Regular Expressions & The Myhill-Nerode Theorem

Wu Chunhan

October 20, 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Outline

- Regular Expression(brief)
- 2 Myhill-Nerode Theorem(Intro)
 - IFA to Regular Expressions
- Proving Myhill-Nerode Theorem
 - Well-Founded iterating principle
 - Invariant predicate
 - Generating initial ES
 - Iteration step of ES
 - Final Proof

Outline

Regular Expression(brief)

- 2 Myhill-Nerode Theorem(Intro)
- IFA to Regular Expressions
- Proving Myhill-Nerode Theorem
 - Well-Founded iterating principle
 - Invariant predicate
 - Generating initial ES
 - Iteration step of ES
 - Final Proof

Regular Expression

• What we may all know(in Compiling Principle)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Regular Expression

What we may all know(in Compiling Principle)
An alphabet Σ where every language based

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Regular Expression

• What we may all know(in Compiling Principle)

 $\bullet\,$ An alphabet Σ where every language based

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• $\emptyset \mid \lambda(\epsilon) \mid c \mid r_1 \cdot r_2 \mid r_1 \mid r_2 \mid r^*$

Regular Expression

• What we may all know(in Compiling Principle)

• An alphabet Σ where every language based

(ロ) (型) (E) (E) (E) (O)

- $\emptyset \mid \lambda(\epsilon) \mid c \mid r_1 \cdot r_2 \mid r_1 \mid r_2 \mid r^*$
- {} | {[]} | {[c]} | $L_1; L_2 | L_1 \cup L_2 | L*$

Regular Expression

• What we may all know(in Compiling Principle)

An alphabet Σ where every language based
Ø | λ(ε) | c | r₁·r₂ | r₁|r₂ | r^{*}
{} | {[]} | {[c]} | L₁; L₂ | L₁ ∪ L₂ | L*

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

definition lang_seq :: "string set \Rightarrow string set \Rightarrow string set" ("_; _" [100,100] 100) where "L1; L2 = {s1@s2 | s1 s2. s1 \in L1 \land s2 \in L2}"

Regular Expression

• What we may all know(in Compiling Principle)

An alphabet Σ where every language based
Ø | λ(ε) | c | r₁·r₂ | r₁|r₂ | r^{*}
{} | {[]} | {[c]} | L₁; L₂ | L₁ ∪ L₂ | L*

```
definition lang_seq :: "string set ⇒ string set ⇒ string set"
    ("_; _" [100,100] 100)
where
    "L1; L2 = {s1@s2 | s1 s2. s1 ∈ L1 ∧ s2 ∈ L2}"
```

```
inductive_set Star :: "string set \Rightarrow string set" ("_*" [101] 102)
for L :: "string set"
where
start[intro]: "[] \in L*"
| step[intro]: "[s1 \in L; s2 \in L*] \implies s1@s2 \in L*"
```

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Regular Expression(Formalization)

• In Isabelle/HOL

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Regular Expression(Formalization)

• In Isabelle/HOL

datatype rexp = NULL | EMPTY | CHAR char | SEQ rexp rexp | ALT rexp rexp | STAR rexp

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Regular Expression(Formalization)

• In Isabelle/HOL

```
datatype rexp =
  NULL
EMPTY
CHAR char
SEQ rexp rexp
 ALT rexp rexp
STAR rexp
consts L:: "'a \Rightarrow string set"
overloading L rexp == "L:: rexp \Rightarrow string set"
begin
fun L rexp :: "rexp \Rightarrow string set"
where
  "L rexp (NULL) = \{\}"
 |"L"rexp(EMPTY) = {[]}"
 "L rexp (CHAR c) = {[c]}"
  "L rexp (SEQ r1 r2) = (L rexp r1); (L rexp r2)"
  "L rexp (ALT r1 r2) = (L rexp r1) \cup (L rexp r2)"
```

 $|"L_rexp (STAR r) = (L_rexp r) \star" end$

Outline

Regular Expression(brief)

- 2 Myhill-Nerode Theorem(Intro)
- FA to Regular Expressions
- Proving Myhill-Nerode Theorem
 - Well-Founded iterating principle
 - Invariant predicate
 - Generating initial ES
 - Iteration step of ES
 - Final Proof

Myhill-Nerode theorem

• In the theory of formal languages

- It provides a **necessary** & **sufficient** condition for a language to be regular
- Named after John Myhill and Anil Nerode

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Myhill-Nerode theorem

- In the theory of formal languages
- It provides a **necessary** & **sufficient** condition for a language to be regular
- Named after John Myhill and Anil Nerode

うして ふゆう ふほう ふほう うらつ

Myhill-Nerode theorem

- In the theory of formal languages
- It provides a **necessary** & **sufficient** condition for a language to be regular
- Named after John Myhill and Anil Nerode

うして ふゆう ふほう ふほう うらう

Myhill-Nerode theorem

- In the theory of formal languages
- It provides a **necessary** & **sufficient** condition for a language to be regular
- Named after John Myhill and Anil Nerode

うして ふゆう ふほう ふほう しょうく

Statement of the theorem

• A equivalence relation defined by *Lang*

 $x \equiv Lang \equiv y = (\forall z. (x @ z \in Lang) = (y @ z \in Lang))$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Statement of the theorem

• A equivalence relation defined by *Lang*

 $x \equiv Lang \equiv y = (\forall z. (x @ z \in Lang) = (y @ z \in Lang))$

(ロ) (型) (E) (E) (E) (O)

 $\bullet \quad \text{If $x \equiv \text{Lang} \equiv y and $x \in \text{Lang}, then $y \in \text{Lang}$}$

Statement of the theorem

• A equivalence relation defined by *Lang*

 $x \equiv Lang \equiv y = (\forall z. (x @ z \in Lang) = (y @ z \in Lang))$

- If $x \equiv Lang \equiv y$ and $x \in Lang$, then $y \in Lang$
- If x ≡Lang≡ y, then (x@a) ≡Lang≡ (y@a)

Statement of the theorem

• A equivalence relation defined by *Lang*

 $x \equiv Lang \equiv y = (\forall z. (x @ z \in Lang) = (y @ z \in Lang))$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

• If
$$x \equiv Lang \equiv y$$
 and $x \in Lang$, then $y \in Lang$

• If
$$x \equiv Lang \equiv y$$
, then $(x@a) \equiv Lang \equiv (y@a)$

A equivalence class defined by Lang & x
 [x]Lang = {y | x = Lang= y}

Statement of the theorem

• A equivalence relation defined by *Lang*

 $x \equiv Lang \equiv y = (\forall z. (x @ z \in Lang) = (y @ z \in Lang))$

• If
$$x \equiv Lang \equiv y$$
 and $x \in Lang$, then $y \in Lang$

• If
$$x \equiv \text{Lang} \equiv y$$
, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

A equivalence class defined by Lang & ×
[[x]]Lang ≡ {y | x ≡Lang≡ y}
Partions of Lang' created by Lang
Lang' Quo Lang ≡ {[[x]]Lang | x ∈ Lang'}

Statement of the theorem

• A equivalence relation defined by *Lang*

 $x \equiv Lang \equiv y = (\forall z. (x @ z \in Lang) = (y @ z \in Lang))$

• If
$$x \equiv Lang \equiv y$$
 and $x \in Lang$, then $y \in Lang$

• If $x \equiv Lang \equiv y$, then $(x@a) \equiv Lang \equiv (y@a)$

- A equivalence class defined by Lang & x
 [x]Lang ≡ {y | x ≡Lang≡ y}
- Partions of *Lang'* created by *Lang*

Lang' Quo Lang ≡ {**[**x**]**Lang | x ∈ Lang'} • Partions of Universal Language(UNIV)

Statement of the theorem

• A equivalence relation defined by *Lang*

 $x \equiv Lang \equiv y = (\forall z. (x @ z \in Lang) = (y @ z \in Lang))$

• If
$$x \equiv Lang \equiv y$$
 and $x \in Lang$, then $y \in Lang$

• If $x \equiv Lang \equiv y$, then $(x@a) \equiv Lang \equiv (y@a)$

- A equivalence class defined by Lang & x
 [x]Lang ≡ {y | x ≡Lang≡ y}
- Partions of *Lang'* created by *Lang*

Lang' Quo Lang ≡ {**[**x**]**Lang | x ∈ Lang'} • Partions of Universal Language(UNIV) • Universal Language(UNIV) : Σ*

Statement of the theorem

• A equivalence relation defined by *Lang*

 $x \equiv \text{Lang} \equiv y = (\forall z. (x @ z \in \text{Lang}) = (y @ z \in \text{Lang}))$

• If
$$x \equiv Lang \equiv y$$
 and $x \in Lang$, then $y \in Lang$

۰ If $x \equiv Lang \equiv y$, then $(x@a) \equiv Lang \equiv (y@a)$

- A equivalence class defined by *Lang & x* $\llbracket x \rrbracket Lang \equiv \{ y \mid x \equiv Lang \equiv y \}$
- Partions of *Lang'* created by *Lang*
- Lang' Quo Lang $\equiv \{ \llbracket x \rrbracket Lang \mid x \in Lang' \}$ • Partions of Universal Language(UNIV) • Universal Language(UNIV) : $\Sigma *$ Lang = $\bigcup \{X \mid UNIV \text{ Quo Lang} \}$ ($\forall x \in X. x \in Lang$) ・ロト ・母ト ・ヨト ・ヨト ・ ヨー うへで

Statement of the theorem (cont.)

Theorem

Lang is regular iff it has finite partitions of UNIV(\exists fa. lang of fa fa = Lang) = finite (UNIV Quo Lang)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Statement of the theorem (cont.)

Theorem

Lang is regular iff it has finite partitions of UNIV (\exists fa. lang_of_fa fa = Lang) = finite (UNIV Quo Lang)

• lang_of_fa is for getting language from a FA

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Use and consequences

• To show a language is regular

- prove the partition is finite
- from [|λ|]Lang ([|]]Lang)& Σ do a exhausitive search

• To show a language is not regular

• prove the partition is infinite

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $[|\lambda|]Lang$ ([[]]]Lang) & Σ do a exhausitive search
- To show a language is not regular
 - prove the partition is infinite

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Use and consequences

- To show a language is regular
 - prove the partition is finite
 - from $[|\lambda|]Lang$ ([|[]|]Lang) $\& \Sigma$ do a exhausitive search
- To show a language is not regular
 - prove the partition is infinite.

・ロット 御マ キョット キョン

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $[|\lambda|]Lang$ ([[]]]Lang) & Σ do a exhausitive search

• To show a language is not regular

• prove the partition is infinite

・ロト ・聞ト ・ヨト ・ヨト

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $[|\lambda|]Lang~([|[]|]Lang)\& \Sigma$ do a exhausitive search

• To show a language is not regular

• prove the partition is infinite

$\Sigma = \{0,1\}$ & Lang= $L(0 \cdot (0 1)^*)$						
$[\lambda] Lang \neq 0$	$[\lambda]Lang \qquad 0 \neq Lang \neq 1 \\ \lambda \neq Lang \neq 1 \\ [0]Lang \qquad \lambda \neq Lang \neq 0 \\ \lambda \neq Lang \neq 0$	[λ]Lang [0]Lang [1]]Lang				

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $[|\lambda|]Lang~([|[]|]Lang)\& \Sigma$ do a exhausitive search

• To show a language is not regular

• prove the partition is infinite

$\Sigma = \{0,1\}$ & Lang= $L(0 \cdot (0 1)^*)$							
$[\lambda]Lang$		[λ]Lang [0]]Lang		[λ]Lang [0]Lang [1]Lang			

うして ふゆう ふほう ふほう うらつ

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $[|\lambda|]Lang~([|[]|]Lang)\& \Sigma$ do a exhausitive search

• To show a language is not regular

• prove the partition is infinite

$\Sigma = \{0,1\}$ & Lang= L(0·(0 1)*)							
$[\lambda] Lang \qquad \lambda \neq Lang \neq 0$	[λ]Lang [0]Lang		[λ]]Lang [[0]]Lang [1]]Lang				

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $[|\lambda|]Lang~([|[]|]Lang)\& \Sigma$ do a exhausitive search

• To show a language is not regular

• prove the partition is infinite

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $[|\lambda|]Lang~([|[]|]Lang)\& \Sigma$ do a exhausitive search

• To show a language is not regular

• prove the partition is infinite

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Use and consequences

• To show a language is regular

- prove the partition is finite
- from $[|\lambda|]Lang~([|[]|]Lang)\& \Sigma$ do a exhausitive search

• To show a language is not regular

• prove the partition is infinite

Use and consequences

- To show a language is regular
 - prove the partition is finite
 - from $[|\lambda|]Lang~([|[]|]Lang)\& \Sigma$ do a exhausitive search
- To show a language is not regular
 - prove the partition is infinite

Use and consequences

- To show a language is regular
 - prove the partition is finite
 - from $[|\lambda|]Lang~([|[]|]Lang)\& \Sigma$ do a exhausitive search
- To show a language is not regular
 - prove the partition is infinite

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Proof(brief.)

Finite partitions \longrightarrow Regular

- Exists a k, where k partitions (equiv-classes)
 We can get a DFA (Q,Σ,δ,q₀,F)
 - $Q = U N I V \cdot Q u \sigma \cdot Lang$
 - $\delta(p,s)=q\,\mathrm{iff}$
 - exists a word $x \in p$ such that $x @ z \in q b$
 - $q_0 = [\lambda]$ Lang
 - $g \in F$ iff exists a word $x \in g$ such that $x \in Lang$
 - δ is a function because:
 - If $x \equiv \text{Lang} \equiv y$, then $(x \otimes a) \equiv \text{Lang} \equiv (y \otimes a)$
 - For any string x, DFA ends in state [|x|]Lang
 x ∈ Lang ↔ DFA accepts

Finite partitions \longrightarrow Regular

- Exists a k, where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
 - Q = UNIV Quo Lang
 - $\delta(p,a) = q$ iff
 - exists a word $x \in \rho$ such that $x@a \in q$
 - $q_0 = [|\lambda|]$ Lang
 - $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$
 - δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• For any string x, DFA ends in state [|x|]Lang

• $x \in Lang \longleftrightarrow DFA$ accepts

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ◆□▶

Finite partitions \longrightarrow Regular

- Exists a k, where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
 - Q = UNIV Quo Lang
 - $\delta(p, a) = q$ iff

exists a word $x \in p$ such that $x @ a \in q$

- $q_0 = [|\lambda|]Lang$
- $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$
- δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

- For any string x, DFA ends in state [|x|]Lang
- $x \in Lang \longleftrightarrow DFA$ accepts

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Finite partitions \longrightarrow Regular

- Exists a k, where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
 - Q = UNIV Quo Lang
 - $\delta(p, a) = q$ iff

exists a word $x \in p$ such that $x@a \in q$

• $q_0 = [|\lambda|]Lang$

- $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$
- δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• For any string x, DFA ends in state [|x|]Lang

• $x \in Lang \longleftrightarrow DFA$ accepts

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三回 ● ��や

Finite partitions \longrightarrow Regular

- Exists a k, where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
 - Q = UNIV Quo Lang
 - $\delta(p, a) = q$ iff

exists a word $x \in p$ such that $x@a \in q$

- $q_0 = [|\lambda|]Lang$
- $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$
- δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• For any string x, DFA ends in state [|x|]Lang

• $x \in Lang \longleftrightarrow DFA$ accepts

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Finite partitions \longrightarrow Regular

- Exists a k, where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
 - Q = UNIV Quo Lang
 - $\delta(p, a) = q$ iff

exists a word $x \in p$ such that $x @ a \in q$

- $q_0 = [|\lambda|]Lang$
- $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$
- δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• For any string x, DFA ends in state [|x|]Lang

• $x \in Lang \longleftrightarrow DFA$ accepts

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三回 ● ��や

Finite partitions \longrightarrow Regular

- Exists a k, where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
 - Q = UNIV Quo Lang
 - δ(p, a) = q iff
 exists a word x ∈ p such that x@a ∈ q
 - $q_0 = [|\lambda|]Lang$
 - $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$

うして ふゆう ふほう ふほう うらつ

• δ is a function because:

If $x \equiv \text{Lang} \equiv y$, then $(x@a) \equiv \text{Lang} \equiv (y@a)$

• For any string x, DFA ends in state [|x|]Lang

• $x \in Lang \longleftrightarrow DFA$ accepts

Finite partitions \longrightarrow Regular

- Exists a k, where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
 - Q = UNIV Quo Lang
 - δ(p, a) = q iff
 exists a word x ∈ p such that x@a ∈ q
 - $q_0 = [|\lambda|]Lang$
 - $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$

• δ is a function because:

If $x \equiv Lang \equiv y$, then $(x@a) \equiv Lang \equiv (y@a)$

• For any string x, DFA ends in state [|x|]Lang

• $x \in Lang \longleftrightarrow DFA$ accepts

Finite partitions \longrightarrow Regular

- Exists a k, where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
 - Q = UNIV Quo Lang
 - δ(p, a) = q iff
 exists a word x ∈ p such that x@a ∈ q
 - $q_0 = [|\lambda|]Lang$
 - $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$

うして ふゆう ふほう ふほう うらつ

• δ is a function because:

If $x \equiv Lang \equiv y$, then $(x@a) \equiv Lang \equiv (y@a)$

For any string x, DFA ends in state [|x|]Lang
x ∈ Lang ↔ DFA accepts

Finite partitions \longrightarrow Regular

- Exists a k, where k partitions (equiv-classes)
- We can get a DFA $(Q, \Sigma, \delta, q_0, F)$
 - Q = UNIV Quo Lang
 - δ(p, a) = q iff
 exists a word x ∈ p such that x@a ∈ q
 - $q_0 = [|\lambda|]Lang$
 - $q \in F$ iff exists a word $x \in q$ such that $x \in Lang$
 - δ is a function because:

If $x \equiv Lang \equiv y$, then $(x@a) \equiv Lang \equiv (y@a)$

- For any string x, DFA ends in state [|x|]Lang
- $x \in Lang \longleftrightarrow DFA$ accepts

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

Proof (cont.)

Regular \longrightarrow Finite partitions

x ≡ DFA ≡ y iff x & y end in the same state
≡ DFA ≡ is an equivalence relation
x ≡ DFA ≡ y → x ≡ Lang ≡ y
Finite DFA

Regular \longleftrightarrow **Finite** partitions

But if **Regular** is defined in **Reg Exps**, then **?**

うして ふゆう ふほう ふほう うらつ

Proof (cont.)

Regular \longrightarrow Finite partitions

- $x \equiv DFA \equiv y$ iff x & y end in the same state
- \equiv *DFA* \equiv is an equivalence relation
- $x \equiv DFA \equiv y \longrightarrow x \equiv Lang \equiv y$
- Finite DFA

Regular \longleftrightarrow Finite partitions

But if **Regular** is defined in **Reg Exps**, then **?**

Proof (cont.)

Regular \longrightarrow Finite partitions

- $x \equiv DFA \equiv y$ iff x & y end in the same state
- \equiv *DFA* \equiv is an equivalence relation
- $x \equiv DFA \equiv y \longrightarrow x \equiv Lang \equiv y$
- Finite DFA

Regular \longleftrightarrow Finite partitions

But if **Regular** is defined in **Reg Exps**, then **?**

ション ふゆ アメリア メリア しょうくしゃ

Proof (cont.)

Regular \longrightarrow Finite partitions

- $x \equiv DFA \equiv y$ iff x & y end in the same state
- \equiv *DFA* \equiv is an equivalence relation
- $x \equiv DFA \equiv y \longrightarrow x \equiv Lang \equiv y$
- Finite DFA

Regular \longleftrightarrow **Finite partitions**

But if **Regular** is defined in **Reg Exps**, then **?**

Proof (cont.)

Regular \longrightarrow Finite partitions

- $x \equiv DFA \equiv y$ iff x & y end in the same state
- \equiv *DFA* \equiv is an equivalence relation
- $x \equiv DFA \equiv y \longrightarrow x \equiv Lang \equiv y$
- Finite DFA

Regular \longleftrightarrow **Finite partitions**

But if **Regular** is defined in **Reg Exps**, then **?**

Proof (cont.)

Regular \longrightarrow Finite partitions

- $x \equiv DFA \equiv y$ iff x & y end in the same state
- \equiv *DFA* \equiv is an equivalence relation
- $x \equiv DFA \equiv y \longrightarrow x \equiv Lang \equiv y$
- Finite DFA

Regular \longleftrightarrow **Finite partitions**

But if **Regular** is defined in **Reg Exps**, then **?**

Proof (cont.)

Regular \longrightarrow Finite partitions

- $x \equiv DFA \equiv y$ iff x & y end in the same state
- \equiv *DFA* \equiv is an equivalence relation
- $x \equiv DFA \equiv y \longrightarrow x \equiv Lang \equiv y$
- Finite DFA

Regular \longleftrightarrow Finite partitions

But if **Regular** is defined in **Reg Exps**, then **?**

Proof (cont.)

Regular \longrightarrow Finite partitions

- $x \equiv DFA \equiv y$ iff x & y end in the same state
- \equiv *DFA* \equiv is an equivalence relation
- $x \equiv DFA \equiv y \longrightarrow x \equiv Lang \equiv y$
- Finite DFA

Regular \longleftrightarrow Finite partitions

But if **Regular** is defined in **Reg Exps**, then **?**

Outline

FA to Regular Expressions 3 • Well-Founded iterating principle Invariant predicate • Generating initial ES Iteration step of ES • Final Proof

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

FA to Reg Exps

State Removal method

- How to do?
 - Identifies patterns within the graph
 - Removes states
 - Builds up bigger regular exps.
- Characters
 - Basy to visualize
 - Eised to interactive

State Removal method

• How to do?

- Identifies patterns within the graph
- 2 Removes states
- 3 Builds up bigger regular exps

• Characters

- Easy to visualize
- Hard to formalize
 - Simplified patterns in textbook

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

State Removal method

• How to do?

- **1** Identifies patterns within the graph
 - 2 Removes states
 - Builds up bigger regular exps
- Characters
 - Easy to visualize
 - Hard to formalize
 - Simplified patterns in textbooks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

State Removal method

• How to do?

- **1** Identifies patterns within the graph
- 2 Removes states
 - Builds up bigger regular exps
- Characters
 - Easy to visualize
 - Hard to formalize
 - Simplified patterns in textbooks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

State Removal method

- How to do?
 - **1** Identifies patterns within the graph
 - 2 Removes states
 - O Builds up bigger regular exps

• Characters

- Easy to visualize
- and to formalize
 - Simplified patterns in textbookk

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

State Removal method

- How to do?
 - **1** Identifies patterns within the graph
 - 2 Removes states
 - Builds up bigger regular exps
- Characters
 - D Easy to visualize
 - Hard to formalize
 - Simplified patterns in textbook

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

State Removal method

- How to do?
 - **1** Identifies patterns within the graph
 - 2 Removes states
 - Builds up bigger regular exps
- Characters

 - Easy to visualize

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

State Removal method

- How to do?
 - **1** Identifies patterns within the graph
 - 2 Removes states
 - Builds up bigger regular exps
- Characters
 - Easy to visualize
 - 4 Hard to formalize
 - Simplified patterns in textbook

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

State Removal method

- How to do?
 - **1** Identifies patterns within the graph
 - 2 Removes states
 - Builds up bigger regular exps
- Characters
 - Easy to visualize
 - a Hard to formalize
 - Simplified patterns in textbook

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

State Removal method

- How to do?
 - **1** Identifies patterns within the graph
 - 2 Removes states
 - Builds up bigger regular exps
- Characters
 - Easy to visualize
 - a Hard to formalize
 - Simplified patterns in textbook

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

FA to Reg Exps (cont.)

Transitive Clousre method

Easy to formalizeWe have done it

FA to Reg Exps (cont.)

Transitive Clousre method

- Easy to formalize
- We have done it

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

FA to Reg Exps (cont.)

Transitive Clousre method

- Easy to formalize
- We have done it

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

FA to Reg Exps (cont.)

Transitive Clousre method

- Easy to formalize
- We have done it

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

FA to Reg Exps (cont.)

Transitive Clousre method

- Easy to formalize
- We have done it

Brozozowski Algebraic method

Brzozowski Algebraic method (revised.)

Example 1	

Arden's Lemma (revised.) Communication of the form Accessing of the more first Accessing the second statement of the second second

| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ● | ● ○ への

Brzozowski Algebraic method (revised.)

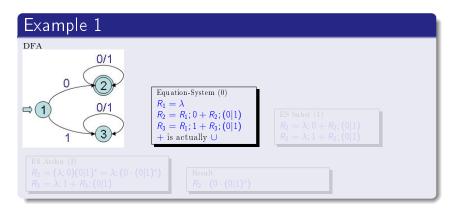
Example 1 0/1 0 0/1 3

Arden's Lemma (revised.

Show an equation of the form $X = X (A + B \text{ where } \{ g, A \}$

he constion has the solution X = B M

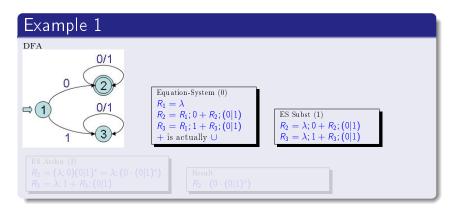
Brzozowski Algebraic method (revised.)



Arden's Lemma (revised.)

Given an equation of the form X = X; A + B where $[] \notin A$, the equation has the solution X = B; A*

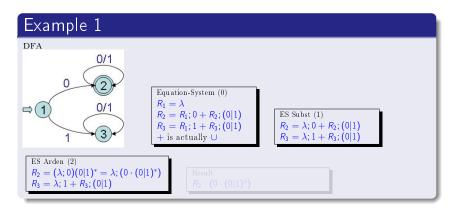
Brzozowski Algebraic method (revised.)



Arden's Lemma (revised.)

Given an equation of the form X = X; A + B where $[] \notin A$, the equation has the solution X = B; A*

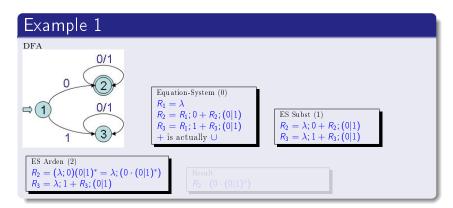
Brzozowski Algebraic method (revised.)



Arden's Lemma (revised.)

Given an equation of the form X = X; A + B where $[] \notin A$, the equation has the solution X = B; A*

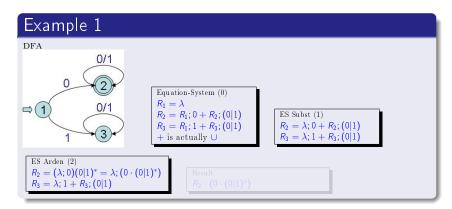
Brzozowski Algebraic method (revised.)



Arden's Lemma (revised.)

Given an equation of the form X = X; A + B where $[] \notin A$, the equation has the solution X = B; A*

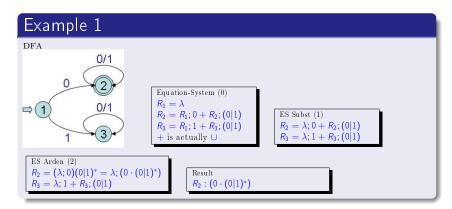
Brzozowski Algebraic method (revised.)



Arden's Lemma (revised.)

Given an equation of the form X = X; A + B where $[] \notin A$, the equation has the solution X = B; A*

Brzozowski Algebraic method (revised.)



Arden's Lemma (revised.)

Given an equation of the form X = X; A + B where $[] \notin A$, the equation has the solution X = B; A*

Brzozowski Algebraic method (revised.)

xample 2	$ \begin{array}{l} {\rm ES \ Arden \ (1)} \\ R_1 = R_{21}(1+1^{\circ}) + \lambda; 1^{\circ} \\ R_2 = R_1; 0 + R_2; 0 \end{array} $	

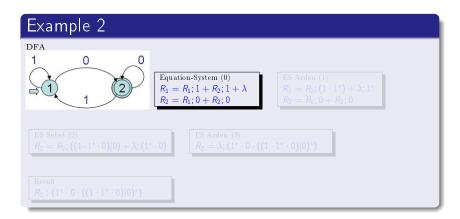
Arden's Lemma X = AX + B where [] $\notin A$, solution: X = A * B

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Brzozowski Algebraic method (revised.)

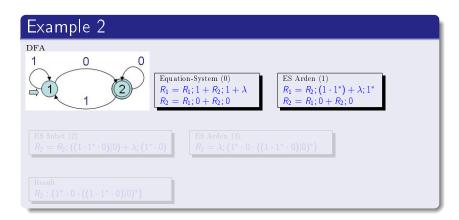
Arden's Lemma X = AX + B where $[] \notin A$, solution: X = A *

Brzozowski Algebraic method (revised.)



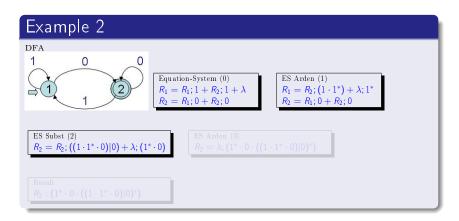
Arden's Lemma

Brzozowski Algebraic method (revised.)



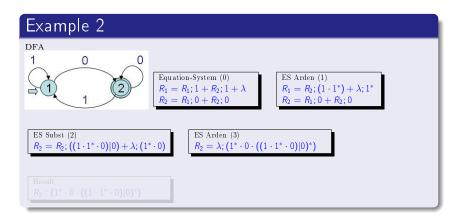
Arden's Lemma

Brzozowski Algebraic method (revised.)



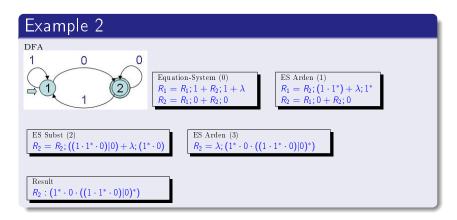
Arden's Lemma

Brzozowski Algebraic method (revised.)



Arden's Lemma

Brzozowski Algebraic method (revised.)



Arden's Lemma

Outline

Regular Expression(brief)

2 Myhill-Nerode Theorem(Intro)

IFA to Regular Expressions

Proving Myhill-Nerode Theorem

- Well-Founded iterating principle
- Invariant predicate
- Generating initial ES
- Iteration step of ES
- Final Proof

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) ⇒ ∃reg. Lang = L reg
 Main approach
 - Generate initial ES derived from Lang
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step bas:

Based on an well-founded iterating principle.
 Invariant of each step of ES' invariation

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) ⇒ ∃reg. Lang = L reg
 Main approach
 - Generate initial ES derived from *Lang*
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step bas:

Based on an well-founded iterating principle.
 Invariant of each step of ES' invariation

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from *Lang*
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step has:
 - 🕘 : Language. of deft (equiv-class): equal with rights
 - \bigcirc Right of last equation: $\lambda_i(reg)$
 - \bigcirc Language of λ is $\{ \}$
 - Language of right is *L reg*
 - We find the Reg Exps for the equiv-class
 - O Long is a set of equiv-class
 - Based on an well-founded iterating principleInvariant of each step of ES' invariation

・ロト ・ 行下・ ・ ヨト ・ ヨト ・ ヨー

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from Lang
 - Fetch the Reg Exp by Brozozowski methodHow to prove?
 - If each equation in ES of every step has:
 - Q Language of left(oppie-class) equal with right Q Higher of left(oppie-class) equal with right
 - Contriguir of fast equation. A, (198
 - Language of A is {[]}
 - Canguage of right is L reg.
 - We find the Reg Exps for the equiv-class
 - *Lang* is a set of equiv-class
 - Based on an well-founded iterating principleInvariant of each step of ES' invariation

(日) (四) (日) (日) (日)

Proving thought Reg Exps

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from *Lang*
 - Fetch the Reg Exp by Brozozowski methodHow to prove?
 - If each equation in ES of every step has:
 Contractions of left (equivalence) equal with right
 Bight of last equation. A: (res)
 Contracting of A is: ([])
 Contracting of right is three
 We find the Right Expector the equivalence
 Contracting is a set of equivalence
 - Based on an well-founded iterating principleInvariant of each step of ES' invariation

(日) (四) (日) (日) (日)

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from Lang
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step has:
 - Language of left(equiv-class) equal with right
 Bight of last equation:) (reg)
 - \square Longitudi last equation: $X_{i}(f)$

 - Language of right is L reg
 - We find the Reg Exps for the equiv-class
 - Lang is a set of equiv-class
 - Based on an well-founded iterating principle

・ロト ・ 日 ・ モート ・ 田 ・ うへで

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from Lang
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step has:
 - 1 Language of left(equiv-class) equal with right
 - 2 Right of last equation: λ ; (*reg*)
 - 3 Language of λ is $\{[]\}$
 - 4 Language of right is L reg
 - We find the Reg Exps for the equiv-class!
 - Lang is a set of equiv-class
 - Based on an well-founded iterating principle

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from Lang
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step has:
 - - 2) Right of last equation: λ ; (reg
 - 3 Language of λ is $\{[]\}$
 - 4 Language of right is L reg
 - We find the Reg Exps for the equiv-class!
 - Lang is a set of equiv-class
 - Based on an well-founded iterating principle

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from Lang
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step has:

 - 2 Right of last equation: λ ; (reg)
 - 3 Language of λ is {[]
 - 4 Language of right is L reg
 - We find the Reg Exps for the equiv-class!
 - Lang is a set of equiv-class
 - Based on an well-founded iterating principle

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from Lang
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step has:
 - Language of left(equiv-class) equal with right
 - 2 Right of last equation: λ ; (reg)
 - 3 Language of λ is $\{[]\}$
 - Language of right is *L reg*
 - We find the Reg Exps for the equiv-class!
 - Lang is a set of equiv-class
 - Based on an well-founded iterating principle
 - Invariant of each step of ES' invariation

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from Lang
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step has:
 - Language of left(equiv-class) equal with right
 - 2 Right of last equation: λ ; (reg)
 - 3 Language of λ is $\{[]\}$
 - 4 Language of right is L reg
 - We find the Reg Exps for the equiv-class
 - Lang is a set of equiv-class
 - Based on an well-founded iterating principle

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from Lang
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step has:
 - Language of left(equiv-class) equal with right
 - 2 Right of last equation: λ ; (reg)
 - 3 Language of λ is $\{[]\}$
 - 4 Language of right is L reg
 - We find the Reg Exps for the equiv-class!
 - **Lang** is a set of equiv-class
 - Based on an well-founded iterating principle

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from Lang
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step has:
 - Language of left(equiv-class) equal with right
 - 2 Right of last equation: λ ; (reg)
 - 3 Language of λ is $\{[]\}$
 - 4 Language of right is L reg
 - We find the Reg Exps for the equiv-class!
 - **6** *Lang* is a set of equiv-class
 - Based on an well-founded iterating principle

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from Lang
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step has:
 - Language of left(equiv-class) equal with right
 - 2 Right of last equation: λ ; (reg)
 - 3 Language of λ is $\{[]\}$
 - 4 Language of right is L reg
 - We find the Reg Exps for the equiv-class!
 - **6** Lang is a set of equiv-class
 - Based on an well-founded iterating principle
 Invariant of each step of ES' invariation

- Target: finite (UNIV Quo Lang) $\Longrightarrow \exists reg. Lang = L reg$
- Main approach
 - Generate initial ES derived from Lang
 - Fetch the Reg Exp by Brozozowski method
 - How to prove?
 - If each equation in ES of every step has:
 - Language of left(equiv-class) equal with right
 - 2 Right of last equation: λ ; (reg)
 - 3 Language of λ is $\{[]\}$
 - Language of right is L reg
 - We find the Reg Exps for the equiv-class!
 - **6** Lang is a set of equiv-class
 - Based on an well-founded iterating principle
 - Invariant of each step of ES' invariation

Well-Founded iterating principle

Outline

- Myhill-Nerode Theorem(Intro)
 - IFA to Regular Expressions
- Proving Myhill-Nerode Theorem
 - Well-Founded iterating principle
 - Invariant predicate
 - Generating initial ES
 - Iteration step of ES
 - Final Proof

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Well-Founded iterating principle

WF-iter

• Elimination of ES can be abstracted as

Well-Founded iterating principle

WF-iter

• Elimination of ES can be abstracted as

 $P e = \frac{1}{\exists e' \cdot P e' \land Q e'}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Well-Founded iterating principle

WF-iter

- Elimination of ES can be abstracted as
- Pe∃e'. Pe'∧Qe' • Like while in C

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Well-Founded iterating principle

WF-iter

- Elimination of ES can be abstracted as
 - $\mathbf{P} \ \mathbf{e}_{$\overline{\exists \ \mathbf{e}'. \ \mathbf{P} \ \mathbf{e}' \ \land \ \mathbf{Q} \ \mathbf{e}''}}$
- Like while in C
- Property Q: termination condition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Well-Founded iterating principle

WF-iter

• Elimination of ES can be abstracted as

$$\mathbf{P} \ \mathbf{e}_{\overline{\exists} \ \mathbf{e}'. \ \mathbf{P} \ \mathbf{e}' \ \land \ \mathbf{Q} \ \mathbf{e}'}$$

- Like while in C
- Property Q: termination condition TCon $ES \equiv card ES = 1$

Well-Founded iterating principle

WF-iter

- Elimination of ES can be abstracted as
 - $\mathbf{P} \ \mathbf{e}_{$\overline{\exists \ \mathbf{e}'. \ \mathbf{P} \ \mathbf{e}' \ \land \ \mathbf{Q} \ \mathbf{e}'}}$
- Like while in C
- Property Q: termination condition TCon ES \equiv card ES = 1
- Property P is an invariant predicate

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Well-Founded iterating principle

WF-iter

- Elimination of ES can be abstracted as
 - $\mathbf{P} \ \mathbf{e}_{$\overline{\exists \ \mathbf{e}'. \ \mathbf{P} \ \mathbf{e}' \ \land \ \mathbf{Q} \ \mathbf{e}'}}$
- Like while in C
- Property Q: termination condition TCon ES \equiv card ES = 1
- Property *P* is an invariant predicate
 What is invariant?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Well-Founded iterating principle

WF-iter

• Elimination of ES can be abstracted as

$$P e = \frac{1}{\exists e'. P e' \land Q e'}$$

- Like while in C
- Property Q: termination condition TCon ES \equiv card ES = 1
- Property *P* is an invariant predicate
 What is invariant?
 - 1 Language of left equal with right

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Well-Founded iterating principle

WF-iter

• Elimination of ES can be abstracted as

$$P e = \frac{1}{\exists e'. P e' \land Q e'}$$

- Like while in C
- Property Q: termination condition TCon ES \equiv card ES = 1
- Property *P* is an invariant predicate
 What is invariant?
 - 1 Language of left equal with right

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

2 ES is finite

Well-Founded iterating principle

WF-iter

• Elimination of ES can be abstracted as

$$P e = \frac{1}{\exists e'. P e' \land Q e'}$$

- Like while in C
- Property Q: termination condition TCon ES \equiv card ES = 1
- Property P is an invariant predicate
 - What is invariant?
 - Language of left equal with right
 - 2 ES is finite
 - 3 Each equiv-class has only one equation

(ロ) (型) (E) (E) (E) (O)

Well-Founded iterating principle

WF-iter

• Elimination of ES can be abstracted as

$$P e = \frac{1}{\exists e'. P e' \land Q e'}$$

- Like while in C
- Property Q: termination condition TCon ES \equiv card ES = 1
- Property P is an invariant predicate
 - What is invariant?
 - Language of left equal with right
 - 2 ES is finite
 - Sech equiv-class has only one equation
 - Target equiv-class exists

Well-Founded iterating principle

WF-iter

• Elimination of ES can be abstracted as

$$\mathbf{P} \ \mathbf{e}_{\overline{\exists} \ \mathbf{e}'. \ \mathbf{P} \ \mathbf{e}' \ \land \ \mathbf{Q} \ \mathbf{e}'}$$

- Like while in C
- Property Q: termination condition TCon ES \equiv card ES = 1
- Property P is an invariant predicate
 - What is invariant?
 - Language of left equal with right
 - 2 ES is finite
 - Each equiv-class has only one equation
 - Target equiv-class exists
 -) ...

Invariant predicate

Outline

- Regular Expression(brief)
- Myhill-Nerode Theorem(Intro)
 - FA to Regular Expressions
- Proving Myhill-Nerode Theorem
 Well-Founded iterating principle
 - Invariant predicate
 - Generating initial ES
 - Iteration step of ES
 - Final Proof

Invariant predicate

Formalization of Inv

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Invariant predicate

Formalization of Inv

definition Inv :: "string set \Rightarrow t equas \Rightarrow bool" where "Inv X ES \equiv finite ES \land (\exists rhs. (X, rhs) \in ES) \land distinct equas ES \land $(\forall X \text{ xrhs.} (X, \text{ xrhs}) \in ES \longrightarrow ardenable (X, \text{ xrhs}) \land X \neq \{\} \land$

rhs eq cls xrhs ⊆ insert {[]} (left eq cls ES))"

 $\begin{bmatrix} \text{Equation-System (0)} \\ R_1 = \lambda \\ R_2 = R_1; 0 + R_2; (0|1) \\ R_3 = R_1; 1 + R_3; (0|1) \end{bmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Invariant predicate

Formalization of Inv

definition distinct equas :: "t equas \Rightarrow bool" where "distinct equas equas $\equiv \forall X$ rhs rhs'. $(X, rhs) \in equas \land (X, rhs') \in equas \longrightarrow rhs = rhs''$ definition Inv :: "string set \Rightarrow t equas \Rightarrow bool" where "Inv X ES \equiv finite ES \land (\exists rhs. (X, rhs) \in ES) \land distinct equas ES \land $(\forall X \text{ xrhs} (X, \text{ xrhs}) \in ES \longrightarrow ardenable (X, \text{ xrhs}) \land X \neq \{\} \land$

rhs_eq_cls xrhs ⊆ insert {[]} (left_eq_cls ES))"

 $\begin{bmatrix} \text{Equation-System (0)} \\ R_1 = \lambda \\ R_2 = R_1; 0 + R_2; (0|1) \\ R_3 = R_1; 1 + R_3; (0|1) \end{bmatrix}$

Invariant predicate

Formalization of Inv

definition distinct rhs :: "t equa rhs \Rightarrow bool" where "distinct rhs rhs $\equiv \forall X \operatorname{reg}_1 \operatorname{reg}_2$. $(X, reg_1) \in rhs \land (X, reg_2) \in rhs \longrightarrow reg_1 = reg_2"$ definition no EMPTY rhs :: "t equa rhs \Rightarrow bool" where "no EMPTY rhs rhs $\equiv \forall X r$. $(X, \overline{r}) \in rhs \land \overline{X} \neq \{[l\} \longrightarrow [l \notin L r"]$ definition ardenable :: "t equa \Rightarrow bool" where "ardenable equa $\equiv \overline{let}(X, rhs) = equa in$ distinct rhs rhs \wedge no EMPTY rhs rhs \wedge X = L rhs" definition distinct equas :: "t equas \Rightarrow bool" where "distinct equas equas $\equiv \forall X$ rhs rhs'. $(X, rhs) \in equas \land (X, rhs') \in equas \longrightarrow rhs = rhs''$ definition Inv :: "string set \Rightarrow t equas \Rightarrow bool" where "Inv X ES \equiv finite ES \land (\exists rhs. (X, rhs) \in ES) \land distinct equas ES \land $(\forall X \text{ xrhs} (X, \text{ xrhs}) \in ES \longrightarrow ardenable (X, \text{ xrhs}) \land X \neq \{\} \land$

rhs eq cls xrhs ⊆ insert {[]} (left eq cls ES))"

Invariant predicate

Formalization of Inv

definition distinct rhs :: "t equa rhs \Rightarrow bool" where "distinct rhs rhs $\equiv \forall X \operatorname{reg}_1 \operatorname{reg}_2$. $(X, reg_1) \in rhs \land (X, reg_2) \in rhs \longrightarrow reg_1 = reg_2"$ definition no EMPTY rhs :: "t equa rhs \Rightarrow bool" where "no EMPTY rhs rhs $\equiv \forall X r$. $(X, \overline{r}) \in rhs \land \overline{X} \neq \{[l\} \longrightarrow [l \notin L r"]$ definition ardenable :: "t equa \Rightarrow bool" where "ardenable equa $\equiv \overline{let}(X, rhs) = equa in$ distinct rhs rhs \wedge no EMPTY rhs rhs \wedge X = L rhs" definition distinct equas :: "t equas \Rightarrow bool" where "distinct equas equas $\equiv \forall X$ rhs rhs'. $(X, rhs) \in equas \land (X, rhs') \in equas \longrightarrow rhs = rhs''$ definition left eq cls :: "t equas \Rightarrow (string set) set" where "left eq cls ES $\equiv \{\overline{X}, \exists \text{ rhs. } (X, \text{ rhs}) \in ES\}$ " definition rhs eq cls :: "t equa rhs \Rightarrow (string set) set" where "rhs eq cls rhs $\equiv \{\overline{Y}, \exists r, (Y, r) \in rhs\}$ " definition Inv :: "string set \Rightarrow t equas \Rightarrow bool" where "Inv X ES \equiv finite ES \land (\exists rhs. (X, rhs) \in ES) \land distinct equas ES \land $(\forall X \text{ xrhs} (X, \text{ xrhs}) \in ES \longrightarrow ardenable (X, \text{ xrhs}) \land X \neq \{\} \land$

rhs eq cls xrhs ⊆ insert {[]} (left eq cls ES))"

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Generating initial ES

Outline

- Regular Expression(brief)
- Myhill-Nerode Theorem(Intro)
 - 3 FA to Regular Expressions
- Proving Myhill-Nerode Theorem
 - Well-Founded iterating principle
 - Invariant predicate
 - Generating initial ES
 - Iteration step of ES
 - Final Proof

Generating initial ES

Generating Initial Equation-System

definition

```
\begin{array}{l} {\rm CT}:: "{\rm string set} \Rightarrow {\rm char} \Rightarrow {\rm string set} \Rightarrow {\rm bool}" ("\_-\_-\_" [99,99]9\\ {\rm where } "X-c \rightarrow Y \equiv ((X; \{[c]\}) \subseteq Y)"\\ {\rm types } t\_equa\_{\rm rhs} = "({\rm string set} \times {\rm rexp}) {\rm set}"\\ {\rm types } t\_equa = "({\rm string set} \times t\_equa\_{\rm rhs}"\\ {\rm types } t\_equa = "t\_equa {\rm set}"\\ {\rm definition}\\ {\rm empty\_{\rm rhs}} :: "{\rm string set} \Rightarrow t\_equa\_{\rm rhs}"\\ {\rm where } "{\rm empty\_{\rm rhs}} X \equiv {\rm if} ([] \in X) {\rm then } \{(\{[]\}, {\rm EMPTY})\} {\rm else } \{\}"\\ {\rm definition}\\ {\rm folds} :: "('a \Rightarrow 'b \Rightarrow 'b) \Rightarrow 'b \Rightarrow 'a {\rm set} \Rightarrow 'b"\\ {\rm where } "{\rm folds} {\rm f} {\rm z} {\rm S} \equiv {\rm SOME } {\rm x}. {\rm fold\_{\rm graph } f {\rm z} {\rm S} {\rm x}"\\ \end{array}
```


・ロト ・得ト ・ヨト ・ヨト

$\begin{array}{ll} \text{definition} \\ \text{equation_rhs}:: "(string set) set \Rightarrow string set \Rightarrow t equa_rhs" \\ \text{where "equation_rhs} CS X \equiv \text{if} (X = \{[]\}) \text{ then } \{\overline{\{[]\}, EMPTY\}} \\ & \text{else } \{(S, \text{folds ALT NULL } \{CHAR \ c| \ c. \ S \cdot c \rightarrow X\} \} | S \\ S \in CS\} \cup \\ & \text{currenty when } X" \end{array}$

definition

```
equations :: "(string set) set \Rightarrow t_equas"
```

Generating initial ES

Generating Initial Equation-System

definition

```
CT :: "string set \Rightarrow char \Rightarrow string set \Rightarrow bool" ("_-_\rightarrow_" [99,99]99)
where "X-c\rightarrowY \equiv ((X;{[c]}) \subseteq Y)"
```

```
types t_equa_rhs = "(string set × rexp) set"
types t_equa = "(string set × t_equa_rhs)"
types t_equas = "t_equaset"
```

definition

 $\begin{array}{l} \operatorname{empty}_{} rhs:: "string set \Rightarrow t = \operatorname{equa}_{} rhs"\\ \text{where "empty}_{rhs} X \equiv \operatorname{if} ([] \in X) \ then \ \{(\{[]\}, \operatorname{EMPTY})\} \ else \ \{\}"\\ \operatorname{definition}\\ \operatorname{folds}:: "('a \Rightarrow 'b \Rightarrow 'b) \Rightarrow 'b \Rightarrow 'a \ set \Rightarrow 'b"\\ \text{where "folds f z } S \equiv \operatorname{SOME} x. \ \operatorname{fold}_{} \operatorname{graph} f z \ S x"\\ \end{array}$

$\begin{array}{ll} \text{definition} \\ \text{equation_rhs}:: "(string set) set \Rightarrow string set \Rightarrow t = equa_rhs" \\ \text{where "equation_rhs} CS X \equiv \text{if } (X = \{[]\}) \text{ then } \{(\{[]\}, EMPTY)\} \\ \text{else } \{(S, \text{folds ALT NULL } \{CHAR \ c \mid c. \ S-c \rightarrow X\} \) \\ S \in CS\} \cup \\ \end{array}$

empty_rhs X

definition

```
equations :: "(string set) set \Rightarrow t_equas"
```

Generating initial ES

Generating Initial Equation-System

definition

```
CT :: "string set \Rightarrow char \Rightarrow string set \Rightarrow bool" ("_-___" [99,99]99)
where "X-c\rightarrowY \equiv ((X;{[c]}) \subseteq Y)"
```

```
types t_equa_rhs = "(string set × rexp) set"
types t_equa = "(string set × t_equa_rhs)"
types t_equas = "t_equa set"
```

definition

 $\begin{array}{l} \operatorname{empty}_{t} \operatorname{rhs} :: "string set \Rightarrow t = \operatorname{equa}_{t} \operatorname{rhs}"\\ \operatorname{where}_{t} \operatorname{"empty}_{t} \operatorname{rhs} X \equiv \operatorname{if} ([] \in X) \ \operatorname{then} \left\{ (\{[]\}, \operatorname{EMPTY}) \right\} \ \operatorname{else} \left\{ \}"\\ \operatorname{definition}\\ \operatorname{folds} :: "('a \Rightarrow 'b \Rightarrow 'b) \Rightarrow 'b \Rightarrow 'a \ \operatorname{set} \Rightarrow 'b"\\ \operatorname{where}_{t} \operatorname{"folds} f z \ S \equiv \ \operatorname{SOME} x. \ \operatorname{fold}_{t} \operatorname{graph} f z \ S x"\\ \end{array}$


```
\begin{array}{ll} \textbf{definition} \\ \textbf{equation\_rhs}:: "(string set) set \Rightarrow string set \Rightarrow t \quad \textbf{equa} \quad rhs" \\ \textbf{where} \quad "equation\_rhs \ CS \ X \equiv if (X = \{[]\}) \ then \ \{(\{[]\}, \ EMPTY)\} \\ \quad \textbf{else} \ \{(S, \ folds \ ALT \ NULL \ \{CHAR \ c \mid c. \ S-c \rightarrow X\} \ )| \ S \\ S \in CS \} \cup \\ \end{array}
```

definition

```
equations :: "(string set) set \Rightarrow t_equas"
```

Generating initial ES

Generating Initial Equation-System

definition

```
CT :: "string set \Rightarrow char \Rightarrow string set \Rightarrow bool" ("_-___" [99,99]99)
where "X-c\rightarrowY \equiv ((X;{[c]}) \subseteq Y)"
```

```
types t_equa_rhs = "(string set × rexp) set"
types t_equa = "(string set × t_equa_rhs)"
types t_equas = "t_equa set"
```

definition

```
\begin{array}{l} \operatorname{empty}_{} \operatorname{rhs} :: "\operatorname{string} \operatorname{set} \Rightarrow t\_\operatorname{equa}_{} \operatorname{rhs}" \\ \operatorname{where}_{} "\operatorname{empty}_{} \operatorname{rhs} X \equiv \operatorname{if} ([] \in X) \operatorname{then} \left\{ (\{[]\}, \operatorname{EMPTY}) \right\} \operatorname{else} \left\{ \right\}" \\ \operatorname{definition} \\ \operatorname{folds} :: "('a \Rightarrow 'b \Rightarrow 'b) \Rightarrow 'b \Rightarrow 'a \operatorname{set} \Rightarrow 'b" \\ \operatorname{where}_{} "folds f z S \equiv \operatorname{SOME} x. \operatorname{fold}_{} \operatorname{graph} f z S x" \end{array}
```


◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

definition

 $\begin{array}{l} \mbox{equation_rhs}:: "(string set) set \Rightarrow string set \Rightarrow t equa_rhs" \\ \mbox{where "equation_rhs} CS X \equiv if (X = \{[]\}) then \{(\{I\}\}, EMPTY)\} \\ & else \{(S, folds ALT NULL \{CHAR c | c. S-c \rightarrow X\}) | S. \\ S \in CS \} \cup \end{array}$

definition

equations :: "(string set) set \Rightarrow t equas"

Generating initial ES

Generating Initial Equation-System

definition CT :: "string set \Rightarrow char \Rightarrow string set \Rightarrow bool" (" - \rightarrow " [99,99]99) where "X-c \rightarrow Y \equiv ((X;{[c]}) \subset Y)" types t equa rhs = "(string set × rexp) set" types t equa = "(string set \times t equa rhs)" types t equas = "t equa set" definition folds :: "('a \Rightarrow 'b \Rightarrow 'b) \Rightarrow 'b \Rightarrow 'a set \Rightarrow 'b" where "folds $f z S \equiv SOME x$. fold graph f z S x" definition equation rhs :: "(string set) set \Rightarrow string set \Rightarrow t equa rhs" where "equation rhs CS X \equiv if (X = {[]}) then {($\overline{\{[]\}}$, EMPTY)} else {(S, folds ALT NULL {CHAR c | c. $S-c \rightarrow X$ })| S. $S \in CS \cup$ empty rhs X"

Equation-System (0) $R_1 = \lambda$ $R_2 = R_1; 0 + R_2; (0|1)$ $R_3 = R_1; 1 + R_3; (0|1)$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

definition

equations :: "(string set) set \Rightarrow t equas"

Generating initial ES

Generating Initial Equation-System

definition

```
CT :: "string set \Rightarrow char \Rightarrow string set \Rightarrow bool" ("_-___" [99,99]99)
where "X-c\rightarrowY \equiv ((X;{[c]}) \subseteq Y)"
```

```
types t_equa = "(string set × rexp) set"
types t_equa = "(string set × t_equa_rhs)"
types t_equas = "t_equa set"
```

definition

 $\begin{array}{l} {\bf empty\ rhs\ ::\ "string\ set\ \Rightarrow\ t\ equa\ rhs"} \\ {\bf where\ "empty\ rhs\ X\ \equiv\ if\ ([] \in X)\ then\ \{(\{[]\},\ EMPTY)\}\ else\ \{\}"\ definition\ folds\ ::\ "(`a\ \Rightarrow\ 'b\ \Rightarrow\ 'b)\ \Rightarrow\ 'a\ set\ \Rightarrow\ 'b"\ where\ "folds\ f\ z\ S\ \equiv\ SOME\ x.\ fold\ graph\ f\ z\ S\ x" \end{array}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 $\begin{array}{l} \mbox{definition} \\ \mbox{equation_rhs}:: "(string set) set \Rightarrow string set \Rightarrow t \ equa \ rhs" \\ \mbox{where "equation_rhs} CS \ X \equiv if \ (X = \{[]\}) \ then \ \{[\{[]\}, \ EMPTY)\} \\ \ else \ \{(S, \ folds \ ALT \ NULL \ \{CHAR \ c \mid c. \ S-c \rightarrow X\} \)| \ S. \\ S \in CS\} \cup \\ \ empty \ rhs \ X" \end{array}$

definition

equations :: "(string set) set \Rightarrow t_equas"

Generating initial ES

Generating Initial Equation-System

definition

```
CT :: "string set \Rightarrow char \Rightarrow string set \Rightarrow bool" ("_-___" [99,99]99)
where "X-c\rightarrowY \equiv ((X;{[c]}) \subseteq Y)"
```

```
types t_equa_rhs = "(string set × rexp) set"
types t_equa = "(string set × t_equa_rhs)"
types t_equas = "t_equa set"
```

definition

 $\begin{array}{l} \textbf{empty} \ \textbf{rhs} :: "string set \Rightarrow t \ \textbf{equa} \ \textbf{rhs}"\\ \textbf{where} \ "empty_ \textbf{rhs} \ X \equiv if ([] \in X) \ then \ \{(\{[]\}, \ \textbf{EMPTY})\} \ \textbf{else} \ \{\}"\\ \textbf{definition}\\ \textbf{folds} :: "(`a \Rightarrow `b \Rightarrow `b) \Rightarrow `b \Rightarrow `a set \Rightarrow `b"\\ \textbf{where} \ "folds \ f \ z \ S \equiv SOME \ x. \ fold \ graph \ f \ z \ S \ x"\\ \end{array}$

$\begin{array}{l} \mbox{definition} \\ \mbox{equation_rhs}:: "(string set) set \Rightarrow string set \Rightarrow t equa_rhs" \\ \mbox{where "equation_rhs} CS X \equiv if (X = \{[]\}) then \{(\overline{\{[]\}}, EMPTY)\} \\ \mbox{else } \{(S, folds ALT NULL \{CHAR \ c| \ c. \ S-c \rightarrow X\} \)| \ S. \\ S \in CS\} \cup \\ \mbox{empty } rhs X" \end{array}$

definition

```
equations :: "(string set) set \Rightarrow t_equas"
```

Iteration step of ES

Outline

- Regular Expression(brief)
- Myhill-Nerode Theorem(Intro)
 - 3 FA to Regular Expressions
- Proving Myhill-Nerode Theorem
 - Well-Founded iterating principle
 - Invariant predicate
 - Generating initial ES
 - Iteration step of ES
 - Final Proof

Iteration step of ES

eliminating one equation

• Not the equation of target equiv-class

- Approach: substitution
 - Well-formed substitutor equation
 - \circ substitutor = an equiv-class
 - rbs should not contain itself
 - if not, use Arden's Lemma to reform itself.

O Substituting

- if substitutor is empty-string itself.
- then do nothing
- else replace itself with the of the substitutor

(日) (四) (日) (日) (日)

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
 - Well-formed substitutor equation
 - substitutor = an equiv-class
 - rhs should not contain itself
 - if not, use Arden's Lemma to reform itself

2 Substituting

- if substitutor is empty-string itself
- then do nothing
- else replace itself with rhs of the substitutor

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
 - **1** Well-formed substitutor equation
 - substitutor = an equiv-class
 - rhs should not contain itself
 - if not, use Arden's Lemma to reform itself

2 Substituting

- if substitutor is empty-string itself
- then do nothing
- else replace itself with rhs of the substitutor

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
 - **1** Well-formed substitutor equation
 - substitutor = an equiv-class
 - \bullet rhs should not contain itself
 - if not, use Arden's Lemma to reform itself

2 Substituting

- if substitutor is empty-string itself
- then do nothing
- else replace itself with rhs of the substitutor

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
 - **1** Well-formed substitutor equation
 - substitutor = an equiv-class
 - rhs should not contain itself
 - if not, use Arden's Lemma to reform itself
 - 2 Substituting
 - if substitutor is empty-string itself
 - then do nothing
 - else replace itself with rhs of the substitutor

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
 - **1** Well-formed substitutor equation
 - substitutor = an equiv-class
 - rhs should not contain itself
 - if not, use Arden's Lemma to reform itself
 - 2 Substituting
 - if substitutor is empty-string itself
 - then do nothing
 - else replace itself with rhs of the substitutor

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
 - **1** Well-formed substitutor equation
 - substitutor = an equiv-class
 - rhs should not contain itself
 - if not, use Arden's Lemma to reform itself

2 Substituting

- if substitutor is empty-string itself
- then do nothing
- else replace itself with rhs of the substitutor

(ロ) (型) (E) (E) (E) (O)

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
 - **1** Well-formed substitutor equation
 - substitutor = an equiv-class
 - rhs should not contain itself
 - if not, use Arden's Lemma to reform itself
 - 2 Substituting
 - if substitutor is empty-string itself
 - then do nothing
 - else replace itself with rhs of the substitutor

(ロ) (型) (E) (E) (E) (O)

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
 - **1** Well-formed substitutor equation
 - substitutor = an equiv-class
 - rhs should not contain itself
 - if not, use Arden's Lemma to reform itself
 - 2 Substituting
 - if substitutor is empty-string itself
 - then do nothing
 - else replace itself with rhs of the substitutor

(ロ) (型) (E) (E) (E) (O)

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
 - **1** Well-formed substitutor equation
 - substitutor = an equiv-class
 - rhs should not contain itself
 - if not, use Arden's Lemma to reform itself
 - 2 Substituting
 - if substitutor is empty-string itself
 - then do nothing
 - else replace itself with rhs of the substitutor

(ロ) (型) (E) (E) (E) (O)

• merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
 - **1** Well-formed substitutor equation
 - substitutor = an equiv-class
 - rhs should not contain itself
 - if not, use Arden's Lemma to reform itself
 - 2 Substituting
 - if substitutor is empty-string itself
 - then do nothing
 - else replace itself with rhs of the substitutor
 - merging

Iteration step of ES

eliminating one equation

- Not the equation of target equiv-class
- Approach: substitution
 - **1** Well-formed substitutor equation
 - substitutor = an equiv-class
 - rhs should not contain itself
 - if not, use Arden's Lemma to reform itself
 - 2 Substituting
 - if substitutor is empty-string itself
 - then do nothing
 - else replace itself with rhs of the substitutor
 - merging
 - Oelete substitutor equation

Iteration step of ES

formalization

definition

seq rhs r :: "t equa rhs \Rightarrow rexp \Rightarrow t equa rhs" where "seq rhs r rhs $\bar{r} \equiv (\lambda(X, reg), (X, SEQ reg r))$ 'rhs" definition del x paired :: "('a × 'b) set \Rightarrow 'a \Rightarrow ('a × 'b) set" where "del x paired S $x \equiv S - \{X, X \in S \land fst X = x\}$ " definition merge rhs :: "t equa rhs \Rightarrow t equa rhs \Rightarrow t equa rhs" where "merge rhs rhs $\bar{r}hs' \equiv \{(\bar{X}, r), (\bar{\exists} r1 r2, (\bar{X}, r1) \in rhs \land (X, r2) \in rhs' \land r = ALT r1\}$ $r2) \vee$ $(\exists r1. (X, r1) \in rhs \land (\neg (\exists r2. (X, r2) \in rhs')) \land r = r1)$ \vee $(\exists r2, (X, r2) \in rhs' \land (\neg (\exists r1, (X, r1) \in rhs)) \land r = r2)$ 3.0 definition arden variate :: "string set \Rightarrow rexp \Rightarrow t equa rhs \Rightarrow t equa rhs" where "arden variate X r rhs \equiv seq rhs r (del x paired rhs X) (STAR r)" definition rhs subst :: "t equa rhs \Rightarrow string set \Rightarrow t equa rhs \Rightarrow rexp \Rightarrow t equa rhs" where "rhs subst rhs X xrhs r \equiv merge rhs (del x paired rhs X) (seq rhs r xrhs r)" definition equas subst f :: "string set \Rightarrow t equa rhs \Rightarrow t equa \Rightarrow t equa" where "equas subst f X xrhs equa \equiv let (Y, rhs) = equa in if $(\exists r. (\overline{X}, r) \in rhs)$ then (Y, rhs subst rhs X xrhs (SOME r. (X, r) \in rhs)) else equa" definition

 $\begin{array}{l} \textbf{equas subst}:: "t_equas \Rightarrow string \ set \Rightarrow t_equa_rhs \Rightarrow t_equas"\\ \textbf{where "equas subst ES X xrhs \equiv del_x_paired (equas_subst_f X xrhs `ES) X"\\ \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Final Proof

Outline

- Regular Expression(brief)
- 2 Myhill-Nerode Theorem(Intro)
 - 3 FA to Regular Expressions
- Proving Myhill-Nerode Theorem
 - Well-Founded iterating principle
 - Invariant predicate
 - Generating initial ES
 - Iteration step of ES
 - Final Proof

Final Proof

WF-iter Usage

```
lemma iteration step:
 assumes Inv ES: "Inv X ES" and not T: "¬ TCon ES"
 shows "(\exists ES'. Inv X ES' \land (card ES', card ES) \in less than)"
proof -
 from Inv ES not T have another: "\exists Y \text{ yrhs}. (Y, yrhs) \in \text{ES} \land X \neq Y" unfolding Inv def
   by (clarify, rule tac exist another equa[where X = X], auto)
 then obtain Y yrhs where subst: "(\overline{Y}, yrhs) \in ES" and not X: "X \neq Y" by blast
 show ?thesis (is "∃ ES'. ?P ES'")
 proof (cases "Y = \{[]\}")
  case True — in this situation, we pick a \lambda equation, thus directly remove it
  have "?P (ES - {(Y, yrhs)})" next
  case False - first use arden's lemma, then do the substitution
  hence "?P (equas subst ES Y yrhs')"
 aed
aed
lemma iteration conc:
 assumes history: "Inv X ES"
 shows "∃ ES'. Inv X ES' ∧ TCon ES'" (is "∃ ES'. ?P ES'")
proof (cases "TCon ES")
 case True hence "?P ES" using history by simp
 thus ?thesis by blast
next
 case False
 thus ?thesis using history iteration step
   by (rule tac f = card in wf iter, simp all)
ged
                                                              ◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@
```

Final Proof

proof: every equiv-class has a Reg Exp.

```
lemma every eqcl has reg:
 assumes finite \overline{CS}: "finite (UNIV Quo Lang)" and X in \overline{CS}: "X \in (UNIV Quo Lang)"
 shows "\exists (reg:rexp). L reg = X" (is "\exists r. ?E r")
proof-
 have "∃ES'. Inv X ES' ∧ TCon ES'" using finite CS X in CS
   by (auto intro: init ES satisfy Inviteration conc) have "\exists rhs. ES' = {(X, rhs)}"
by (auto dest!:card Suc Diff1 simp:card eq 0 iff)
 then obtain rhs where ES' single equa: "ES' = \{(X, rhs)\}"...
 hence X ardenable: "ardenable (X, rhs)" using Inv ES'
   by (simp add:Inv def) show ?thesis
 proof (cases "X = \overline{\{[]\}}")
   case True hence "?E EMPTY" by simp
  thus ?thesis by blast
 next
   case False with X ardenable
   have "\exists rhs'. X = \overline{L} rhs' \wedge rhs eq cls rhs' = rhs eq cls rhs - {X} \wedge distinct rhs rhs'"
    by (drule tac ardenable prop, auto)
   then obtain rhs' where \overline{X} eq rhs': "X = L rhs'"
    and rhs' eq cls: "rhs eq cls rhs' = rhs eq cls rhs - {X}"
    and rhs' dist : "distinct rhs rhs'" by blast
   hence "rhs eq cls rhs' = { { [] } } " using X not empty X eq rhs'
     by (auto simp:rhs eq cls def)
   hence "\exists r. rhs' = \overline{\{(\{[]\}, r)\}}"
   then obtain r where "rhs' = \{(\{[]\}, r)\}"...
   hence "?E r" using X eq rhs' by (auto simp add: lang seq def)
   thus ?thesis by blast
```

qed qed

Final Proof

proof: Myhill-Nerode(one direction)

```
theorem myhill nerode:
 assumes finite CS: "finite (UNIV Quo Lang)"
 shows "\exists (reg::rexp). Lang = L reg" (is "\exists r. ?P r")
proof -
 have has r each: "\forall C \in \{X \in UNIV Quo Lang, \forall x \in X, x \in Lang\}. \exists (r::rexp), C = L r"
   using finite CS
   by (auto dest:every eqcl has reg)
 have "∃ (rS::rexp set). finite rS ∧
                       (\forall C \in \{X \in UNIV \text{ Quo Lang}, \forall x \in X, x \in Lang\}, \exists r \in rS, C = L r) \land
                       (\forall r \in rS. \exists C \in \{X \in UNIV Quo Lang. \forall x \in X. x \in Lang\}, C = L r)"
then obtain rS where finite rS : "finite rS"
   and r each': "\forall C \in \{X \in UNIV \text{ Quo Lang}, \forall x \in X, x \in Lang\}. \exists r \in (rS::rexp set), C = L
\mathbf{r}^{H}
   and cl each: "\forall r \in (rS::rexp set). \exists C \in {X \in UNIV Quo Lang. \forall x \in X. x \in Lang}. C = L
\mathbf{r}^{H}
   by blast
 have "?P (folds ALT NULL rS)"
 proof
   show "Lang \subset L (folds ALT NULL rS)"
                                                         apply (clarsimp simp: fold alt null eqs) by
blast
 next
   show "L (folds ALT NULL rS) ⊂ Lang"
                                                        by (clarsimp simp: fold alt null eqs)
 qed
 thus ?thesis by blast
```

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 \mathbf{qed}