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Abstract. We survey a number of decision procedures for the equiva-
lence of regular expressions that have been formalised with the help of
interactive proof assistant over the past few years.

1 Introduction

Equivalence of regular expressions is a perennial topic in computer science. Re-
cently it has spawned a number of papers that have formalised and verified
various different algorithm for this task in interactive theorem provers. One of
the motivations is that such verified decision procedures can help to automate
reasoning about binary relations: relation composition corresponds to concate-
nation, reflexive transitive closure to Kleene star, and ∪ to +. It can be shown [9]
that an equivalence between two relation algebraic expressions holds if the corre-
sponding two regular expressions are equivalent—the other direction holds too,
provided the base type of the relations is infinite.

In this brief note we survey the different formalisations that have appeared
over the last few years. We have reproduced most of them in the Isabelle proof
assistant and compare some of them on this basis.

Braibant and Pous [4] where the first to verify an equivalence checker for
regular expressions. The work was carried out in Coq. They followed the classi-
cal approach of translating the regular expressions into automata. The resulting
theory was quite large and their algorithm efficient. Although they set the trend,
the next four verified decision procedures all worked directly on regular expres-
sions. The motivation is simplicity: regular expressions are a free data type which
proof assistants and their users love because it means induction, recursion and
equational reasoning, the core competence of proof assistants and functional
languages.

The outer shell of all the decision procedures that operate directly on regular
expressions is the same. Roughly speaking, there is always a function δ : regexp×
Σ → regexp that extends canonically to words. Starting from some pair (r, s),
all the pairs (δ(r, w), δ(s, w)) are enumerated; the setup guarantees there are
only finitely many δ(r, w) for each r. If for all such pairs (r′, s′), r′ is final iff s′

is final (for a suitable notion of finality), then r ≡ s (and conversely). This is
just an incremental computation of the product automaton or a bisimulation.
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2 Derivatives of Regular Expressions

Brzozowski [5] had introduced derivatives of regular expressions in 1964 and
had shown that modulo ACI of +, there are only finitely many derivatives of
a regular expression, which correspond to the states of a DFA for that regular
expression. In 2009, Owens et al. [13] used derivatives for scanner generators in
ML. They wrote

derivatives have been lost in the sands of time, and few computer scien-
tists are aware of them.

As we shall see, they have certainly become better known by now.
In response to Braibant and Pous, Krauss and Nipkow [9] verified partial

correctness an equivalence checker for regular expressions based on derivatives in
Isabelle. The formalization is very small and elegant, although not very efficient
for larger problems. Coquand and Siles [6] extended this work in Coq. The
emphasis of their work is on the finiteness/termination proof in type theory.

Antimirov [1] introduced partial derivatives of regular expressions. They can
be viewed as sets of derivatives, thus building in ACI of +. Moreira et al. [11]
present an equivalence checker for regular expressions based on partial deriva-
tives and show its total correctness in Coq—termination is proved by showing
finiteness of the set of partial derivatives of an expression. We have formalized
the same proofs in Isabelle. Moreover we have shown termination of a modified
version of the equivalence checker by Krauss and Nipkow as follows. Instead of
comparing derivatives normalised w.r.t. ACI of +, we convert them into partial
derivatives before comparing them. Thus we can reuse finiteness of the set of
partial derivatives to prove termination of the algorithm based on derivatives.

3 Marked Regular Expressions

Both McNaughton and Yamada [10] and Glushkov [8] marked the atoms in a
regular expression with numbers in order to turn it into an automaton. Fischer
et al. [7] realize the convenience of working directly with regular expressions in
a functional programming setting. They present matching algorithms on regular
expression with boolean marks indicating where in the regular expression the
matching process has arrived. Independently, Asperti [2] verifies an equivalence
checker for regular expressions via marked regular expressions in the Matita
proof assistant. We have verified the basic algorithm by Fischer et al. and the
one by Asperti in Isabelle and shown that they are closely related: the one by
Fischer et al. marks the atoms that have just occurred, Asperti marks the atoms
that can occur next.

4 Related Formalisations

Moreira et al. [12] formalise a decision procedure for Kleene Algebra with Tests
as an extension of their earlier work [11] and show its application to program veri-
fication by encoding Hoare triples algebraically. Traytel and Nipkow [14] present
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verified decision procedures for monadic second order logics (MSO) on finite
words based on derivatives of regular expressions extended with complementa-
tion and projection. Outside of the application area of equivalence checking, Wu
et al. [15] verify thy Myhill-Nerode theorem in Isabelle using regular expressions.
Berghofer and Reiter [3] verify a decision procedure for Presburger arithmetic
via automata in Isabelle.
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