambda|]$ Lang
	- $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$

KORKAR KERKER EL VOLO

 \bullet δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• For any string x, DFA ends in state $\lfloor |x| \rfloor$ Lang

Proof(brief.)

Finite partitions \longrightarrow Regular

- Exists a k , where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
	- \bullet $Q = UNIV$ Quo Lang
	- $\delta(p, a) = q$ iff exists a word $x \in p$ such that $x \mathbb{Q} a \in q$
	- $q_0 = [|\lambda|]$ Lang
	- $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$

KORKAR KERKER EL VOLO

 \bullet δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

- For any string x, DFA ends in state $\lfloor |x| \rfloor$ Lang
- $\bullet x \in$ Lang \longleftrightarrow DFA accepts

Proof(brief.)

Finite partitions \longrightarrow Regular

- Exists a k , where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
	- \bullet $Q = UNIV$ Quo Lang
	- $\delta(p, a) = q$ iff exists a word $x \in p$ such that $x \mathbb{Q} a \in q$
	- $q_0 = [|\lambda|]$ Lang
	- $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$

KORKA SERKER SHORA

 \bullet δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

- For any string x, DFA ends in state $\lfloor |x| \rfloor$ Lang
- $\bullet x \in$ Lang \longleftrightarrow DFA accepts

Proof (cont.)

$Regular \longrightarrow Finite$ partitions

 $Regular \longleftrightarrow Finite$ partitions

But if **Regular** is defined in **Reg Exps**, then ?

 2990

Proof (cont.)

$Regular \longrightarrow Finite$ partitions

- $\bullet x \equiv DFA \equiv y$ iff x & y end in the same state
- $\bullet \equiv$ DFA \equiv is an equivalence relation
- $\bullet x \equiv DFA \equiv y \longrightarrow x \equiv$ Lang $\equiv y$
- Finite DFA

 $Regular \longleftrightarrow Finite$ partitions

But if **Regular** is defined in **Reg Exps**, then ?

Proof (cont.)

$Regular \longrightarrow Finite$ partitions

- $\bullet x \equiv DFA \equiv y$ iff x & y end in the same state
- $\bullet \equiv DFA \equiv$ is an equivalence relation
- $\bullet x \equiv DFA \equiv y \longrightarrow x \equiv$ Lang $\equiv y$
- Finite DFA

 $Regular \longleftrightarrow Finite$ partitions

But if **Regular** is defined in **Reg Exps**, then ?

Proof (cont.)

$Regular \longrightarrow Finite$ partitions

- $\bullet x \equiv DFA \equiv y$ iff x & y end in the same state
- $\bullet \equiv DFA \equiv$ is an equivalence relation
- $\bullet x \equiv DFA \equiv y \longrightarrow x \equiv Lang \equiv y$
- Finite DFA

 $Regular \longleftrightarrow Finite$ partitions

But if **Regular** is defined in **Reg Exps**, then ?

Proof (cont.)

$Regular \longrightarrow Finite$ partitions

- $\bullet x \equiv DFA \equiv y$ iff x & y end in the same state
- $\bullet \equiv DFA \equiv$ is an equivalence relation
- $x \equiv DFA \equiv y \longrightarrow x \equiv Lang \equiv y$
- **•** Finite DFA

 $Regular \longleftrightarrow Finite$ partitions

But if **Regular** is defined in **Reg Exps**, then ?

Proof (cont.)

$Regular \longrightarrow Finite$ partitions

- $\bullet x \equiv DFA \equiv y$ iff x & y end in the same state
- $\bullet \equiv DFA \equiv$ is an equivalence relation
- $x \equiv DFA \equiv y \longrightarrow x \equiv Lang \equiv y$
- **•** Finite DFA

 $Regular \longleftrightarrow Finite$ partitions

But if **Regular** is defined in **Reg Exps**, then ?

Proof (cont.)

$Regular \longrightarrow Finite$ partitions

- $\bullet x \equiv DFA \equiv y$ iff x & y end in the same state
- $\bullet \equiv DFA \equiv$ is an equivalence relation
- $\bullet x \equiv DFA \equiv y \longrightarrow x \equiv Lang \equiv y$
- **•** Finite DFA

Regular \longleftrightarrow Finite partitions

But if **Regular** is defined in **Reg Exps**, then ?

KORK STRAIN ABY COMPARI

Proof (cont.)

$Regular \longrightarrow Finite$ partitions

- $\bullet x \equiv DFA \equiv y$ iff x & y end in the same state
- $\bullet \equiv DFA \equiv$ is an equivalence relation
- $\bullet x \equiv DFA \equiv y \longrightarrow x \equiv Lang \equiv y$
- **•** Finite DFA

Regular \longleftrightarrow Finite partitions

But if **Regular** is defined in **Reg Exps**, then ?

KORK STRAIN ABY COMPARI

K ロ K K @ K K 할 K K 할 K (할

 $2Q$

Outline

[Regular Expression\(brief\)](#page-2-0)

[Myhill-Nerode Theorem\(Intro\)](#page-12-0)

³ [FA to Regular Expressions](#page-57-0)

- ⁴ [Proving Myhill-Nerode Theorem](#page-88-0)
	- [Well-Founded iterating principle](#page-104-0)
	- **·** [Invariant predicate](#page-117-0)
	- **[Generating initial ES](#page-123-0)**
	- [Iteration step of ES](#page-131-0)
	- [Final Proof](#page-145-0)

◆ロメ ◆個メ ◆唐メ ◆唐メン著く

 2990

FA to Reg Exps

State Removal method

- - -
	-
- -

State Removal method

• How to do?

- ldentifies patterns within the graph
- Removes states
- ³ Builds up bigger regular exps

Characters

- - -

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

 $2Q$

State Removal method

- How to do?
	- ¹ Identifies patterns within the graph
		- Removes states
		- ³ Builds up bigger regular exps
- Characters
	- -

State Removal method

- How to do?
	- ¹ Identifies patterns within the graph
		- Removes states
		- ³ Builds up bigger regular exps
- Characters
	- -

State Removal method

- How to do?
	- ¹ Identifies patterns within the graph
	- Removes states
	- ³ Builds up bigger regular exps

Characters

-
- -

State Removal method

- How to do?
	- ¹ Identifies patterns within the graph
		- Removes states
		- ³ Builds up bigger regular exps

• Characters

- **Easy** to visualize
- ² Hard to formalize
	-

State Removal method

- How to do?
	- ¹ Identifies patterns within the graph
		- Removes states
		- ³ Builds up bigger regular exps

• Characters

-
- **1** Easy to visualize
	- ² Hard to formalize
		-

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

State Removal method

- How to do?
	- 1 Identifies patterns within the graph
		- Removes states
		- ³ Builds up bigger regular exps

Characters

- **1** Easy to visualize
	- Hard to formalize
		- **•** Simplified patterns in textbook

KORKA REPARATION ADD

How to choose patterns ? \bullet

State Removal method

- How to do?
	- 1 Identifies patterns within the graph
		- Removes states
		- ³ Builds up bigger regular exps

Characters

- **1** Easy to visualize
	- Hard to formalize
		- Simplified patterns in textbook

KORKA REPARATION ADD

How to choose patterns ? \bullet

State Removal method

- How to do?
	- 1 Identifies patterns within the graph
		- Removes states
		- ³ Builds up bigger regular exps

• Characters

- ¹ Easy to visualize
	- Hard to formalize
		- Simplified patterns in textbook

KORKA REPARATION ADD

• How to choose patterns ?

FA to Reg Exps (cont.)

Transitive Clousre method

FA to Reg Exps (cont.)

Transitive Clousre method

- Easy to formalize
- We have done it

Brozozowski Algebraic method

KORKA REPARATION ADD

FA to Reg Exps (cont.)

Transitive Clousre method

- Easy to formalize
- We have done it

Brozozowski Algebraic method

KORK STRAIN ABY COMPARI

FA to Reg Exps (cont.)

Transitive Clousre method

- Easy to formalize
- We have done it

Brozozowski Algebraic method
KORKA SERKER SHORA

FA to Reg Exps (cont.)

Transitive Clousre method

- Easy to formalize
- We have done it

Brozozowski Algebraic method

Brzozowski Algebraic method (revised.)

B $2Q$

Brzozowski Algebraic method (revised.)

Arden's Lemma (revised.)

Given an equation of the form $X = X$; $A + B$ where $[\mathcal{A} \notin \mathcal{A}]$, the equation has the solution $X = B$; A*

Brzozowski Algebraic method (revised.)

Arden's Lemma (revised.)

Given an equation of the form $X = X$; $A + B$ where $[\mathcal{A} \notin A]$, the equation has the solution $X = B$; $A*$

Brzozowski Algebraic method (revised.)

Arden's Lemma (revised.)

Given an equation of the form $X = X$; $A + B$ where $[\mathcal{A} \notin A]$, the equation has the solution $X = B$; $A*$

 290

 $A \equiv \lambda$, $A \equiv \lambda$, $A \equiv \lambda$, $A \equiv \lambda$, $A \equiv \lambda$

 QQ

Brzozowski Algebraic method (revised.)

Brzozowski Algebraic method (revised.)

 $X = AX + B$ where $\iint \notin A$, solution: $X = A * B$

Brzozowski Algebraic method (revised.)

Arden's Lemma

 $X = AX + B$ where $\iint \notin A$, solution: $X = A * B$

Brzozowski Algebraic method (revised.)

Arden's Lemma

Brzozowski Algebraic method (revised.)

Arden's Lemma

Brzozowski Algebraic method (revised.)

Arden's Lemma

Brzozowski Algebraic method (revised.)

Arden's Lemma

K ロ X K 個 X X 불 X X 불 X … 불

 $2Q$

Outline

[Regular Expression\(brief\)](#page-2-0)

[Myhill-Nerode Theorem\(Intro\)](#page-12-0)

[FA to Regular Expressions](#page-57-0)

[Proving Myhill-Nerode Theorem](#page-88-0)

- [Well-Founded iterating principle](#page-104-0)
- **o** [Invariant predicate](#page-117-0)
- **•** [Generating initial ES](#page-123-0)
- **o** [Iteration step of ES](#page-131-0)
- [Final Proof](#page-145-0)

Proving thought Reg Exps

- $Target:$ finite (UNIV Quo Lang) $\Longrightarrow \exists$ reg. Lang = L reg • Main approach
	-
	-
	- -

◆ロト ◆伊ト ◆ミト → ミト

 QQ

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg • Main approach
	-
	-
	- -

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg • Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method
	- How to prove?
		-
		-
		-
		-
		-
		-
		-
		-

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg
- Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method • How to prove?
		- -
		-

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg
- Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method
	- How to prove?
		- -
		-

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg
- Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method
	- How to prove?
		- **•** If each equation in ES of every step has:
		-
		-
		-
		-
		-
		-
		- Based on an well-founded iterating principle

K ロ > K @ > K 할 > K 할 > (할 >

 $2Q$

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg
- Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method
	- How to prove?
		- **If each equation in ES of every step has:**
			- Language of left(equiv-class) equal with right
			- 2 Right of last equation: λ ; (reg)
			- 3 Language of λ is $\{ \parallel \}$
		- ⁴ Language of right is L reg
			- We find the Reg Exps for the equiv-class!
		- **6** *Lang* is a set of equiv-class
		- Based on an well-founded iterating principle

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg
- Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method
	- How to prove?
		- **If each equation in ES of every step has:**
		- ¹ Language of left(equiv-class) equal with right
			- Right of last equation: λ ; (reg)
		- 3 Language of λ is $\{ \parallel \}$
		- ⁴ Language of right is L reg
		- We find the Reg Exps for the equiv-class!
		- Lang is a set of equiv-class
		- Based on an well-founded iterating principle

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg
- Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method
	- How to prove?
		- **If each equation in ES of every step has:**
		- ¹ Language of left(equiv-class) equal with right
		- 2 Right of last equation: λ ; (reg)
		- 3 Language of λ is $\{ \parallel \}$
		- ⁴ Language of right is L reg
			- We find the Reg Exps for the equiv-class!
			- Lang is a set of equiv-class
		- Based on an well-founded iterating principle

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg
- Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method
	- How to prove?
		- If each equation in ES of every step has:
		- ¹ Language of left(equiv-class) equal with right
		- 2 Right of last equation: λ ; (reg)
		- **3** Language of λ is $\{||\}$
		- ⁴ Language of right is L reg
			- We find the Reg Exps for the equiv-class!
			- Lang is a set of equiv-class
		- Based on an well-founded iterating principle

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg
- Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method
	- How to prove?
		- If each equation in ES of every step has:
			- Language of left(equiv-class) equal with right
			- 2 Right of last equation: λ ; (reg)
		- **3** Language of λ is $\{||\}$
		- ⁴ Language of right is L reg
			- We find the Reg Exps for the equiv-class!
			- Lang is a set of equiv-class
		- Based on an well-founded iterating principle

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg
- Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method
	- How to prove?
		- If each equation in ES of every step has:
		- ¹ Language of left(equiv-class) equal with right
		- 2 Right of last equation: λ ; (reg)
		- **3** Language of λ is $\{||\}$
		- ⁴ Language of right is L reg
		- 5 We find the Reg Exps for the equiv-class!
			- Lang is a set of equiv-class
		- Based on an well-founded iterating principle

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg
- Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method
	- How to prove?
		- If each equation in ES of every step has:
		- ¹ Language of left(equiv-class) equal with right
		- 2 Right of last equation: λ ; (reg)
		- 3 Language of λ is $\{ \}$
		- ⁴ Language of right is L reg
		- 5 We find the Reg Exps for the equiv-class!
		- 6 *Lang* is a set of equiv-class
		- Based on an well-founded iterating principle

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg
- Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method
	- How to prove?
		- If each equation in ES of every step has:
		- ¹ Language of left(equiv-class) equal with right
		- 2 Right of last equation: λ ; (reg)
		- **3** Language of λ is $\{||\}$
		- ⁴ Language of right is L reg
		- 5 We find the Reg Exps for the equiv-class!
		- 6 *Lang* is a set of equiv-class
		- Based on an well-founded iterating principle
		- Invariant of each step of ES' invariation \bullet

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Rightarrow \exists$ reg. Lang = L reg
- Main approach
	- Generate initial ES derived from Lang
	- Fetch the Reg Exp by Brozozowski method
	- How to prove?
		- If each equation in ES of every step has:
		- ¹ Language of left(equiv-class) equal with right
		- 2 Right of last equation: λ ; (reg)
		- 3 Language of λ is $\{ \}$
		- ⁴ Language of right is L reg
		- 5 We find the Reg Exps for the equiv-class!
		- $\left(\circ \right)$ *Lang* is a set of equiv-class
		- Based on an well-founded iterating principle
		- Invariant of each step of ES' invariation \bullet

KEL KARIK KEL KEL KARIK

Well-Founded iterating principle

Outline

- ² [Myhill-Nerode Theorem\(Intro\)](#page-12-0)
- ³ [FA to Regular Expressions](#page-57-0)
- [Proving Myhill-Nerode Theorem](#page-88-0)
	- [Well-Founded iterating principle](#page-104-0)
	- **•** [Invariant predicate](#page-117-0)
	- **[Generating initial ES](#page-123-0)**
	- **o** [Iteration step of ES](#page-131-0)
	- [Final Proof](#page-145-0)

Elimination of ES can be abstracted as

Elimination of ES can be abstracted as P e $\frac{1}{\exists e'}.$ P $e' \wedge Q$ e'

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Elimination of ES can be abstracted as P e $\frac{1}{\exists e' \cdot P \cdot e' \land Q \cdot e'}$ Like while in C
[Regular Expression\(brief\)](#page-2-0) [Myhill-Nerode Theorem\(Intro\)](#page-12-0) [FA to Regular Expressions](#page-57-0) [Proving Myhill-Nerode Theorem](#page-88-0) Well-Founded iterating principle

WF-iter

- Elimination of ES can be abstracted as
	- P $e \frac{1}{\exists e' \cdot P \cdot e' \land Q \cdot e'}$
- Like while in C
- Property Q : termination condition

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Well-Founded iterating principle

WF-iter

Elimination of ES can be abstracted as

$$
P\ e\frac{}{\exists\,e',\ P\ e'\ \land\ Q\ e'}
$$

- Like while in C
- Property Q : termination condition TCon $ES \equiv \text{card } ES = 1$

Well-Founded iterating principle

WF-iter

- Elimination of ES can be abstracted as
	- P $e \frac{1}{\exists e' \cdot P \cdot e' \land Q \cdot e'}$
- Like while in C
- Property Q: termination condition $TCon ES = card ES = 1$
- Property P is an invariant predicate

Well-Founded iterating principle

WF-iter

- Elimination of ES can be abstracted as
	- P $e \frac{1}{\exists e' \cdot P \cdot e' \land Q \cdot e'}$
- Like while in C
- Property Q: termination condition $TCon ES = card ES = 1$
- Property P is an invariant predicate • What is invariant?

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Well-Founded iterating principle

WF-iter

- Elimination of ES can be abstracted as
	- P $e \frac{1}{\exists e' \cdot P \cdot e' \land Q \cdot e'}$
- Like while in C
- Property Q: termination condition $TCon ES = card ES = 1$
- Property P is an invariant predicate • What is invariant?
	- ¹ Language of left equal with right

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Well-Founded iterating principle

WF-iter

- Elimination of ES can be abstracted as
	- P $e \frac{1}{\exists e' \cdot P \cdot e' \land Q \cdot e'}$
- Like while in C
- Property Q: termination condition $TCon ES = card ES = 1$
- Property P is an invariant predicate • What is invariant?
	- ¹ Language of left equal with right

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

2 ES is finite

Well-Founded iterating principle

WF-iter

Elimination of ES can be abstracted as

$$
P\ e\overline{\exists\,e^{\cdot},\ P\ e^{\cdot}\wedge\,Q\ e^{\cdot}}
$$

- Like while in C
- Property Q : termination condition $TCon ES = card ES = 1$
- Property P is an invariant predicate
	- What is invariant?
		- ¹ Language of left equal with right
		- 2 ES is finite
			- Each equiv-class has only one equation

KOD KARD KED KED E VOOR

Well-Founded iterating principle

WF-iter

- Elimination of ES can be abstracted as
	- P $e \frac{1}{\exists e' \cdot P \cdot e' \land Q \cdot e'}$
- Like while in C
- Property Q : termination condition $TCon ES = card ES = 1$
- Property P is an invariant predicate
	- What is invariant?
		- ¹ Language of left equal with right
		- 2 ES is finite
		- ³ Each equiv-class has only one equation
		- Target equiv-class exists

Well-Founded iterating principle

WF-iter

- Elimination of ES can be abstracted as
	- P $e \frac{1}{\exists e' \cdot P \cdot e' \land Q \cdot e'}$
- Like while in C
- Property Q: termination condition $TCon ES = card ES = 1$
- Property P is an invariant predicate
	- What is invariant?
		- ¹ Language of left equal with right
		- 2 ES is finite
		- ³ Each equiv-class has only one equation

- ⁴ Target equiv-class exists
	- ⁵ ...

KEL KARIK KEL KEL KARIK

Invariant predicate

Outline

- ¹ [Regular Expression\(brief\)](#page-2-0)
- ² [Myhill-Nerode Theorem\(Intro\)](#page-12-0)
- ³ [FA to Regular Expressions](#page-57-0)
- [Proving Myhill-Nerode Theorem](#page-88-0) [Well-Founded iterating principle](#page-104-0)
	- o [Invariant predicate](#page-117-0)
	- **[Generating initial ES](#page-123-0)**
	- [Iteration step of ES](#page-131-0)
	- [Final Proof](#page-145-0)

Invariant predicate

Formalization of Inv

```
no_EMPTY_rhs :: "t_equa_rhs ⇒ bool"
where "no_EMPTY_rhs rhs ≡ ∀ X r.
where "left_eq_cls ES \equiv {\overline{X}}. \exists rhs. (X, \text{rhs}) \in ES "
definition rhs_eq_cls :: "t_equa_rhs ⇒ (string set) set"<br>where "rhs_eq_cls rhs ≡ {Y. ∃ r. (Y, r) ∈ rhs}"
```
Equation-System (0) $R_1 = \lambda$ $R_2 = R_1$; 0 + R_2 ; (0|1) $R_3 = R_1$; 1 + R_3 ; (0|1)

イロメ イ押メ イヨメ イヨメ つへへ

Invariant predicate

Formalization of Inv

```
no_EMPTY_rhs :: "t_equa_rhs ⇒ bool"
where "no_EMPTY_rhs rhs ≡ ∀ X r.
definition rhs_eq_cls :: "t_equa_rhs ⇒ (string set) set"<br>where "rhs_eq_cls rhs ≡ {Y. ∃ r. (Y, r) ∈ rhs}"
definition Inv :: "string set \Rightarrow t_equas \Rightarrow bool"
where
  "Inv X ES \equiv finite ES \wedge (\exists rhs. (X, rhs) \in ES) \wedge distinct equas ES \wedge(\forall X \times \text{crhs. } (X, \times \text{rbs}) \in ES \longrightarrow \text{ardenable } (X, \times \text{rbs}) \land X \neq {\{\} \land
```
rhs eq cls xrhs \subseteq insert ${[}$ } (left eq cls ES))"

Equation-System (0) $R_1 = \lambda$ $R_2 = R_1$; 0 + R_2 ; (0|1) $R_3 = R_1$; 1 + R_3 ; (0|1)

イロメ イ押メ イヨメ イヨメー Ω

Invariant predicate

Formalization of Inv

```
no_EMPTY_rhs :: "t_equa_rhs ⇒ bool"
where "no_EMPTY_rhs rhs ≡ ∀ X r.
definition distinct equas :: "t_equas \Rightarrow bool"
where
  "distinct_equas equas \equiv \forall X rhs rhs'.
      (X, \text{rhs}) \in \text{equals} \land (X, \text{rhs}) \in \text{equals} \longrightarrow \text{rhs} = \text{rhs}\textbf{definition left\_eq\_cls}:: \text{ "t\_equas} \Rightarrow (\text{string set})\text{ set}\text{ "t''}definition rhs_eq_cls :: "t_equa_rhs ⇒ (string set) set"<br>where "rhs_eq_cls rhs ≡ {Y. ∃ r. (Y, r) ∈ rhs}"
definition Inv :: "string set \Rightarrow t_equas \Rightarrow bool"
where
  "Inv X ES \equiv finite ES \wedge (\exists rhs. (X, rhs) \in ES) \wedge distinct equas ES \wedge(\forall X \times \text{crhs.} (X, \times \text{rbs.}) \in ES \longrightarrow \text{ardenable } (X, \times \text{rbs.}) \wedge X \neq {\{\} \wedge
```
rhs eq cls xrhs \subseteq insert ${[}$ } (left eq cls ES))"

◆ロト ◆伊ト ◆ミト → ミト $2Q$ э.

Invariant predicate

Formalization of Inv

```
denition
  distinct_rhs :: "t_equa_rhs \Rightarrow bool"
where "distinct_rhs rhs \equiv \forall X reg<sub>1</sub> reg<sub>2</sub>.
           (X, \text{reg}_1) \in \text{rhs} \wedge (X, \text{reg}_2) \in \text{rhs} \longrightarrow \text{reg}_1 = \text{reg}_2"
denition
  no EMPTY rhs :: "t_equa_rhs \Rightarrow bool"
where "no_EMPTY_rhs rhs \equiv \forall X r.
           (X, \overline{r}) \in rhs \wedge \overline{X} \neq \{[] \} \longrightarrow [] \notin L r"definition ardenable :: "t_equa \Rightarrow bool"
where "ardenable equa \equiv let (X, \text{rhs}) = equa in
          distinct_rhs rhs ∧ no_EMPTY_rhs rhs ∧ X = L rhs"
definition distinct equas :: "t_equas \Rightarrow bool"
where
  "distinct_equas equas \equiv \forall X rhs rhs'.
      (X, \text{rhs}) \in \text{equals} \land (X, \text{rhs}) \in \text{equals} \longrightarrow \text{rhs} = \text{rhs}\textbf{definition left\_eq\_cls}:: \text{ "t\_equas} \Rightarrow (\text{string set})\text{ set}\text{ "t''}definition rhs_eq_cls :: "t_equa_rhs ⇒ (string set) set"<br>where "rhs_eq_cls rhs ≡ {Y. ∃ r. (Y, r) ∈ rhs}"
definition Inv :: "string set \Rightarrow t_equas \Rightarrow bool"
where
  "Inv X ES \equiv finite ES \wedge (\exists rhs. (X, rhs) \in ES) \wedge distinct equas ES \wedge(\forall X \times \text{crhs.} (X, \times \text{rbs.}) \in ES \longrightarrow \text{ardenable } (X, \times \text{rbs.}) \wedge X \neq {\{\} \wedge
```
rhs eq cls xrhs \subseteq insert ${[}$ } (left eq cls ES))"

Equation-System (0) $R_1 = \lambda$ $R_2 = R_1$; 0 + R_2 ; (0|1) $R_3 = R_1$; 1 + R_3 ; (0)

 $2Q$

 $\mathbf{A} \equiv \mathbf{A} + \math$

Invariant predicate

Formalization of Inv

denition distinct_rhs :: "t_equa_rhs \Rightarrow bool" where "distinct_rhs rhs $\equiv \forall$ X reg₁ reg₂. $(X, \text{reg}_1) \in \text{rhs} \wedge (X, \text{reg}_2) \in \text{rhs} \longrightarrow \text{reg}_1 = \text{reg}_2$ " denition no EMPTY rhs :: "t_equa_rhs \Rightarrow bool" where "no_EMPTY_rhs rhs $\equiv \forall$ X r. $(X, \overline{r}) \in$ rhs $\wedge \overline{X} \neq \{[] \} \longrightarrow [] \notin L r"$ definition ardenable :: "t_equa \Rightarrow bool" where "ardenable equa \equiv let $(X, \text{rhs}) =$ equa in distinct_rhs rhs ∧ no_EMPTY_rhs rhs ∧ X = L rhs" definition distinct equas :: \bar{r} t equas \Rightarrow bool" where "distinct_equas equas $\equiv \forall$ X rhs rhs'. $(X, \text{rhs}) \in \text{equals} \land (X, \text{rhs}) \in \text{equals} \rightarrow \text{rhs} = \text{rhs}$ ^{'"} definition left_eq_cls :: "t_equas \Rightarrow (string set) set" where "left_eq_cls ES $\equiv \{\overline{X} \cdot \exists \text{ rhs. } (\hat{X}, \text{rhs}) \in \text{ES} \}$ " definition rhs_eq_cls :: "t_equa_rhs ⇒ (string set) set"
where "rhs_eq_cls rhs ≡ {Y. ∃ r. (Y, r) ∈ rhs}"
definition Inv :: "string set ⇒ t_equas ⇒ bool" where "Inv X ES \equiv finite ES \wedge (\exists rhs. (X, rhs) \in ES) \wedge distinct equas ES \wedge $(\forall X \times \text{crhs.} (X, \times \text{rbs.}) \in ES \longrightarrow \text{ardenable } (X, \times \text{rbs.}) \wedge X \neq {\{\} \wedge$ rhs eq cls xrhs \subseteq insert ${[}$ } (left eq cls ES))"

Equation-System (0) $R_1 = \lambda$ $R_2 = R_1$; 0 + R_2 ; (0|1) $R_3 = R_1$; 1 + R_3 ; (0)

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$ $2Q$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q →

Generating initial ES

Outline

- ¹ [Regular Expression\(brief\)](#page-2-0)
- ² [Myhill-Nerode Theorem\(Intro\)](#page-12-0)
- ³ [FA to Regular Expressions](#page-57-0)
- [Proving Myhill-Nerode Theorem](#page-88-0)
	- [Well-Founded iterating principle](#page-104-0)
	- **·** [Invariant predicate](#page-117-0)
	- **•** [Generating initial ES](#page-123-0)
	- [Iteration step of ES](#page-131-0)
	- [Final Proof](#page-145-0)

Generating initial ES

Generating Initial Equation-System

where "equation rhs CS X $\stackrel{\sim}{=}$ if $(X = {||}\overline{)}\$ then ${([}{{[}]\overline{)}, E\overline{M}PTY)}$

```
Equation-System (0)
R_1 = \lambdaR_2 = R_1; 0 + R_2; (0|1)
R_3 = R_1; 1 + R_3; (0|1)
```
 QQ

 $(1 - 4)$

Equation-System (0) $R_1 = \lambda$ $R_2 = R_1$; 0 + R_2 ; (0|1) $R_3 = R_1$; 1 + R_3 ; (0|1)

 $(1 - 4)$

 QQ

Generating initial ES

Generating Initial Equation-System

types t_equa_rhs = "(string set \times rexp) set" types t_equa \equiv "(string set \times t_equa_rhs)" types t^- equas $=$ "t_equa set" where "empty_rhs $\breve{X} \equiv$ if ([] $\bar{\in}$ X) then {({[]}, EMPTY)} else {}"

Generating initial ES

Generating Initial Equation-System

denition CT :: "string set \Rightarrow char \Rightarrow string set \Rightarrow bool" (" - \rightarrow " [99,99]99) where "X-c→Y $\equiv ((X;\{[c]\}) \subseteq Y)^{\overline{\mu}}$ types t_equa_rhs = "(string set \times rexp) set" types t_equa \equiv "(string set \times t_equa_rhs)" types t^- equas $=$ "t_equa set" where "empty_rhs $\breve{X} \equiv$ if ([] $\bar{\in}$ X) then {({[]}, EMPTY)} else {}"


```
where "equation rhs CS X \stackrel{\sim}{=} if (X = {||}\overline{)}\ then {([}{{[}]\overline{)}, E\overline{M}PTY)}
```
Generating initial ES

Generating Initial Equation-System

denition CT :: "string set \Rightarrow char \Rightarrow string set \Rightarrow bool" (" - \rightarrow " [99,99]99) where "X-c→Y $\equiv ((X;\{[c]\}) \subseteq Y)^{n}$ types t_equa_rhs = "(string set \times rexp) set" types t_equa \equiv "(string set \times t_equa_rhs)" types t^- equas $=$ "t_equa set" where "empty_rhs $\breve{X} \equiv$ if ([] $\bar{\in}$ X) then {({[]}, EMPTY)} else {}" definition

KORK (FRAGE) KERK EL POLO

```
equation rhs :: "(string set) set \Rightarrow string set \Rightarrow t_equa_rhs"
where "equation rhs CS X \equiv if (X = {||}) then {({}^{\overline{1}}||}, EMPTY)}
                           else \{(S, \text{ folds }ALT \text{ NULL } \{CHAR c | c. S-c \rightarrow X\}) \mid S.S ∈ CS} ∪
```
empty_rhs X"

KORK (FRAGE) KERK EL POLO

Generating initial ES

Generating Initial Equation-System

```
denition
  CT :: "string set \Rightarrow char \Rightarrow string set \Rightarrow bool" (" - \rightarrow " [99,99]99)
where "X-c→Y \equiv ((X;\{[c]\}) \subseteq Y)^{n}types t_equa_rhs = "(string set \times rexp) set"
types t_equa \equiv "(string set \times t_equa_rhs)"
types t^-equas = "t_equa set"
denition
 folds :: "('a \Rightarrow 'b \Rightarrow 'b) \Rightarrow 'b \Rightarrow 'a set \Rightarrow 'b"
where "folds f z S \equiv SOME x. fold graph f z S x"
definition
 equation rhs :: "(string set) set \Rightarrow string set \Rightarrow t_equa_rhs"
where "equation rhs CS X \equiv if (X = {||}) then {({}^{\overline{1}}||}, EMPTY)}
                           else \{(S, \text{ folds }ALT \text{ NULL } \{CHAR c | c. S-c \rightarrow X\}) \mid S.S ∈ CS} ∪
                                empty_rhs X"
                                                                                                      Equation-System (0)
                                                                                                      R_1 = \lambdaR_2 = R_1; 0 + R_2; (0|1)
                                                                                                      R_3 = R_1; 1 + R_3; (0)
```
Generating initial ES

Generating Initial Equation-System

denition

```
CT :: "string set \Rightarrow char \Rightarrow string set \Rightarrow bool" (" - \rightarrow " [99,99]99)
where "X-c→Y \equiv ((X;\{[c]\}) \subseteq Y)^{n}types t_equa_rhs = "(string set \times rexp) set"
types t_equa \equiv "(string set \times t_equa_rhs)"
types t^-equas = "t_equa set"
denition
 empty_rhs :: "string set \Rightarrow t_equa_rhs"
where "empty_rhs \widetilde{X} \equiv \text{if } ([] \in X) then {({[[]}, \, \text{EMPTY)} \} else {\}"
denition
 folds :: "('a \Rightarrow 'b \Rightarrow 'b) \Rightarrow 'b \Rightarrow 'a set \Rightarrow 'b"
where "folds f z S \equiv SOME x. fold graph f z S x"
definition
```


KORK (FRAGE) KERK EL POLO

equation rhs :: "(string set) set \Rightarrow string set \Rightarrow t_equa_rhs" where "equation rhs CS X \equiv if $(X = {||}$) then ${({}^{\overline{1}}||}$, EMPTY)} else $\{(S, folds ALT NULL \{CHAR c | c. S-c \rightarrow X\}) | S.$ S ∈ CS} ∪

empty_rhs X"

Generating initial ES

Generating Initial Equation-System

denition

```
CT :: "string set \Rightarrow char \Rightarrow string set \Rightarrow bool" (" - \rightarrow " [99.99]99)
where "X-c→Y \equiv ((X;\{[c]\}) \subseteq Y)^{\overline{\mu}}types t_equa_rhs = "(string set \times rexp) set"
types t_equa \equiv "(string set \times t_equa_rhs)"
types t^-equas = "t_equa set"
denition
 empty_rhs :: "string set \Rightarrow t_equa_rhs"
where "empty_rhs \widetilde{X} \equiv \text{if } ([] \in X) then {({[[]}, \, \text{EMPTY)} \} else {\}"
denition
 folds :: "('a \Rightarrow 'b \Rightarrow 'b) \Rightarrow 'b \Rightarrow 'a set \Rightarrow 'b"
where "folds f z S \equiv SOME x. fold graph f z S x"
definition
```


KORK (FRAGE) KEY GRAN

equation rhs :: "(string set) set \Rightarrow string set \Rightarrow t_equa_rhs" where "equation rhs CS X \equiv if $(X = {||}$) then ${({}^{\overline{1}}||}$, EMPTY)} else $\{(S, folds ALT NULL \{CHAR c | c. S-c \rightarrow X\}) | S.$ S ∈ CS} ∪ empty_rhs X"

definition

```
equations :: "(string set) set \Rightarrow t_equas"
```
where "equations $CS \equiv \{(X, equation \text{ } rhs \text{ } CS \text{ } X) \mid X. X \in CS\}$ "

Iteration step of ES

Outline

- ¹ [Regular Expression\(brief\)](#page-2-0)
- ² [Myhill-Nerode Theorem\(Intro\)](#page-12-0)
- ³ [FA to Regular Expressions](#page-57-0)
- [Proving Myhill-Nerode Theorem](#page-88-0)
	- [Well-Founded iterating principle](#page-104-0)
	- **·** [Invariant predicate](#page-117-0)
	- **[Generating initial ES](#page-123-0)**
	- **o** [Iteration step of ES](#page-131-0)
	- [Final Proof](#page-145-0)

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
	- -
		-
		-
	- -
		-
		-

◆ ロ → → イヨ → → キヨ → → ヨ →

 2990

-
-

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class Approach: substitution
	- ¹ Well-formed substitutor equation
		-
		-
		-

Substituting

-
-
-

◆ロ→ →伊→ → ヨ→ → ヨ→

B

 QQ

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
	- ¹ Well-formed substitutor equation
		- \bullet substitutor $=$ an equiv-class
		- \bullet rhs should not contain itself
		- **•** if not, use Arden's Lemma to reform itself

Substituting

-
-
-

 $2Q$

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
	- ¹ Well-formed substitutor equation
		- \bullet substitutor $=$ an equiv-class
		- rhs should not contain itself \bullet
		- **•** if not, use Arden's Lemma to reform itself

Substituting

-
-
-

 $2Q$

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
	- ¹ Well-formed substitutor equation
		- \bullet substitutor $=$ an equiv-class
		- \bullet rhs should not contain itself
		- **•** if not, use Arden's Lemma to reform itself
	- **Substituting**
		-
		-
		-

 $2Q$

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
	- ¹ Well-formed substitutor equation
		- \bullet substitutor $=$ an equiv-class
		- rhs should not contain itself
		- if not, use Arden's Lemma to reform itself
		- **Substituting**
			-
			-
			-

KORKA REPARATION ADD

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
	- ¹ Well-formed substitutor equation
		- \bullet substitutor = an equiv-class
		- rhs should not contain itself
		- if not, use Arden's Lemma to reform itself

Substituting

- if substitutor is empty-string itself
- then do nothing
- **•** else replace itself with rhs of the substitutor

KORKA REPARATION ADD

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
	- ¹ Well-formed substitutor equation
		- \bullet substitutor = an equiv-class
		- rhs should not contain itself
		- if not, use Arden's Lemma to reform itself

Substituting

- if substitutor is empty-string itself
- then do nothing
- **•** else replace itself with rhs of the substitutor

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
	- ¹ Well-formed substitutor equation
		- \bullet substitutor = an equiv-class
		- rhs should not contain itself
		- if not, use Arden's Lemma to reform itself

Substituting

- if substitutor is empty-string itself
- **•** then do nothing
- else replace itself with rhs of the substitutor \bullet

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
	- ¹ Well-formed substitutor equation
		- \bullet substitutor = an equiv-class
		- rhs should not contain itself
		- if not, use Arden's Lemma to reform itself

- if substitutor is empty-string itself
- **•** then do nothing
- else replace itself with rhs of the substitutor

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
	- ¹ Well-formed substitutor equation
		- \bullet substitutor = an equiv-class
		- rhs should not contain itself
		- if not, use Arden's Lemma to reform itself

- if substitutor is empty-string itself
- **•** then do nothing
- else replace itself with rhs of the substitutor

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
	- ¹ Well-formed substitutor equation
		- \bullet substitutor = an equiv-class
		- rhs should not contain itself
		- if not, use Arden's Lemma to reform itself

Substituting

- if substitutor is empty-string itself
- **•** then do nothing
- else replace itself with rhs of the substitutor

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

• merging
Iteration step of ES

formalization

definition seq_rhs_r :: "t_equa_rhs \Rightarrow rexp \Rightarrow t_equa_rhs" where "seq_rhs r rhs $\bar{r} \equiv (\lambda(X, \text{reg}). (X, \text{SEQ} \text{ reg } r))$ ' rhs" denition del x paired :: "('a × 'b) set \Rightarrow 'a \Rightarrow ('a × 'b) set" where \overline{N} del_x_paired S x \equiv S \rightarrow {X. X \in S \land fst X \equiv x}" denition merge_rhs :: "t_equa_rhs \Rightarrow t_equa_rhs \Rightarrow t_equa_rhs" where "merge_rhs rhs rhs' $\equiv \{(\overline{X}, r), (\overline{\exists} \text{ r1 r2.} (\overline{X},r1) \in \text{rhs} \wedge (X,r2) \in \text{rhs} \wedge r = \text{ALT r1} \}$ r2) ∨ $(\exists$ r1. $(X, r1) \in \text{rhs } \wedge (\neg (\exists r2. (X, r2) \in \text{rhs'})) \wedge r = r1) \qquad \vee$
 $(\exists r2. (X, r2) \in \text{rhs'} \wedge (\neg (\exists r1. (X, r1) \in \text{rhs})) \wedge r = r2) \qquad \}^n$ $(\exists r2. (X, r2) \in \text{rhs'} \land (\neg (\exists r1. (X, r1) \in \text{rhs})) \land r = r2)$ denition arden_variate :: "string set \Rightarrow rexp \Rightarrow t_equa_rhs \Rightarrow t_equa_rhs" where \bar{m} arden variate X r rhs \equiv seq rhs^{-r} (del x paired rhs X) (STAR r)" definition rhs_subst :: "t_equa_rhs ⇒ string set ⇒ t_equa_rhs ⇒ rexp ⇒ t_equa_rhs" where "rhs_subst rhs X xrhs r \equiv merge_rhs (del_x_paired rhs X) (seq_rhs_r xrhs r)" denition equas subst f :: "string set \Rightarrow t_equa_rhs \Rightarrow t_equa \Rightarrow t_equa" where $\overline{''}$ equas $\overline{''}$ subst f X xrhs equa \equiv let (Y, rhs) = equa in if $(\exists r. (\overline{X}, r) \in \overline{r}$ hs) then (Y, r) subst rhs X xrhs (SOME r. $(X, r) \in \text{rhs})$) else equa" definition equas subst :: "t_equas \Rightarrow string set \Rightarrow t_equa_rhs \Rightarrow t_equas" where $\overline{\text{``}e}$ quas_subst ES X xrhs \equiv del_x_paired (equas_subst_f X xrhs ' ES) X" **KORKA REPARATION ADD**

Final Proof

Outline

- ¹ [Regular Expression\(brief\)](#page-2-0)
- ² [Myhill-Nerode Theorem\(Intro\)](#page-12-0)
- ³ [FA to Regular Expressions](#page-57-0)
- [Proving Myhill-Nerode Theorem](#page-88-0)
	- [Well-Founded iterating principle](#page-104-0)
	- **·** [Invariant predicate](#page-117-0)
	- **[Generating initial ES](#page-123-0)**
	- [Iteration step of ES](#page-131-0)
	- [Final Proof](#page-145-0)

Final Proof

WF-iter Usage

```
lemma iteration_step:
 assumes Inv \overline{ES}: "Inv X ES" and not T: "\neg TCon ES"
 shows "(\exists ES'. Inv X ES' \land (card ES', card ES) \in less than)"
proof -
 from Inv_ES not_T have another: "∃ Y yrhs. (Y, yr) \in ES \wedge X \neq Y" unfolding Inv_def
   by (clarify, rule tac exist another equalwhere X = X, auto)
 then obtain Y yrhs where subst: "(\overline{Y}, \text{yrhs}) \in ES' and not X: " X \neq Y'' by blast
 show ?thesis (is "∃ ES'. ?P ES'")
 proof (cases ^{\mathsf{N}}\mathbf{Y} = \{[] \}^{\mathsf{N}})
   case True — in this situation, we pick a \lambda equation, thus directly remove it have "?P (ES - \{(Y, \text{vrhs})\}" next
   have "?P (ES - \{(Y, yrhs)\})"
   case False - first use arden's lemma, then do the substitution
   hence "?P (equas_subst ES Y yrhs')"
 qed
qed
lemma iteration conc:
 assumes history: "Inv X ES"
 shows "∃ ES'. Inv X ES' ∧ TCon ES'" (is "∃ ES'. ?P ES'")
proof (cases "TCon ES")
 case True hence "?P ES" using history by simp
 thus ?thesis by blast
next
 case False
 thus ?thesis using history iteration_step
   by (rule tac f = \text{card in wf} iter, simp all)
qedKORK (FRAGE) KERK EL POLO
```
Final Proof

proof: every equiv-class has a Reg Exp.

```
lemma every eqcl has reg:
 assumes finite CS: "finite (UNIV Quo Lang)" and X in CS: "X ∈ (UNIV Quo Lang)"
 shows "∃ (reg::rexp). L reg = X'' (is "∃ r. ?E r")
proof-
 have "∃ES'. Inv X ES' \land TCon ES'" using finite CS X in CS
   by (auto intro:init_ES_satisfy_Inv iteration_conc) have "∃ rhs. ES' = \{(X, r\),\}"
by (auto dest!:card \overline{S}_{\text{uc}} \overline{D}iff1 simp:card eq 0<sup>-iff</sup>)
 then obtain rhs where ES' single equa: \overline{E}S^7 = \{(X, rhs)\}" ..
 hence X ardenable: "ardenable (X, \text{rhs})" using Inv ES'
   by (simp add:Inv def) show ?thesis
 proof (cases "X = \overline{\{||}\}")
   case True hence "?E EMPTY" by simp
   thus ?thesis by blast
 next
   case False with X_ardenable
   have "∃ rhs'. X = \overline{L} rhs' \wedge rhs eq_cls rhs' = rhs_eq_cls rhs - {X} \wedge distinct_rhs rhs'"
     by (drule tac ardenable prop, auto)
   then obtain rhs' where \overline{X} eq_rhs': "X = L rhs'"
     and rhs' eq_cls: "rhs_eq_cls rhs' = rhs_eq_cls rhs - {X}"
     and \text{rhs}<sup>7</sup> dist : "distinct \overline{\text{rhs}} rhs \text{rhs}" by blast
   hence "rhs_eq_cls rhs' = {{[]}}" using X_not_empty X_eq_rhs'
     by (auto simp:rhs_eq_cls_def)
   hence "∃ r. rhs' = \overline{f}(\{\overline{||}\}, r)}"
   then obtain r where "rhs' = \{(\{\{\}\}, r)\}"...
   hence "?E r" using X eq rhs' by (auto simp add:lang seq def)
   thus ?thesis by blast
```
qed qed

Final Proof

proof: Myhill-Nerode(one direction)

```
theorem myhill_nerode:
 assumes finite<sup>-</sup>CS: "finite (UNIV Quo Lang)"
 shows "∃ (reg::rexp). Lang = L reg" (is "\exists r. ?P r")
proof -
  have has r_each: "∀ C∈{X ∈ UNIV Quo Lang. ∀ x∈X. x ∈ Lang}. \exists (r::rexp). C = L r"
   using \widetilde{\text{finite}} CS
   by (auto dest:every_eqcl_has_reg)
  have "∃ (rS::rexp set). finite rS \wedge(∀ C ∈ {X ∈ UNIV Quo Lang. ∀ x∈X. x ∈ Lang}. ∃ r ∈ rS. C = L r) ∧
                    (∀ r ∈ rS. ∃ C ∈ {X ∈ UNIV Quo Lang. ∀ x∈X. x ∈ Lang}. C = L r)"
then obtain rS where finite_rS : "finite rS"
   and r_each': "∀ C ∈ {X ∈ UNIV Quo Lang. ∀ x∈X. x ∈ Lang}. ∃ r ∈ (rS::rexp set). C = L
r"
   and cl_each: "∀ r ∈ (rS::rexp set). \exists C ∈ {X ∈ UNIV Quo Lang. ∀ x∈X. x ∈ Lang}. C = L
r"
   by blast
  have "?P (folds ALT NULL rS)"
 proof<br>show "Lang \subset L (folds ALT NULL rS)"
                                                 apply (clarsimp simp:fold alt null eqs) by
blast
  next
   show "L (folds ALT NULL rS) \subset Lang" by (clarsimp simp:fold alt null eqs)
 qed
 thus ?thesis by blast
```
KORK (FRAGE) KERK EL POLO

qed