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Regular Expression

What we may all know(in Compiling Principle)

An alphabet Σ where every language based
∅ | λ(ε) | c | r1·r2 | r1|r2 | r ∗
{} | {[]} | {[c]} | L1; L2 | L1 ∪ L2 | L∗
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What we may all know(in Compiling Principle)

An alphabet Σ where every language based
∅ | λ(ε) | c | r1·r2 | r1|r2 | r ∗
{} | {[]} | {[c]} | L1; L2 | L1 ∪ L2 | L∗

de�nition lang_seq :: "string set ⇒ string set ⇒ string set"
("_ ; _" [100,100] 100)

where
"L1 ; L2 = {s1@s2 | s1 s2. s1 ∈ L1 ∧ s2 ∈ L2}"

inductive_set Star :: "string set ⇒ string set" ("_?" [101] 102)
for L :: "string set"

where
start[intro]: "[] ∈ L?"

| step[intro]: "[[s1 ∈ L; s2 ∈ L?]] =⇒ s1@s2 ∈ L?"
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Regular Expression(Formalization)

In Isabelle/HOL

datatype rexp =
NULL

| EMPTY
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp

consts L:: "'a ⇒ string set"
overloading L_rexp == "L:: rexp ⇒ string set"
begin
fun L_rexp :: "rexp ⇒ string set"
where

"L_rexp (NULL) = {}"
| "L_rexp (EMPTY) = {[]}"
| "L_rexp (CHAR c) = {[c]}"
| "L_rexp (SEQ r1 r2) = (L_rexp r1) ; (L_rexp r2)"
| "L_rexp (ALT r1 r2) = (L_rexp r1) ∪ (L_rexp r2)"

| "L_rexp (STAR r) = (L_rexp r)?" end
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Myhill-Nerode theorem

In the theory of formal languages

It provides a necessary & su�cient

condition for a language to be regular

Named after John Myhill and Anil Nerode

Proved at University of Chicago, in 1958
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Statement of the theorem

A equivalence relation de�ned by Lang

x ≡Lang≡ y = (∀ z. (x @ z ∈ Lang) = (y @ z ∈ Lang))

If x ≡Lang≡ y and x ∈ Lang, then y ∈ Lang

If x ≡Lang≡ y, then (x@a) ≡Lang≡ (y@a)

A equivalence class de�ned by Lang & x

[[x]]Lang ≡ {y | x ≡Lang≡ y}

Partions of Lang ′ created by Lang

Lang' Quo Lang ≡ {[[x]]Lang | x ∈ Lang'}

Partions of Universal Language(UNIV )

Universal Language(UNIV ) : Σ∗

Lang =
⋃
{X | UNIV Quo Lang} (∀ x∈X. x ∈ Lang)
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Statement of the theorem (cont.)

Theorem

Lang is regular i� it has �nite partitions of UNIV

(∃ fa. lang_of_fa fa = Lang) = �nite (UNIV Quo Lang)

lang_of_fa is for getting language from a FA
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Use and consequences

To show a language is regular
prove the partition is �nite
from [|λ|]Lang ([|[]|]Lang)& Σ do a exhausitive
search

To show a language is not regular
prove the partition is in�nite

Σ = {0, 1} & Lang= L(0·(0|1)∗)

[|λ|]Lang λ 6≡ Lang 6≡ 0
−→

[|λ|]Lang
[|0|]Lang

0 6≡ Lang 6≡ 1
λ 6≡ Lang 6≡ 1
λ 6≡ Lang 6≡ 0

−→

[|λ|]Lang
[|0|]Lang
[|1|]Lang
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Proof(brief.)

Finite partitions −→ Regular

Exists a k , where k partitions (equiv-classes)

We can get a DFA (Q,Σ,δ,q0,F )
Q = UNIV Quo Lang
δ(p, a) = q i�
exists a word x ∈ p such that x@a ∈ q
q0 = [|λ|]Lang
q ∈ F i� exists a word x ∈ q such that x ∈ Lang
δ is a function because:
If x ≡Lang≡ y, then (x@a) ≡Lang≡ (y@a)

For any string x , DFA ends in state [|x |]Lang
x ∈ Lang ←→ DFA accepts
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Equation-System (0)

R1 = λ
R2 = R1; 0 + R2; (0|1)
R3 = R1; 1 + R3; (0|1)
+ is actually ∪

ES Subst (1)

R2 = λ; 0 + R2; (0|1)
R3 = λ; 1 + R3; (0|1)

ES Arden (2)

R2 = (λ; 0)(0|1)∗ = λ; (0 · (0|1)∗)
R3 = λ; 1 + R3; (0|1)

Result

R2 : (0 · (0|1)∗)

Arden's Lemma (revised.)

Given an equation of the form X = X ;A + B where [] 6∈ A,

the equation has the solution X = B ;A∗
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Generate initial ES derived from Lang
Fetch the Reg Exp by Brozozowski method
How to prove?

If each equation in ES of every step has:

1 Language of left(equiv-class) equal with right
2 Right of last equation: λ; (reg)
3 Language of λ is {[]}
4 Language of right is L reg
5 We �nd the Reg Exps for the equiv-class!
6 Lang is a set of equiv-class

Based on an well-founded iterating principle
Invariant of each step of ES' invariation
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4 Target equiv-class exists
5 ...
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Invariant predicate

Formalization of Inv
de�nition
distinct_rhs :: "t_equa_rhs ⇒ bool"

where "distinct_rhs rhs ≡ ∀ X reg1 reg2.
(X, reg1) ∈ rhs ∧ (X, reg2) ∈ rhs −→ reg1 = reg2"

de�nition
no_EMPTY_rhs :: "t_equa_rhs ⇒ bool"

where "no_EMPTY_rhs rhs ≡ ∀ X r.
(X, r) ∈ rhs ∧ X 6= {[]} −→ [] /∈ L r"

de�nition ardenable :: "t_equa ⇒ bool"
where "ardenable equa ≡ let (X, rhs) = equa in

distinct_rhs rhs ∧ no_EMPTY_rhs rhs ∧ X = L rhs"
de�nition distinct_equas :: "t_equas ⇒ bool"
where
"distinct_equas equas ≡ ∀ X rhs rhs'.
(X, rhs) ∈ equas ∧ (X, rhs') ∈ equas −→ rhs = rhs'"

de�nition left_eq_cls :: "t_equas ⇒ (string set) set"
where "left_eq_cls ES ≡ {X. ∃ rhs. (X, rhs) ∈ ES} "
de�nition rhs_eq_cls :: "t_equa_rhs ⇒ (string set) set"
where "rhs_eq_cls rhs ≡ {Y. ∃ r. (Y, r) ∈ rhs}"
de�nition Inv :: "string set ⇒ t_equas ⇒ bool"
where
"Inv X ES ≡ �nite ES ∧ (∃ rhs. (X, rhs) ∈ ES) ∧ distinct_equas ES ∧
(∀ X xrhs. (X, xrhs) ∈ ES −→ ardenable (X, xrhs) ∧ X 6= {} ∧

rhs_eq_cls xrhs ⊆ insert {[]} (left_eq_cls ES))"

Equation-System (0)

R1 = λ
R2 = R1; 0 + R2; (0|1)
R3 = R1; 1 + R3; (0|1)
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Generating Initial Equation-System
de�nition
CT :: "string set ⇒ char ⇒ string set ⇒ bool" ("_-_→_" [99,99]99)

where "X-c→Y ≡ ((X;{[c]}) ⊆ Y)"

types t_equa_rhs = "(string set × rexp) set"
types t_equa = "(string set × t_equa_rhs)"
types t_equas = "t_equa set"

de�nition
empty_rhs :: "string set ⇒ t_equa_rhs"

where "empty_rhs X ≡ if ([] ∈ X) then {({[]}, EMPTY)} else {}"
de�nition
folds :: "('a ⇒ 'b ⇒ 'b) ⇒ 'b ⇒ 'a set ⇒ 'b"

where "folds f z S ≡ SOME x. fold_graph f z S x"

de�nition
equation_rhs :: "(string set) set ⇒ string set ⇒ t_equa_rhs"

where "equation_rhs CS X ≡ if (X = {[]}) then {({[]}, EMPTY)}
else {(S, folds ALT NULL {CHAR c| c. S-c→X} )| S.

S ∈ CS} ∪
empty_rhs X"

de�nition
equations :: "(string set) set ⇒ t_equas"

where "equations CS ≡ {(X, equation_rhs CS X) | X. X ∈ CS}"

Equation-System (0)

R1 = λ
R2 = R1; 0 + R2; (0|1)
R3 = R1; 1 + R3; (0|1)
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formalization

de�nition
seq_rhs_r :: "t_equa_rhs ⇒ rexp ⇒ t_equa_rhs"

where "seq_rhs_r rhs r ≡ (λ(X, reg). (X, SEQ reg r)) ` rhs"
de�nition
del_x_paired :: "('a × 'b) set ⇒ 'a ⇒ ('a × 'b) set"

where "del_x_paired S x ≡ S - {X. X ∈ S ∧ fst X = x}"
de�nition
merge_rhs :: "t_equa_rhs ⇒ t_equa_rhs ⇒ t_equa_rhs"

where "merge_rhs rhs rhs' ≡ {(X, r). (∃ r1 r2. (X,r1) ∈ rhs ∧ (X, r2) ∈ rhs' ∧ r = ALT r1
r2) ∨

(∃ r1. (X, r1) ∈ rhs ∧ (¬ (∃ r2. (X, r2) ∈ rhs')) ∧ r = r1) ∨
(∃ r2. (X, r2) ∈ rhs' ∧ (¬ (∃ r1. (X, r1) ∈ rhs)) ∧ r = r2) }"

de�nition
arden_variate :: "string set ⇒ rexp ⇒ t_equa_rhs ⇒ t_equa_rhs"

where "arden_variate X r rhs ≡ seq_rhs_r (del_x_paired rhs X) (STAR r)"

de�nition
rhs_subst :: "t_equa_rhs ⇒ string set ⇒ t_equa_rhs ⇒ rexp ⇒ t_equa_rhs"

where "rhs_subst rhs X xrhs r ≡ merge_rhs (del_x_paired rhs X) (seq_rhs_r xrhs r)"

de�nition
equas_subst_f :: "string set ⇒ t_equa_rhs ⇒ t_equa ⇒ t_equa"

where "equas_subst_f X xrhs equa ≡ let (Y, rhs) = equa in
if (∃ r. (X, r) ∈ rhs) then (Y, rhs_subst rhs X xrhs (SOME r. (X, r) ∈ rhs)) else equa"

de�nition
equas_subst :: "t_equas ⇒ string set ⇒ t_equa_rhs ⇒ t_equas"

where "equas_subst ES X xrhs ≡ del_x_paired (equas_subst_f X xrhs ` ES) X"
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Final Proof

WF-iter Usage

lemma iteration_step:
assumes Inv_ES: "Inv X ES" and not_T: "¬ TCon ES"
shows "(∃ ES'. Inv X ES' ∧ (card ES', card ES) ∈ less_than)"

proof -
from Inv_ES not_T have another: "∃Y yrhs. (Y, yrhs) ∈ ES ∧ X 6= Y" unfolding Inv_def
by (clarify, rule_tac exist_another_equa[where X = X], auto)

then obtain Y yrhs where subst: "(Y, yrhs) ∈ ES" and not_X: " X 6= Y" by blast
show ?thesis (is "∃ ES'. ?P ES'")
proof (cases "Y = {[]}")
case True � in this situation, we pick a λ equation, thus directly remove it
have "?P (ES - {(Y, yrhs)})" next
case False � �rst use arden's lemma, then do the substitution
hence "?P (equas_subst ES Y yrhs')"

qed
qed

lemma iteration_conc:
assumes history: "Inv X ES"
shows "∃ ES'. Inv X ES' ∧ TCon ES'" (is "∃ ES'. ?P ES'")

proof (cases "TCon ES")
case True hence "?P ES" using history by simp
thus ?thesis by blast

next
case False
thus ?thesis using history iteration_step
by (rule_tac f = card in wf_iter, simp_all)

qed
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Final Proof

proof: every equiv-class has a Reg Exp.

lemma every_eqcl_has_reg:
assumes �nite_CS: "�nite (UNIV Quo Lang)" and X_in_CS: "X ∈ (UNIV Quo Lang)"
shows "∃ (reg::rexp). L reg = X" (is "∃ r. ?E r")

proof-
have "∃ES'. Inv X ES' ∧ TCon ES'" using �nite_CS X_in_CS
by (auto intro:init_ES_satisfy_Inv iteration_conc) have "∃ rhs. ES' = {(X, rhs)}"

by (auto dest!:card_Suc_Di�1 simp:card_eq_0_i�)
then obtain rhs where ES'_single_equa: "ES' = {(X, rhs)}" ..
hence X_ardenable: "ardenable (X, rhs)" using Inv_ES'
by (simp add:Inv_def) show ?thesis

proof (cases "X = {[]}")
case True hence "?E EMPTY" by simp
thus ?thesis by blast

next
case False with X_ardenable
have "∃ rhs'. X = L rhs' ∧ rhs_eq_cls rhs' = rhs_eq_cls rhs - {X} ∧ distinct_rhs rhs'"
by (drule_tac ardenable_prop, auto)

then obtain rhs' where X_eq_rhs': "X = L rhs'"
and rhs'_eq_cls: "rhs_eq_cls rhs' = rhs_eq_cls rhs - {X}"
and rhs'_dist : "distinct_rhs rhs'" by blast

hence "rhs_eq_cls rhs' = {{[]}}" using X_not_empty X_eq_rhs'
by (auto simp:rhs_eq_cls_def)

hence "∃ r. rhs' = {({[]}, r)}"
then obtain r where "rhs' = {({[]}, r)}" ..
hence "?E r" using X_eq_rhs' by (auto simp add:lang_seq_def)
thus ?thesis by blast

qed qed
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proof: Myhill-Nerode(one direction)

theorem myhill_nerode:
assumes �nite_CS: "�nite (UNIV Quo Lang)"
shows "∃ (reg::rexp). Lang = L reg" (is "∃ r. ?P r")

proof -
have has_r_each: "∀C∈{X ∈ UNIV Quo Lang. ∀ x∈X. x ∈ Lang}. ∃ (r::rexp). C = L r"
using �nite_CS
by (auto dest:every_eqcl_has_reg)

have "∃ (rS::rexp set). �nite rS ∧
(∀ C ∈ {X ∈ UNIV Quo Lang. ∀ x∈X. x ∈ Lang}. ∃ r ∈ rS. C = L r) ∧
(∀ r ∈ rS. ∃ C ∈ {X ∈ UNIV Quo Lang. ∀ x∈X. x ∈ Lang}. C = L r)"

then obtain rS where �nite_rS : "�nite rS"
and r_each': "∀ C ∈ {X ∈ UNIV Quo Lang. ∀ x∈X. x ∈ Lang}. ∃ r ∈ (rS::rexp set). C = L

r"
and cl_each: "∀ r ∈ (rS::rexp set). ∃ C ∈ {X ∈ UNIV Quo Lang. ∀ x∈X. x ∈ Lang}. C = L

r"
by blast

have "?P (folds ALT NULL rS)"
proof
show "Lang ⊆ L (folds ALT NULL rS)" apply (clarsimp simp:fold_alt_null_eqs) by

blast
next
show "L (folds ALT NULL rS) ⊆ Lang" by (clarsimp simp:fold_alt_null_eqs)

qed
thus ?thesis by blast

qed
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