
Technische Universität München Winter term 2009/10
I7
Prof. J. Esparza / J. Křet́ınský / M. Luttenberger 19.10.2009

Solution

Automata and Formal Languages – Homework 1

Due 29.10.2009.

Exercise 1.1

In the lecture, it was shown how to obtain from a finite automaton a regular expression representing the same language by
iteratively eliminating states of the automaton. In this exercise we will see that eliminating states corresponds to eliminating
variables from a linear system of equations over the algebraic structure given by the set of languages 2Σ∗

with set union,
language concatenation and the Kleene star as operations.

(a) You might remember Arden’s Lemma from the introductionary course on formal language theory. Arden’s Lemma
says:

Given two languages A,B ⊆ Σ∗ with ε 6∈ A then there is a unique language X ⊆ Σ∗ satisfying X = AX ∪B and this
language is given by A∗B.

Prove Arden’s Lemma.

(b) Solve the following system given in two variables X,Y over Σ = {a, b, c, d, e, f}.

X = {a}X ∪ {b}Y ∪ {c}
Y = {d}X ∪ {e}Y ∪ {f}.

Hint : Consider X as a constant language and solve the equation for Y using Arden’s Lemma.

We can associate with any finite automaton A = (Q,Σ, δ, qI , F) a linear equation system as follows:

We take as variables the states of the automaton. For every state X we then have the equation

X =

 ⋃
Y ∈Q

⋃
a∈Σ

{a}δ(X, a, Y)Y

 ∪ {ε}χF (X),

with δ(X, a, Y) = {ε} if Y ∈ δ(X, a), δ(X, a, Y) = ∅ otherwise; and χF (X) = {ε} if X ∈ F , χF (X) = ∅ otherwise.

(c) Consider the automaton depicted on the left and the equation system we obtain from it (shown on the right):

Xstart

Z

Y

W

a

bb
a

a

bb

a

X = {a}Y ∪ {b}Z ∪ {ε}
Y = {a}X ∪ {b}W
Z = {b}X ∪ {a}W
W = {b}Y ∪ {a}Z

Calculate the solution of this linear system by iteratively eliminating variables. Start with Y , then eliminate Z, finally
W .

Compare the solution you obtain to the regular expression obtained in the script for this automaton.

Solution:

(a) One easily checks that A∗B is a solution:

A∗B
by def.

= (
⋃
k≥0

Ak)B =
⋃
k≥0

AkB = B ∪
⋃
k≥1

AkB = B ∪A
⋃
k≥0

AkB = B ∪A(A∗B).

Assume there is another language L satisfying L = AL ∪B.

If L = ∅, then B = ∅ and subsequently A∗B = ∅ and L = A∗B follow.

So, assume L 6= ∅. We may repeatedly substitute AL ∪B for L in this equation, yielding:

L = AL ∪B
L = A(AL ∪B) ∪B = B ∪AB ∪A2L
L = A(A(AL ∪B) ∪B) ∪B = B ∪AB ∪A2B ∪A3L

...

Using induction we obtain thus for all k ≥ 0:

L = Ak+1L ∪
k⋃

l=0

AlB. (∗)

From this it follows that AkB ⊆ L for all k ≥ 0, and so A∗B ⊆ L.

Choose now any word w ∈ L and denote by n := |w| its length. By (∗) we then have

w ∈ L⇔ w ∈ An+1L ∪
n⋃

l=0

AlB.

As we require that ε 6∈ A (and L 6= ∅ by assumption), any word of An+1L has to have length at least n + 1, so
w ∈

⋃n
l=0A

lB and, thus, w ∈ A∗B. We conclude L ⊆ A∗B and L = A∗B.

(b) The solution of the equation Y = {d}X ∪{e}Y ∪{f} = {e}Y ∪ ({d}X ∪{f}) is given by {e}∗({d}X ∪{f}) by Arden’s
Lemma – independent of the value of X. Substituting this into the first equation, we obtain

X = {a}X ∪ {b}{e}∗({d}X ∪ {f}) ∪ {c} = ({a} ∪ {b}{e}∗{d})X ∪ ({b}{e}∗{f} ∪ {c}) = L(a+ be∗d)X ∪ L(be∗f ∪ c).

yielding X = L((a+ be∗d)∗(be∗f + c)) and Y = L(e∗(d(a+ be∗d)∗(be∗f + c) + f)).

(c) In order to eleminate Y , we simply substitute the equation Y = {a}X ∪ {b}W into the remaining equations, yielding:

X = {aa}X ∪ {ab}W ∪ {b}Z ∪ {ε}
Z = {b}X ∪ {a}W
W = {a}Z ∪ {ba}X ∪ {bb}W

Similarly, we may eliminate Z:

X = {aa}X ∪ {ab}W ∪ {bb}X ∪ {ba}W ∪ {ε} = {aa, bb}X ∪ {ab, ba}W ∪ {ε}
W = {ab}X ∪ {aa}W ∪ {ba}X ∪ {bb}W = {aa, bb}W ∪ {ab, ba}X

The parametrized solution for W then is L((aa+ bb)∗(ab+ ba))X. So, we obtain the single equation

X = L((aa+ bb))X ∪ L((ab+ ba)(aa+ bb)∗(ab+ ba))X ∪ {ε}

whose least solution is X = L(((aa+ bb) + (ab+ ba)(aa+ bb)∗(ab+ ba))∗), the same regular expression as given in the
script. The Elemination of states in the procedure described in the lecture therefore can be seen as the elimination of
the corresponding variables in the underlying linear equation system.

Exercise 1.2

Let Σ be an alphabet. We define the operator || : Σ∗ × Σ∗ → 2Σ∗
as follows:

v||u := u||v, u||ε := {u}, au||bv := {aw | w ∈ u||bv} ∪ {bw | w ∈ au||v} for a, b ∈ Σ, u, v ∈ Σ∗.

Examples :
b||d = {bd, db}, ab||d = {abd, adb, dab}, ab||cd = {cabd, acbd, abcd, cadb, acdb, cdab}.

• Show that for two regular languages L1, L2 ⊆ Σ∗ their interleaving

L1||L2 :=
⋃

u∈L1,v∈L2

u||v

is also regular.

Solution: Let Ai = (Qi,Σ, δi, q
(i)
0 , Fi) be a DFA with Li = L(Ai) (for i = 1, 2). We make use of the product automata

construction, i.e., we construct an automaton with states Q1×Q2. While in the constructions seen in class both automaton
move when a symbol is read, we now choose nondeterministically one of the two automata which is to move accoringly to
the symbol read, while the other one does not change its state, i.e.,

δ((q, q′), a) := {(δ1(q, a), q′), (q, δ2(q′, a))}.

It is left to the reader to show that this automaton indeed accepts exactly L1||L2.

Exercise 1.3

Let Σ1,Σ2 be two alphabets. A map h : Σ∗1 → Σ∗2 is called a homomorphism if it respects the empty word and concatenation,
i.e.,

h(ε) = ε and h(w1w2) = h(w1)h(w2) for all w1, w2 ∈ Σ∗1.

Assume that h : Σ∗1 → Σ∗2 is a homorphism. Note that h is completely determined by its values on Σ1.

(a) Let A be a finite automaton over the alphabet Σ1. Describe how to constuct a finite automaton accepting the language

h(L(A)) := {h(w) | w ∈ L(A)}.

(b) Let A′ be a finite automaton over the alphabet Σ2. Describe how to construct a finite automaton accepting the
language

h−1(L(A′)) := {w ∈ Σ∗1 | h(w) ∈ L(A′)}.

(c) Recall that the language {0n1n | n ∈ N } is context free, but not regular. Use the preceding two results to show that
{(01k2)n3n | k, n ∈ N } is also not regular.

Solution:

(a) Let A = (Q,Σ1, δ, q0, F) be a DFA. In the lecture, you have seen finite automata whose transitions are labeled by
regular expressions, and not only by letters. We make use of this extension here. We construct fromA a finite automoton
A′ = (Q,Σ2, δ

′, q0, F) whose transitions are labeled by words over Σ2, more precisely by the words h(Σ1) := {h(a) |
a ∈ Σ1}. Note that this set is finite as Σ1 is finite.

We then set for all a ∈ Σ1

δ′(q, h(a)) := δ(q, a).

Otherwise δ′ is defined to be the empty set.

This basically means that we apply h to the edge labels of the graph underlying A, i.e., if q
a−→ q′ in A, then q

h(a)−−−→ q′

in A′.

We now show that L(A′) = h(L(A).

• Consider some word w = a1a2 . . . an ∈ L(A). Hence, there is an accepting run of A on w, i.e.,

q0
a1−→ q1

a2−→ q2 . . .
an−−→ qn with qn ∈ F.

By definition of δ′ we therefore have qi
h(ai)−−−→ qi+1 in A′ for all transitions along this run, implying that w′ = h(w)

is accepted by A′. Hence, h(L(A)) ⊆ L(A′)

• Assume thus that w′ ∈ L(A′). Then there is some accepting run of A′

q0
u1−→ q1

u2−→ q2 . . .
ul−→ qn with qn ∈ F and ui ∈ h(Σ1).

By definition of δ′ we find for every transition qi
ui−→ qi+1 of A′ some ai ∈ Σ1 with h(ai) = ui such that qi

ai−→ qi+1

in A. By construction,
q0

a1−→ q1
a2−→ q2 . . .

al−→ qn with qn ∈ F

is a run of A, in particular, it is an accepting run. So, a1a2 . . . al ∈ L(A) and h(a1a2 . . . al) = w′. Therefore,
L(A′) ⊆ h(L(A)).

(b) Now we are given a finite automaton A′ = (Q,Σ2, δ
′, q0, F) over the alphabet Σ′2, w.l.o.g. A′ is deterministic, and we

need to construct a finite automaton A accepting h−1(L(A′)).

As A′ is assumed to be deterministic, δ′ can be thought of as a map from Q× Σ2 to Q and we may extend this map
to Q× Σ∗2 in the natural way:

δ′(q, ε) := q and δ′(q, a1a2 . . . an) := δ′(. . . δ′(δ′(q, a1), a2) . . . , an).

The idea now is that a transition of A labeled by a ∈ Σ1 summarizes the behavior of A′ when reading the word h(a).

Hence set
δ(q, a) := δ′(q, h(a)) for all a ∈ Σ1.

We claim that A = (Q,Σ1, δ, q0, F) then accepts exactly h−1(L(A′)).

• L(A) ⊆ h−1(L(A′)):

Choose some w = a1a2 . . . an ∈ L(A), i.e.,

F 3 δ(q0, w) = δ(. . . , δ(δ(q0, a1), a2) . . . , an)
by Induction

= δ′(. . . , δ′(δ′(q0, h(a1)), h(a2)) . . . , h(an)) = δ′(q0, h(w)).

So, h(w) ∈ L(A′), i.e., w ∈ h−1(L(A′)).

• L(A) ⊇ h−1(L(A′)):

Let w = a1a2 . . . an ∈ h−1(L(A′)), i.e., h(w) ∈ L(A′), i.e.,

F 3 δ′(q0, h(w)) = δ′(. . . , δ′(δ′(q0, h(a1)), h(a2)) . . . , h(an))
by Induction

= δ(. . . , δ(δ(q0, a1), a2) . . . , an) = δ(q0, w).

So, w ∈ L(A).

(c) Set L := {(01k2)n3n | k, n ≥ 0}.

Let h, {0, 1, 2, 3}∗ → {0, 1}∗ be the homomorphism uniquely determined by

h(0) = 0, h(1) = ε, h(2) = ε, h(3) = 1.

Then h(L) = {0n1n | n ≥ 0}.

So, if L was regular, i.e., if there was some finite automaton A with L = L(A), then by the preceding results there
would also be a finite automaton A′ with L(A′) = {0n1n | n ≥ 0}. Contradiction.

Exercise 1.4

For L1, L2 regular languages over an alphabet Σ, the left quotient of L1 by L2 is defined by

L2�L1 := {v ∈ Σ∗ | ∃u ∈ L2 : uv ∈ L1}

(a) Use the fact that regular languages are closed under homomorphisms, inverse homomorphisms, concatenation and
intersection to prove they are closed under quotienting.

(b) Given finite automata A1,A2, construct an automaton A such that

L(A) = L(A2)�L(A1)

(c) Is there any difference when taking the right quotient L1�L2 := {u ∈ Σ∗ | ∃v ∈ L2 : uv ∈ L1} ?

Solution:

(a) Let L1 and L2 be regular languages over Σ. Let us denote a barred copy of the alphabet Σ by Σ = {a | a ∈ Σ}
(assuming that Σ and Σ are disjoint). We define a homomorphism h : Σ ∪ Σ→ Σ as follows:

h(a) = a for every a ∈ Σ

h(a) = a for every a ∈ Σ

Thus h−1(L1) consists of words from L1 with all possible combinations of letters being barred or not. (E.g. h−1({ab}) =
{ab, ab, ab, ab}.)

We now intersect h−1(L1) with a regular language L2.Σ
∗

in order to get all words from L1 with prefix from L2 but
with the remaining suffix being barred.

We can now apply homomorphism h defined by

h(a) = ε for every a ∈ Σ

h(a) = a for every a ∈ Σ

in order to obtain the suffixes only, now being unbarred. Hence,

L2�L1 = h(h−1(L1) ∩ L2.Σ
∗
)

proves the regularity of the quotient.

(b) In order to accept a word v ∈ L2�L1, we need to guess a word u ∈ L2 and check whether uv ∈ L1. Therefore, we
can build a parallel composition of automata accepting L1 and L2 using the product construction and replace all
transitions by ε-transitions (we are guessing the prefix that actually is not there) and adding ε-transitions from all
states corresponding to final states for L2 to the respective state of the automaton for L1.

Formally, let Ai = (Qi,Σ, δi, qi, Fi) be such that L(Ai) = Li for i ∈ {1, 2}. We construct

A = ((Q1 ×Q2) ∪Q1,Σ, δ, (q1, q2), F1)

so that L(A) = L2�L1. We set the transition relation δ as follows:

(p, r)
ε→ (p′, r′) for every a ∈ Σ with p

a→1 p
′ and q

a→2 q
′ (guessing the prefix)

(p, r)
ε→ p for every r ∈ F2 (prefix is in L2)

p
a→ p′ for every p

a→1 p
′ (checking the suffix)

where q
a→i q

′ denotes δi(q, a) 3 q′.

(c) Similarly as in (a), we have

L1�L2 = h(h−1(L1) ∩ Σ
∗
.L2)

The direct construction of an automaton recognizing the right quotient is not as straightforward as in the case with
left quotient: we need to check the intersection of L2 with the language recognized by the automaton A1 with any
initial state. An easier approach is to make use of the reverse construction together with the construction above, since

L1�L2 = (LR
2 �LR

1)R

Exercise 1.5

Let L1, L2 be regular languages. Determine the inclusion relation between the following languages:

• L1

• (L1�L2).L2

• (L1.L2)�L2

Solution: None of the inclusions holds in general. Let

L1 = {a, b}
L2 = {b, bb}

Then quotienting removes all words from L1 not having a suffix in L2 and appending L2 may add new suffixes as follows:

L1�L2 = {ε}
(L1�L2).L2 = {b, bb}
L1.L2 = {ab, abb, bb, bbb}
(L1.L2)�L2 = {a, ab, ε, b, bb}

which disproves all inclusions except for (L1�L2).L2 ⊆ (L1.L2)/L2 and L1 ⊆ (L1.L2)�L2. To disprove the former, let L1 =
{a, b}, L2 = {b, ab}, then (L1�L2).L2 = {b, ab} 6⊆ {ε, a, b, aa, ba} = (L1.L2)/L2. To disprove the latter, let L1 = {a}, L2 = ∅,
then (L1.L2)�L2 = ∅�∅ = ∅ 6⊇ {a}.

We can at least prove the last inclusion holds for L1 = ∅ or L2 6= ∅. The former case is trivial, for the latter let v ∈ L2. If
u ∈ L1 then uv ∈ L1L2 and thus u ∈ (L1.L2)�L2.

