
tphols-2011

By xingyuan

February 16, 2011

Contents

1 Folds for Sets 1

2 A general “while” combinator 1
2.1 Partial version . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Total version . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Preliminary definitions 4

4 A modified version of Arden’s lemma 7

5 Regular Expressions 9

6 Direction finite partition ⇒ regular language 10

7 Equational systems 10

8 Arden Operation on equations 11

9 Substitution Operation on equations 12

10 While-combinator 12

11 Invariants 13
11.1 The proof of this direction . . . . . . . . . . . . . . . . . . . . 14

11.1.1 Basic properties . . . . . . . . . . . . . . . . . . . . . 14
11.1.2 Intialization . . . . . . . . . . . . . . . . . . . . . . . . 16
11.1.3 Interation step . . . . . . . . . . . . . . . . . . . . . . 18
11.1.4 Conclusion of the proof . . . . . . . . . . . . . . . . . 25

12 List prefixes and postfixes 27
12.1 Prefix order on lists . . . . . . . . . . . . . . . . . . . . . . . 27
12.2 Basic properties of prefixes . . . . . . . . . . . . . . . . . . . 28
12.3 Parallel lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
12.4 Postfix order on lists . . . . . . . . . . . . . . . . . . . . . . . 32

1



13 A small theory of prefix subtraction 35

14 Direction regular language ⇒finite partition 36
14.1 The scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
14.2 The proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

14.2.1 The base case for NULL . . . . . . . . . . . . . . . . . 41
14.2.2 The base case for EMPTY . . . . . . . . . . . . . . . 42
14.2.3 The base case for CHAR . . . . . . . . . . . . . . . . 42
14.2.4 The inductive case for ALT . . . . . . . . . . . . . . . 43
14.2.5 The inductive case for SEQ . . . . . . . . . . . . . . . 43
14.2.6 The inductive case for STAR . . . . . . . . . . . . . . 47
14.2.7 The conclusion . . . . . . . . . . . . . . . . . . . . . . 54

15 Preliminaries 54
15.1 Finite automata and Myhill-Nerode theorem . . . . . . . . . 54
15.2 The objective and the underlying intuition . . . . . . . . . . . 56

16 Direction regular language ⇒finite partition 56

17 Direction finite partition ⇒ regular language 59
theory Folds
imports Main
begin

1 Folds for Sets

To obtain equational system out of finite set of equivalence classes, a fold
operation on finite sets folds is defined. The use of SOME makes folds more
robust than the fold in the Isabelle library. The expression folds f makes
sense when f is not associative and commutitive, while fold f does not.

definition
folds :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ′b ⇒ ′a set ⇒ ′b

where
folds f z S ≡ SOME x . fold-graph f z S x

end

2 A general “while” combinator

theory While-Combinator
imports Main
begin

2



2.1 Partial version

definition while-option :: ( ′a ⇒ bool) ⇒ ( ′a ⇒ ′a) ⇒ ′a ⇒ ′a option where
while-option b c s = (if (∃ k . ∼ b ((c ˆˆ k) s))

then Some ((c ˆˆ (LEAST k . ∼ b ((c ˆˆ k) s))) s)
else None)

theorem while-option-unfold [code]:
while-option b c s = (if b s then while-option b c (c s) else Some s)
proof cases

assume b s
show ?thesis
proof (cases ∃ k . ∼ b ((c ˆˆ k) s))

case True
then obtain k where 1 : ∼ b ((c ˆˆ k) s) ..
with 〈b s〉 obtain l where k = Suc l by (cases k) auto
with 1 have ∼ b ((c ˆˆ l) (c s)) by (auto simp: funpow-swap1 )
then have 2 : ∃ l . ∼ b ((c ˆˆ l) (c s)) ..
from 1
have (LEAST k . ∼ b ((c ˆˆ k) s)) = Suc (LEAST l . ∼ b ((c ˆˆ Suc l) s))

by (rule Least-Suc) (simp add : 〈b s〉)
also have ... = Suc (LEAST l . ∼ b ((c ˆˆ l) (c s)))

by (simp add : funpow-swap1 )
finally
show ?thesis

using True 2 〈b s〉 by (simp add : funpow-swap1 while-option-def )
next

case False
then have ∼ (∃ l . ∼ b ((c ˆˆ Suc l) s)) by blast
then have ∼ (∃ l . ∼ b ((c ˆˆ l) (c s)))

by (simp add : funpow-swap1 )
with False 〈b s〉 show ?thesis by (simp add : while-option-def )

qed
next

assume [simp]: ∼ b s
have least : (LEAST k . ∼ b ((c ˆˆ k) s)) = 0

by (rule Least-equality) auto
moreover
have ∃ k . ∼ b ((c ˆˆ k) s) by (rule exI [of - 0 ::nat ]) auto
ultimately show ?thesis unfolding while-option-def by auto

qed

lemma while-option-stop:
assumes while-option b c s = Some t
shows ∼ b t
proof −

from assms have ex : ∃ k . ∼ b ((c ˆˆ k) s)
and t : t = (c ˆˆ (LEAST k . ∼ b ((c ˆˆ k) s))) s

by (auto simp: while-option-def split : if-splits)
from LeastI-ex [OF ex ]

3



show ∼ b t unfolding t .
qed

theorem while-option-rule:
assumes step: !!s. P s ==> b s ==> P (c s)
and result : while-option b c s = Some t
and init : P s
shows P t
proof −

def k == LEAST k . ∼ b ((c ˆˆ k) s)
from assms have t : t = (c ˆˆ k) s

by (simp add : while-option-def k-def split : if-splits)
have 1 : ALL i<k . b ((c ˆˆ i) s)

by (auto simp: k-def dest : not-less-Least)

{ fix i assume i <= k then have P ((c ˆˆ i) s)
by (induct i) (auto simp: init step 1 ) }

thus P t by (auto simp: t)
qed

2.2 Total version

definition while :: ( ′a ⇒ bool) ⇒ ( ′a ⇒ ′a) ⇒ ′a ⇒ ′a
where while b c s = the (while-option b c s)

lemma while-unfold :
while b c s = (if b s then while b c (c s) else s)

unfolding while-def by (subst while-option-unfold) simp

lemma def-while-unfold :
assumes fdef : f == while test do
shows f x = (if test x then f (do x ) else x )

unfolding fdef by (fact while-unfold)

The proof rule for while, where P is the invariant.

theorem while-rule-lemma:
assumes invariant : !!s. P s ==> b s ==> P (c s)

and terminate: !!s. P s ==> ¬ b s ==> Q s
and wf : wf {(t , s). P s ∧ b s ∧ t = c s}

shows P s =⇒ Q (while b c s)
using wf
apply (induct s)
apply simp
apply (subst while-unfold)
apply (simp add : invariant terminate)
done

theorem while-rule:
[| P s;

4



!!s. [| P s; b s |] ==> P (c s);
!!s. [| P s; ¬ b s |] ==> Q s;
wf r ;
!!s. [| P s; b s |] ==> (c s, s) ∈ r |] ==>

Q (while b c s)
apply (rule while-rule-lemma)

prefer 4 apply assumption
apply blast

apply blast
apply (erule wf-subset)
apply blast
done

end

theory Myhill-1
imports Main Folds While-Combinator
begin

3 Preliminary definitions

types lang = string set

Sequential composition of two languages

definition
Seq :: lang ⇒ lang ⇒ lang (infixr ;; 100 )

where
A ;; B = {s1 @ s2 | s1 s2. s1 ∈ A ∧ s2 ∈ B}

Some properties of operator ;;.

lemma seq-add-left :
assumes a: A = B
shows C ;; A = C ;; B

using a by simp

lemma seq-union-distrib-right :
shows (A ∪ B) ;; C = (A ;; C ) ∪ (B ;; C )

unfolding Seq-def by auto

lemma seq-union-distrib-left :
shows C ;; (A ∪ B) = (C ;; A) ∪ (C ;; B)

unfolding Seq-def by auto

lemma seq-intro:
assumes a: x ∈ A y ∈ B
shows x @ y ∈ A ;; B

using a by (auto simp: Seq-def )

5



lemma seq-assoc:
shows (A ;; B) ;; C = A ;; (B ;; C )

unfolding Seq-def
apply(auto)
apply(blast)
by (metis append-assoc)

lemma seq-empty [simp]:
shows A ;; {[]} = A
and {[]} ;; A = A

by (simp-all add : Seq-def )

Power and Star of a language

fun
pow :: lang ⇒ nat ⇒ lang (infixl ↑ 100 )

where
A ↑ 0 = {[]}
| A ↑ (Suc n) = A ;; (A ↑ n)

definition
Star :: lang ⇒ lang (-? [101 ] 102 )

where
A? ≡ (

⋃
n. A ↑ n)

lemma star-start [intro]:
shows [] ∈ A?

proof −
have [] ∈ A ↑ 0 by auto
then show [] ∈ A? unfolding Star-def by blast

qed

lemma star-step [intro]:
assumes a: s1 ∈ A
and b: s2 ∈ A?
shows s1 @ s2 ∈ A?

proof −
from b obtain n where s2 ∈ A ↑ n unfolding Star-def by auto
then have s1 @ s2 ∈ A ↑ (Suc n) using a by (auto simp add : Seq-def )
then show s1 @ s2 ∈ A? unfolding Star-def by blast

qed

lemma star-induct [consumes 1 , case-names start step]:
assumes a: x ∈ A?
and b: P []
and c:

∧
s1 s2 . [[s1 ∈ A; s2 ∈ A?; P s2 ]] =⇒ P (s1 @ s2 )

shows P x
proof −

6



from a obtain n where x ∈ A ↑ n unfolding Star-def by auto
then show P x

by (induct n arbitrary : x )
(auto intro!: b c simp add : Seq-def Star-def )

qed

lemma star-intro1 :
assumes a: x ∈ A?
and b: y ∈ A?
shows x @ y ∈ A?

using a b
by (induct rule: star-induct) (auto)

lemma star-intro2 :
assumes a: y ∈ A
shows y ∈ A?

proof −
from a have y @ [] ∈ A? by blast
then show y ∈ A? by simp

qed

lemma star-intro3 :
assumes a: x ∈ A?
and b: y ∈ A
shows x @ y ∈ A?

using a b by (blast intro: star-intro1 star-intro2 )

lemma star-cases:
shows A? = {[]} ∪ A ;; A?

proof
{ fix x

have x ∈ A? =⇒ x ∈ {[]} ∪ A ;; A?
unfolding Seq-def

by (induct rule: star-induct) (auto)
}
then show A? ⊆ {[]} ∪ A ;; A? by auto

next
show {[]} ∪ A ;; A? ⊆ A?

unfolding Seq-def by auto
qed

lemma star-decom:
assumes a: x ∈ A? x 6= []
shows ∃ a b. x = a @ b ∧ a 6= [] ∧ a ∈ A ∧ b ∈ A?

using a
by (induct rule: star-induct) (blast)+

lemma
shows seq-Union-left : B ;; (

⋃
n. A ↑ n) = (

⋃
n. B ;; (A ↑ n))

7



and seq-Union-right : (
⋃

n. A ↑ n) ;; B = (
⋃

n. (A ↑ n) ;; B)
unfolding Seq-def by auto

lemma seq-pow-comm:
shows A ;; (A ↑ n) = (A ↑ n) ;; A

by (induct n) (simp-all add : seq-assoc[symmetric])

lemma seq-star-comm:
shows A ;; A? = A? ;; A

unfolding Star-def seq-Union-left
unfolding seq-pow-comm seq-Union-right
by simp

Two lemmas about the length of strings in A ↑ n

lemma pow-length:
assumes a: [] /∈ A
and b: s ∈ A ↑ Suc n
shows n < length s

using b
proof (induct n arbitrary : s)

case 0
have s ∈ A ↑ Suc 0 by fact
with a have s 6= [] by auto
then show 0 < length s by auto

next
case (Suc n)
have ih:

∧
s. s ∈ A ↑ Suc n =⇒ n < length s by fact

have s ∈ A ↑ Suc (Suc n) by fact
then obtain s1 s2 where eq : s = s1 @ s2 and ∗: s1 ∈ A and ∗∗: s2 ∈ A ↑

Suc n
by (auto simp add : Seq-def )

from ih ∗∗ have n < length s2 by simp
moreover have 0 < length s1 using ∗ a by auto
ultimately show Suc n < length s unfolding eq

by (simp only : length-append)
qed

lemma seq-pow-length:
assumes a: [] /∈ A
and b: s ∈ B ;; (A ↑ Suc n)
shows n < length s

proof −
from b obtain s1 s2 where eq : s = s1 @ s2 and ∗: s2 ∈ A ↑ Suc n

unfolding Seq-def by auto
from ∗ have n < length s2 by (rule pow-length[OF a])
then show n < length s using eq by simp

qed

8



4 A modified version of Arden’s lemma

A helper lemma for Arden

lemma arden-helper :
assumes eq : X = X ;; A ∪ B
shows X = X ;; (A ↑ Suc n) ∪ (

⋃
m∈{0 ..n}. B ;; (A ↑ m))

proof (induct n)
case 0
show X = X ;; (A ↑ Suc 0 ) ∪ (

⋃
(m::nat)∈{0 ..0}. B ;; (A ↑ m))

using eq by simp
next

case (Suc n)
have ih: X = X ;; (A ↑ Suc n) ∪ (

⋃
m∈{0 ..n}. B ;; (A ↑ m)) by fact

also have . . . = (X ;; A ∪ B) ;; (A ↑ Suc n) ∪ (
⋃

m∈{0 ..n}. B ;; (A ↑ m))
using eq by simp

also have . . . = X ;; (A ↑ Suc (Suc n)) ∪ (B ;; (A ↑ Suc n)) ∪ (
⋃

m∈{0 ..n}.
B ;; (A ↑ m))

by (simp add : seq-union-distrib-right seq-assoc)
also have . . . = X ;; (A ↑ Suc (Suc n)) ∪ (

⋃
m∈{0 ..Suc n}. B ;; (A ↑ m))

by (auto simp add : le-Suc-eq)
finally show X = X ;; (A ↑ Suc (Suc n)) ∪ (

⋃
m∈{0 ..Suc n}. B ;; (A ↑ m)) .

qed

theorem arden:
assumes nemp: [] /∈ A
shows X = X ;; A ∪ B ←→ X = B ;; A?

proof
assume eq : X = B ;; A?
have A? = {[]} ∪ A? ;; A

unfolding seq-star-comm[symmetric]
by (rule star-cases)

then have B ;; A? = B ;; ({[]} ∪ A? ;; A)
by (rule seq-add-left)

also have . . . = B ∪ B ;; (A? ;; A)
unfolding seq-union-distrib-left by simp

also have . . . = B ∪ (B ;; A?) ;; A
by (simp only : seq-assoc)

finally show X = X ;; A ∪ B
using eq by blast

next
assume eq : X = X ;; A ∪ B
{ fix n::nat

have B ;; (A ↑ n) ⊆ X using arden-helper [OF eq , of n] by auto }
then have B ;; A? ⊆ X

unfolding Seq-def Star-def UNION-def by auto
moreover
{ fix s::string

obtain k where k = length s by auto
then have not-in: s /∈ X ;; (A ↑ Suc k)

9



using seq-pow-length[OF nemp] by blast
assume s ∈ X
then have s ∈ X ;; (A ↑ Suc k) ∪ (

⋃
m∈{0 ..k}. B ;; (A ↑ m))

using arden-helper [OF eq , of k ] by auto
then have s ∈ (

⋃
m∈{0 ..k}. B ;; (A ↑ m)) using not-in by auto

moreover
have (

⋃
m∈{0 ..k}. B ;; (A ↑ m)) ⊆ (

⋃
n. B ;; (A ↑ n)) by auto

ultimately
have s ∈ B ;; A?

unfolding seq-Union-left Star-def by auto }
then have X ⊆ B ;; A? by auto
ultimately
show X = B ;; A? by simp

qed

5 Regular Expressions

datatype rexp =
NULL
| EMPTY
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp

The function L is overloaded, with the idea that L x evaluates to the lan-
guage represented by the object x.

consts L:: ′a ⇒ lang

overloading L-rexp ≡ L:: rexp ⇒ lang
begin
fun

L-rexp :: rexp ⇒ lang
where

L-rexp (NULL) = {}
| L-rexp (EMPTY ) = {[]}
| L-rexp (CHAR c) = {[c]}
| L-rexp (SEQ r1 r2 ) = (L-rexp r1 ) ;; (L-rexp r2 )
| L-rexp (ALT r1 r2 ) = (L-rexp r1 ) ∪ (L-rexp r2 )
| L-rexp (STAR r) = (L-rexp r)?

end

ALT-combination of a set or regulare expressions

abbreviation
Setalt (

⊎
- [1000 ] 999 )

where⊎
A ≡ folds ALT NULL A

For finite sets, Setalt is preserved under L.

10



lemma folds-alt-simp [simp]:
fixes rs::rexp set
assumes a: finite rs
shows L (

⊎
rs) =

⋃
(L ‘ rs)

unfolding folds-def
apply(rule set-eqI )
apply(rule someI2-ex )
apply(rule-tac finite-imp-fold-graph[OF a])
apply(erule fold-graph.induct)
apply(auto)
done

6 Direction finite partition ⇒ regular language

Just a technical lemma for collections and pairs

lemma Pair-Collect [simp]:
shows (x , y) ∈ {(x , y). P x y} ←→ P x y

by simp

Myhill-Nerode relation

definition
str-eq-rel :: lang ⇒ (string × string) set (≈- [100 ] 100 )

where
≈A ≡ {(x , y). (∀ z . x @ z ∈ A ←→ y @ z ∈ A)}

Among the equivalence clases of ≈A, the set finals A singles out those which
contains the strings from A.

definition
finals :: lang ⇒ lang set

where
finals A ≡ {≈A ‘‘ {s} | s . s ∈ A}

lemma lang-is-union-of-finals:
shows A =

⋃
finals A

unfolding finals-def
unfolding Image-def
unfolding str-eq-rel-def
apply(auto)
apply(drule-tac x = [] in spec)
apply(auto)
done

lemma finals-in-partitions:
shows finals A ⊆ (UNIV // ≈A)

unfolding finals-def quotient-def
by auto

11



7 Equational systems

The two kinds of terms in the rhs of equations.

datatype rhs-item =
Lam rexp
| Trn lang rexp

overloading L-rhs-item ≡ L:: rhs-item ⇒ lang
begin

fun L-rhs-item:: rhs-item ⇒ lang
where

L-rhs-item (Lam r) = L r
| L-rhs-item (Trn X r) = X ;; L r

end

overloading L-rhs ≡ L:: rhs-item set ⇒ lang
begin

fun L-rhs:: rhs-item set ⇒ lang
where

L-rhs rhs =
⋃

(L ‘ rhs)
end

lemma L-rhs-union-distrib:
fixes A B ::rhs-item set
shows L A ∪ L B = L (A ∪ B)

by simp

Transitions between equivalence classes

definition
transition :: lang ⇒ char ⇒ lang ⇒ bool (- |=-⇒- [100 ,100 ,100 ] 100 )

where
Y |=c⇒ X ≡ Y ;; {[c]} ⊆ X

Initial equational system

definition
Init-rhs CS X ≡

if ([] ∈ X ) then
{Lam EMPTY } ∪ {Trn Y (CHAR c) | Y c. Y ∈ CS ∧ Y |=c⇒ X }

else
{Trn Y (CHAR c)| Y c. Y ∈ CS ∧ Y |=c⇒ X }

definition
Init CS ≡ {(X , Init-rhs CS X ) | X . X ∈ CS}

12



8 Arden Operation on equations

The function attach-rexp r item SEQ-composes r to the right of every rhs-
item.

fun
append-rexp :: rexp ⇒ rhs-item ⇒ rhs-item

where
append-rexp r (Lam rexp) = Lam (SEQ rexp r)
| append-rexp r (Trn X rexp) = Trn X (SEQ rexp r)

definition
append-rhs-rexp rhs rexp ≡ (append-rexp rexp) ‘ rhs

definition
Arden X rhs ≡

append-rhs-rexp (rhs − {Trn X r | r . Trn X r ∈ rhs}) (STAR (
⊎
{r . Trn X

r ∈ rhs}))

9 Substitution Operation on equations

Suppose and equation X = xrhs, Subst substitutes all occurences of X in
rhs by xrhs.

definition
Subst rhs X xrhs ≡

(rhs − {Trn X r | r . Trn X r ∈ rhs}) ∪ (append-rhs-rexp xrhs (
⊎
{r . Trn

X r ∈ rhs}))

eqs-subst ES X xrhs substitutes xrhs into every equation of the equational
system ES.

types esystem = (lang × rhs-item set) set

definition
Subst-all :: esystem ⇒ lang ⇒ rhs-item set ⇒ esystem

where
Subst-all ES X xrhs ≡ {(Y , Subst yrhs X xrhs) | Y yrhs. (Y , yrhs) ∈ ES}

The following term remove ES Y yrhs removes the equation Y = yrhs from
equational system ES by replacing all occurences of Y by its definition
(using eqs-subst). The Y -definition is made non-recursive using Arden’s
transformation arden-variate Y yrhs.

definition
Remove ES X xrhs ≡

Subst-all (ES − {(X , xrhs)}) X (Arden X xrhs)

13



10 While-combinator

The following term Iter X ES represents one iteration in the while loop. It
arbitrarily chooses a Y different from X to remove.

definition
Iter X ES ≡ (let (Y , yrhs) = SOME (Y , yrhs). (Y , yrhs) ∈ ES ∧ X 6= Y

in Remove ES Y yrhs)

lemma IterI2 :
assumes (Y , yrhs) ∈ ES
and X 6= Y
and

∧
Y yrhs. [[(Y , yrhs) ∈ ES ; X 6= Y ]] =⇒ Q (Remove ES Y yrhs)

shows Q (Iter X ES )
unfolding Iter-def using assms
by (rule-tac a=(Y , yrhs) in someI2 ) (auto)

The following term Reduce X ES repeatedly removes characteriztion equa-
tions for unknowns other than X until one is left.

abbreviation
Cond ES ≡ card ES 6= 1

definition
Solve X ES ≡ while Cond (Iter X ) ES

Since the while combinator from HOL library is used to implement Solve X
ES, the induction principle while-rule is used to proved the desired properties
of Solve X ES. For this purpose, an invariant predicate invariant is defined
in terms of a series of auxilliary predicates:

11 Invariants

Every variable is defined at most once in ES.

definition
distinct-equas ES ≡
∀ X rhs rhs ′. (X , rhs) ∈ ES ∧ (X , rhs ′) ∈ ES −→ rhs = rhs ′

Every equation in ES (represented by (X , rhs)) is valid, i.e. X = L rhs.

definition
sound-eqs ES ≡ ∀ (X , rhs) ∈ ES . X = L rhs

rhs-nonempty rhs requires regular expressions occuring in transitional items
of rhs do not contain empty string. This is necessary for the application of
Arden’s transformation to rhs.

definition
rhs-nonempty rhs ≡ (∀ Y r . Trn Y r ∈ rhs −→ [] /∈ L r)

14



The following ardenable ES requires that Arden’s transformation is appli-
cable to every equation of equational system ES.

definition
ardenable ES ≡ ∀ (X , rhs) ∈ ES . rhs-nonempty rhs

finite-rhs ES requires every equation in rhs be finite.

definition
finite-rhs ES ≡ ∀ (X , rhs) ∈ ES . finite rhs

lemma finite-rhs-def2 :
finite-rhs ES = (∀ X rhs. (X , rhs) ∈ ES −→ finite rhs)

unfolding finite-rhs-def by auto

classes-of rhs returns all variables (or equivalent classes) occuring in rhs.

definition
rhss rhs ≡ {X | X r . Trn X r ∈ rhs}

lefts-of ES returns all variables defined by an equational system ES.

definition
lhss ES ≡ {Y | Y yrhs. (Y , yrhs) ∈ ES}

The following valid-eqs ES requires that every variable occuring on the right
hand side of equations is already defined by some equation in ES.

definition
valid-eqs ES ≡ ∀ (X , rhs) ∈ ES . rhss rhs ⊆ lhss ES

The invariant invariant(ES ) is a conjunction of all the previously defined
constaints.

definition
invariant ES ≡ finite ES

∧ finite-rhs ES
∧ sound-eqs ES
∧ distinct-equas ES
∧ ardenable ES
∧ valid-eqs ES

lemma invariantI :
assumes sound-eqs ES finite ES distinct-equas ES ardenable ES

finite-rhs ES valid-eqs ES
shows invariant ES

using assms by (simp add : invariant-def )

11.1 The proof of this direction

11.1.1 Basic properties

The following are some basic properties of the above definitions.

15



lemma finite-Trn:
assumes fin: finite rhs
shows finite {r . Trn Y r ∈ rhs}

proof −
have finite {Trn Y r | Y r . Trn Y r ∈ rhs}

by (rule rev-finite-subset [OF fin]) (auto)
then have finite ((λ(Y , r). Trn Y r) ‘ {(Y , r) | Y r . Trn Y r ∈ rhs})

by (simp add : image-Collect)
then have finite {(Y , r) | Y r . Trn Y r ∈ rhs}

by (erule-tac finite-imageD) (simp add : inj-on-def )
then show finite {r . Trn Y r ∈ rhs}

by (erule-tac f =snd in finite-surj ) (auto simp add : image-def )
qed

lemma finite-Lam:
assumes fin: finite rhs
shows finite {r . Lam r ∈ rhs}

proof −
have finite {Lam r | r . Lam r ∈ rhs}

by (rule rev-finite-subset [OF fin]) (auto)
then show finite {r . Lam r ∈ rhs}

apply(simp add : image-Collect [symmetric])
apply(erule finite-imageD)
apply(auto simp add : inj-on-def )
done

qed

lemma rexp-of-empty :
assumes finite: finite rhs
and nonempty : rhs-nonempty rhs
shows [] /∈ L (

⊎
{r . Trn X r ∈ rhs})

using finite nonempty rhs-nonempty-def
using finite-Trn[OF finite]
by auto

lemma lang-of-rexp-of :
assumes finite:finite rhs
shows L ({Trn X r | r . Trn X r ∈ rhs}) = X ;; (L (

⊎
{r . Trn X r ∈ rhs}))

proof −
have finite {r . Trn X r ∈ rhs}

by (rule finite-Trn[OF finite])
then show ?thesis

apply(auto simp add : Seq-def )
apply(rule-tac x = s1 in exI , rule-tac x = s2 in exI )
apply(auto)
apply(rule-tac x= Trn X xa in exI )
apply(auto simp add : Seq-def )
done

qed

16



lemma lang-of-append :
L (append-rexp r rhs-item) = L rhs-item ;; L r

by (induct rule: append-rexp.induct)
(auto simp add : seq-assoc)

lemma lang-of-append-rhs:
L (append-rhs-rexp rhs r) = L rhs ;; L r

unfolding append-rhs-rexp-def
by (auto simp add : Seq-def lang-of-append)

lemma rhss-union-distrib:
shows rhss (A ∪ B) = rhss A ∪ rhss B

by (auto simp add : rhss-def )

lemma lhss-union-distrib:
shows lhss (A ∪ B) = lhss A ∪ lhss B

by (auto simp add : lhss-def )

11.1.2 Intialization

The following several lemmas until init-ES-satisfy-invariant shows that the
initial equational system satisfies invariant invariant.

lemma defined-by-str :
assumes s ∈ X X ∈ UNIV // ≈A
shows X = ≈A ‘‘ {s}

using assms
unfolding quotient-def Image-def str-eq-rel-def
by auto

lemma every-eqclass-has-transition:
assumes has-str : s @ [c] ∈ X
and in-CS : X ∈ UNIV // ≈A
obtains Y where Y ∈ UNIV // ≈A and Y ;; {[c]} ⊆ X and s ∈ Y

proof −
def Y ≡ ≈A ‘‘ {s}
have Y ∈ UNIV // ≈A

unfolding Y-def quotient-def by auto
moreover
have X = ≈A ‘‘ {s @ [c]}

using has-str in-CS defined-by-str by blast
then have Y ;; {[c]} ⊆ X

unfolding Y-def Image-def Seq-def
unfolding str-eq-rel-def
by clarsimp

moreover
have s ∈ Y unfolding Y-def

unfolding Image-def str-eq-rel-def by simp
ultimately show thesis using that by blast

17



qed

lemma l-eq-r-in-eqs:
assumes X-in-eqs: (X , rhs) ∈ Init (UNIV // ≈A)
shows X = L rhs

proof
show X ⊆ L rhs
proof

fix x
assume (1 ): x ∈ X
show x ∈ L rhs
proof (cases x = [])

assume empty : x = []
thus ?thesis using X-in-eqs (1 )

by (auto simp: Init-def Init-rhs-def )
next

assume not-empty : x 6= []
then obtain clist c where decom: x = clist @ [c]

by (case-tac x rule:rev-cases, auto)
have X ∈ UNIV // ≈A using X-in-eqs by (auto simp:Init-def )
then obtain Y

where Y ∈ UNIV // ≈A
and Y ;; {[c]} ⊆ X
and clist ∈ Y
using decom (1 ) every-eqclass-has-transition by blast

hence
x ∈ L {Trn Y (CHAR c)| Y c. Y ∈ UNIV // ≈A ∧ Y |=c⇒ X }
unfolding transition-def
using (1 ) decom
by (simp, rule-tac x = Trn Y (CHAR c) in exI , simp add :Seq-def )

thus ?thesis using X-in-eqs (1 )
by (simp add : Init-def Init-rhs-def )

qed
qed

next
show L rhs ⊆ X using X-in-eqs

by (auto simp:Init-def Init-rhs-def transition-def )
qed

lemma test :
assumes X-in-eqs: (X , rhs) ∈ Init (UNIV // ≈A)
shows X =

⋃
(L ‘ rhs)

using assms
by (drule-tac l-eq-r-in-eqs) (simp)

lemma finite-Init-rhs:
assumes finite: finite CS
shows finite (Init-rhs CS X )

18



proof−
def S ≡ {(Y , c)| Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X }
def h ≡ λ (Y , c). Trn Y (CHAR c)
have finite (CS × (UNIV ::char set)) using finite by auto
then have finite S using S-def

by (rule-tac B = CS × UNIV in finite-subset) (auto)
moreover have {Trn Y (CHAR c) |Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X } = h ‘ S

unfolding S-def h-def image-def by auto
ultimately
have finite {Trn Y (CHAR c) |Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X } by auto
then show finite (Init-rhs CS X ) unfolding Init-rhs-def transition-def by simp

qed

lemma Init-ES-satisfies-invariant :
assumes finite-CS : finite (UNIV // ≈A)
shows invariant (Init (UNIV // ≈A))

proof (rule invariantI )
show sound-eqs (Init (UNIV // ≈A))

unfolding sound-eqs-def
using l-eq-r-in-eqs by auto

show finite (Init (UNIV // ≈A)) using finite-CS
unfolding Init-def by simp

show distinct-equas (Init (UNIV // ≈A))
unfolding distinct-equas-def Init-def by simp

show ardenable (Init (UNIV // ≈A))
unfolding ardenable-def Init-def Init-rhs-def rhs-nonempty-def

by auto
show finite-rhs (Init (UNIV // ≈A))

using finite-Init-rhs[OF finite-CS ]
unfolding finite-rhs-def Init-def by auto

show valid-eqs (Init (UNIV // ≈A))
unfolding valid-eqs-def Init-def Init-rhs-def rhss-def lhss-def
by auto

qed

11.1.3 Interation step

From this point until iteration-step, the correctness of the iteration step Iter
X ES is proved.

lemma Arden-keeps-eq :
assumes l-eq-r : X = L rhs
and not-empty : [] /∈ L (

⊎
{r . Trn X r ∈ rhs})

and finite: finite rhs
shows X = L (Arden X rhs)

proof −
def A ≡ L (

⊎
{r . Trn X r ∈ rhs})

def b ≡ rhs − {Trn X r | r . Trn X r ∈ rhs}
def B ≡ L b
have X = B ;; A?

19



proof−
have L rhs = L({Trn X r | r . Trn X r ∈ rhs} ∪ b) by (auto simp: b-def )
also have . . . = X ;; A ∪ B

unfolding L-rhs-union-distrib[symmetric]
by (simp only : lang-of-rexp-of finite B-def A-def )

finally show ?thesis
using l-eq-r not-empty
apply(rule-tac arden[THEN iffD1 ])
apply(simp add : A-def )
apply(simp)
done

qed
moreover have L (Arden X rhs) = B ;; A?

by (simp only :Arden-def L-rhs-union-distrib lang-of-append-rhs
B-def A-def b-def L-rexp.simps seq-union-distrib-left)

ultimately show ?thesis by simp
qed

lemma append-keeps-finite:
finite rhs =⇒ finite (append-rhs-rexp rhs r)

by (auto simp:append-rhs-rexp-def )

lemma Arden-keeps-finite:
finite rhs =⇒ finite (Arden X rhs)

by (auto simp:Arden-def append-keeps-finite)

lemma append-keeps-nonempty :
rhs-nonempty rhs =⇒ rhs-nonempty (append-rhs-rexp rhs r)

apply (auto simp:rhs-nonempty-def append-rhs-rexp-def )
by (case-tac x , auto simp:Seq-def )

lemma nonempty-set-sub:
rhs-nonempty rhs =⇒ rhs-nonempty (rhs − A)

by (auto simp:rhs-nonempty-def )

lemma nonempty-set-union:
[[rhs-nonempty rhs; rhs-nonempty rhs ′]] =⇒ rhs-nonempty (rhs ∪ rhs ′)

by (auto simp:rhs-nonempty-def )

lemma Arden-keeps-nonempty :
rhs-nonempty rhs =⇒ rhs-nonempty (Arden X rhs)

by (simp only :Arden-def append-keeps-nonempty nonempty-set-sub)

lemma Subst-keeps-nonempty :
[[rhs-nonempty rhs; rhs-nonempty xrhs]] =⇒ rhs-nonempty (Subst rhs X xrhs)

by (simp only :Subst-def append-keeps-nonempty nonempty-set-union nonempty-set-sub)

lemma Subst-keeps-eq :

20



assumes substor : X = L xrhs
and finite: finite rhs
shows L (Subst rhs X xrhs) = L rhs (is ?Left = ?Right)

proof−
def A ≡ L (rhs − {Trn X r | r . Trn X r ∈ rhs})
have ?Left = A ∪ L (append-rhs-rexp xrhs (

⊎
{r . Trn X r ∈ rhs}))

unfolding Subst-def
unfolding L-rhs-union-distrib[symmetric]
by (simp add : A-def )

moreover have ?Right = A ∪ L ({Trn X r | r . Trn X r ∈ rhs})
proof−

have rhs = (rhs − {Trn X r | r . Trn X r ∈ rhs}) ∪ ({Trn X r | r . Trn X r
∈ rhs}) by auto

thus ?thesis
unfolding A-def
unfolding L-rhs-union-distrib
by simp

qed
moreover have L (append-rhs-rexp xrhs (

⊎
{r . Trn X r ∈ rhs})) = L ({Trn X

r | r . Trn X r ∈ rhs})
using finite substor by (simp only :lang-of-append-rhs lang-of-rexp-of )

ultimately show ?thesis by simp
qed

lemma Subst-keeps-finite-rhs:
[[finite rhs; finite yrhs]] =⇒ finite (Subst rhs Y yrhs)

by (auto simp:Subst-def append-keeps-finite)

lemma Subst-all-keeps-finite:
assumes finite:finite (ES :: (string set × rhs-item set) set)
shows finite (Subst-all ES Y yrhs)

proof −
have finite {(Ya, Subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) ∈ ES}

(is finite ?A)
proof−

def eqns ′ ≡ {(Ya::lang , yrhsa) | Ya yrhsa. (Ya, yrhsa) ∈ ES}
def h ≡ λ(Ya::lang , yrhsa). (Ya, Subst yrhsa Y yrhs)
have finite (h ‘ eqns ′) using finite h-def eqns ′-def by auto
moreover have ?A = h ‘ eqns ′ by (auto simp:h-def eqns ′-def )
ultimately show ?thesis by auto

qed
thus ?thesis by (simp add :Subst-all-def )

qed

lemma Subst-all-keeps-finite-rhs:
[[finite-rhs ES ; finite yrhs]] =⇒ finite-rhs (Subst-all ES Y yrhs)

by (auto intro:Subst-keeps-finite-rhs simp add :Subst-all-def finite-rhs-def )

lemma append-rhs-keeps-cls:

21



rhss (append-rhs-rexp rhs r) = rhss rhs
apply (auto simp:rhss-def append-rhs-rexp-def )
apply (case-tac xa, auto simp:image-def )
by (rule-tac x = SEQ ra r in exI , rule-tac x = Trn x ra in bexI , simp+)

lemma Arden-removes-cl :
rhss (Arden Y yrhs) = rhss yrhs − {Y }

apply (simp add :Arden-def append-rhs-keeps-cls)
by (auto simp:rhss-def )

lemma lhss-keeps-cls:
lhss (Subst-all ES Y yrhs) = lhss ES

by (auto simp:lhss-def Subst-all-def )

lemma Subst-updates-cls:
X /∈ rhss xrhs =⇒

rhss (Subst rhs X xrhs) = rhss rhs ∪ rhss xrhs − {X }
apply (simp only :Subst-def append-rhs-keeps-cls rhss-union-distrib)
by (auto simp:rhss-def )

lemma Subst-all-keeps-valid-eqs:
assumes sc: valid-eqs (ES ∪ {(Y , yrhs)}) (is valid-eqs ?A)
shows valid-eqs (Subst-all ES Y (Arden Y yrhs))

(is valid-eqs ?B)
proof−
{ fix X xrhs ′

assume (X , xrhs ′) ∈ ?B
then obtain xrhs

where xrhs-xrhs ′: xrhs ′ = Subst xrhs Y (Arden Y yrhs)
and X-in: (X , xrhs) ∈ ES by (simp add :Subst-all-def , blast)

have rhss xrhs ′ ⊆ lhss ?B
proof−

have lhss ?B = lhss ES by (auto simp add :lhss-def Subst-all-def )
moreover have rhss xrhs ′ ⊆ lhss ES
proof−

have rhss xrhs ′ ⊆
rhss xrhs ∪ rhss (Arden Y yrhs) − {Y }

proof−
have Y /∈ rhss (Arden Y yrhs)

using Arden-removes-cl by simp
thus ?thesis using xrhs-xrhs ′ by (auto simp:Subst-updates-cls)

qed
moreover have rhss xrhs ⊆ lhss ES ∪ {Y } using X-in sc

apply (simp only :valid-eqs-def lhss-union-distrib)
by (drule-tac x = (X , xrhs) in bspec, auto simp:lhss-def )

moreover have rhss (Arden Y yrhs) ⊆ lhss ES ∪ {Y }
using sc
by (auto simp add :Arden-removes-cl valid-eqs-def lhss-def )

ultimately show ?thesis by auto

22



qed
ultimately show ?thesis by simp

qed
} thus ?thesis by (auto simp only :Subst-all-def valid-eqs-def )

qed

lemma Subst-all-satisfies-invariant :
assumes invariant-ES : invariant (ES ∪ {(Y , yrhs)})
shows invariant (Subst-all ES Y (Arden Y yrhs))

proof (rule invariantI )
have Y-eq-yrhs: Y = L yrhs

using invariant-ES by (simp only :invariant-def sound-eqs-def , blast)
have finite-yrhs: finite yrhs
using invariant-ES by (auto simp:invariant-def finite-rhs-def )

have nonempty-yrhs: rhs-nonempty yrhs
using invariant-ES by (auto simp:invariant-def ardenable-def )

show sound-eqs (Subst-all ES Y (Arden Y yrhs))
proof−

have Y = L (Arden Y yrhs)
using Y-eq-yrhs invariant-ES finite-yrhs
using finite-Trn[OF finite-yrhs]
apply(rule-tac Arden-keeps-eq)
apply(simp-all)
unfolding invariant-def ardenable-def rhs-nonempty-def
apply(auto)
done

thus ?thesis using invariant-ES
unfolding invariant-def finite-rhs-def2 sound-eqs-def Subst-all-def
by (auto simp add : Subst-keeps-eq simp del : L-rhs.simps)

qed
show finite (Subst-all ES Y (Arden Y yrhs))

using invariant-ES by (simp add :invariant-def Subst-all-keeps-finite)
show distinct-equas (Subst-all ES Y (Arden Y yrhs))

using invariant-ES
by (auto simp:distinct-equas-def Subst-all-def invariant-def )

show ardenable (Subst-all ES Y (Arden Y yrhs))
proof −
{ fix X rhs

assume (X , rhs) ∈ ES
hence rhs-nonempty rhs using prems invariant-ES

by (auto simp add :invariant-def ardenable-def )
with nonempty-yrhs
have rhs-nonempty (Subst rhs Y (Arden Y yrhs))

by (simp add :nonempty-yrhs
Subst-keeps-nonempty Arden-keeps-nonempty)

} thus ?thesis by (auto simp add :ardenable-def Subst-all-def )
qed
show finite-rhs (Subst-all ES Y (Arden Y yrhs))
proof−

23



have finite-rhs ES using invariant-ES
by (simp add :invariant-def finite-rhs-def )

moreover have finite (Arden Y yrhs)
proof −

have finite yrhs using invariant-ES
by (auto simp:invariant-def finite-rhs-def )

thus ?thesis using Arden-keeps-finite by simp
qed
ultimately show ?thesis

by (simp add :Subst-all-keeps-finite-rhs)
qed
show valid-eqs (Subst-all ES Y (Arden Y yrhs))

using invariant-ES Subst-all-keeps-valid-eqs by (simp add :invariant-def )
qed

lemma Remove-in-card-measure:
assumes finite: finite ES
and in-ES : (X , rhs) ∈ ES
shows (Remove ES X rhs, ES ) ∈ measure card

proof −
def f ≡ λ x . ((fst x )::lang , Subst (snd x ) X (Arden X rhs))
def ES ′ ≡ ES − {(X , rhs)}
have Subst-all ES ′ X (Arden X rhs) = f ‘ ES ′

apply (auto simp: Subst-all-def f-def image-def )
by (rule-tac x = (Y , yrhs) in bexI , simp+)

then have card (Subst-all ES ′ X (Arden X rhs)) ≤ card ES ′

unfolding ES ′-def using finite by (auto intro: card-image-le)
also have . . . < card ES unfolding ES ′-def

using in-ES finite by (rule-tac card-Diff1-less)
finally show (Remove ES X rhs, ES ) ∈ measure card

unfolding Remove-def ES ′-def by simp
qed

lemma Subst-all-cls-remains:
(X , xrhs) ∈ ES =⇒ ∃ xrhs ′. (X , xrhs ′) ∈ (Subst-all ES Y yrhs)

by (auto simp: Subst-all-def )

lemma card-noteq-1-has-more:
assumes card :Cond ES
and e-in: (X , xrhs) ∈ ES
and finite: finite ES
shows ∃ (Y , yrhs) ∈ ES . (X , xrhs) 6= (Y , yrhs)

proof−
have card ES > 1 using card e-in finite

by (cases card ES ) (auto)
then have card (ES − {(X , xrhs)}) > 0

using finite e-in by auto
then have (ES − {(X , xrhs)}) 6= {} using finite by (rule-tac notI , simp)

24



then show ∃ (Y , yrhs) ∈ ES . (X , xrhs) 6= (Y , yrhs)
by auto

qed

lemma iteration-step-measure:
assumes Inv-ES : invariant ES
and X-in-ES : (X , xrhs) ∈ ES
and Cnd : Cond ES
shows (Iter X ES , ES ) ∈ measure card

proof −
have fin: finite ES using Inv-ES unfolding invariant-def by simp
then obtain Y yrhs

where Y-in-ES : (Y , yrhs) ∈ ES and not-eq : (X , xrhs) 6= (Y , yrhs)
using Cnd X-in-ES by (drule-tac card-noteq-1-has-more) (auto)

then have (Y , yrhs) ∈ ES X 6= Y
using X-in-ES Inv-ES unfolding invariant-def distinct-equas-def
by auto

then show (Iter X ES , ES ) ∈ measure card
apply(rule IterI2 )
apply(rule Remove-in-card-measure)
apply(simp-all add : fin)
done

qed

lemma iteration-step-invariant :
assumes Inv-ES : invariant ES
and X-in-ES : (X , xrhs) ∈ ES
and Cnd : Cond ES
shows invariant (Iter X ES )

proof −
have finite-ES : finite ES using Inv-ES by (simp add : invariant-def )
then obtain Y yrhs

where Y-in-ES : (Y , yrhs) ∈ ES and not-eq : (X , xrhs) 6= (Y , yrhs)
using Cnd X-in-ES by (drule-tac card-noteq-1-has-more) (auto)

then have (Y , yrhs) ∈ ES X 6= Y
using X-in-ES Inv-ES unfolding invariant-def distinct-equas-def
by auto

then show invariant (Iter X ES )
proof(rule IterI2 )

fix Y yrhs
assume h: (Y , yrhs) ∈ ES X 6= Y
then have ES − {(Y , yrhs)} ∪ {(Y , yrhs)} = ES by auto
then show invariant (Remove ES Y yrhs) unfolding Remove-def

using Inv-ES by (rule-tac Subst-all-satisfies-invariant) (simp)
qed

qed

lemma iteration-step-ex :
assumes Inv-ES : invariant ES

25



and X-in-ES : (X , xrhs) ∈ ES
and Cnd : Cond ES
shows ∃ xrhs ′. (X , xrhs ′) ∈ (Iter X ES )

proof −
have finite-ES : finite ES using Inv-ES by (simp add : invariant-def )
then obtain Y yrhs

where Y-in-ES : (Y , yrhs) ∈ ES and not-eq : (X , xrhs) 6= (Y , yrhs)
using Cnd X-in-ES by (drule-tac card-noteq-1-has-more) (auto)

then have (Y , yrhs) ∈ ES X 6= Y
using X-in-ES Inv-ES unfolding invariant-def distinct-equas-def
by auto

then show ∃ xrhs ′. (X , xrhs ′) ∈ (Iter X ES )
apply(rule IterI2 )
unfolding Remove-def
apply(rule Subst-all-cls-remains)
using X-in-ES
apply(auto)
done

qed

11.1.4 Conclusion of the proof

lemma Solve:
assumes fin: finite (UNIV // ≈A)
and X-in: X ∈ (UNIV // ≈A)
shows ∃ rhs. Solve X (Init (UNIV // ≈A)) = {(X , rhs)} ∧ invariant {(X , rhs)}

proof −
def Inv ≡ λES . invariant ES ∧ (∃ rhs. (X , rhs) ∈ ES )
have Inv (Init (UNIV // ≈A)) unfolding Inv-def

using fin X-in by (simp add : Init-ES-satisfies-invariant , simp add : Init-def )
moreover
{ fix ES

assume inv : Inv ES and crd : Cond ES
then have Inv (Iter X ES )

unfolding Inv-def
by (auto simp add : iteration-step-invariant iteration-step-ex ) }

moreover
{ fix ES

assume Inv ES and ¬ Cond ES
then have ∃ rhs ′. ES = {(X , rhs ′)} ∧ invariant ES

unfolding Inv-def invariant-def
apply (auto, rule-tac x = rhs in exI )
apply (auto dest !: card-Suc-Diff1 simp: card-eq-0-iff )
done

then have ∃ rhs ′. ES = {(X , rhs ′)} ∧ invariant {(X , rhs ′)}
by auto }

moreover
have wf (measure card) by simp

moreover

26



{ fix ES
assume inv : Inv ES and crd : Cond ES
then have (Iter X ES , ES ) ∈ measure card

unfolding Inv-def
apply(clarify)
apply(rule-tac iteration-step-measure)
apply(auto)
done }

ultimately
show ∃ rhs. Solve X (Init (UNIV // ≈A)) = {(X , rhs)} ∧ invariant {(X , rhs)}

unfolding Solve-def by (rule while-rule)
qed

lemma every-eqcl-has-reg :
assumes finite-CS : finite (UNIV // ≈A)
and X-in-CS : X ∈ (UNIV // ≈A)
shows ∃ r ::rexp. X = L r

proof −
from finite-CS X-in-CS
obtain xrhs where Inv-ES : invariant {(X , xrhs)}

using Solve by metis

def A ≡ Arden X xrhs
have rhss xrhs ⊆ {X } using Inv-ES

unfolding valid-eqs-def invariant-def rhss-def lhss-def
by auto

then have rhss A = {} unfolding A-def
by (simp add : Arden-removes-cl)

then have eq : {Lam r | r . Lam r ∈ A} = A unfolding rhss-def
by (auto, case-tac x , auto)

have finite A using Inv-ES unfolding A-def invariant-def finite-rhs-def
using Arden-keeps-finite by auto

then have fin: finite {r . Lam r ∈ A} by (rule finite-Lam)

have X = L xrhs using Inv-ES unfolding invariant-def sound-eqs-def
by simp

then have X = L A using Inv-ES
unfolding A-def invariant-def ardenable-def finite-rhs-def rhs-nonempty-def
by (rule-tac Arden-keeps-eq) (simp-all add : finite-Trn)

then have X = L {Lam r | r . Lam r ∈ A} using eq by simp
then have X = L (

⊎
{r . Lam r ∈ A}) using fin by auto

then show ∃ r ::rexp. X = L r by blast
qed

lemma bchoice-finite-set :
assumes a: ∀ x ∈ S . ∃ y . x = f y
and b: finite S

27



shows ∃ ys. (
⋃

S ) =
⋃

(f ‘ ys) ∧ finite ys
using bchoice[OF a] b
apply(erule-tac exE )
apply(rule-tac x=fa ‘ S in exI )
apply(auto)
done

theorem Myhill-Nerode1 :
assumes finite-CS : finite (UNIV // ≈A)
shows ∃ r ::rexp. A = L r

proof −
have fin: finite (finals A)

using finals-in-partitions finite-CS by (rule finite-subset)
have ∀X ∈ (UNIV // ≈A). ∃ r ::rexp. X = L r

using finite-CS every-eqcl-has-reg by blast
then have a: ∀X ∈ finals A. ∃ r ::rexp. X = L r

using finals-in-partitions by auto
then obtain rs::rexp set where

⋃
(finals A) =

⋃
(L ‘ rs) finite rs

using fin by (auto dest : bchoice-finite-set)
then have A = L (

⊎
rs)

unfolding lang-is-union-of-finals[symmetric] by simp
then show ∃ r ::rexp. A = L r by blast

qed

end

12 List prefixes and postfixes

theory List-Prefix
imports List Main
begin

12.1 Prefix order on lists

instantiation list :: (type) {order , bot}
begin

definition
prefix-def : xs ≤ ys ←→ (∃ zs. ys = xs @ zs)

definition
strict-prefix-def : xs < ys ←→ xs ≤ ys ∧ xs 6= (ys:: ′a list)

definition
bot = []

instance proof
qed (auto simp add : prefix-def strict-prefix-def bot-list-def )

28



end

lemma prefixI [intro? ]: ys = xs @ zs ==> xs ≤ ys
unfolding prefix-def by blast

lemma prefixE [elim? ]:
assumes xs ≤ ys
obtains zs where ys = xs @ zs
using assms unfolding prefix-def by blast

lemma strict-prefixI ′ [intro? ]: ys = xs @ z # zs ==> xs < ys
unfolding strict-prefix-def prefix-def by blast

lemma strict-prefixE ′ [elim? ]:
assumes xs < ys
obtains z zs where ys = xs @ z # zs

proof −
from 〈xs < ys〉 obtain us where ys = xs @ us and xs 6= ys

unfolding strict-prefix-def prefix-def by blast
with that show ?thesis by (auto simp add : neq-Nil-conv)

qed

lemma strict-prefixI [intro? ]: xs ≤ ys ==> xs 6= ys ==> xs < (ys:: ′a list)
unfolding strict-prefix-def by blast

lemma strict-prefixE [elim? ]:
fixes xs ys :: ′a list
assumes xs < ys
obtains xs ≤ ys and xs 6= ys
using assms unfolding strict-prefix-def by blast

12.2 Basic properties of prefixes

theorem Nil-prefix [iff ]: [] ≤ xs
by (simp add : prefix-def )

theorem prefix-Nil [simp]: (xs ≤ []) = (xs = [])
by (induct xs) (simp-all add : prefix-def )

lemma prefix-snoc [simp]: (xs ≤ ys @ [y ]) = (xs = ys @ [y ] ∨ xs ≤ ys)
proof

assume xs ≤ ys @ [y ]
then obtain zs where zs: ys @ [y ] = xs @ zs ..
show xs = ys @ [y ] ∨ xs ≤ ys

by (metis append-Nil2 butlast-append butlast-snoc prefixI zs)
next

assume xs = ys @ [y ] ∨ xs ≤ ys
then show xs ≤ ys @ [y ]

29



by (metis order-eq-iff strict-prefixE strict-prefixI ′ xt1 (7 ))
qed

lemma Cons-prefix-Cons [simp]: (x # xs ≤ y # ys) = (x = y ∧ xs ≤ ys)
by (auto simp add : prefix-def )

lemma less-eq-list-code [code]:
([]:: ′a::{equal , ord} list) ≤ xs ←→ True
(x :: ′a::{equal , ord}) # xs ≤ [] ←→ False
(x :: ′a::{equal , ord}) # xs ≤ y # ys ←→ x = y ∧ xs ≤ ys
by simp-all

lemma same-prefix-prefix [simp]: (xs @ ys ≤ xs @ zs) = (ys ≤ zs)
by (induct xs) simp-all

lemma same-prefix-nil [iff ]: (xs @ ys ≤ xs) = (ys = [])
by (metis append-Nil2 append-self-conv order-eq-iff prefixI )

lemma prefix-prefix [simp]: xs ≤ ys ==> xs ≤ ys @ zs
by (metis order-le-less-trans prefixI strict-prefixE strict-prefixI )

lemma append-prefixD : xs @ ys ≤ zs =⇒ xs ≤ zs
by (auto simp add : prefix-def )

theorem prefix-Cons: (xs ≤ y # ys) = (xs = [] ∨ (∃ zs. xs = y # zs ∧ zs ≤ ys))
by (cases xs) (auto simp add : prefix-def )

theorem prefix-append :
(xs ≤ ys @ zs) = (xs ≤ ys ∨ (∃ us. xs = ys @ us ∧ us ≤ zs))
apply (induct zs rule: rev-induct)
apply force

apply (simp del : append-assoc add : append-assoc [symmetric])
apply (metis append-eq-appendI )
done

lemma append-one-prefix :
xs ≤ ys ==> length xs < length ys ==> xs @ [ys ! length xs] ≤ ys
unfolding prefix-def
by (metis Cons-eq-appendI append-eq-appendI append-eq-conv-conj

eq-Nil-appendI nth-drop ′)

theorem prefix-length-le: xs ≤ ys ==> length xs ≤ length ys
by (auto simp add : prefix-def )

lemma prefix-same-cases:
(xs1:: ′a list) ≤ ys =⇒ xs2 ≤ ys =⇒ xs1 ≤ xs2 ∨ xs2 ≤ xs1
unfolding prefix-def by (metis append-eq-append-conv2 )

lemma set-mono-prefix : xs ≤ ys =⇒ set xs ⊆ set ys

30



by (auto simp add : prefix-def )

lemma take-is-prefix : take n xs ≤ xs
unfolding prefix-def by (metis append-take-drop-id)

lemma map-prefixI : xs ≤ ys =⇒ map f xs ≤ map f ys
by (auto simp: prefix-def )

lemma prefix-length-less: xs < ys =⇒ length xs < length ys
by (auto simp: strict-prefix-def prefix-def )

lemma strict-prefix-simps [simp, code]:
xs < [] ←→ False
[] < x # xs ←→ True
x # xs < y # ys ←→ x = y ∧ xs < ys
by (simp-all add : strict-prefix-def cong : conj-cong)

lemma take-strict-prefix : xs < ys =⇒ take n xs < ys
apply (induct n arbitrary : xs ys)
apply (case-tac ys, simp-all)[1 ]

apply (metis order-less-trans strict-prefixI take-is-prefix )
done

lemma not-prefix-cases:
assumes pfx : ¬ ps ≤ ls
obtains

(c1 ) ps 6= [] and ls = []
| (c2 ) a as x xs where ps = a#as and ls = x#xs and x = a and ¬ as ≤ xs
| (c3 ) a as x xs where ps = a#as and ls = x#xs and x 6= a

proof (cases ps)
case Nil then show ?thesis using pfx by simp

next
case (Cons a as)
note c = 〈ps = a#as〉

show ?thesis
proof (cases ls)

case Nil then show ?thesis by (metis append-Nil2 pfx c1 same-prefix-nil)
next

case (Cons x xs)
show ?thesis
proof (cases x = a)

case True
have ¬ as ≤ xs using pfx c Cons True by simp
with c Cons True show ?thesis by (rule c2 )

next
case False
with c Cons show ?thesis by (rule c3 )

qed
qed

31



qed

lemma not-prefix-induct [consumes 1 , case-names Nil Neq Eq ]:
assumes np: ¬ ps ≤ ls

and base:
∧

x xs. P (x#xs) []
and r1 :

∧
x xs y ys. x 6= y =⇒ P (x#xs) (y#ys)

and r2 :
∧

x xs y ys. [[ x = y ; ¬ xs ≤ ys; P xs ys ]] =⇒ P (x#xs) (y#ys)
shows P ps ls using np

proof (induct ls arbitrary : ps)
case Nil then show ?case

by (auto simp: neq-Nil-conv elim!: not-prefix-cases intro!: base)
next

case (Cons y ys)
then have npfx : ¬ ps ≤ (y # ys) by simp
then obtain x xs where pv : ps = x # xs

by (rule not-prefix-cases) auto
show ?case by (metis Cons.hyps Cons-prefix-Cons npfx pv r1 r2 )

qed

12.3 Parallel lists

definition
parallel :: ′a list => ′a list => bool (infixl ‖ 50 ) where
(xs ‖ ys) = (¬ xs ≤ ys ∧ ¬ ys ≤ xs)

lemma parallelI [intro]: ¬ xs ≤ ys ==> ¬ ys ≤ xs ==> xs ‖ ys
unfolding parallel-def by blast

lemma parallelE [elim]:
assumes xs ‖ ys
obtains ¬ xs ≤ ys ∧ ¬ ys ≤ xs
using assms unfolding parallel-def by blast

theorem prefix-cases:
obtains xs ≤ ys | ys < xs | xs ‖ ys
unfolding parallel-def strict-prefix-def by blast

theorem parallel-decomp:
xs ‖ ys ==> ∃ as b bs c cs. b 6= c ∧ xs = as @ b # bs ∧ ys = as @ c # cs

proof (induct xs rule: rev-induct)
case Nil
then have False by auto
then show ?case ..

next
case (snoc x xs)
show ?case
proof (rule prefix-cases)

assume le: xs ≤ ys
then obtain ys ′ where ys: ys = xs @ ys ′ ..

32



show ?thesis
proof (cases ys ′)

assume ys ′ = []
then show ?thesis by (metis append-Nil2 parallelE prefixI snoc.prems ys)

next
fix c cs assume ys ′: ys ′ = c # cs
then show ?thesis

by (metis Cons-eq-appendI eq-Nil-appendI parallelE prefixI
same-prefix-prefix snoc.prems ys)

qed
next

assume ys < xs then have ys ≤ xs @ [x ] by (simp add : strict-prefix-def )
with snoc have False by blast
then show ?thesis ..

next
assume xs ‖ ys
with snoc obtain as b bs c cs where neq : (b:: ′a) 6= c

and xs: xs = as @ b # bs and ys: ys = as @ c # cs
by blast

from xs have xs @ [x ] = as @ b # (bs @ [x ]) by simp
with neq ys show ?thesis by blast

qed
qed

lemma parallel-append : a ‖ b =⇒ a @ c ‖ b @ d
apply (rule parallelI )

apply (erule parallelE , erule conjE ,
induct rule: not-prefix-induct , simp+)+

done

lemma parallel-appendI : xs ‖ ys =⇒ x = xs @ xs ′ =⇒ y = ys @ ys ′ =⇒ x ‖ y
by (simp add : parallel-append)

lemma parallel-commute: a ‖ b ←→ b ‖ a
unfolding parallel-def by auto

12.4 Postfix order on lists

definition
postfix :: ′a list => ′a list => bool ((-/ >>= -) [51 , 50 ] 50 ) where
(xs >>= ys) = (∃ zs. xs = zs @ ys)

lemma postfixI [intro? ]: xs = zs @ ys ==> xs >>= ys
unfolding postfix-def by blast

lemma postfixE [elim? ]:
assumes xs >>= ys
obtains zs where xs = zs @ ys
using assms unfolding postfix-def by blast

33



lemma postfix-refl [iff ]: xs >>= xs
by (auto simp add : postfix-def )

lemma postfix-trans: [[xs >>= ys; ys >>= zs]] =⇒ xs >>= zs
by (auto simp add : postfix-def )

lemma postfix-antisym: [[xs >>= ys; ys >>= xs]] =⇒ xs = ys
by (auto simp add : postfix-def )

lemma Nil-postfix [iff ]: xs >>= []
by (simp add : postfix-def )

lemma postfix-Nil [simp]: ([] >>= xs) = (xs = [])
by (auto simp add : postfix-def )

lemma postfix-ConsI : xs >>= ys =⇒ x#xs >>= ys
by (auto simp add : postfix-def )

lemma postfix-ConsD : xs >>= y#ys =⇒ xs >>= ys
by (auto simp add : postfix-def )

lemma postfix-appendI : xs >>= ys =⇒ zs @ xs >>= ys
by (auto simp add : postfix-def )

lemma postfix-appendD : xs >>= zs @ ys =⇒ xs >>= ys
by (auto simp add : postfix-def )

lemma postfix-is-subset : xs >>= ys ==> set ys ⊆ set xs
proof −

assume xs >>= ys
then obtain zs where xs = zs @ ys ..
then show ?thesis by (induct zs) auto

qed

lemma postfix-ConsD2 : x#xs >>= y#ys ==> xs >>= ys
proof −

assume x#xs >>= y#ys
then obtain zs where x#xs = zs @ y#ys ..
then show ?thesis

by (induct zs) (auto intro!: postfix-appendI postfix-ConsI )
qed

lemma postfix-to-prefix [code]: xs >>= ys ←→ rev ys ≤ rev xs
proof

assume xs >>= ys
then obtain zs where xs = zs @ ys ..
then have rev xs = rev ys @ rev zs by simp
then show rev ys <= rev xs ..

next
assume rev ys <= rev xs
then obtain zs where rev xs = rev ys @ zs ..
then have rev (rev xs) = rev zs @ rev (rev ys) by simp
then have xs = rev zs @ ys by simp

34



then show xs >>= ys ..
qed

lemma distinct-postfix : distinct xs =⇒ xs >>= ys =⇒ distinct ys
by (clarsimp elim!: postfixE )

lemma postfix-map: xs >>= ys =⇒ map f xs >>= map f ys
by (auto elim!: postfixE intro: postfixI )

lemma postfix-drop: as >>= drop n as
unfolding postfix-def
apply (rule exI [where x = take n as])
apply simp
done

lemma postfix-take: xs >>= ys =⇒ xs = take (length xs − length ys) xs @ ys
by (clarsimp elim!: postfixE )

lemma parallelD1 : x ‖ y =⇒ ¬ x ≤ y
by blast

lemma parallelD2 : x ‖ y =⇒ ¬ y ≤ x
by blast

lemma parallel-Nil1 [simp]: ¬ x ‖ []
unfolding parallel-def by simp

lemma parallel-Nil2 [simp]: ¬ [] ‖ x
unfolding parallel-def by simp

lemma Cons-parallelI1 : a 6= b =⇒ a # as ‖ b # bs
by auto

lemma Cons-parallelI2 : [[ a = b; as ‖ bs ]] =⇒ a # as ‖ b # bs
by (metis Cons-prefix-Cons parallelE parallelI )

lemma not-equal-is-parallel :
assumes neq : xs 6= ys

and len: length xs = length ys
shows xs ‖ ys
using len neq

proof (induct rule: list-induct2 )
case Nil
then show ?case by simp

next
case (Cons a as b bs)
have ih: as 6= bs =⇒ as ‖ bs by fact
show ?case
proof (cases a = b)

35



case True
then have as 6= bs using Cons by simp
then show ?thesis by (rule Cons-parallelI2 [OF True ih])

next
case False
then show ?thesis by (rule Cons-parallelI1 )

qed
qed

end

theory Prefix-subtract
imports Main List-Prefix

begin

13 A small theory of prefix subtraction

The notion of prefix-subtract is need to make proofs more readable.

fun prefix-subtract :: ′a list ⇒ ′a list ⇒ ′a list (infix − 51 )
where

prefix-subtract [] xs = []
| prefix-subtract (x#xs) [] = x#xs
| prefix-subtract (x#xs) (y#ys) = (if x = y then prefix-subtract xs ys else (x#xs))

lemma [simp]: (x @ y) − x = y
apply (induct x )
by (case-tac y , simp+)

lemma [simp]: x − x = []
by (induct x , auto)

lemma [simp]: x = xa @ y =⇒ x − xa = y
by (induct x , auto)

lemma [simp]: x − [] = x
by (induct x , auto)

lemma [simp]: (x − y = []) =⇒ (x ≤ y)
proof−

have ∃ xa. x = xa @ (x − y) ∧ xa ≤ y
apply (rule prefix-subtract .induct [of - x y ], simp+)
by (clarsimp, rule-tac x = y # xa in exI , simp+)

thus (x − y = []) =⇒ (x ≤ y) by simp
qed

lemma diff-prefix :
[[c ≤ a − b; b ≤ a]] =⇒ b @ c ≤ a

by (auto elim:prefixE )

36



lemma diff-diff-appd :
[[c < a − b; b < a]] =⇒ (a − b) − c = a − (b @ c)

apply (clarsimp simp:strict-prefix-def )
by (drule diff-prefix , auto elim:prefixE )

lemma app-eq-cases[rule-format ]:
∀ x . x @ y = m @ n −→ (x ≤ m ∨ m ≤ x )

apply (induct y , simp)
apply (clarify , drule-tac x = x @ [a] in spec)
by (clarsimp, auto simp:prefix-def )

lemma app-eq-dest :
x @ y = m @ n =⇒

(x ≤ m ∧ (m − x ) @ n = y) ∨ (m ≤ x ∧ (x − m) @ y = n)
by (frule-tac app-eq-cases, auto elim:prefixE )

end

theory Myhill-2
imports Myhill-1 List-Prefix Prefix-subtract

begin

14 Direction regular language ⇒finite partition

14.1 The scheme

The following convenient notation x ≈A y means: string x and y are equiv-
alent with respect to language A.

definition
str-eq :: string ⇒ lang ⇒ string ⇒ bool (- ≈- -)

where
x ≈A y ≡ (x , y) ∈ (≈A)

The main lemma (rexp-imp-finite) is proved by a structural induction over
regular expressions. where base cases (cases for NULL, EMPTY, CHAR)
are quite straightforward to proof. Real difficulty lies in inductive cases.
By inductive hypothesis, languages defined by sub-expressions induce finite
partitiions. Under such hypothsis, we need to prove that the language de-
fined by the composite regular expression gives rise to finite partion. The
basic idea is to attach a tag tag(x ) to every string x. The tagging fuction
tag is carefully devised, which returns tags made of equivalent classes of the
partitions induced by subexpressoins, and therefore has a finite range. Let
Lang be the composite language, it is proved that:

If strings with the same tag are equivalent with respect to Lang,

37



expressed as:

tag(x ) = tag(y) =⇒ x ≈Lang y

then the partition induced by Lang must be finite.

There are two arguments for this. The first goes as the following:

1. First, the tagging function tag induces an equivalent relation (=tag=)
(defiintion of f-eq-rel and lemma equiv-f-eq-rel).

2. It is shown that: if the range of tag (denoted range(tag)) is finite, the
partition given rise by (=tag=) is finite (lemma finite-eq-f-rel). Since
tags are made from equivalent classes from component partitions, and
the inductive hypothesis ensures the finiteness of these partitions, it is
not difficult to prove the finiteness of range(tag).

3. It is proved that if equivalent relation R1 is more refined than R2 (ex-
pressed as R1 ⊆ R2 ), and the partition induced by R1 is finite, then
the partition induced by R2 is finite as well (lemma refined-partition-finite).

4. The injectivity assumption tag(x ) = tag(y) =⇒ x ≈Lang y implies
that (=tag=) is more refined than (≈Lang).

5. Combining the points above, we have: the partition induced by lan-
guage Lang is finite (lemma tag-finite-imageD).

definition
f-eq-rel (=-=)

where
=f = ≡ {(x , y) | x y . f x = f y}

lemma equiv-f-eq-rel :equiv UNIV (=f =)
by (auto simp:equiv-def f-eq-rel-def refl-on-def sym-def trans-def )

lemma finite-range-image:
assumes finite (range f )
shows finite (f ‘ A)
using assms unfolding image-def
by (rule-tac finite-subset) (auto)

lemma finite-eq-f-rel :
assumes rng-fnt : finite (range tag)
shows finite (UNIV // =tag=)

proof −
let ?f = op ‘ tag and ?A = (UNIV // =tag=)
show ?thesis
proof (rule-tac f = ?f and A = ?A in finite-imageD)

— The finiteness of f -image is a simple consequence of assumption rng-fnt :

38



show finite (?f ‘ ?A)
proof −

have ∀ X . ?f X ∈ (Pow (range tag)) by (auto simp:image-def Pow-def )
moreover from rng-fnt have finite (Pow (range tag)) by simp
ultimately have finite (range ?f )

by (auto simp only :image-def intro:finite-subset)
from finite-range-image [OF this] show ?thesis .

qed
next

— The injectivity of f -image is a consequence of the definition of (=tag=):
show inj-on ?f ?A
proof−
{ fix X Y

assume X-in: X ∈ ?A
and Y-in: Y ∈ ?A
and tag-eq : ?f X = ?f Y

have X = Y
proof −

from X-in Y-in tag-eq
obtain x y

where x-in: x ∈ X and y-in: y ∈ Y and eq-tg : tag x = tag y
unfolding quotient-def Image-def str-eq-rel-def

str-eq-def image-def f-eq-rel-def
apply simp by blast

with X-in Y-in show ?thesis
by (auto simp:quotient-def str-eq-rel-def str-eq-def f-eq-rel-def )

qed
} thus ?thesis unfolding inj-on-def by auto

qed
qed

qed

lemma finite-image-finite:
[[∀ x ∈ A. f x ∈ B ; finite B ]] =⇒ finite (f ‘ A)
by (rule finite-subset [of - B ], auto)

lemma refined-partition-finite:
fixes R1 R2 A
assumes fnt : finite (A // R1 )
and refined : R1 ⊆ R2
and eq1 : equiv A R1 and eq2 : equiv A R2
shows finite (A // R2 )

proof −
let ?f = λ X . {R1 ‘‘ {x} | x . x ∈ X }

and ?A = (A // R2 ) and ?B = (A // R1 )
show ?thesis
proof(rule-tac f = ?f and A = ?A in finite-imageD)

show finite (?f ‘ ?A)
proof(rule finite-subset [of - Pow ?B ])

39



from fnt show finite (Pow (A // R1 )) by simp
next

from eq2
show ?f ‘ A // R2 ⊆ Pow ?B

unfolding image-def Pow-def quotient-def
apply auto
by (rule-tac x = xb in bexI , simp,

unfold equiv-def sym-def refl-on-def , blast)
qed

next
show inj-on ?f ?A
proof −
{ fix X Y

assume X-in: X ∈ ?A and Y-in: Y ∈ ?A
and eq-f : ?f X = ?f Y (is ?L = ?R)

have X = Y using X-in
proof(rule quotientE )

fix x
assume X = R2 ‘‘ {x} and x ∈ A with eq2
have x-in: x ∈ X

unfolding equiv-def quotient-def refl-on-def by auto
with eq-f have R1 ‘‘ {x} ∈ ?R by auto
then obtain y where

y-in: y ∈ Y and eq-r : R1 ‘‘ {x} = R1 ‘‘{y} by auto
have (x , y) ∈ R1
proof −

from x-in X-in y-in Y-in eq2
have x ∈ A and y ∈ A

unfolding equiv-def quotient-def refl-on-def by auto
from eq-equiv-class-iff [OF eq1 this] and eq-r
show ?thesis by simp

qed
with refined have xy-r2 : (x , y) ∈ R2 by auto
from quotient-eqI [OF eq2 X-in Y-in x-in y-in this]
show ?thesis .

qed
} thus ?thesis by (auto simp:inj-on-def )

qed
qed

qed

lemma equiv-lang-eq : equiv UNIV (≈Lang)
unfolding equiv-def str-eq-rel-def sym-def refl-on-def trans-def
by blast

lemma tag-finite-imageD :
fixes tag
assumes rng-fnt : finite (range tag)
— Suppose the rang of tagging fucntion tag is finite.

40



and same-tag-eqvt :
∧

m n. tag m = tag (n::string) =⇒ m ≈Lang n
— And strings with same tag are equivalent
shows finite (UNIV // (≈Lang))

proof −
let ?R1 = (=tag=)
show ?thesis
proof(rule-tac refined-partition-finite [of - ?R1 ])

from finite-eq-f-rel [OF rng-fnt ]
show finite (UNIV // =tag=) .

next
from same-tag-eqvt
show (=tag=) ⊆ (≈Lang)

by (auto simp:f-eq-rel-def str-eq-def )
next

from equiv-f-eq-rel
show equiv UNIV (=tag=) by blast

next
from equiv-lang-eq
show equiv UNIV (≈Lang) by blast

qed
qed

A more concise, but less intelligible argument for tag-finite-imageD is given
as the following. The basic idea is still using standard library lemma finite-imageD :

[[finite (f ‘ A); inj-on f A]] =⇒ finite A

which says: if the image of injective function f over set A is finite, then A
must be finte, as we did in the lemmas above.

lemma
fixes tag
assumes rng-fnt : finite (range tag)
— Suppose the rang of tagging fucntion tag is finite.
and same-tag-eqvt :

∧
m n. tag m = tag (n::string) =⇒ m ≈Lang n

— And strings with same tag are equivalent
shows finite (UNIV // (≈Lang))
— Then the partition generated by (≈Lang) is finite.

proof −
— The particular f and A used in finite-imageD are:
let ?f = op ‘ tag and ?A = (UNIV // ≈Lang)
show ?thesis
proof (rule-tac f = ?f and A = ?A in finite-imageD)

— The finiteness of f -image is a simple consequence of assumption rng-fnt :
show finite (?f ‘ ?A)
proof −

have ∀ X . ?f X ∈ (Pow (range tag)) by (auto simp:image-def Pow-def )
moreover from rng-fnt have finite (Pow (range tag)) by simp
ultimately have finite (range ?f )

by (auto simp only :image-def intro:finite-subset)

41



from finite-range-image [OF this] show ?thesis .
qed

next
— The injectivity of f is the consequence of assumption same-tag-eqvt :
show inj-on ?f ?A
proof−
{ fix X Y

assume X-in: X ∈ ?A
and Y-in: Y ∈ ?A
and tag-eq : ?f X = ?f Y

have X = Y
proof −

from X-in Y-in tag-eq
obtain x y where x-in: x ∈ X and y-in: y ∈ Y and eq-tg : tag x = tag y

unfolding quotient-def Image-def str-eq-rel-def str-eq-def image-def
apply simp by blast

from same-tag-eqvt [OF eq-tg ] have x ≈Lang y .
with X-in Y-in x-in y-in
show ?thesis by (auto simp:quotient-def str-eq-rel-def str-eq-def )

qed
} thus ?thesis unfolding inj-on-def by auto

qed
qed

qed

14.2 The proof

Each case is given in a separate section, as well as the final main lemma.
Detailed explainations accompanied by illustrations are given for non-trivial
cases.

For ever inductive case, there are two tasks, the easier one is to show the
range finiteness of of the tagging function based on the finiteness of compo-
nent partitions, the difficult one is to show that strings with the same tag are
equivalent with respect to the composite language. Suppose the composite
language be Lang, tagging function be tag, it amounts to show:

tag(x ) = tag(y) =⇒ x ≈Lang y

expanding the definition of ≈Lang, it amounts to show:

tag(x ) = tag(y) =⇒ (∀ z . x@z ∈ Lang ←→ y@z ∈ Lang)

Because the assumed tag equlity tag(x ) = tag(y) is symmetric, it is suffcient
to show just one direction:∧

x y z . [[tag(x ) = tag(y); x@z ∈ Lang ]] =⇒ y@z ∈ Lang

This is the pattern followed by every inductive case.

42



14.2.1 The base case for NULL

lemma quot-null-eq :
shows (UNIV // ≈{}) = ({UNIV }::lang set)
unfolding quotient-def Image-def str-eq-rel-def by auto

lemma quot-null-finiteI [intro]:
shows finite ((UNIV // ≈{})::lang set)

unfolding quot-null-eq by simp

14.2.2 The base case for EMPTY

lemma quot-empty-subset :
UNIV // (≈{[]}) ⊆ {{[]}, UNIV − {[]}}

proof
fix x
assume x ∈ UNIV // ≈{[]}
then obtain y where h: x = {z . (y , z ) ∈ ≈{[]}}

unfolding quotient-def Image-def by blast
show x ∈ {{[]}, UNIV − {[]}}
proof (cases y = [])

case True with h
have x = {[]} by (auto simp: str-eq-rel-def )
thus ?thesis by simp

next
case False with h
have x = UNIV − {[]} by (auto simp: str-eq-rel-def )
thus ?thesis by simp

qed
qed

lemma quot-empty-finiteI [intro]:
shows finite (UNIV // (≈{[]}))

by (rule finite-subset [OF quot-empty-subset ]) (simp)

14.2.3 The base case for CHAR

lemma quot-char-subset :
UNIV // (≈{[c]}) ⊆ {{[]},{[c]}, UNIV − {[], [c]}}

proof
fix x
assume x ∈ UNIV // ≈{[c]}
then obtain y where h: x = {z . (y , z ) ∈ ≈{[c]}}

unfolding quotient-def Image-def by blast
show x ∈ {{[]},{[c]}, UNIV − {[], [c]}}
proof −
{ assume y = [] hence x = {[]} using h

by (auto simp:str-eq-rel-def )
} moreover {

assume y = [c] hence x = {[c]} using h

43



by (auto dest !:spec[where x = []] simp:str-eq-rel-def )
} moreover {

assume y 6= [] and y 6= [c]
hence ∀ z . (y @ z ) 6= [c] by (case-tac y , auto)
moreover have

∧
p. (p 6= [] ∧ p 6= [c]) = (∀ q . p @ q 6= [c])

by (case-tac p, auto)
ultimately have x = UNIV − {[],[c]} using h

by (auto simp add :str-eq-rel-def )
} ultimately show ?thesis by blast

qed
qed

lemma quot-char-finiteI [intro]:
shows finite (UNIV // (≈{[c]}))

by (rule finite-subset [OF quot-char-subset ]) (simp)

14.2.4 The inductive case for ALT

definition
tag-str-ALT :: lang ⇒ lang ⇒ string ⇒ (lang × lang)

where
tag-str-ALT L1 L2 = (λx . (≈L1 ‘‘ {x}, ≈L2 ‘‘ {x}))

lemma quot-union-finiteI [intro]:
fixes L1 L2 ::lang
assumes finite1 : finite (UNIV // ≈L1 )
and finite2 : finite (UNIV // ≈L2 )
shows finite (UNIV // ≈(L1 ∪ L2 ))

proof (rule-tac tag = tag-str-ALT L1 L2 in tag-finite-imageD)
show

∧
x y . tag-str-ALT L1 L2 x = tag-str-ALT L1 L2 y =⇒ x ≈(L1 ∪ L2 ) y

unfolding tag-str-ALT-def
unfolding str-eq-def
unfolding Image-def
unfolding str-eq-rel-def
by auto

next
have ∗: finite ((UNIV // ≈L1 ) × (UNIV // ≈L2 ))

using finite1 finite2 by auto
show finite (range (tag-str-ALT L1 L2 ))

unfolding tag-str-ALT-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

14.2.5 The inductive case for SEQ

For case SEQ, the language L is L1 ;; L2. Given x @ z ∈ L1 ;; L2, according
to the defintion of L1 ;; L2, string x @ z can be splitted with the prefix in

44



L1 and suffix in L2. The split point can either be in x (as shown in Fig.
1(a)), or in z (as shown in Fig. 1(c)). Whichever way it goes, the structure
on x @ z cn be transfered faithfully onto y @ z (as shown in Fig. 1(b)
and 1(d)) with the the help of the assumed tag equality. The following tag
function tag-str-SEQ is such designed to facilitate such transfers and lemma
tag-str-SEQ-injI formalizes the informal argument above. The details of
structure transfer will be given their.

xa x− xa

x z

x@z ∈ L1; ;L2

(x− xa)@z ∈ L2xa ∈ L1

(a) First possible way to split x@z

ya y − ya

y z

y@z ∈ L1; ;L2

(y − ya)@z ∈ L2ya ∈ L1

(b) Transferred structure corresponding to the first way of splitting

x za z − za

z

x@z ∈ L1; ;L2

x@za ∈ L1

(c) The second possible way to split x@z

y za z − za

z

y@z ∈ L1; ;L2

y@za ∈ L1

(d) Transferred structure corresponding to the second way of splitting

Figure 1: The case for SEQ

definition
tag-str-SEQ :: lang ⇒ lang ⇒ string ⇒ (lang × lang set)

where
tag-str-SEQ L1 L2 =

(λx . (≈L1 ‘‘ {x}, {(≈L2 ‘‘ {x − xa}) | xa. xa ≤ x ∧ xa ∈ L1}))

The following is a techical lemma which helps to split the x @ z ∈ L1 ;; L2

mentioned above.

lemma append-seq-elim:
assumes x @ y ∈ L1 ;; L2

45



shows (∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ y ∈ L2) ∨
(∃ ya ≤ y . (x @ ya) ∈ L1 ∧ (y − ya) ∈ L2)

proof−
from assms obtain s1 s2

where eq-xys: x @ y = s1 @ s2
and in-seq : s1 ∈ L1 ∧ s2 ∈ L2

by (auto simp:Seq-def )
from app-eq-dest [OF eq-xys]
have

(x ≤ s1 ∧ (s1 − x ) @ s2 = y) ∨ (s1 ≤ x ∧ (x − s1) @ y = s2)
(is ?Split1 ∨ ?Split2 ) .

moreover have ?Split1 =⇒ ∃ ya ≤ y . (x @ ya) ∈ L1 ∧ (y − ya) ∈ L2

using in-seq by (rule-tac x = s1 − x in exI , auto elim:prefixE )
moreover have ?Split2 =⇒ ∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ y ∈ L2

using in-seq by (rule-tac x = s1 in exI , auto)
ultimately show ?thesis by blast

qed

lemma tag-str-SEQ-injI :
fixes v w
assumes eq-tag : tag-str-SEQ L1 L2 v = tag-str-SEQ L1 L2 w
shows v ≈(L1 ;; L2) w

proof−
— As explained before, a pattern for just one direction needs to be dealt with:

{ fix x y z
assume xz-in-seq : x @ z ∈ L1 ;; L2

and tag-xy : tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y
havey @ z ∈ L1 ;; L2

proof−
— There are two ways to split x@z :
from append-seq-elim [OF xz-in-seq ]
have (∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ z ∈ L2) ∨

(∃ za ≤ z . (x @ za) ∈ L1 ∧ (z − za) ∈ L2) .
— It can be shown that ?thesis holds in either case:
moreover {

— The case for the first split:
fix xa
assume h1 : xa ≤ x and h2 : xa ∈ L1 and h3 : (x − xa) @ z ∈ L2

— The following subgoal implements the structure transfer:
obtain ya

where ya ≤ y
and ya ∈ L1

and (y − ya) @ z ∈ L2

proof −

—

By expanding the definition of

tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y

and extracting the second compoent, we get:

46



have {≈L2 ‘‘ {x − xa} |xa. xa ≤ x ∧ xa ∈ L1} =
{≈L2 ‘‘ {y − ya} |ya. ya ≤ y ∧ ya ∈ L1} (is ?Left = ?Right)

using tag-xy unfolding tag-str-SEQ-def by simp
— Since xa ≤ x and xa ∈ L1 hold, it is not difficult to show:

moreover have ≈L2 ‘‘ {x − xa} ∈ ?Left using h1 h2 by auto

—
Through tag equality, equivalent class ≈L2 ‘‘ {x − xa}
also belongs to the ?Right :

ultimately have ≈L2 ‘‘ {x − xa} ∈ ?Right by simp
— From this, the counterpart of xa in y is obtained:

then obtain ya
where eq-xya: ≈L2 ‘‘ {x − xa} = ≈L2 ‘‘ {y − ya}
and pref-ya: ya ≤ y and ya-in: ya ∈ L1

by simp blast
— It can be proved that ya has the desired property:
have (y − ya)@z ∈ L2

proof −
from eq-xya have (x − xa) ≈L2 (y − ya)

unfolding Image-def str-eq-rel-def str-eq-def by auto
with h3 show ?thesis unfolding str-eq-rel-def str-eq-def by simp

qed
— Now, ya has all properties to be a qualified candidate:
with pref-ya ya-in
show ?thesis using that by blast

qed
— From the properties of ya, y @ z ∈ L1 ;; L2 is derived easily.

hence y @ z ∈ L1 ;; L2 by (erule-tac prefixE , auto simp:Seq-def )
} moreover {

— The other case is even more simpler:
fix za
assume h1 : za ≤ z and h2 : (x @ za) ∈ L1 and h3 : z − za ∈ L2

have y @ za ∈ L1

proof−
have ≈L1 ‘‘ {x} = ≈L1 ‘‘ {y}

using tag-xy unfolding tag-str-SEQ-def by simp
with h2 show ?thesis

unfolding Image-def str-eq-rel-def str-eq-def by auto
qed
with h1 h3 have y @ z ∈ L1 ;; L2

by (drule-tac A = L1 in seq-intro, auto elim:prefixE )
}
ultimately show ?thesis by blast

qed
}
— ?thesis is proved by exploiting the symmetry of eq-tag :
from this [OF - eq-tag ] and this [OF - eq-tag [THEN sym]]

show ?thesis unfolding str-eq-def str-eq-rel-def by blast
qed

lemma quot-seq-finiteI [intro]:

47



fixes L1 L2 ::lang
assumes fin1 : finite (UNIV // ≈L1 )
and fin2 : finite (UNIV // ≈L2 )
shows finite (UNIV // ≈(L1 ;; L2 ))

proof (rule-tac tag = tag-str-SEQ L1 L2 in tag-finite-imageD)
show

∧
x y . tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y =⇒ x ≈(L1 ;; L2 ) y

by (rule tag-str-SEQ-injI )
next

have ∗: finite ((UNIV // ≈L1 ) × (Pow (UNIV // ≈L2 )))
using fin1 fin2 by auto

show finite (range (tag-str-SEQ L1 L2 ))
unfolding tag-str-SEQ-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

14.2.6 The inductive case for STAR

This turned out to be the trickiest case. The essential goal is to proved y @
z ∈ L1∗ under the assumptions that x @ z ∈ L1∗ and that x and y have
the same tag. The reasoning goes as the following:

1. Since x @ z ∈ L1∗ holds, a prefix xa of x can be found such that xa
∈ L1∗ and (x − xa)@z ∈ L1∗, as shown in Fig. 2(a). Such a prefix
always exists, xa = [], for example, is one.

2. There could be many but fintie many of such xa, from which we can
find the longest and name it xa-max, as shown in Fig. 2(b).

3. The next step is to split z into za and zb such that (x − xa-max ) @
za ∈ L1 and zb ∈ L1∗ as shown in Fig. 2(e). Such a split always exists
because:

(a) Because (x − x-max ) @ z ∈ L1∗, it can always be splitted into
prefix a and suffix b, such that a ∈ L1 and b ∈ L1∗, as shown in
Fig. 2(c).

(b) But the prefix a CANNOT be shorter than x − xa-max (as shown
in Fig. 2(d)), becasue otherwise, ma-max@a would be in the
same kind as xa-max but with a larger size, conflicting with the
fact that xa-max is the longest.

4. By the assumption that x and y have the same tag, the structure on
x @ z can be transferred to y @ z as shown in Fig. 2(f). The detailed
steps are:

(a) A y-prefix ya corresponding to xa can be found, which satisfies
conditions: ya ∈ L1∗ and (y − ya)@za ∈ L1.

48



(b) Since we already know zb ∈ L1∗, we get (y − ya)@za@zb ∈ L1∗,
and this is just (y − ya)@z ∈ L1∗.

(c) With fact ya ∈ L1∗, we finally get y@z ∈ L1∗.

The formal proof of lemma tag-str-STAR-injI faithfully follows this informal
argument while the tagging function tag-str-STAR is defined to make the
transfer in step ?? feasible.

definition
tag-str-STAR :: lang ⇒ string ⇒ lang set

where
tag-str-STAR L1 = (λx . {≈L1 ‘‘ {x − xa} | xa. xa < x ∧ xa ∈ L1?})

A technical lemma.

lemma finite-set-has-max : [[finite A; A 6= {}]] =⇒
(∃ max ∈ A. ∀ a ∈ A. f a <= (f max :: nat))

proof (induct rule:finite.induct)
case emptyI thus ?case by simp

next
case (insertI A a)
show ?case
proof (cases A = {})

case True thus ?thesis by (rule-tac x = a in bexI , auto)
next

case False
with insertI .hyps and False
obtain max

where h1 : max ∈ A
and h2 : ∀ a∈A. f a ≤ f max by blast

show ?thesis
proof (cases f a ≤ f max )

assume f a ≤ f max
with h1 h2 show ?thesis by (rule-tac x = max in bexI , auto)

next
assume ¬ (f a ≤ f max )
thus ?thesis using h2 by (rule-tac x = a in bexI , auto)

qed
qed

qed

The following is a technical lemma.which helps to show the range finiteness
of tag function.

lemma finite-strict-prefix-set : finite {xa. xa < (x ::string)}
apply (induct x rule:rev-induct , simp)
apply (subgoal-tac {xa. xa < xs @ [x ]} = {xa. xa < xs} ∪ {xs})
by (auto simp:strict-prefix-def )

lemma tag-str-STAR-injI :

49



xa x− xa

x z

x@z ∈ L1∗

(x− xa)@z ∈ L1∗xa ∈ L1∗

(a) First split

xa max x− xa max

x z

x@z ∈ L1∗

(x− xa max)@z ∈ L1∗xa ∈ L1∗

(b) Max split

xa max x− xa max

x z

x@z ∈ L1∗

(x− xa max)@z ∈ L1∗xa ∈ L1∗

a ∈ L1 b ∈ L1∗

(c) Max split with a and b (the right situation)

xa max x− xa max

x z

x@z ∈ L1∗

(x− xa max)@z ∈ L1∗xa ∈ L1∗

a ∈ L1 b ∈ L1∗

(d) Max split with a and b (the wrong situation)

xa max x− xa max za zb

x z

x@z ∈ L1∗

(x− xa max)@za ∈ L1xa max ∈ L1∗ zb ∈ L1∗

(x− xa max)@z ∈ L1∗

(e) Last split

ya y − ya za zb

y z

y@z ∈ L1∗

(y − ya)@za ∈ L1ya ∈ L1∗ zb ∈ L1∗

(y − ya)@z ∈ L1∗

(f) Structure transferred to y

Figure 2: The case for STAR

50



fixes v w
assumes eq-tag : tag-str-STAR L1 v = tag-str-STAR L1 w
shows (v ::string) ≈(L1?) w

proof−
— As explained before, a pattern for just one direction needs to be dealt with:

{ fix x y z
assume xz-in-star : x @ z ∈ L1?

and tag-xy : tag-str-STAR L1 x = tag-str-STAR L1 y
have y @ z ∈ L1?
proof(cases x = [])

— The degenerated case when x is a null string is easy to prove:
case True
with tag-xy have y = []

by (auto simp add : tag-str-STAR-def strict-prefix-def )
thus ?thesis using xz-in-star True by simp

next
— The nontrival case:

case False

—

Since x @ z ∈ L1?, x can always be splitted by a prefix xa together
with its suffix x − xa, such that both xa and (x − xa) @ z are
in L1?, and there could be many such splittings.Therefore, the
following set ?S is nonempty, and finite as well:

let ?S = {xa. xa < x ∧ xa ∈ L1? ∧ (x − xa) @ z ∈ L1?}
have finite ?S

by (rule-tac B = {xa. xa < x} in finite-subset ,
auto simp:finite-strict-prefix-set)

moreover have ?S 6= {} using False xz-in-star
by (simp, rule-tac x = [] in exI , auto simp:strict-prefix-def )

—
Since ?S is finite, we can always single out the longest and
name it xa-max :

ultimately have ∃ xa-max ∈ ?S . ∀ xa ∈ ?S . length xa ≤ length xa-max
using finite-set-has-max by blast

then obtain xa-max
where h1 : xa-max < x
and h2 : xa-max ∈ L1?
and h3 : (x − xa-max ) @ z ∈ L1?
and h4 :∀ xa < x . xa ∈ L1? ∧ (x − xa) @ z ∈ L1?

−→ length xa ≤ length xa-max
by blast

—
By the equality of tags, the counterpart of xa-max among y-
prefixes, named ya, can be found:

obtain ya
where h5 : ya < y and h6 : ya ∈ L1?
and eq-xya: (x − xa-max ) ≈L1 (y − ya)

proof−
from tag-xy have {≈L1 ‘‘ {x − xa} |xa. xa < x ∧ xa ∈ L1?} =
{≈L1 ‘‘ {y − xa} |xa. xa < y ∧ xa ∈ L1?} (is ?left = ?right)
by (auto simp:tag-str-STAR-def )

moreover have ≈L1 ‘‘ {x − xa-max} ∈ ?left using h1 h2 by auto
ultimately have ≈L1 ‘‘ {x − xa-max} ∈ ?right by simp
thus ?thesis using that

51



apply (simp add :Image-def str-eq-rel-def str-eq-def ) by blast
qed

—
The ?thesis, y @ z ∈ L1?, is a simple consequence of the following
proposition:

have (y − ya) @ z ∈ L1?
proof−

— The idea is to split the suffix z into za and zb, such that:
obtain za zb where eq-zab: z = za @ zb

and l-za: (y − ya)@za ∈ L1 and ls-zb: zb ∈ L1?
proof −

— Since xa-max < x, x can be splitted into a and b such that:
from h1 have (x − xa-max ) @ z 6= []

by (auto simp:strict-prefix-def elim:prefixE )
from star-decom [OF h3 this]
obtain a b where a-in: a ∈ L1

and a-neq : a 6= [] and b-in: b ∈ L1?
and ab-max : (x − xa-max ) @ z = a @ b by blast

— Now the candiates for za and zb are found:
let ?za = a − (x − xa-max ) and ?zb = b
have pfx : (x − xa-max ) ≤ a (is ?P1 )

and eq-z : z = ?za @ ?zb (is ?P2 )
proof −

—
Since (x − xa-max ) @ z = a @ b, string (x − xa-max ) @ z can
be splitted in two ways:

have ((x − xa-max ) ≤ a ∧ (a − (x − xa-max )) @ b = z ) ∨
(a < (x − xa-max ) ∧ ((x − xa-max ) − a) @ z = b)
using app-eq-dest [OF ab-max ] by (auto simp:strict-prefix-def )

moreover {
— However, the undsired way can be refuted by absurdity:
assume np: a < (x − xa-max )

and b-eqs: ((x − xa-max ) − a) @ z = b
have False
proof −

let ?xa-max ′ = xa-max @ a
have ?xa-max ′ < x

using np h1 by (clarsimp simp:strict-prefix-def diff-prefix )
moreover have ?xa-max ′ ∈ L1?

using a-in h2 by (simp add :star-intro3 )
moreover have (x − ?xa-max ′) @ z ∈ L1?

using b-eqs b-in np h1 by (simp add :diff-diff-appd)
moreover have ¬ (length ?xa-max ′ ≤ length xa-max )

using a-neq by simp
ultimately show ?thesis using h4 by blast

qed }
— Now it can be shown that the splitting goes the way we desired.
ultimately show ?P1 and ?P2 by auto

qed
hence (x − xa-max )@?za ∈ L1 using a-in by (auto elim:prefixE )
— Now candidates ?za and ?zb have all the requred properteis.
with eq-xya have (y − ya) @ ?za ∈ L1

52



by (auto simp:str-eq-def str-eq-rel-def )
with eq-z and b-in

show ?thesis using that by blast
qed
— ?thesis can easily be shown using properties of za and zb:
have ((y − ya) @ za) @ zb ∈ L1? using l-za ls-zb by blast
with eq-zab show ?thesis by simp

qed
with h5 h6 show ?thesis

by (drule-tac star-intro1 , auto simp:strict-prefix-def elim:prefixE )
qed

}
— By instantiating the reasoning pattern just derived for both directions:
from this [OF - eq-tag ] and this [OF - eq-tag [THEN sym]]
— The thesis is proved as a trival consequence:

show ?thesis unfolding str-eq-def str-eq-rel-def by blast
qed

lemma — The oringal version with less explicit details.
fixes v w
assumes eq-tag : tag-str-STAR L1 v = tag-str-STAR L1 w
shows (v ::string) ≈(L1?) w

proof−

—

According to the definition of ≈Lang, proving v ≈(L1?) w amounts
to showing: for any string u, if v @ u ∈ (L1?) then w @ u ∈ (L1?)
and vice versa. The reasoning pattern for both directions are the
same, as derived in the following:

{ fix x y z
assume xz-in-star : x @ z ∈ L1?

and tag-xy : tag-str-STAR L1 x = tag-str-STAR L1 y
have y @ z ∈ L1?
proof(cases x = [])

— The degenerated case when x is a null string is easy to prove:
case True
with tag-xy have y = []

by (auto simp:tag-str-STAR-def strict-prefix-def )
thus ?thesis using xz-in-star True by simp

next
— The case when x is not null, and x @ z is in L1?,

case False
obtain x-max

where h1 : x-max < x
and h2 : x-max ∈ L1?
and h3 : (x − x-max ) @ z ∈ L1?
and h4 :∀ xa < x . xa ∈ L1? ∧ (x − xa) @ z ∈ L1?

−→ length xa ≤ length x-max
proof−

let ?S = {xa. xa < x ∧ xa ∈ L1? ∧ (x − xa) @ z ∈ L1?}
have finite ?S

53



by (rule-tac B = {xa. xa < x} in finite-subset ,
auto simp:finite-strict-prefix-set)

moreover have ?S 6= {} using False xz-in-star
by (simp, rule-tac x = [] in exI , auto simp:strict-prefix-def )

ultimately have ∃ max ∈ ?S . ∀ a ∈ ?S . length a ≤ length max
using finite-set-has-max by blast

thus ?thesis using that by blast
qed
obtain ya

where h5 : ya < y and h6 : ya ∈ L1? and h7 : (x − x-max ) ≈L1 (y − ya)
proof−

from tag-xy have {≈L1 ‘‘ {x − xa} |xa. xa < x ∧ xa ∈ L1?} =
{≈L1 ‘‘ {y − xa} |xa. xa < y ∧ xa ∈ L1?} (is ?left = ?right)
by (auto simp:tag-str-STAR-def )

moreover have ≈L1 ‘‘ {x − x-max} ∈ ?left using h1 h2 by auto
ultimately have ≈L1 ‘‘ {x − x-max} ∈ ?right by simp
with that show ?thesis apply

(simp add :Image-def str-eq-rel-def str-eq-def ) by blast
qed
have (y − ya) @ z ∈ L1?
proof−

from h3 h1 obtain a b where a-in: a ∈ L1

and a-neq : a 6= [] and b-in: b ∈ L1?
and ab-max : (x − x-max ) @ z = a @ b
by (drule-tac star-decom, auto simp:strict-prefix-def elim:prefixE )

have (x − x-max ) ≤ a ∧ (a − (x − x-max )) @ b = z
proof −

have ((x − x-max ) ≤ a ∧ (a − (x − x-max )) @ b = z ) ∨
(a < (x − x-max ) ∧ ((x − x-max ) − a) @ z = b)

using app-eq-dest [OF ab-max ] by (auto simp:strict-prefix-def )
moreover {

assume np: a < (x − x-max ) and b-eqs: ((x − x-max ) − a) @ z = b
have False
proof −

let ?x-max ′ = x-max @ a
have ?x-max ′ < x

using np h1 by (clarsimp simp:strict-prefix-def diff-prefix )
moreover have ?x-max ′ ∈ L1?

using a-in h2 by (simp add :star-intro3 )
moreover have (x − ?x-max ′) @ z ∈ L1?

using b-eqs b-in np h1 by (simp add :diff-diff-appd)
moreover have ¬ (length ?x-max ′ ≤ length x-max )

using a-neq by simp
ultimately show ?thesis using h4 by blast

qed
} ultimately show ?thesis by blast

qed
then obtain za where z-decom: z = za @ b

and x-za: (x − x-max ) @ za ∈ L1

54



using a-in by (auto elim:prefixE )
from x-za h7 have (y − ya) @ za ∈ L1

by (auto simp:str-eq-def str-eq-rel-def )
with b-in have ((y − ya) @ za) @ b ∈ L1? by blast
with z-decom show ?thesis by auto

qed
with h5 h6 show ?thesis

by (drule-tac star-intro1 , auto simp:strict-prefix-def elim:prefixE )
qed

}
— By instantiating the reasoning pattern just derived for both directions:
from this [OF - eq-tag ] and this [OF - eq-tag [THEN sym]]
— The thesis is proved as a trival consequence:

show ?thesis unfolding str-eq-def str-eq-rel-def by blast
qed

lemma quot-star-finiteI [intro]:
fixes L1 ::lang
assumes finite1 : finite (UNIV // ≈L1 )
shows finite (UNIV // ≈(L1?))

proof (rule-tac tag = tag-str-STAR L1 in tag-finite-imageD)
show

∧
x y . tag-str-STAR L1 x = tag-str-STAR L1 y =⇒ x ≈(L1?) y

by (rule tag-str-STAR-injI )
next

have ∗: finite (Pow (UNIV // ≈L1 ))
using finite1 by auto

show finite (range (tag-str-STAR L1 ))
unfolding tag-str-STAR-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

14.2.7 The conclusion

lemma rexp-imp-finite:
fixes r ::rexp
shows finite (UNIV // ≈(L r))

by (induct r) (auto)

end

theory Myhill
imports Myhill-2

begin

55



15 Preliminaries

15.1 Finite automata and Myhill-Nerode theorem

A determinisitc finite automata (DFA) M is a 5-tuple (Q,Σ, δ, s, F ), where:

1. Q is a finite set of states, also denoted QM .

2. Σ is a finite set of alphabets, also denoted ΣM .

3. δ is a transition function of type Q × Σ ⇒ Q (a total function), also
denoted δM .

4. s ∈ Q is a state called initial state, also denoted sM .

5. F ⊆ Q is a set of states named accepting states, also denoted FM .

Therefore, we have M = (QM ,ΣM , δM , sM , FM ). Every DFA M can be in-
terpreted as a function assigning states to strings, denoted δ̂M , the definition
of which is as the following:

δ̂M ([]) ≡ sM
δ̂M (xa) ≡ δM (δ̂M (x), a)

(1)

A string x is said to be accepted (or recognized) by a DFA M if δ̂M (x) ∈ FM .
The language recoginzed by DFA M , denoted L(M), is defined as:

L(M) ≡ {x | δ̂M (x) ∈ FM} (2)

The standard way of specifying a laugage L as regular is by stipulating that:
L = L(M) for some DFA M .

For any DFA M , the DFA obtained by changing initial state to another
p ∈ QM is denoted Mp, which is defined as:

Mp ≡ (QM ,ΣM , δM , p, FM ) (3)

Two states p, q ∈ QM are said to be equivalent, denoted p ≈M q, iff.

L(Mp) = L(Mq) (4)

It is obvious that ≈M is an equivalent relation over QM . and the parti-
tion induced by ≈M has |QM | equivalent classes. By overloading ≈M , an
equivalent relation over strings can be defined:

x ≈M y ≡ δ̂M (x) ≈M δ̂M (y) (5)

It can be proved that the the partition induced by ≈M also has |QM | equiv-
alent classes. It is also easy to show that: if x ≈M y, then x ≈L(M) y,
and this means ≈M is a more refined equivalent relation than ≈L(M). Since
partition induced by ≈M is finite, the one induced by ≈L(M) must also be
finite, and this is one of the two directions of Myhill-Nerode theorem:

56



Lemma 1 (Myhill-Nerode theorem, Direction two). If a language L is reg-
ular (i.e. L = L(M) for some DFA M), then the partition induced by ≈L
is finite.

The other direction is:

Lemma 2 (Myhill-Nerode theorem, Direction one). If the partition induced
by ≈L is finite, then L is regular (i.e. L = L(M) for some DFA M).

The M we are seeking when prove lemma ?? can be constructed out of ≈L,
denoted ML and defined as the following:

QML ≡ {JxK≈L | x ∈ Σ∗} (6a)

ΣML ≡ ΣM (6b)

δML ≡ (λ(JxK≈L , a).JxaK≈L) (6c)

sML ≡ J[]K≈L (6d)

FML ≡ {JxK≈L | x ∈ L} (6e)

It can be proved that QML is indeed finite and L = L(ML), so lemma 2
holds. It can also be proved that ML is the minimal DFA (therefore unique)
which recoginzes L.

15.2 The objective and the underlying intuition

It is now obvious from section 15.1 that Myhill-Nerode theorem can be estab-
lished easily when reglar languages are defined as ones recognized by finite
automata. Under the context where the use of finite automata is forbiden,
the situation is quite different. The theorem now has to be expressed as:

Theorem 1 (Myhill-Nerode theorem, Regular expression version). A lan-
guage L is regular (i.e. L = L(e) for some regular expression e) iff. the
partition induced by ≈L is finite.

The proof of this version consists of two directions (if the use of automata
are not allowed):

Direction one: generating a regular expression e out of the finite partition
induced by ≈L, such that L = L(e).

Direction two: showing the finiteness of the partition induced by ≈L, un-
der the assmption that L is recognized by some regular expression e
(i.e. L = L(e)).

The development of these two directions consititutes the body of this paper.

57



16 Direction regular language ⇒finite partition

Although not used explicitly, the notion of finite autotmata and its rela-
tionship with language partition, as outlined in section 15.1, still servers as
important intuitive guides in the development of this paper. For example,
Direction one follows the Brzozowski algebraic method used to convert finite
autotmata to regular expressions, under the intuition that every partition
member JxK≈L is a state in the DFA ML constructed to prove lemma 2 of
section 15.1.

The basic idea of Brzozowski method is to extract an equational system
out of the transition relationship of the automaton in question. In the
equational system, every automaton state is represented by an unknown,
the solution of which is expected to be a regular expresion characterizing
the state in a certain sense. There are two choices of how a automaton
state can be characterized. The first is to characterize by the set of strings
leading from the state in question into accepting states. The other choice is
to characterize by the set of strings leading from initial state into the state
in question. For the second choice, the language recognized the automaton
can be characterized by the solution of initial state, while for the second
choice, the language recoginzed by the automaton can be characterized by
combining solutions of all accepting states by +. Because of the automaton
used as our intuitive guide, the ML, the states of which are sets of strings
leading from initial state, the second choice is used in this paper.

Supposing the automaton in Fig 3 is the ML for some language L, and
suppose Σ = {a, b, c, d, e}. Under the second choice, the equational system
extracted is:

X0 = X1 · c+X2 · d+ λ (7a)

X1 = X0 · a+X1 · b+X2 · d (7b)

X2 = X0 · b+X1 · d+X2 · a (7c)

X3 =
X0 · (c+ d+ e) +X1 · (a+ e) +X2 · (b+ e)+

X3 · (a+ b+ c+ d+ e)
(7d)

Every ·-item on the right side of equations describes some state transtions,
except the λ in (7a), which represents empty string []. The reason is that:
every state is characterized by the set of incoming strings leading from initial
state. For non-initial state, every such string can be splitted into a prefix
leading into a preceding state and a single character suffix transiting into
from the preceding state. The exception happens at initial state, where the
empty string is a incoming string which can not be splitted. The λ in (7a)
is introduce to repsent this indivisible string. There is one and only one λ
in every equational system such obtained, becasue [] can only be contaied
in one equivalent class (the intial state in ML) and equivalent classes are
disjoint.

58



X0start

X1

X2

X3

a

b

b

a

c c

d

d

Σ− {a, b}

Σ− {b, c, d}

Σ
− {
a,
c, d
}

Σ

Figure 3: An example automaton

Suppose all unknowns (X0, X1, X2, X3) are solvable, the regular expression
charactering laugnage L is X1 +X2. This paper gives a procedure by which
arbitrarily picked unknown can be solved. The basic idea to solve Xi is
by eliminating all variables other than Xi from the equational system. If
X0 is the one picked to be solved, variables X1, X2, X3 have to be removed
one by one. The order to remove does not matter as long as the remaing
equations are kept valid. Suppose X1 is the first one to remove, the action is
to replace all occurences of X1 in remaining equations by the right hand side
of its characterizing equation, i.e. the X0 ·a+X1 ·b+X2 ·d in (7b). However,
because of the recursive occurence of X1, this replacement does not really
removed X1. Arden’s lemma is invoked to transform recursive equations
like (7b) into non-recursive ones. For example, the recursive equation (7b)
is transformed into the follwing non-recursive one:

X1 = (X0 · a+X2 · d) · b∗ = X0 · (a · b∗) +X2 · (d · b∗) (8)

which, by Arden’s lemma, still characterizes X1 correctly. By subsituting
(X0 · a+X2 · d) · b∗ for all X1 and removing (7b), we get:

X0 =

(X0 · (a · b∗) +X2 · (d · b∗)) · c+X2 · d+ λ =

X0 · (a · b∗ · c) +X2 · (d · b∗ · c) +X2 · d+ λ =

X0 · (a · b∗ · c) +X2 · (d · b∗ · c+ d) + λ

(9a)

X2 =

X0 · b+ (X0 · (a · b∗) +X2 · (d · b∗)) · d+X2 · a =

X0 · b+X0 · (a · b∗ · d) +X2 · (d · b∗ · d) +X2 · a =

X0 · (b+ a · b∗ · d) +X2 · (d · b∗ · d+ a)

(9b)

X3 =
X0 · (c+ d+ e) + ((X0 · a+X2 · d) · b∗) · (a+ e)

+X2 · (b+ e) +X3 · (a+ b+ c+ d+ e)
(9c)

59



Suppose X3 is the one to remove next, since X3 dose not appear in either X0

or X2, the removal of equation (9c) changes nothing in the rest equations.
Therefore, we get:

X0 = X0 · (a · b∗ · c) +X2 · (d · b∗ · c+ d) + λ (10a)

X2 = X0 · (b+ a · b∗ · d) +X2 · (d · b∗ · d+ a) (10b)

Actually, since absorbing state like X3 contributes nothing to the language
L, it could have been removed at the very beginning of this precedure with-
out affecting the final result. Now, the last unknown to remove is X2 and
the Arden’s transformaton of (10b) is:

X2 = (X0 ·(b+a·b∗ ·d))·(d·b∗ ·d+a)∗ = X0 ·((b+a·b∗ ·d)·(d·b∗ ·d+a)∗) (11)

By substituting the right hand side of (11) into (10a), we get:

X0 = X0 · (a · b∗ · c)+
X0 · ((b+ a · b∗ · d) · (d · b∗ · d+ a)∗) · (d · b∗ · c+ d) + λ

= X0 · ((a · b∗ · c)+
((b+ a · b∗ · d) · (d · b∗ · d+ a)∗) · (d · b∗ · c+ d)) + λ

(12)

By applying Arden’s transformation to this, we get the solution of X0 as:

X0 = ((a · b∗ · c) + ((b+ a · b∗ · d) · (d · b∗ · d+ a)∗) · (d · b∗ · c+ d))∗ (13)

Using the same method, solutions for X1 and X2 can be obtained as well
and the regular expressoin for L is just X1 +X2. The formalization of this
procedure consititues the first direction of the regular expression verion of
Myhill-Nerode theorem. Detailed explaination are given in paper.pdf and
more details and comments can be found in the formal scripts.

17 Direction finite partition ⇒ regular language

It is well known in the theory of regular languages that the existence of
finite language partition amounts to the existence of a minimal automaton,
i.e. the ML constructed in section 15, which recoginzes the same language
L. The standard way to prove the existence of finite language partition is
to construct a automaton out of the regular expression which recoginzes the
same language, from which the existence of finite language partition follows
immediately. As discussed in the introducton of paper.pdf as well as in [5],
the problem for this approach happens when automata of sub regular expres-
sions are combined to form the automaton of the mother regular expression,
no matter what kind of representation is used, the formalization is cuber-
some, as said by Nipkow in [5]: ‘a more abstract mathod is clearly desirable’.

60



In this section, an intrinsically abstract method is given, which completely
avoid the mentioning of automata, let along any particular representations.

The main proof structure is a structural induction on regular expressions,
where base cases (cases for NULL, EMPTY, CHAR) are quite straightfor-
ward to proof. Real difficulty lies in inductive cases. By inductive hypoth-
esis, languages defined by sub-expressions induce finite partitiions. Under
such hypothsis, we need to prove that the language defined by the composite
regular expression gives rise to finite partion. The basic idea is to attach a
tag tag(x ) to every string x. The tagging fuction tag is carefully devised,
which returns tags made of equivalent classes of the partitions induced by
subexpressoins, and therefore has a finite range. Let Lang be the composite
language, it is proved that:

If strings with the same tag are equivalent with respect to Lang,
expressed as:

tag(x ) = tag(y) =⇒ x ≈Lang y

then the partition induced by Lang must be finite.

There are two arguments for this. The first goes as the following:

1. First, the tagging function tag induces an equivalent relation (=tag=)
(defiintion of f-eq-rel and lemma equiv-f-eq-rel).

2. It is shown that: if the range of tag (denoted range(tag)) is finite, the
partition given rise by (=tag=) is finite (lemma finite-eq-f-rel). Since
tags are made from equivalent classes from component partitions, and
the inductive hypothesis ensures the finiteness of these partitions, it is
not difficult to prove the finiteness of range(tag).

3. It is proved that if equivalent relation R1 is more refined than R2 (ex-
pressed as R1 ⊆ R2 ), and the partition induced by R1 is finite, then
the partition induced by R2 is finite as well (lemma refined-partition-finite).

4. The injectivity assumption tag(x ) = tag(y) =⇒ x ≈Lang y implies
that (=tag=) is more refined than (≈Lang).

5. Combining the points above, we have: the partition induced by lan-
guage Lang is finite (lemma tag-finite-imageD).

We could have followed another approach given in appendix II of Brzo-
zowski’s paper [?], where the set of derivatives of any regular expression can
be proved to be finite. Since it is easy to show that strings with same deriva-
tive are equivalent with respect to the language, then the second direction

61



follows. We believe that our apporoach is easy to formalize, with no need
to do complicated derivation calculations and countings as in [???].

end

62


	Folds for Sets
	A general ``while'' combinator
	Partial version
	Total version

	Preliminary definitions
	A modified version of Arden's lemma
	Regular Expressions
	Direction finite partition  regular language
	Equational systems
	Arden Operation on equations
	Substitution Operation on equations
	While-combinator
	Invariants
	The proof of this direction
	Basic properties
	Intialization
	Interation step
	Conclusion of the proof


	List prefixes and postfixes
	Prefix order on lists
	Basic properties of prefixes
	Parallel lists
	Postfix order on lists

	A small theory of prefix subtraction
	Direction regular language finite partition
	The scheme
	The proof
	The base case for NULL
	The base case for EMPTY
	The base case for CHAR
	The inductive case for ALT
	The inductive case for SEQ
	The inductive case for STAR
	The conclusion


	Preliminaries 
	Finite automata and Myhill-Nerode theorem
	The objective and the underlying intuition

	Direction regular language finite partition
	Direction finite partition  regular language

