
Recursive descent parsing for Boolean grammars

Alexander Okhotin∗

March 26, 2007

Abstract

The recursive descent parsing method for the context-free grammars is extended for
their generalization, Boolean grammars, which include explicit set-theoretic operations
in the formalism of rules and which are formally defined by language equations. The
algorithm is applicable to a subset of Boolean grammars. The complexity of a direct
implementation varies between linear and exponential, while memoization keeps it down
to linear.

1 Introduction

Boolean grammars [16], a new formalism for specifying formal languages introduced by the
author in 2003, are based on two fundamental concepts. One of these concepts is specification
of languages by inductive definitions, as in context-free grammars. The other concept is
propositional logic, in which conjunction, disjunction and negation of any conditions may be
freely combined. The resulting extension of context-free grammars uses rules of the form

A→ α1& . . .&αm&¬β1& . . .&¬βn,

where αi and βi are strings comprised of terminal and nonterminal symbols, and the intu-
itive meaning of such a rule is that every string that satisfies all conditions represented by
α1, . . . , αm and does not satisfy any of the conditions β1, . . . , βn is therefore generated by A.

The first formal definition of Boolean grammars was based upon language equations [16],
and recently some alternative theoretical foundations for Boolean grammars were proposed
by Wrona [22], by Kountouriotis et al. [9] and by the author [17]. The common result of
these approaches is that every Boolean grammar can be converted to a generalized variant of
Chomsky normal form and then parsed in time O(n3) by an extension of the Cocke–Kasami–
Younger algorithm. A number of theoretical problems remain open: in particular, no methods
for proving languages to be nonrepresentable by Boolean grammars are yet known.

The prospects of a practical use of Boolean grammars look quite good. The freedom of
specifying any Boolean conditions in grammars provides them with higher expressive power
than that of the context-free grammars, and makes them a more convenient tool for describing

∗Academy of Finland and Department of Mathematics, University of Turku, Turku FIN–20014, Finland.
E-mail: alexander.okhotin@utu.fi. Supported by the Academy of Finland under grant 118540.

1

languages. Since the upper bound for parsing complexity is the same, this extended power is
given at little cost. In addition, more practical parsing algorithms for Boolean grammars are
now being researched. The Generalized LR parsing method has been successfully applied to
Boolean grammars by the author [18]: the resulting algorithm works in time O(n4), but the
time remains linear on LR(1) context-free grammars as well as on some Boolean grammars
that use conjunction and negation moderately. The use of Boolean grammars in software
engineering has been attempted by Megacz [12], who developed a programmer-oriented parser
generator using another variant of Generalized LR.

This paper applies another parsing technique, the recursive descent, to Boolean grammars.
A recursive descent parser is a program containing a procedure for every symbol used in the
grammar, where the code in each procedure mechanically transcribes the grammar rules for
this symbol and is used to match a substring of the input string according to one of these
rules. This is probably the most well-known and the most intuitively clear parsing technique,
which has been in use since the early 1960s. This paper focuses at the deterministic case of
the recursive descent method known as predictive parsing [1, pp. 44–48], though the hereby
established results might be as well applicable to recursive descent with backtracking.

Quite a few extensions to the basic context-free recursive descent have been studied be-
fore, such as the top-down parsing method of Birman and Ullman [2] and its generalization
proposed by Ford [3]. In fact, every advanced recursive descent parser generator, such as LL-
gen [6] and ANTLR [19], introduces its own extension to this method. Such extensions give
the user a control over the flow of recursive descent parsing by the means of some directives
attached to a grammar; in particular, Boolean operations on the results of computations [3]
can be used to produce an effect that resembles Boolean grammars but is not equivalent to
them. In this way the user can alter the computation of the parser to recognize a desired
language, possibly a non-context-free one.

The parsing method proposed in this paper is, on one hand, similar to the aforementioned
methods of LLgen [6] and ANTLR [19], as well as to the method proposed by Ford [3], since it
can be regarded as recursive descent with additional control structures set up according to a
Boolean grammar. On the other hand, there is a major difference: the proposed generalization
of recursive descent is based upon a mathematically well-defined family of formal grammars,
which has semantics independent of the computation of any parser [9, 16]. As such, the
present work can be regarded as a theoretical approach to the same problem area, which has
so far been addressed using engineering methods only.

A definition of Boolean grammars is given in Section 2. Fortunately, its full complexity
considered in the literature [9, 16] is not needed: as shown in Section 3, a known necessary
condition for recursive descent parsing (that of the absence of left recursion) implies the
simplest of the known well-formedness conditions for Boolean grammars [16]. This much
simplifies the treatment of the proposed method.

A recursive descent parser for a Boolean grammar, defined in Sections 4 and 5, is generally
similar to its context-free prototype. In order to handle the extended generative power of
Boolean grammars, it has to use some techniques not found in the standard recursive descent.
In particular, the conjunction is implemented by scanning a part of the input multiple times in
different procedures. The mechanism of exception handling found in imperative programming
languages since Ada [7] is used to implement the negation. The method remains simple

2

enough to be implemented manually, and the generation of basic parsers can be automated
as straightforwardly as in the context-free case.

Proving that the computation of such a parser indeed corresponds to the definition of a
Boolean grammar is the subject of Section 6. Though at the first glance the context-free and
the Boolean recursive descent look similar, their mathematical justifications don’t, and the
proof presents some challenges not found in the context-free case. The algorithm’s complexity
is analyzed in Section 7: for a direct implementation it is in the worst case exponential, but
it is reduced to linear by a straightforward application of the memoization technique, that
is, by storing the result of every call to a procedure A() on any suffix, and by reusing this
result instead of recomputing it if A() is ever called on the same suffix again. The use of the
algorithm to construct a parse tree of the input string is explained in Section 8.

In the conclusion, two directions of further research are suggested. Following the example
of the context-free LL theory [8, 10, 11, 20, 21], one can proceed with the theoretical study
of the language family to which the Boolean recursive descent is applicable. Another task is
to study the applicability of the algorithm for practical parsing tasks and to implement it in
software.

This paper supercedes the author’s earlier generalization of recursive descent [15] for a
subclass of Boolean grammars known as conjunctive grammars [14].

2 Boolean grammars and their semantics

Definition 1 ([16]). A Boolean grammar is a quadruple G = (Σ, N, P, S), where Σ and N
are disjoint finite nonempty sets of terminal and nonterminal symbols, respectively; P is a
finite set of rules of the form

A→ α1& . . .&αm&¬β1& . . .&¬βn, (1)

where m+ n > 1, αi, βi ∈ (Σ ∪N)∗; S ∈ N is the start symbol of the grammar.
For each rule (1), the objects A → αi and A → ¬βj (for all i, j) are called conjuncts,

positive and negative respectively, and αi and βj are their bodies. Let conjuncts(P) be the
set of all conjuncts. A → ±αi and A → ±βj are called unsigned conjuncts and are used to
refer to a positive or a negative conjunct with the specified body.

In this paper it will be further assumed that m > 1 and n > 0 in every rule (1). There
is no loss of generality in this assumption, because it is always possible to add a nonterminal
that generates Σ∗, and use this nonterminal as a formal first positive conjunct in every rule
that lacks one.

A Boolean grammar is called a conjunctive grammar [14] if negation is never used, that
is, n = 0 for every rule (1). It degrades to a context-free grammar if neither negation nor
conjunction are allowed, that is, m = 1 and n = 0 for each rule. The semantics of the special
case of conjunctive and context-free grammars is easy to define:

Definition 2 ([14]). Let G = (Σ, N, P, S) be a conjunctive grammar, that is, a Boolean
grammar with all rules of the form

A→ α1& . . .&αm. (2)

3

Consider terms formed of symbols from Σ and N connected by concatenation and conjunction,
and define a rewriting of such terms as follows:

1. Every subterm A can be rewritten with (α1& . . .&αm), for any rule (2);

2. Every subterm (w& . . .&w), for any w ∈ Σ∗, can be rewritten with w.

Then, for any term A, LG(A) = {w | w ∈ Σ∗, α derives w}, and L(G) = LG(S).

In order to define the semantics of Boolean grammars in the general case, let us represent
them as systems of equations with formal languages as unknowns:

Definition 3. Let G = (Σ, N, P, S) be a Boolean grammar. The system of language equations
associated with G is a resolved system of language equations over Σ in variables N , in which
the equation for each variable A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(3)

Each instance of a symbol a ∈ Σ in such a system defines a constant language {a}, while
each empty string denotes a constant language {ε}. A solution of such a system is a vector
of languages (. . . , LC , . . .)C∈N , such that the substitution of LC for C, for all C ∈ N , turns
each equation (3) into an equality.

If negation is never used in G, then the associated system (3) always has a least solution
with respect to componentwise inclusion [4, 17], and the components of this solution are ex-
actly the languages generated by nonterminals according to Definition 2. In contrast to the
conjunctive and context-free cases, a system (3) in the general case can have no solutions
or multiple pairwise incomparable solutions. Moreover, even if one considers only systems
with a unique solution, then every recursive language can be represented [16], and this rep-
resentation is much different from the intuitive meaning of a Boolean grammar. In order to
give a satisfactory formal definition of Boolean grammars, some additional condition must be
assumed [16], such as the following:

Definition 4. Let G = (Σ, N, P, S) be a Boolean grammar, let (3) be the associated system of
language equations. Suppose that for every finite language M ⊂ Σ∗ (such that for every w ∈
M all substrings of w are also in M) there exists a unique vector of languages (. . . , LC , . . .)C∈N

(LC ⊆ M), such that a substitution of LC for C, for each C ∈ N , turns every equation (3)
into an equality modulo intersection with M (in the following such a vector will be referred
as a solution modulo M).

Then G complies to the semantics of a strongly unique solution, and, for every A ∈ N , the
language LG(A) can be defined as LA from the unique solution of this system. This notation
is extended to any expressions formed of terminal and nonterminal symbols, concatenation
and Boolean operations as follows: LG(ε) = {ε}, LG(a) = {a}, LG(ψ | ξ) = LG(ψ) ∪ LG(ξ),
LG(ψ&ξ) = LG(ψ) ∩ LG(ξ), LG(¬ψ) = LG(ψ), LG(ψ · ξ) = LG(ψ) · LG(ξ). The language
generated by the grammar is L(G) = LG(S).

4

Example 1. Consider a Boolean grammar G = ({a, b, c}, {S,A,B,C,D}, P, S), where the
rules in P , the associated system of language equations and its unique solution are as follows:

S → AD&¬BC
A→ aA | ε
B → aBb | ε
C → cC | ε
D → bDc | ε

S = AD ∩BC
A = aA ∪ {ε}
B = aBb ∪ {ε}
C = cC ∪ {ε}
D = bDc ∪ {ε}

S = {ambncn |m,n > 0,m 6= n}
A = a∗

B = {ambm |m > 0}
C = c∗

D = {bncn | n > 0}

Compliance to Definition 4 is easy to verify, and hence L(G) = {ambncn |m,n > 0,m 6= n}.

Note that this language is not context-free, which can be formally proved by pumping the
string ap+p!bpcp ∈ L(G), where p is the constant given by the pumping lemma. Also note that
if the negation in the rule for S is omitted, the resulting conjunctive grammar will regenerate
the most common example of a non-context-free language, {anbncn | n > 0} [14].

Let us give a few examples of grammars deemed invalid according to Definition 4:

G1 = ({a}, {S}, {S → ¬S}, S)
G2 = ({a}, {S}, {S → S}, S)
G3 = ({a}, {S,A}, {S → ¬S&aA,A→ A}, S)

For G1, the associated language equation S = S has no solutions. The equation S = S
associated to G2 has multiple solutions, in fact every language is a solution. Though the
system of equations {S = S ∩ aA,A = A} associated to G3 has a unique solution S = A = ∅
(consider that if w ∈ A, then aw ∈ S if and only if aw /∈ S), the grammar is invalid, because
the system has two solutions modulo every language {ε, a, . . . , an}, namely, (S = ∅, A = ∅)
and (S = ∅, A = {an}).

Two other definitions of the semantics of Boolean grammars have been proposed [16, 9],
which define slightly different sets of well-formed grammars. In particular, they cover all
context-free grammars, unlike the semantics of strongly unique solution, which deems the
above grammar G2 invalid. However, these details of formal definition are irrelevant for the
present paper. As we shall now see, a well-known necessary condition for recursive descent
parsing, the absence of left recursion, implies the condition in Definition 4, and hence there
is no need for any more general definition.

3 Strongly non-left-recursive grammars

Context-free recursive descent parsing requires the grammar to be free of left recursion, which
means that no nonterminal A can derive Aδ for any δ ∈ (Σ ∪ N)∗. The reason for that is
that a parser can enter an infinite loop otherwise. Naturally, a generalization of recursive
descent for a larger class of grammars has to impose a similar restriction. The notion of a
left-recursive context-free grammar will now be generalized to the case of Boolean grammars.

Before the definition can be given, some technical notions need to be introduced. The
first of these notions is an adaptation of context-free derivation to specify dependence of
nonterminals in a Boolean grammar.

5

Definition 5. Let G = (Σ, N, P, S) be a Boolean grammar. The relation of context-
free reachability, , is a binary relation on the set of strings with a marked substring
{α〈β〉γ |α, β, γ ∈ (Σ∪N)∗} defined as the reflexive and transitive closure of the following set
of derivation rules:

α〈βAγ〉δ αβη〈σ〉θγδ,

for all α, β, γ, δ ∈ (Σ ∪N)∗, A ∈ N , A→ ±ησθ ∈ conjuncts(P).

Another technical notion is the following positive transform of a Boolean grammar:

Definition 6. Let G = (Σ, N, P, S) be a Boolean grammar. The grammar G+ is a conjunctive
grammar defined as G+ = (Σ, N, P+, S), where

P+ = {A→ α1& . . .&αm | A→ α1& . . .&αm&¬β1& . . .&¬βn ∈ P}

For instance, for the grammar G from Example 1, the corresponding G+ is a context-free
grammar generating L(G+) = {ambncn |m,n > 0}.

Using the above terminology, the notion of left recursion can be extended for Boolean
grammars as follows:

Definition 7. A Boolean grammar G = (Σ, N, P, S) is said to be strongly non-left-recursive
if and only if for all A ∈ N and θ, η ∈ (Σ ∪ N)∗, such that ε〈A〉ε θ〈A〉η, it holds that
ε /∈ LG+(θ).

In particular, the non-left-recursiveness of the context-free grammar

G′ =
(
Σ, N, {A→ α |A→ ±α ∈ conjuncts(P)}, S

)
is a sufficient condition for strong non-left-recursiveness of G, but Definition 7 is less restric-
tive. Using Lemma 6, it can now be established that Boolean grammars of this type are
always well-defined:

Theorem 1. Every strongly non-left-recursive Boolean grammar complies to the semantics
of a strongly unique solution.

The proof is included in the appendix.
An important question is whether left recursion in a Boolean grammar can be eliminated.

For the context-free grammars the answer is affirmative, and in addition to the well-known
simple procedure for eliminating left recursion [1, pp. 176–177] there exists a stronger nor-
mal form theorem due to Greibach [5]. However, the known transformations of context-free
grammars are not applicable to Boolean grammars, and the question of whether for every
Boolean grammar there exists an equivalent strongly non-left-recursive Boolean grammar
remains open.

6

4 The LL(k) table and its construction

The computation of a context-free recursive descent parser is guided by a parsing table, which,
for every A ∈ N and u ∈ Σ∗ (where |u| 6 k, for a fixed k > 0), determines the rule to apply
when A is to produce a string starting with u. This rule has to be “predicted” before seeing
the entire substring derived from A, hence the name of predictive parsing [1]. The Boolean
recursive descent uses tables of the same kind, and a method of constructing such a table for
a given grammar will be described in this section.

Let us start from defining the general form of a parsing table. Let k > 1. For a string w,
define

Firstk(w) =
{
w, if |w| 6 k
first k symbols of w, if |w| > k

This definition can be extended to languages as Firstk(L) = {Firstk(w) | w ∈ L}. Define
Σ6k = {w | w ∈ Σ∗, |w| 6 k}.

Definition 8. A string u ∈ Σ∗ is said to follow σ ∈ (Σ ∪ N)∗ if ε〈S〉ε θ〈σ〉η for some
θ, η ∈ (Σ ∪N)∗, such that u ∈ LG(η).

Definition 9 (Nondeterministic LL(k) table). Let G = (Σ, N, P, S) be a strongly non-left-
recursive Boolean grammar, let k > 0. A nondeterministic LL(k) table for G is a function
T ′

k : N ×Σ6k → 2P , such that for every rule A→ ϕ and u, v ∈ Σ∗, for which u ∈ LG(ϕ) and
v follows A, it holds that A→ ϕ ∈ T ′

k(A,F irstk(uv)).

Let us note that the given condition of the membership of a rule in T ′
k(A, x) is undecidable

already in the simpler case of conjunctive grammars [15], because so is the emptiness problem
for these grammars. Therefore, there cannot exist an algorithm for computing the least
collection of sets satisfying Definition 9. On the other hand, assuming T ′

k(A, x) = Σ6k, which
would trivially satisfy the definition, is of no use, because the only parsing tables usable with
the predictive recursive descent method are deterministic tables of the following kind:

Definition 10 (Deterministic LL(k) table). Let |T ′
k(A, u)| 6 1 for all A, u. Then the entries

of a deterministic LL(k) table, Tk : N ×Σ6k → P ∪ {−}, are defined as Tk(A, u) = A→ ϕ if
T ′

k(A, u) = {A→ ϕ}, or as Tk(A, u) = − if T ′
k(A, u) = ∅.

In view of the undecidability of the membership in the least T ′
k, any algorithm for con-

structing suitable T ′
k can only produce some supersets of the least collection. The algorithm

given below strives to produce as small supersets as possible, and in favourable cases the
resulting table will still be deterministic.

The algorithm is modelled upon the well-known method of constructing parsing tables in
context-free case [1]. A context-free LL(k) table is constructed on the basis of the sets
Firstk(A) = {Firstk(w) | w ∈ L(A)} and Followk(A) = {Firstk(β) | S =⇒∗ αAβ},
for all A ∈ N , which can be computed by a simple procedure. The definition of Firstk

can be used for Boolean grammars as it is, an analogue of Followk can be defined as
{Firstk(w) | w follows A} [18], but this does not help much, because in the case of Boolean
grammars these sets are not effectively computable [18] due to the aforementioned undecid-
ability of the emptiness problem.

7

However, since the goal is to construct a superset of the optimal parsing table, this superset
can be computed on the basis of supersets of Firstk(s) and Followk(s). These supersets
are called Pfirstk(s) and Pfollowk(s), where P stands for potential, and the algorithms for
computing these sets are included for completeness below. For the proof of their correctness
the reader is referred to the cited paper [18].

Algorithm 1 ([18]). Let G = (Σ, N, P, S) be a strongly non-left-recursive Boolean grammar.
Let k > 0. For all s ∈ Σ ∪ N , compute the set Pfirstk(s), such that for all u ∈ LG(s),
Firstk(u) ∈ Pfirstk(s).

let Pfirstk(A) = ∅ for all A ∈ N ;
let Pfirstk(a) = {a} for all a ∈ Σ;
while new strings can be added to 〈Pfirstk(A)〉A∈N

for each A→ s11 . . . s1`1& . . .&sm1 . . . sm`m&¬β1& . . .&¬βn ∈ P
Pfirstk(A) = Pfirstk(A) ∪

⋂m
i=1 Firstk(Pfirstk(si1) · . . . ·Pfirstk(si`i

));

It is convenient to extend the definition of Pfirst to composite expressions as follows:
Pfirstk(ψ | ξ) = Pfirstk(ψ) ∪ Pfirstk(ξ), Pfirstk(ψ&ξ) = Pfirstk(ψ) ∩ Pfirstk(ξ),
Pfirstk(¬ψ) = Σ6k and Pfirstk(ψξ) = Firstk(Pfirstk(ψ) ·Pfirstk(ξ)).

Algorithm 2 ([18]). For a given strongly non-left-recursive G and for k > 0, compute the
sets Pfollowk(A) for all A ∈ N , such that if u follows A, then Firstk(u) ∈ Pfollowk(A).

let Pfollowk(S) = {ε};
let Pfollowk(A) = ∅ for all A ∈ N \ {S};
while new strings can be added to 〈Pfollowk(A)〉A∈N

for every B → ±β ∈ conjuncts(P)
for every factorization β = µAν (µ, ν ∈ (Σ ∪N)∗)

Pfollowk(A) = Pfollowk(A) ∪ Firstk(Pfirstk(ν) ·Pfollowk(B));

Now these sets can be used to construct the LL(k) parsing table in the same way as in
the context-free case:

Algorithm 3. Let G be a Boolean grammar. Compute T ′
k(A) for all A ∈ N .

for each rule A→ α1& . . .&αm&¬β1& . . .&¬βn ∈ P
for each x ∈ Pfirstk(α1& . . .&αm) ·Pfollowk(A)

add the rule to T ′
k(A, x);

Proof of correctness. Using the properties of Pfirstk and Pfollowk, let us prove that every
rule that should be in T ′

k(A, x) according to Definition 9 is in fact put there by the algorithm.
Consider a rule

A→ α1& . . .&αm&¬β1& . . .&¬βn (m > 1, n > 0) (4)

that should be in T ′
k(A, x) in accordance to Definition 9. Then ε〈S〉ε δ〈A〉η and w ∈

LG(ϕη), where ϕ = α1& . . .&αm&¬β1& . . .&¬βn and x = Firstk(w).

8

Pfirst1 Pfollow1 ε a b c

S {a, b} {ε} S → AD&¬BC S → AD&¬BC S → AD&¬BC −
A {ε, a} {ε, b} A→ ε A→ aA A→ ε −
B {ε, a} {ε, b, c} B → ε B → aBb B → ε B → ε
C {ε, c} {ε} C → ε − − C → cC
D {ε, b} {ε, c} D → ε − D → bDc D → ε

Table 1: Pfirst1, Pfollow1 and the parsing table for the grammar from Example 1.

Then there exists a factorization w = uv, such that u ∈ LG(ϕ) and v ∈ LG(η). By the
construction of Pfirstk,

Firstk(u) ∈ Pfirstk(ϕ) (5)

Since v follows A,
Firstk(v) ∈ Pfollowk(A) (6)

by the construction of Pfollowk(A).
Concatenating (5) and (6) yields

x = Firstk(uv) = Firstk(Firstk(u) · Firstk(v)) ∈ Firstk(Pirstk(ϕ) ·Pfollowk(A)),

which means that the rule (4) will be added to T ′
k(A, x) at the iteration ((4), x).

Consider the grammar from Example 1, which generates the non-context-free language
{ambncn |m,n > 0,m 6= n} The sets Pfirst1 and Pfollow1 and a deterministic LL(1) table
for this grammar are shown in Table 1. Note that the string ε ∈ Pfirst1(S) is actually not
in First1(S), because ε /∈ L(G). Consequently, T (S, d) = S → KdM , is is also a fictional
entry of the table that could have been replaced with −. However, such fictional entries do
not prevent the algorithm from being correct.

Since Algorithm 3 constructs supersets of the least sets T ′(A, u) satisfying Definition 9,
and since these sets must be singletons or empty sets, this algorithm is applicable to a smaller
class of grammars than the basic definition. Improving the table construction algorithm and
extending its applicability can now be left as a separate problem to study. The rest of
this paper is based upon Definition 9 and, accordingly, is not bound by the limitations of
Algorithm 3.

5 Recursive descent parser

Having constructed a parsing table, let us now define a recursive descent parser: a collection
of procedures that recursively call each other and analyze the input. The procedures will be
given as a pseudocode featuring a relatively uncommon flow control construct: the mechanism
of exception handling.

A basic exception handling model in the spirit of Ada and C++ is assumed. There is
a statement for raising an exception, and any compound statement can be supplied with
an exception handler. If an exception is raised within a compound statement that has an
exception handler, then the control is passed to that handler. Otherwise, the return from the

9

current procedure is forced, and an exception handler is similary searched for in the calling
procedure. If there is no exception handler there as well, a return is forced again, and so on,
until an exception handler is located. In other words, exceptions are used as a multi-level
return statement, which returns to the most recent procedure in the call stack that has an
exception handler defined. A recursive descent parser defined in this paper raises exceptions
upon syntax errors, while negative conjuncts in the grammar are represented by exception
handlers.

Let us define the recursive descent parser. As in the context-free case, it contains a
procedure for each terminal and nonterminal symbol in the grammar, and two global variables
accessible to all procedures: the input string w and a positive integer p pointing at a position
in this string. The latter, by an abuse of programming terminology, will be called a pointer.
Each procedure s() corresponding to a symbol s ∈ Σ ∪ N starts with some initial value of
this pointer, p = i, and, after doing some computation and making some recursive calls,

• either returns, setting the pointer to p = j (where i 6 j 6 |w|), thus reporting a
successul parse of wi . . . wj−1 from s,

• or raises an exception, which means that a suitable j, such that the symbol s could
generate wi . . . wj−1, was not found.

In the latter case the resulting value of the pointer is undefined, though it can be interpreted
as the position in the string where a syntax error was encountered.

The procedure corresponding to every terminal a ∈ Σ is defined as

a()
{

if wp = a, then
p = p+ 1;

else
raise exception;

}

For every nonterminal A ∈ Σ the procedure is

A()
{

switch(T (A,F irstk(wpwp+1 . . .)))
{
case A→ α1& . . .&αm&¬β1& . . .&¬βn:

(code for the conjunct A→ α1)
...
(code for the conjunct A→ αm)
(code for the conjunct A→ ¬β1)
...
(code for the conjunct A→ ¬βn)
return;

10

case A→ . . .
...

default:
raise exception;

}
}

where the code for the first positive conjunct A→ s1 . . . s` is

let start = p; /* omit if this is the only conjunct (m = 1, n = 0) */
s1();
...
s`();
let end = p; /* omit if this is the only conjunct */

the code for every consecutive positive conjunct A→ s1 . . . s` is

p = start;
s1();
...
s`();
if i 6= end, then raise exception;

and the code for every negative conjunct A→ ¬s1 . . . s` is

boolean failed = false;
try
{

p = start;
s1();
...
s`();
if p 6= end, then raise exception;

}
exception handler:

failed = true;
if ¬failed, then raise exception;
p = end; /* if this is the last conjunct in the rule */

Note that the compound statement with an exception handler is an exact duplicate of what
the code for a positive conjunct A → s1 . . . s` would be. If the inner compound statement
successfully returns, the whole fragment raises an exception; on the other hand, if the inner
statement raises an exception, that exception is handled, failed is set to true and the whole
fragment successfully returns. Provided that none of the invoked procedures st() ever goes
into an infinite loop (which will be proved in the next section), this effectively implements
negation.

The main procedure is:

11

try
{

int p = 1;
S();
if p 6= |w|+ 1, then raise exception;

}
exception handler:

Reject;
Accept;

So far the algorithm has been defined as a recognizer rather than a parser. It can be
turned into a parser by a straightforward modification, which will be given later in Section 8.

6 Proof of the algorithm’s correctness

It should be proved that the algorithm (a) always terminates, and (b) accepts a string if and
only if this string is in the language. The termination of the algorithm can be proved under
the sole assumption of strong non-left-recursiveness of the grammar, without making any
claims on the mechanism of choosing the rules T . This allows abstracting from the goal of
parsing and even from the semantics of the grammar, concentrating on the general structure
of the computation.

Lemma 1. Let G = (Σ, N, P, S) be an arbitrary Boolean grammar, and consider the con-
junctive grammar G+ = (Σ, N, P+, S). Let k > 1; let T : N ×Σ6k → P ∪{−} be an arbitrary
function (with the sole assumption that T (A, u) always gives a rule for A or −), let the set
of procedures be constructed with respect to G and T . Then

I. For every s ∈ Σ ∪N and u, v ∈ Σ∗, if A() invoked on the input uv returns, consuming
u, then u ∈ LG+(A).

II. For every A,B ∈ N and u, v ∈ Σ∗, if A() is invoked on uv, and the resulting computation
eventually leads to a call to B() on the input v, then ε〈A〉ε γ〈B〉δ, where u ∈ LG+(γ).

Proof. The first part of the lemma is proved inductively on the height of the tree of recursive
calls made by A() on the input uv. Since A() terminates by the assumption, this tree is finite
and its height is well-defined.

Basis: s() makes no recursive calls and returns. If s = a ∈ Σ and a() returns on uv,
consuming u, then u = a and obviously a ∈ LG+(a).

If s = A ∈ N and A() returns without making any recursive calls, then the rule chosen
upon entering A() may contain one positive conjunct, A → ε, and possibly a negative
conjunct A→ ¬ε. Then u = ε and ε ∈ LG+(A).

Induction step. Let A() return on uv, consuming u, and let the height of the tree of recur-
sive calls made by A() be h. The first thing A() does is looking up T (A,F irstk(uv)),
to find a rule

A→ α1& . . .&αm&¬β1& . . .&¬βn (m > 1, n > 0, αi, βi ∈ (Σ ∪N)∗) (7)

12

there. Then the code fragments for all conjuncts of the rule are executed.

Consider every positive conjunct A → αt, and let αt = s1 . . . s`. Then the code
s1(); . . . ; s`() is executed on uv, and it returns, consuming u. Consider a factoriza-
tion u = u1 . . . u` defined by the positions of the pointer to the input after each si()
returns and before the next si+1() is called. Thus each si() returns on uiui+1 . . . u`v,
consuming ui, and the height of recursive calls made by si() does not exceed h− 1. By
the induction hypothesis, ui ∈ LG+(si). Concatenating the latter for all i, the following
is obtained:

u = u1 . . . u` ∈ LG+(s1) . . . LG+(s`) = LG+(αt) (8)

Now use (8) for all t to produce the following derivation in the conjunctive grammar
G+:

A
G+=⇒ (α1& . . .&αm)

G+=⇒ . . .
G+=⇒ (u& . . .&u)

G+=⇒ u, (9)

thus proving the induction step.

Turning to the second part of the lemma, if A() starts with input uv, and B() is called
on v at some point of the computation, then consider the partial tree of recursive calls made
up to this point. Let h be the length of the path from the root to this last instance of B().
The proof is an induction on h.

Basis h = 0. If A() coincides with B(), and thus B() is called on the same string uv = v,
then u = ε, ε〈A〉ε ε〈A〉ε and u = ε ∈ LG+(ε).

Induction step. A(), called on uv, begins with determining a rule (7) using
Tk(A,F irstk(uv)) and then proceeds with calling the subroutines corresponding to the
symbols in the right hand side of (7). Some of these calls terminate (return or, in the
case of negative conjuncts, raise exceptions that are handled inside A()), while the last
one recorded in our partial computation history leads down to B(). Let A → ±γCδ
(γCδ ∈ {αt} or γCδ ∈ {βt}) be the unsigned conjunct in which this happens, and C()
be this call leading down. Consider a factorization u = xy, such that C() is called on
yv.

Let γ = s1 . . . s`. The call to C() is preceded by the calls to s1(); . . . ; s`(), where each
si() is called on xi . . . x`yv and returns, consuming xi (where x = x1 . . . x`). By part I
of this lemma, this implies xi ∈ LG+(si), and hence x ∈ LG+(γ).

By the existence of the unsigned conjunct A→ ±γCδ, ε〈A〉ε γ〈C〉δ. For the partial
computation of C() on yv (up to the call to B()), the distance between C() and B() is
h− 1, which allows applying the induction hypothesis to conclude that ε〈C〉ε µ〈B〉η,
such that y ∈ LG+(µ).

Combining these two reachabilities according to Definition 7, we get ε〈A〉ε γµ〈B〉ηδ,
while the two conjunctive derivations in G+ can be merged to obtain u ∈ LG+(γµ).

Lemma 2. Let G = (Σ, N, P, S) be a strongly non-left-recursive Boolean grammar. Let k > 1;
let T : N × Σ6k → P ∪ {−} be an arbitrary function, with the sole assumption that T (A, u)
always gives a rule for A or −. Let the set of procedures be constructed with respect to G

13

and T . Then, for every s ∈ Σ ∪N and w ∈ Σ∗, the procedure s() terminates on the input w,
either by consuming a prefix of w and returning, or by raising an exception.

Proof. Suppose there exists s ∈ Σ ∪ N and w, such that s() does not halt on the input w.
Consider the (infinite) tree of recursive calls, the nodes of which are labeled with pairs (t, u),
where t ∈ Σ ∪N and u is some suffix of w.

Since the right hand side of every rule is finite, every procedure makes finitely many
recursive calls, and the tree has finite branching. Hence, by König’s lemma, this tree should
contain an infinite path

(A1, u1), (A2, u2), . . . , (Ai, ui), . . . (10)

where (A1, u1) = (s, w), Ai ∈ N and each procedure Ai() is invoked on ui and, after calling
some procedures that terminate, eventually calls Ai+1 on the string ui+1, which is a suffix of
ui. This means that |u1| 6 |u2| 6 . . . 6 |ui| 6 . . .

Since w is of finite length, it has finitely many different suffixes, and the decreasing second
component in (10) should converge to some shortest reached suffix of w. Denote this suffix
as u, and consider any node (A, u) that appears multiple times on the path (10). Consider
any two instances of (A, u); then, by Lemma 1, ε〈A〉ε γ〈A〉δ, where ε ∈ LG+(γ). This
contradicts the assumption that G is strongly non-left-recursive.

Now the correctness of the algorithm can be established. Before approaching the proof, let
us consider the following example showing that the parser may in some cases behave contrary
to the grammar, and hence its correctness is not that obvious.

Example 2. Let Σ = {a, b} and consider the following Boolean grammar the corresponding
sets Pfirst1 and Pfollow1, and the resulting LL(1) table.

S → Ab
A → B&¬bC
B → a | b
C → ε

Pfirst1 Pfollow1 ε a b

S {ε, a, b} {ε} − S → Ab S → Ab

A {a, b} {b} − A→ B&¬bC A→ B&¬bC
B {a, b} {b} − B → a B → b

C {ε} {b} − − C → ε

in which L(B) = {a, b}, L(C) = {ε}, L(A) = {a} and L(S) = {ab}. However, the procedure
A() returns on the input ba, consuming b, even though b /∈ L(A).

Consider that A() executed on ba first invokes B() on ba (which successfully returns,
consuming b), and then, for the second conjunct, invokes C() on a. Instead of returning and
consuming ε, the procedure C() raises an exception because of an unexpected lookahead;
this exception is handled by the code within A(), which considers that the negative conjunct
A→ ¬bC has failed, and therefore the entire rule has been matched. The pointer is then set
where the earlier called instance of B() has set it, and A() successfully returns, consuming a
prefix not in L(A).

Even though this kind of behaviour looks quite suspicious, in the end, no wrong parses
are obtained: S() rejects ba, and in fact S() returns on a string w ∈ Σ∗, consuming the entire
w, if and only if w = ab. As it will now be proved, the algorithm is correct, though the proof
of its correctness requires a more precise formulation than in the context-free and conjunctive
cases:

14

Lemma 3. Let G = (Σ, N, P, S) be a strongly non-left-recursive Boolean grammar. Let k > 1.
Let T : N × Σ6k → P ∪ {−} be a deterministic LL(k) table for G, let the set of procedures
be constructed with respect to G and T . Let y, z ∈ Σ∗ and s1, . . . , s` ∈ Σ ∪ N (` > 0), and
assume there exists ẑ ∈ Σ∗, such that ẑ follows s1 . . . s` and Firstk(ẑ) = Firstk(z). Then the
code s1(); . . . ; s`() returns on the input yz, consuming y, if and only if y ∈ LG(s1 . . . s`).

Proof. According to Lemma 2, the code s1(); . . . ; s`() terminates in this or that way, that
is, by returning or by raising an exception. Consider the tree of recursive calls of the code
s1(); . . . ; s`() executed on the input yz, as in Lemma 2. This tree is finite; let h be its height.

The proof is an induction on the pair (h, `), where pairs are ordered as (h, `) ≺ (h′, `′)
if h < h′ or if h = h′ and ` < `′. Besides the trivial base case h = ` = 0, the natural base
case would be h = 0, ` = 1; to simplify the presentation of the proof, the case of A() is
handled together with induction step (without referring to the induction hypothesis), while
a() is formulated as the basis.

Basis I: (0, 0), that is, s1 . . . s` = ε. Obviously, LG(ε) = {ε}, and accordingly the empty
statement returns on yz, consuming y, if and only if y = ε.

Basis II: (0, 1) and s ∈ Σ. The procedure a() is constructed so that it returns on the input
yz, consuming y, if and only if y = a. This is equivalent to y ∈ LG(a) = {a}.

Induction step I: (h− 1, . . .) → (h, 1), or (0, 1) and s ∈ N . Let ` = 1 and s1 = A ∈ N ,
let ẑ follow A, with Firstk(ẑ) = Firstk(z), and let h be the height of the tree of
recursive calls made by A() executed on yz.

⇒○ If A() returns on yz, consuming y, then T (A,F irstk(yz)) gives some rule

A→ α1& . . .&αm&¬β1& . . .&¬βn (11)

(where m > 1, n > 0), and then the following computations take place:

1. For every positive conjunct A→ αi (αi = s1 . . . s`), the code s1(); . . . ; s`() is called
on yz. It returns, consuming y.
Since the computation of s1(); . . . ; s`() on yz is a subcomputation of the compu-
tation of A() on yz, the height of the tree of recursive calls corresponding to this
subcomputation does not exceed h−1. The string ẑ follows s1 . . . s` just because ẑ
follows A and A→ ±s1 . . . s` ∈ conjuncts(P). Hence, by the induction hypothesis,
y ∈ LG(αi).

2. For each negative conjunct A → ¬βj (βj = s1 . . . s`), the code s1(); . . . ; s`() is
invoked on yz. It either raises an exception, or returns, consuming a prefix other
than y: putting together, it is not the case that this code returns, consuming y.
Similarly to the previous case, this computation has to be a part of the computation
of A(), hence the depth of recursion is at most h−1; again, ẑ follows s1 . . . s`. This
allows one to invoke the induction hypothesis to obtain that y /∈ LG(βi).

Combining the results for individual conjuncts, y ∈ LG(α1& . . .&αm&¬β1& . . .&¬βn)
and thus y ∈ LG(A).

15

⇐○ If y ∈ LG(A), then there exists a rule (11), such that

y ∈ LG(α1& . . .&αm&¬β1& . . .&¬βn) (12)

Since ẑ follows A, ε〈S〉ε δ〈A〉η, where ẑ ∈ LG(η). Combining (12) with this, we obtain
that yẑ ∈ LG(ϕη), where ϕ = α1& . . .&αm&¬β1& . . .&¬βn. Then, by Definition 9,
T ′(A,F irstk(yẑ)) contains the rule (11). Since Firstk(yẑ) = Firstk(yz), (11) is in
T ′(A,F irstk(yz)), and therefore, by the definition of a deterministic LL(k) table, this
rule is given by T (A,F irstk(yz)).

Hence the computation of A() on yz starts from choosing the alternative (11). Consider
all the conjuncts of the rule (11) in the order of the corresponding code fragments, and
let us prove that each of these fragments is successively passed:

1. For each positive conjunct A→ αi (αi = s1 . . . s`), y ∈ LG(s1 . . . s`) by (12) and ẑ
follows s1 . . . s` (since ẑ follows A and A→ ±s1 . . . s` ∈ conjuncts(P)). Therefore,
by the induction hypothesis, the code s1(); . . . ; s`() returns on yz, consuming y.

2. For every negative conjunct A → ¬βj (βj = s1 . . . s`), since y /∈ LG(s1 . . . s`) and
ẑ follows s1 . . . s`, by the induction hypothesis, it is not the case that the code
s1(); . . . ; s`() returns on yz, consuming y. On the other hand, by Lemma 2, the
code s1(); . . . ; s`() terminates on yz, either by returning or by raising an exception.
This implies that s1(); . . . ; s`(), invoked on the input yz, either returns, consuming
a prefix other than y, or raises an exception. In the former case an exception is
manually triggered in the code fragment corresponding to βj . Thus an exception
is effectively raised in both cases. The exception handler included in the code
fragment sets a local variable failed to true, and in this way the whole code
fragment terminates without raising unhandled exceptions.

In this way all the conjuncts are successfully handled; the final assignment in the code
for the alternative (11) restores the pointer to the location where it was put by the code
for the first conjunct. Then A() returns, having thus consumed exactly y.

Induction step II: (h, `− 1) → (h, `). Let ` > 2, let s1 . . . s` ∈ (Σ ∪ N)∗ and let ẑ follow
s1 . . . s`, where Firstk(ẑ) = Firstk(z).

⇒○ Let the code s1(); . . . ; s`−1(); s`() return on input yz, consuming y. Consider the
value of the pointer to the input string after s`−1() returns and before s`() is called; this
value defines a factorization y = uv, such that the code s1(); . . . ; s`−1() returns on uvz,
consuming u, while the procedure s`() returns on vz, consuming v. The height of the
recursive calls in these subcomputations obviously does not exceed that of the whole
computation.

Since ẑ follows s`, the induction hypothesis is directly applicable to the computation of
s`() on vz, yielding

v ∈ LG(s`) (13)

In order to use the induction hypothesis for the former ` − 1 calls, first it has to be
established that the string vẑ follows s1 . . . s`−1. We know that ẑ follows s1 . . . s`, which

16

means that ε〈S〉ε δ〈s1 . . . s`〉η, where ẑ ∈ LG(η). Hence, ε〈S〉ε δ〈s1 . . . s`−1〉s`η,
while concatenating (13) with ẑ ∈ LG(η) yields vẑ ∈ LG(s`η).

Since Firstk(vẑ) = Firstk(vz), now the induction hypothesis can be used for the com-
putation of s1(); . . . ; s`() on uvz (which returns, consuming u), giving

u ∈ LG(s1 . . . s`−1) (14)

By (14) and (13), y = uv ∈ LG(s1 . . . s`−1s`).

⇐○ Conversely, if y ∈ LG(s1 . . . s`−1s`), then there exists a factorization y = uv, such
that u ∈ LG(s1 . . . s`−1) and v ∈ LG(s`).

The computation of s1(); . . . ; s`−1() on uvz is obviously a subcomputation of the com-
putation of s1(); . . . ; s`−1(); s`(). Hence, the recursion depth for the subcomputation
does not exceed that for the whole computation. On the other hand, since v ∈ LG(s`)
and ẑ follows s1 . . . s`−1s`, vẑ follows s1 . . . s`−1 (established as in the previous part of
the proof). This allows applying the induction hypothesis to this subcomputation and
obtaining that s1(); . . . ; s`−1() returns on uvz, consuming u.

Once the subcomputation s1(); . . . ; s`−1() returns on uvz, the computation of
s1(); . . . ; s`−1(); s`() proceeds with invoking s`() on vz. Hence, s`() on vz is also a sub-
computation, which has height no greater than that of the whole computation. Since ẑ
follows s`, the induction hypothesis is now applicable, and v ∈ LG(s`) implies that s`()
returns on vz, consuming v.

Therefore, the sequential composition of these two computations, s1(); . . . ; s`−1(); s`(),
returns on yz, consuming uv = y.

Now let y = w, z = ẑ = ε, ` = 1 and s1 = S. Then the conditions of Lemma 3 are
satisfied, and the following result is obtained:

Corollary 1. Let G = (Σ, N, P, S) be a strongly non-left-recursive Boolean grammar. Let
k > 1. Let T : N × Σ6k → P ∪ {−} be a deterministic LL(k) table for G, let the set of
procedures be constructed with respect to G and T .

Then, for every string w ∈ Σ∗, the procedure S() executed on w

• Returns, consuming the whole input, if w ∈ L(G);

• Returns, consuming less than the whole input, or raises an exception, if w /∈ L(G).

Out of this there follows the statement on the correctness of the algorithm:

Theorem 2. Let G = (Σ, N, P, S) be a strongly non-left-recursive Boolean grammar. Let
k > 1. Let T : N × Σ6k → P ∪ {−} be a deterministic LL(k) table for G, let a recursive
descent parser be constructed with respect to G and T . Then, for every string w ∈ Σ∗, the
parser, executed on w, terminates and accepts if w ∈ L(G), rejects otherwise.

17

7 Complexity of the algorithm

The definition of a recursive descent parser given in Section 5 is an implementation in itself, so
its complexity can be directly estimated. It is not hard to establish the following asymptotical
bounds:

Lemma 4. Under the conditions of Theorem 2, the depth of recursion in course of the
computation never exceeds (|w|+ 1) · |N |+ 1.

Proof. Suppose that the tree of recursive calls contains a path of at least (|w| + 1) · |N | + 2
nodes. This implies that at least the first (|w|+1)·|N |+1 nodes in this path are nonterminals.
As in Lemma 2, let us denote these procedure calls by

(A0, u0), (A1, u1), . . . , (A(|w|+1)·|N |, u(|w|+1)·|N |) (15)

where s0 = S, u0 = w, and for each m > 0, Am ∈ N and um is a suffix of w. Since there
exist only (|w|+1) · |N | distinct pairs of this form, the pairs (15) cannot be pairwise distinct,
and Ai = Aj and ui = uj for some i < j. That is, the computation of Ai() on ui eventually
leads to a call to Ai() on ui, and, according to Lemma 1 (part I), there is a left recursion in
the grammar, which contradicts the assumption.

Theorem 3. Under the conditions of Theorem 2, the parser, implemented on a random
access machine, uses space O(n) and works in time 2O(n), where n = |w|. Both bounds are
precise.

Proof. Consider the execution state of the parser. It is comprised of the value of the pointer,
the line currently being executed, the values of variables start and end, as well as the execution
stack, which contains a return address for each procedure call and the caller’s local variables
(start and end). Using the estimation of the recursion depth from Lemma 4, this sums up to
3 · (|w|+ 1) · |N |+ const memory cells, which is enough to prove the first claim.

To prove the exponential upper bound for time, consider that when a procedure A() is
called, it uses at most |G| time for internal processing and makes at most |G| calls to other
procedures, while a() executes two statements. This implies that at most |G|(|w|+1)·|N |+1

procedures are executed in total, each of them using at most |G| time internally. With the
size of the grammar taken as a constant, this is 2O(n).

This upper bound is reached on the following grammar for a+ [15]:

S → AS&BS | ε
A→ a
B → a

Indeed, S() executed on any nonempty string calls two instances of S() on a suffix one symbol
shorter, hence the execution time of S() on an (n > 1) is greater than twice the execution
time of S() on an−1, and a 2n lower bound follows.

Exponential time complexity is caused by recomputing the same procedures with the same
value of the pointer in different branches of the computation. This can be easily avoided by

18

using a simple programming technique is known as memoization. This technique, which was
first used for parsing by Norvig [13], consists of storing the result of the first computation
in memory, and then looking it up for every subsequent call to the same procedure with the
same arguments. In our case this simple modification is enough to reduce the complexity to
linear.

For this purpose the memoized recursive descent uses an array m[A][i] indexed by a pair
of a nonterminal and a position in the string. Each element belongs to {1, . . . , n, n + 1} ∪
{undefined, error}. If m[A][i] = j, this means that A() executed with the pointer at i returns,
setting the pointer at j. In the case m[A][i] = error, the call to A() with p = i is recorded as
having raised an exception. Finally, m[A][i] = undefined means that A() has not been called
with p = i so far. In the beginning, m[A][i] = undefined for all A ∈ n, 1 6 i 6 n+ 1.

For every nonterminal A, the procedure A() will be redefined as follows:

A()
{

if m[A][p] ∈ {1, . . . , n, n+ 1}
p = m[A][p];

else if m[A][p] = error;
raise an exception;

else
{

let start = p;
m[A][start] = error;
(the original code for A() given in Section 5)
m[A][start] = p;

}
}

Consider the computation of this procedure. If A() has never been called with this value
of the pointer before, the value m[A][i] (where i = p) is speculatively set to error, and the
code from Section 5 is invoked to perform the recursive descent. That code will not access
the value of m[A][i], because that can happen only if the parser enters an infinite loop, which
is not possible by Lemma 2. If the invoked code successfully returns, m[A][i] is reassigned
with an appropriate value. If the invoked code raises an exception, it is not handled in the
new code for A(), and hence A() raises an exception, while m[A][i] retains the earlier assigned
value error. Every subsequent call to A() with the same value of the pointer will obtain the
result of the first computation from m[A][i], and replicate the earlier behaviour.

Let us take the correctness of the memoization technique for granted. Then this modi-
fication of the recursive descent parser satisfies the correctness statements of Lemma 3 and
Theorem 2. In order to argue for its linear time complexity, let us first note that in course
of a computation of a string w, every line of the “original code” in every procedure A() is
executed at most |G| · (|w|+ 1) times. Furthermore, each time the “new code” in A() or the
code in a procedure a() is executed, this is done because the corresponding procedures were
called by the “original code” of some B(), hence the number of times each of these lines is
executed is bounded by the same value.

19

Theorem 4. The memoized recursive descent parser, implemented on a random access ma-
chine, works in time O(n), where n is the length of the input string.

8 Constructing parse trees

Let us now modify the recognizer defined in Section 5 to construct a parse tree of the input
string.

Parse trees in the case of Boolean grammars [16] are, strictly speaking, finite acyclic graphs
rather than trees. Let w = a1 . . . a|w| be a string generated by a grammar G = (Σ, N, P, S).
A parse tree of w contains a leaf labelled ai for every i-th position in the string, while the
rest of the vertices are labelled with rules from P . The subtree accessible from any given
vertex of the tree contains leaves in the range between i+ 1 and j, and thus corresponds to
a substring ai+1 . . . aj . In particular, each leaf ai corresponds to itself.

For each vertex labelled with a rule

A→ α1& . . .&αm&¬β1& . . .&¬βn

and associated to a substring ai+1 . . . aj , the following conditions should hold:

1. It should have exactly |α1 . . . αm| linearly ordered direct descendants corresponding to
the symbols in positive conjuncts. For each nonterminal in α1 . . . αm, the corresponding
descendant must be labelled with some rule for that nonterminal, and for each terminal
a ∈ Σ, the descendant should be a leaf labelled with a.

2. For each t-th positive conjunct of this rule, let αt = s1 . . . s`. There should exist numbers
i1, . . . , i`−1, where i = i0 6 i1 6 . . . 6 i`−1 6 i` = j, such that each descendant
corresponding to sr encompasses the substring air−1+1 . . . air .

3. For each t-th negative conjunct of this rule, it should hold that ai+1 . . . aj /∈ LG(βt).

The root is the unique node with no incoming arcs; it should be labelled with any rule for
the start symbol and all leaves should be reachable from it. The subtree accessible from any
node corresponding to a substring u = ai+1 . . . aj is called a parse tree of u from the symbol
it is labelled with.

Note that the information on negative conjuncts in not reflected in the tree, and actually
no reasonable way to include it is known [16]. Such a tree looks as if a tree for a conjunctive
grammar [14]; for the grammar in Example 1 the corresponding trees even resemble context-
free parse trees. However, the above condition 3 forbids all trees that do not comply to the
Boolean grammar.

To construct such a tree, a recursive descent parser requires minimal modifications: the
parse tree will be isomorphic to a fragment of the tree of recursive calls in the computation
of the parser. A new data type of a tree node is introduced, which contains the label and
either a position in the input (in case of a terminal), or pointers to descendant nodes (in case
of a nonterminal). Each procedure s(), where s ∈ Σ ∪ N , returns a value of this type. The
procedure corresponding to every terminal a ∈ Σ is redefined as follows:

20

Tree a()
{

if wp = a, then
{

p = p+ 1;
return a new leaf labelled a and numbered p;

}
else

raise exception;
}

For every procedure A(), the code implementing each rule

A→ s11 . . . s1`1& . . .&sm1 . . . sm`m&¬β1& . . .&¬βn (16)

undergoes the following changes. First, every call to every procedure sij() shall store the
return value in a local variable:

Tree Tij = sij();

Second, once all conjuncts are checked, the return statement assembles a new tree as follows:

Return a new node labelled (16), with pointers to T11, T12, . . . , Tm`m ;

The proof of the correctness of this approach basically constitutes a remark to the proof
of Lemma 3.

Lemma 5. As in Lemma 3, let G = (Σ, N, P, S) be a strongly non-left-recursive Boolean
grammar, let k > 1, let T : N × Σ6k → P ∪ {−} be a deterministic LL(k) table for G, and
consider the set of procedures for G and T modified for creating a parse tree.

Then, for every s ∈ Σ ∪N , y ∈ LG(s) and z ∈ Σ∗, such that there exists ẑ that follows s
and Firstk(ẑ) = Firstk(z), the procedure s() executed on yz returns a parse tree of y from s.

Proof. The modified recursive descent behaves in the same way as the original, with the
added functionality of returning some values. Thus Lemma 3 applies, and it follows that s()
returns on yz, consuming y. The statement on the constructed tree is proved by induction
on the height of the tree of recursive calls.

In the base case, s = a ∈ Σ, the procedure a(), under the assumption that it returns,
clearly returns the appropriate leaf.

Let s = A ∈ N . Then A() executed on yz starts with choosing a rule (16), and then, for
every i-th positive conjunct A → si1 . . . si`i

, the procedures sij() are called for j = 1, . . . , `i
in a row. Following the argument in the proof of Lemma 3, there exists a factorization
y = yi1 . . . yi`i

, such that each sij() is called on yijyi,j+1 . . . yi`i
z and returns, consuming yij .

At the same time, yi,j+1 . . . yi`i
z follows sij , and hence yij ∈ LG(sij).

Therefore, by the induction hypothesis, each procedure sij() returns a parse tree of yij

from sij . Then the return statement of A() constructs a correct parse tree by definition.

21

The tree constructed in this way has one additional property: the in-degree of every non-
root node labelled with a rule is 1. That is, if the same substring is parsed multiple times
from the same nonterminal, the parse subtrees will not be shared. However, this problem can
be overcome by memoization in the same way as described in Section 7, and the resulting
parser will share the subtrees as much as possible.

9 Conclusion

A generalization of the most well-known parsing method has been devised. It retains much of
the simplicity of the context-free recursive descent, but achieves a higher expressive power. In
contrast to other extensions to recursive descent used in software engineering, the proposed
method has a theoretical basis represented by Boolean grammars, and the operators in a
grammar are logical connectives with a clear semantics. Recursive descent is thus backed up
by other completely different parsing algorithms for Boolean grammars [12, 16, 18], which
implement the same functionality.

The applicability of the Boolean recursive descent to practical parsing is worth being
investigated. Note that the proposed changes to the basic recursive descent method are “or-
thogonal” to the common practical techniques for engineering context-free recursive descent
parsers [19]. For instance, while this paper considered only the deterministic case of recursive
descent known as predictive parsing, the Boolean recursive descent with backtracking could
be defined and proved correct by analogy with the context-free case. So it should not be hard
to implement Boolean grammars in the existing software.

Another direction of further study concerns the subclass of Boolean grammars to which
the recursive descent parsing is applicable. Let us call them LL(k) Boolean grammars, and
consider the family of LL(k) Boolean languages generated by such grammars. This family
obviously contains all LL(k) context-free languages, as well as some non-context-free lan-
guages, see Example 1. It is possible to prove (and will be proved in an upcoming paper)
that Boolean LL(k) languages over a one-letter alphabet are regular, while Boolean gram-
mars of the general form can generate the nonregular language {a2n | n > 0} [16]. However,
it remains unknown whether any practically relevant languages cannot be parsed by Boolean
recursive descent, and, in particular, whether there exists any context-free language that is
not Boolean LL(k).

Further questions about the family of Boolean LL(k) languages can be naturally asked.
For instance, do there exist any languages that are Boolean LL(k + 1), but not Boolean
LL(k), for some k > 0? (cf. Kurki-Suonio [10]) Developing a complete theory of Boolean
LL(k) languages similar to the context-free LL theory [8, 10, 11, 20, 21] is a good task for
future theoretical research.

References

[1] A. V. Aho, R. Sethi, J. D. Ullman, Compilers: principles, techniques and tools, Addison-
Wesley, Reading, Mass., 1986.

22

[2] A. Birman, J. D. Ullman, “Parsing algorithms with backtrack”, Information and Control,
23:1 (1973), 1–34.

[3] B. Ford, “Parsing expression grammars: a recognition-based syntactic foundation”, Pro-
ceedings of POPL 2004 (Venice, Italy, January 14–16, 2004), 111–122.

[4] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal of the
ACM, 9 (1962), 350–371.

[5] S. A. Greibach, “A new normal-form theorem for context-free phrase structure gram-
mars”, Journal of the ACM, 12 (1965), 42–52.

[6] D. Grune, C. J. H. Jacobs, “A programmer-friendly LL(1) parser generator”, Software–
Practice and Experience, 18:1 (1988), 29–38.

[7] J. Ichbiah, J. G. P. Barnes, R. J. Firth, M. Woodger, Rationale for the Design of the
Ada Programming Language, Cambridge University Press, 1991.

[8] D. E. Knuth, “Top-down syntax analysis”, Acta Informatica, 1 (1971), 79–110.

[9] V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, “Well-founded semantics for Boolean
grammars”, Developments in Language Theory (DLT 2006, Santa Barbara, USA, June
26–29, 2006), LNCS 4036, 203–214.

[10] R. Kurki-Suonio, “Notes on top-down languages”, BIT, 9 (1969), 225–238.

[11] P. M. Lewis, R. E. Stearns, “Syntax-directed transduction”, Journal of the ACM, 15:3
(1968), 465–488.

[12] A. Megacz, “Scannerless Boolean parsing”, Electronic Notes in Theoretical Computer
Science, 164:2 (2006), 97–102.

[13] P. Norvig, “Techniques for automatic memoization with applications to context-free pars-
ing”, Computational Linguistics, 17:1 (1991), 91–98.

[14] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Combina-
torics, 6:4 (2001), 519–535.

[15] A. Okhotin, “Top-down parsing of conjunctive languages”, Grammars, 5:1 (2002), 21–40.

[16] A. Okhotin, “Boolean grammars”, Information and Computation, 194:1 (2004), 19–48.

[17] A. Okhotin, “The dual of concatenation”, Theoretical Computer Science, 345:2–3 (2005),
425–447.

[18] A. Okhotin, “Generalized LR parsing algorithm for Boolean grammars”, International
Journal of Foundations of Computer Science, 17:3 (2006), 629–664.

[19] T. J. Parr, R. W. Quong, “ANTLR: a predicated-LL(k) parser generator”, Software–
Practice and Experience, 25:7 (1995), 789–810.

23

http://dx.doi.org/10.1016/S0019-9958(73)90851-6
http://doi.acm.org/10.1145/964001.964011
http://dx.doi.org/10.1145/321127.321132
http://dx.doi.org/10.1145/321250.321254
http://dx.doi.org/10.1145/321250.321254
http://dx.doi.org/10.2277/0521392675
http://dx.doi.org/10.2277/0521392675
http://dx.doi.org/10.1145/321466.321477
http://dx.doi.org/10.1016/j.entcs.2006.10.007
http://dx.doi.org/10.1023/A:1014219530875
http://dx.doi.org/10.1016/j.ic.2004.03.006
http://dx.doi.org/10.1016/j.tcs.2005.07.019
http://dx.doi.org/10.1142/S0129054106004029

[20] D. J. Rozenkrantz, R. E. Stearns, “Properties of deterministic top-down grammars”,
Information and Control, 17 (1970), 226–256.

[21] D. Wood, “The theory of left factored languages” (I, II), Computer Journal, 12:4 (1969),
349–356; 13:1 (1970) 55–62.

[22] M. Wrona, “Stratified Boolean grammars”, Mathematical Foundations of Computer Sci-
ence (Proceedings of MFCS 2005, Gdansk, Poland, August 29–September 2, 2005), LNCS
3618, 801–812.

Appendix: proof of Theorem 1

This appendix presents a proof of Theorem 1, which states that every strongly non-left-
recursive Boolean grammar satisfies the well-formedness condition given in Definition 4.

Lemma 6. For every strongly non-left-recursive Boolean grammar G = (Σ, N, P, S), for every
solution (. . . , LC , . . .) of the associated system of language equations, and for every A ∈ N ,
if ε ∈ LA, then ε ∈ LG+(A).

Proof. For every A ∈ N , such that ε ∈ LA, there exists a rule

A→ α1& . . .&αm&¬β1& . . .&¬βn, (17)

such that ε ∈ α1 . . . αm(. . . , LC , . . .). Let α1 . . . αm = B1 . . . B`, where ` > 0 and Bt ∈ N ; we
know that ε ∈ LBt for all t.

Let us construct a tree (possibly an infinite one), in which every node is labelled by a
nonterminal A, with ε ∈ LA, and its descendants are the nonterminals B1, . . . , B` chosen by
the above principle. The following properties of this tree can be established.

Claim I. If a subtree starting from a node labelled by A is finite, then ε ∈ LG+(A).

Induction on the height of this subtree. If its height is 0, then the rule (17) is of the form
A→ ε& . . .&ε&¬β1& . . .&¬βn, hence A→ ε& . . .&ε ∈ P+ and therefore ε ∈ LG+(A).

If the rule for A is (17), with α1 . . . αm = B1 . . . B`, then, by construction, the descendants
of this node are labelled B1, . . . , B` and each of them starts a finite subtree. By the induction
hypothesis ` times, ε ∈ LG+(Bt) for all t. Then the rule A→ α1& . . .&αm ∈ P+ can be used
to derive ε from A, which completes the proof of the claim.

Claim II. If the tree contains an infinite path, then G is not strongly non-left-recursive.

Consider the leftmost infinite path. For each node on this path, labelled Ai, the corre-
sponding rule (17) contains a positive conjunct Ai → E1 . . . E`Bηi, where B is the next node
on this path. Other paths that continue to E1, . . . , E` (` > 0) are to the left of the path under
consideration, and hence they are finite by assumption. Therefore, by Claim I, ε ∈ LG+(Et)
for all t, and ε〈Ai〉ε θi〈Ai+1〉ηi, where θ = E1 . . . E` and ε ∈ LG+(θi).

Since the path is infinite, while there are finitely many nonterminals in the grammar, some
nodes have identical labels. Let Ai = Aj for i < j. Then ε〈Ai〉ε θi . . . θj−1〈Aj〉ηj−1 . . . ηi,

24

where ε ∈ LG+(θi . . . θj−1), which contradicts the definition of a strongly non-left-recursive
grammar, and Claim II follows.

Let us construct this kind of tree starting from any A0 ∈ N , such that ε ∈ LA0 . It follows
from Claim II that the tree is finite. Indeed, if it is infinite, then it contains an infinite path
by König’s lemma, and hence, by Claim II, we come to a contradiction with the assumption
that the grammar is strongly non-left-recursive. Now the finiteness of the tree, by Claim I,
implies that ε ∈ LG+(A0).

The proof of the theorem can now be given.

Proof of Theorem 1. Let G = (Σ, N, P, S) be a Boolean grammar and suppose that the as-
sociated system of language equations (3) has two or more solutions modulo some finite
substring-closed language. Let M be the largest modulus for which there is a unique solution
(. . . , LC , . . .), and let (. . . , L′C , . . .) and (. . . , L′′C , . . .) be distinct solutions modulo M ∪ {w},
for some w /∈M , such that all proper substrings of w are in M .

Consider any A ∈ N , such that L′A 6= L′′A (at least one such nonterminal exists, because
these two solutions modulo M∪{w} are different). Since these languages coincide modulo M ,
the string w is in the symmetric difference of L′A and L′′A. Suppose, without loss of generality,
that w ∈ L′A and w /∈ L′′A. Then there exists a rule

A→ α1& . . .&αm&¬β1& . . .&¬βn,

such that w ∈ αi(. . . , L′C , . . .) for all i and w /∈ βj(. . . , L′C , . . .) for all j. On the other
hand, since w /∈ L′′A, we know that w /∈ αi(. . . , L′C , . . .) for some i or w ∈ βj(. . . , L′C , . . .) for
some j. In either case we obtain that w is in the symmetric difference of γ(. . . , L′C , . . .) and
γ(. . . , L′′C , . . .), for some A→ ±γ ∈ conjuncts(P).

Let γ = s1 . . . s`, where st ∈ Σ ∪ N , and let us again assume without loss of generality
that w ∈ s1 . . . s`(. . . , L′C , . . .) and w /∈ s1 . . . s`(. . . , L′′C , . . .). Then there is a factorization
w = u1 . . . u`, such that ut ∈ st(. . . , L′C , . . .) for all t. Let us prove that there exists such t0
(1 6 t0 6 `) that ut0 = w.

Suppose the contrary, that each ut is a proper substring of w. Then they are all in M ,
and subsequently ui ∈ st(. . . , L′C , . . .) implies ui ∈ st(. . . , L′′C , . . .) for each st. This would
mean w ∈ γ(. . . , L′′C , . . .), which contradicts the assumption.

It has thus been proved that ut0 = w for some t0. Then ut = ε for all t 6= t0, and hence
ε ∈ st(. . . , L′C , . . .). By Lemma 6 it follows that ε ∈ G+(st) for all t 6= t0. On the other hand,
ut0 = w implies st0 ∈ N (otherwise ut0 = w ∈ Σ and w ∈ st0(. . . , L

′′
C , . . .), contradicting the

assumption).
Altogether it has been proved that there exists a nonterminal B = st0 , such that ε〈A〉ε

η〈B〉θ, where ε ∈ LG+(η), ε ∈ LG+(θ), and w is in the symmetric difference of L′B and L′′B.
The latter fact allows one to apply the same argument for B, and so on, obtaining a sequence
of nonterminals A = A0, A1, . . . , An, . . ., where

ε〈An〉ε ηn〈An+1〉θn, (18)

ε ∈ LG+(ηn) and ε ∈ LG+(θn) for every n > 0. Since there are finitely many nonterminals in
the grammar, there exist m and m′, with m < m′, such that Am = Am′ . Combining (18) for

25

n = m. . . ,m′ − 1 yields ε〈Am〉ε ηm . . . ηm′−1〈Am〉θm′−1 . . . θm. This is a left recursion in
the grammar, see Definition 7, which contradicts the assumption of this theorem.

26

	Introduction
	Boolean grammars and their semantics
	Strongly non-left-recursive grammars
	The LL(k) table and its construction
	Recursive descent parser
	Proof of the algorithm's correctness
	Complexity of the algorithm
	Constructing parse trees
	Conclusion

