
Journal of Automata, Languages and Combinatorics u (v) w, x–y
c© Otto-von-Guericke-Universität Magdeburg

QUOTIENT COMPLEXITY OF REGULAR LANGUAGES 1

Janusz Brzozowski

David R. Cheriton School of Computer Science, University of Waterloo

Waterloo, Ontario, Canada

e-mail: brzozo@uwaterloo.ca

ABSTRACT

The past research on the state complexity of operations on regular languages is exam-
ined, and a new approach based on an old method (derivatives of regular expressions)
is presented. Since state complexity is a property of a language, it is appropriate to
define it in formal-language terms as the number of distinct left quotients of the lan-
guage, and to call it “quotient complexity”. Suppose f is a binary regular operation
(for example, union or concatenation) and g, a unary regular operation (for example,
star or reversal). Moreover, let K (respectively, L) range over all regular languages
with quotient complexity m (respectively, n). We want to find the worst-case quotient
complexity of f(K, L) as a function of m and n, or that of g(L) as a function of n.
Since quotients can be represented by derivatives, one can find a formula for the typ-
ical quotient of f(K, L) or g(L) in terms of the quotients of K and L. To obtain an
upper bound on the number of quotients of f(K, L) or g(L) all one has to do is count
how many such quotients are possible, and this usually makes automaton constructions
unnecessary. The advantages of this point of view are illustrated by many examples.
Moreover, new general observations are presented to help in the estimation of upper
bounds on quotient complexity of regular operations.

Keywords: automaton, operation, quotient, regular language, state complexity

1. Introduction

It is assumed that the reader is familiar with the basic concepts of regular languages
and finite automata, as described in many textbooks. General background material
can be found in Dominique Perrin’s [30] and Sheng Yu’s [35] handbook articles; the
latter has an introduction to state complexity. A more detailed treatment of state
complexity can be found in Sheng Yu’s survey [36]. The present paper concentrates on
the complexity of basic operations on regular languages. Other aspects of complexity
of regular languages and finite automata are discussed in [3, 9, 13, 19, 20, 22, 33, 34];
this list is not exhaustive, but it should give the reader a good idea of the scope of
the work on this topic.

First we mention some early work on state complexity. We refer to languages and
automata over a one-, two-, and three-letter alphabet, as unary, binary, and ternary
languages and automata, respectively.

1This research was supported by the Natural Sciences and Engineering Research Council of
Canada under grant no. OGP0000871.

2 J. Brzozowski

In 1963 Lupanov [25] studied the complexity of the conversion of nondeterministic
finite automata (NFA’s) to deterministic finite automata (DFA’s), and showed that
the bound 2n is tight. His ternary n-state NFA that has a corresponding DFA with 2n

states is shown in Fig. 1. Lupanov’s paper is almost unknown in the English-language
literature, and the result is often attributed to the 1971 paper by Moore [28]. The

c

...0 1 2 n − 2 n − 1
a a a

b, cb, c

a, b

b, c

a

a

b, c

Figure 1: Lupanov’s NFA

problem of NFA to DFA conversion for unary languages was studied in 1964 by
Ljubič [24].

In 1966 Mirkin [27] observed that the reverse of Lupanov’s NFA is a complete DFA,
and thus showed that the 2n bound for the reversal of a DFA is attainable. The same
result was re-discovered in 1981 by Leiss [23] who used a slightly different ternary
DFA; moreover, he showed that the 2n bound can be met by a binary DFA. In 1994
Yu, Zhuang and Salomaa [38] modified Leiss’s ternary DFA, and obtained precisely
Lupanov’s DFA!

In 1970, Maslov [26] studied the complexity of union, concatenation, star, and
several other operations on regular languages, and stated without proof some tight
bounds for these operations. More will be said about his results later.

2. State Complexity or Quotient Complexity?

Lupanov [25] used the term slozhnost’ avtomatov, meaning complexity of automata.
In the introduction to his paper Maslov states:

An important characteristic of the complexity of these sets [of words] is
the number of states of the minimal representing automaton.2

Leiss [23] referred to (deterministic) complexity of languages. The English term state
complexity of a regular language seems to have been introduced by Birget3 [1] in 1991,
and is now in common use. It is defined as the number of states in the minimal DFA
recognizing the language [36].

Let us consider the definition of state complexity more closely. A language is a
subset of the free monoid Σ∗ generated by a finite alphabet Σ. If state complexity
is a property of a language, then why is it defined in terms of a completely different
object, namely an automaton? Admittedly, regular languages and finite automata are

2The emphasis is mine.
3An error in [1] was corrected in [2, 37].

Quotient Complexity of Regular Languages 3

closely related, but there is a more natural way to define this complexity of languages,
as is shown below.

The left quotient, or simply quotient of a language L by a word w is defined as the
language w−1L = {x ∈ Σ∗ | wx ∈ L}. The quotient complexity of L is the number
of distinct languages that are quotients of L, and will be denoted by κ(L) (kappa for
both kwotient and komplexity). Quotient complexity is defined for any language, and
so may be finite or infinite; it is finite if and only if the language is regular.

Since languages are sets, it is natural to define set operations on them. The follow-
ing are common set operations: complement (L = Σ∗ \L), union (K∪L), intersection
(K ∩ L), difference (K \ L), and symmetric difference (K ⊕ L). A general boolean
operation with two arguments is denoted by K ◦ L. Since languages are also sub-
sets of a monoid, it is also natural to define product, usually called (con)catenation,
(K · L = {w ∈ Σ∗ | w = uv, u ∈ K, v ∈ L}), star (K∗ =

⋃

i≥0 Ki), and positive

closure (K+ =
⋃

i≥1 Ki).
The operations union, product and star are called rational or regular. Regular

languages over Σ are those languages that can be obtained from the set {∅, {ε}}∪{{a} |
a ∈ Σ} of basic languages, where ε is the empty word (or, equivalently, from another
basis, such as the finite languages over Σ), using a finite number of regular operations
union, product and star. Since it is cumbersome to describe regular languages as
sets—for example, one has to write L = ({ε} ∪ {a})∗ · {b}—one normally switches to
regular expressions. These are the terms of the free algebra over the set Σ∪{∅, ε} with
function symbols4 ∪, ·, and ∗ [30]. For the example above, one writes E = (ε∪ a)∗ · b.
The mapping L from this free algebra onto the algebra of regular languages is defined
inductively as follows:

L(∅) = ∅, L(ε) = {ε}, L(a) = {a},

L(E ∪ F) = L(E) ∪ L(F), L(E · F) = L(E) · L(F), L(E∗) = (L(E))∗,

where E and F are regular expressions. The product symbol · is usually dropped, and
languages are denoted by expressions without further mention of the mapping L. Since
regular languages are closed under complementation, complementation is treated here
as a regular operator.

Because regular languages are defined by regular expressions, it is natural to use
regular expressions also to represent their quotients; these expressions are their deriva-
tives [5]. First, the ε-function of a regular expression L, denoted by Lε, is defined as
follows:

aε =

{

∅, if a = ∅, or a ∈ Σ;

ε, if a = ε.
(1)

(L)ε =

{

∅, if Lε = ε;

ε, if Lε = ∅.
(2)

4The symbol + is used instead of ∪ in [30]. I prefer to use the same set of symbols consistently.

4 J. Brzozowski

(K ∪ L)ε = Kε ∪ Lε, (KL)ε = Kε ∩ Lε, (L∗)ε = ε. (3)

One verifies that L(Lε) = {ε} if ε ∈ L, and L(Lε) = ∅, otherwise.
The derivative by a letter a ∈ Σ of a regular expression L is denoted by La and

defined by structural induction:

ba =

{

∅, if b ∈ {∅, ε}, or b ∈ Σ and b 6= a;

ε, if b = a.
(4)

(L)a = La, (K ∪ L)a = Ka ∪ La, (KL)a = KaL ∪ KεLa, (L∗)a = LaL∗. (5)

The derivative by a word w ∈ Σ∗ of a regular expression L is denoted by Lw and
defined by induction on the length of w:

Lε = L, Lwa = (Lw)a. (6)

By convention, Lε
w always means (Lw)ε. A derivative Lw is accepting if Lε

w = ε;
otherwise it is rejecting.

One can verify by structural induction that L(La) = a−1L, for all a ∈ Σ, and then
by induction on the length of w that, for all w ∈ Σ∗,

L(Lw) = w−1L. (7)

Thus every derivative represents a unique quotient of L, but there may be many
derivatives representing the same quotient.

Two regular expressions are similar [4, 5] if one can be obtained from the other
using the following rules:

L ∪ L = L, K ∪ L = L ∪ K, K ∪ (L ∪ M) = (K ∪ L) ∪ M, (8)

L ∪ ∅ = L, ∅L = L∅ = ∅, εL = Lε = L. (9)

Upper bounds on the number of dissimilar derivatives, and hence on the quotient
complexity, were derived in [4, 5]: If m and n are the quotient complexities of K and
L, respectively, then

κ(L) = κ(L), κ(K ∪ L) ≤ mn, κ(KL) ≤ m2n, κ(L∗) ≤ 2n − 1. (10)

This immediately implies that the number of derivatives, and hence the number of
quotients, of a regular language is finite.

It seems that the upper bounds in Equation (10), derived in 1962 [4, 5], were the
first “state complexity” bounds to be found for the regular operations. Since the aim
at that time was simply to show that the number of quotients of a regular language
is finite, the tightness of the bounds was not considered.

Of course, the concepts above are related to the more commonly used ideas. A DFA
is a quintuple

A = (Q, Σ, δ, q0, F),

where Q is a finite, non-empty set of states, Σ is a finite, non-empty alphabet, δ :
Q × Σ → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is
the set of final states. The transition function is extended to δ : Q × Σ∗ → Q as

Quotient Complexity of Regular Languages 5

usual. A word w is recognized (or accepted) by A if δ(q0, w) ∈ F . It was proved by
Nerode [29] that a language L is recognizable by a DFA if and only if L has a finite
number of quotients.

The quotient automaton of a regular language L is A = (Q, Σ, δ, q0, F), where
Q = {w−1L | w ∈ Σ∗}, δ(w−1L, a) = (wa)−1L, q0 = ε−1L = L, and F = {w−1L | ε ∈
w−1L}.

It should now be clear that the state complexity of a regular language L is the
number of states in its quotient automaton, i.e., the number κ(L) of its quotients.
This terminology change may seem trivial, but has some nontrivial consequences.

For convenience, derivative notation will be used to represent quotients, in the
same way as regular expressions are used to represent regular languages.

3. Derivation of Bounds using Quotients

Since unary languages have very special properties, we usually assume that the al-
phabet has at least two letters. The complexity of operations on unary languages has
been studied in [31, 36].

In the literature on state complexity, it is assumed that DFA’s A and B accepting
languages K and L, respectively, are given. An assumption has to be made that the
DFA’s are “complete”, i.e., that for each q ∈ Q and a ∈ Σ, δ(q, a) is defined [38]. In
particular, if a “dead” or “sink” state which accepts no words is present, one has to
check that only one such state is included [11]. Also, every state other than the sink
state must be “useful” in the sense that it appears on some accepting path [12].

Suppose that a bound on the state complexity of f(K, L) is to be computed, where
f is some regular operation. In some cases a DFA accepting f(K, L) is constructed
directly, (e.g., Theorems 2.3 and 3.1 in [38]), or an NFA with multiple initial states
is used, and then converted to a DFA by the subset construction (e.g., Theorem 4.1
in [38]). Sometimes an NFA with empty-word transitions is used and then converted
to a DFA [34]. The constructed DFA’s then have to be proved minimal.

Much of this is unnecessary if one uses quotients. The problem of completeness
does not arise, since all the quotients of a language are included. A quotient is either
empty or “useful”. If the empty quotient is present, then it appears only once. Since
quotients are distinct languages, the set of quotients of a language is always minimal.
To find an upper bound on the state complexity, instead of constructing a DFA for
f(K, L), we need only find a regular expression for the typical quotient, and then do
some counting. This is illustrated below for the basic regular operations.

3.1. Bounds for Basic Operations

The following are some useful formulas for the derivatives of regular expressions:

Theorem 1 If K and L are regular expressions, then

(L)w = Lw, (11)

(K ◦ L)w = Kw ◦ Lw, (12)

6 J. Brzozowski

(KL)w = KwL ∪ KεLw ∪

⋃

w=uv

u,v∈Σ+

Kε
uLv

 . (13)

For the Kleene star, (L∗)ε = ε ∪ LL∗, and for w ∈ Σ+,

(L∗)w =

⋃

w=uv

u,v∈Σ∗

(L∗)ε
uLv

L∗. (14)

Proof. Consider first the boolean operations. Since (K ∪ L)w = Kw ∪ Lw, and
(L)w = Lw, it follows that (K ◦ L)w = Kw ◦ Lw.

Equation (13) is easily verified by induction on the length |w| of a word w ∈ Σ∗.
Thus (KL)w consists of KwL and a union (possibly empty) of derivatives of L. When
w is in K, then ε ∈ Kw and L is added to the union.

For the star, the claim is obvious when w = ε. For w 6= ε, we first prove that

(L∗)w =

Lw ∪
⋃

w=uv

u,v∈Σ+

(L∗)ε
uLv

 L∗ (15)

by induction on |w|. Let M = L∗. For w = a ∈ Σ, we have Ma = LaL∗ = LaM , by
definition. This agrees with Equation (15), because there is no decomposition a = uv
with u, v ∈ Σ+. Now assume that Equation (15) holds for w, and consider wa:

Mwa =

Lwa ∪ Lε
wLa ∪

⋃

w=uv

u,v∈Σ+

M ε
uLva ∪ M ε

uLε
vLa

M

=

Lwa ∪

Lε
w ∪

⋃

w=uv

u,v∈Σ+

M ε
uLε

v

La ∪
⋃

w=uv

u,v∈Σ+

M ε
uLva

M.

From Equation (15), for w 6= ε, M ε
w = Lε

w ∪
⋃

w=uv

u,v∈Σ+
M ε

uLε
v; thus we have

Mwa =

Lwa ∪ M ε
wLa ∪

⋃

w=uv

u,v∈Σ+

M ε
uLva

M =

Lwa ∪

⋃

wa=xy

x,y∈Σ+

M ε
xLy

M.

So the induction step goes through, and we have Equation (15). Note that M = MM ;
thus w ∈ M implies Mw = (L∗)w ⊇ L∗ ⊇ LL∗ = LM , and we have proved a useful
alternate version of Equation (15):

Mw =

Lw ∪ M ε
wL ∪

⋃

w=uv

u,v∈Σ+

M ε
uLv

 M = S(w)M, (16)

where S(w) =
(

Lw ∪ M ε
wL ∪

⋃

w=uv

u,v∈Σ+
M ε

uLv

)

. Finally, note that Lw = M ε
ε Lw;

hence S(w) =
(

⋃

w=uv

u,v∈Σ∗
M ε

uLv

)

, and we have Equation (14). 2

Quotient Complexity of Regular Languages 7

Theorem 1 can be applied to obtain upper bounds on the complexity of opera-
tions. In Theorem 2 below, the second part is a slight generalization of the bound in
Theorem 4.3 of [38]. The third and fourth parts are reformulations of the bounds in
Theorem 2.3 and 2.4, and of Theorem 3.1 of [38]:

Theorem 2 For any languages K and L with κ(K) = m and κ(L) = n,

1. κ(L) = n.

2. κ(K ◦ L) ≤ mn.

3. Suppose K has k accepting quotients and L has l accepting quotients.

(a) If k = 0 or l = 0, then κ(KL) = 1.

(b) If k, l > 0 and n = 1, then κ(KL) ≤ m − (k − 1).

(c) If k, l > 0 and n > 1, then κ(KL) ≤ m2n − k2n−1.

4. (a) If n = 1, then κ(L∗) ≤ 2.

(b) If n > 1 and Lε is the only accepting quotient of L, then κ(L∗) = n.

(c) If n > 1 and L has l > 0 accepting quotients not equal to L, then κ(L∗) ≤
2n−1 + 2n−l−1.

Proof. The first claim is well-known, and the second follows from Equation (12).
For the product, if k = 0 or l = 0, then KL = ∅ and κ(KL) = 1. Thus assume that

k, l > 0. If n = 1, then L = Σ∗ and w ∈ K implies (KL)w = Σ∗. Thus all k accepting
quotients of K produce the one quotient Σ∗ in KL. For each rejecting quotient of K,
we have two choices for the union of quotients of L in Equation (13): the empty union
or Σ∗. If we choose the empty union, we can have at most m − k quotients of KL.
Choosing Σ∗ results in (KL)w = Σ∗, which has been counted already. Altogether,
there are at most 1 + m − k quotients of KL. Suppose now that k, l > 0 and n > 1.
If w /∈ K, then we can choose Kw in m − k ways, and the union of quotients of L in
2n ways. If w ∈ K, then we can choose Kw in k ways, and the set of quotients of L
in 2n−1 ways, since L is then always present. Thus we obtain (m − k)2n + k2n−1.

For the star, if n = 1, then L = ∅ or L = Σ∗. In the first case, L∗ = ε, and
κ(L∗) = 2; in the second case, L∗ = Σ∗ and κ(L∗) = 1. Now suppose that n > 1;
hence L has at least one accepting quotient. If L is the only accepting quotient of L,
then L∗ = L and κ(L∗) = κ(L).

Now assume that n > 1 and l > 0. From Equation (14), every quotient of L∗ by a
non-empty word is a union of a subset of quotients of L, followed by L∗. Moreover,
that union is non-empty, because (L∗)ε

εLw is always present. We have two cases:

1. Suppose L is rejecting. Then L has l accepting quotients.

(a) If no accepting quotient of L is included in the subset, then there are
2n−l − 1 such subsets possible, the union being non-empty because Lw is
always included.

(b) If an accepting quotient of L is included, then ε ∈ (L∗)w, (L∗)ε
w = ε,

and L = (L∗)ε
wLε is also included. We have 2l − 1 non-empty subsets of

8 J. Brzozowski

accepting quotients of L and 2n−l−1 subsets of rejecting quotients, since L
is not counted.

Adding 1 for (L∗)ε, we have a total of 2n−l−1+(2l−1)2n−l−1+1 = 2n−1+2n−l−1.

2. Suppose L is accepting. Then L has l + 1 accepting quotients.

(a) If there is no accepting quotient, there are 2n−l−1 − 1 non-empty subsets
of rejecting quotients.

(b) If an accepting quotient of L is included, then L is included, and 2n−1

subsets can be added to L.

We need not add (L∗)ε, since ǫ ∪ LL∗ = LL∗ in this case, and this has already
been counted. The total is 2n−1 + 2n−l − 1.

The worst-case bound of 2n−1 + 2n−l−1 occurs in the first case only. 2

3.2. Witnesses to Bounds for Basic Operations

Finding witness languages showing that a bound is tight is often challenging. However,
once a guess is made, the verification can be done using quotients.

Let |w|a be the number of a’s in w, for a ∈ Σ and w ∈ Σ∗.

• Union and Intersection If we have a witness for intersection, we can use

the fact that κ(K ∪ L) = κ(K ∪ L) = κ(K ∩ L); thus the pair (K, L) is a
witness for union. Similarly, given a witness for union, we also have a witness
for intersection.

The upper bound mn for the complexity of intersection was observed in 19575

by Rabin and Scott [32]. Binary languages K = {w ∈ {a, b}∗ | |w|a ≡
m − 1 mod m} and L = {w ∈ {a, b}∗ | |w|b ≡ n − 1 mod n} have quo-
tient complexities m and n, respectively. In 1970 Maslov [26] stated with-
out proof that K ∪ L meets the upper bound mn. Yu, Zhuang and K. Salo-
maa [38], used similar languages K ′ = {w ∈ {a, b}∗ | |w|a ≡ 0 mod m} and
L′ = {w ∈ {a, b}∗ | |w|b ≡ 0 mod n} for intersection, apparently unaware
of [26]. Hricko, Jirásková and Szabari [15] showed that a complete hierarchy of
quotient complexities of binary languages exists between the minimum complex-
ity 1 and the maximum complexity mn. More specifically, it was proved that
for any integers m, n, α such that m ≥ 2, n ≥ 2 and 1 ≤ α ≤ mn, there exist
binary6 languages K and L such that κ(K) = m, κ(L) = n, and κ(K ∪L) = α,
and the same holds for intersection.

For a one-letter alphabet Σ = {a}, Yu showed that the bound can be reached
if m and n are relatively prime [36]. The witnesses are K ′′ = (am)∗ and L′′ =
(an)∗. For other cases, see the paper by Pighizzini and Shallit [31].

• Set difference For set difference we have κ(K ′ \ L′) = κ(K ′ ∩ L′); thus the
pair (K ′, L′) is a witness.

5The work was done in 1957, but published in 1959.
6The proof in [15] is for ternary languages; a proof for the binary case can be found in [14].

Quotient Complexity of Regular Languages 9

• Symmetric difference For symmetric difference, let m, n ≥ 1, let K =
(b∗a)m−1(a ∪ b)∗ and let L = (a∗b)n−1(a ∪ b)∗. There are mn words of the
form aibj , where 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1. We claim that all the
quotients of K ⊕ L by these words are distinct. Let x = aibj and y = akbl. If
i < k, let u = am−1−kbn. Then xu /∈ K, yu ∈ K, and xu, yu ∈ L, showing that
xu ∈ K ⊕ L, and yu /∈ K ⊕ L, i.e., that (K ⊕ L)x 6= (K ⊕ L)y. Similarly, if
j < l, let v = ambn−1−l. Then xv ∈ K ⊕ L, but yv /∈ K ⊕ L. Therefore all the
quotients of K ⊕ L by these mn words are distinct.

For a unary alphabet, the witnesses are K ′′ and L′′ as in the case of union.

• Other boolean functions There are six more two-variable boolean functions
that depend on both variables: K∪L = K ∩ L, K∩L = K ∪ L, K∪L = K \ L,
K ∩ L = L \ K, K ∪ L = L \ K, and K ⊕ L. The witnesses for these functions
can be found using the four functions above.

• Product The upper bound of m2n − 2n−1 was given by Maslov in 1970 [26],
and he stated without proof that it is tight for binary languages K = {w ∈
{a, b}∗ | |w|a ≡ m − 1 mod m} and L = (a∗b)n−2(a ∪ b)(b ∪ a(a ∪ b))∗. The
bound was refined by Yu, Zhuang and K. Salomaa [38] to m2n − k2n−1, where
k is the number of accepting quotients of K. Jirásek, Jirásková and Szabari [16]
proved that, for any integers m, n, k such that m ≥ 2, n ≥ 2 and 0 < k < m,
there exist binary languages K and L such that κ(K) = m, κ(L) = n, and
κ(KL) = m2n − k2n−1. Furthermore, Jirásková [18] proved that, for all m, n,
and α such that either n = 1 and 1 ≤ α ≤ m, or n ≥ 2 and 1 ≤ α ≤ m2n−2n−1,
there exist languages K and L with κ(K) = m and κ(L) = n, defined over a
growing alphabet, such that κ(KL) = α.

For a unary alphabet, mn is a tight bound for product if m and n are relatively
prime [38]. The witnesses are K = (am)∗am−1 and L = (an)∗an−1. See also [31].

• Star Maslov [26] incorrectly stated without proof that κ(L∗) ≤ 2n−1 +2n−2−1,
but provided a binary language meeting the bound 2n−1 + 2n−2. The problem
was reconsidered by Yu, Zhuang and K. Salomaa [38], in three cases:

– n = 1. If L = ∅, then κ(L) = 1 and κ(L∗) = 2. If L = Σ∗, then κ(L∗) = 1.

– n = 2. L = {w ∈ {a, b}∗ | |w|a ≡ 1 mod 2} has κ(L) = 2, and κ(L∗) = 3.

– n > 2. Let Σ = {a, b}. Then L = (b ∪ aΣn−1)∗aΣn−2 has n quotients, one
of which is accepting, and κ(L∗) = 2n−1 + 2n−2. This example is different
from Maslov’s.

Jirásková [17] proved that, for all integers n and α with either 1 = n ≤ α ≤ 2,
or n ≥ 2 and 1 ≤ α ≤ 2n−1 + 2n−2, there exists a language L over a 2n–letter
alphabet such that has κ(L) = n and κ(L∗) = α.

For a unary alphabet, n2 − 2n + 2 is a tight bound for star [38]. The witness is
L′′ = (an)∗an−1. See also [31].

10 J. Brzozowski

4. Generalization of “Non-Returning” State

A quotient Lw of a language L is uniquely reachable if Lx = Lw implies that x = w.
If Lwa is uniquely reachable for a ∈ Σ, then so is Lw. Thus, if L has a uniquely
reachable quotient, then L itself is uniquely reachable by the empty word, i.e., the
minimal DFA of L is non-returning7. Thus the set of uniquely reachable quotients of
L is a tree with root L, if it is non-empty.

We now apply the concept of uniquely reachable quotients to boolean operations
and product.

Theorem 3 Suppose κ(K) = m, κ(L) = n, K and L have mu and nu uniquely
reachable quotients, respectively, and there are r words wi such that both Kwi

and
Lwi

are uniquely reachable. If ◦ is a boolean operator, then

κ(K ◦ L) ≤ mn − (α + β + γ), where (17)

α = r(m+n)−r(r+1); β = (mu−r)(n−(r+1)); γ = (nu−r)(m−mu−1).(18)

If K has k accepting quotients, t of which are uniquely reachable, and s rejecting
uniquely reachable quotients, then

κ(KL) ≤ m2n − k2n−1 − s(2n − 1) − t(2n−1 − 1). (19)

Proof. Suppose the quotients of K and L are K1, . . . , Km and L1, . . . , Ln, respec-
tively. Without loss of generality, we can assume that this numbering is such that
Kwi

= Ki and Lwi
= Li, for each i = 1, . . . , r. Moreover, assume that the remain-

ing mu − r uniquely reachable quotients of K are numbered Kr+1, . . . , Kmu
, and the

remaining nu − r uniquely reachable quotients of L are Lmu+1, . . . , Lmu+(nu−r).
Because of Equation (12), the number of quotients of K ◦ L is bounded from

above by the number of pairs (Kw, Lw). Suppose K1 and L1 are both uniquely
reachable. Since K1 can appear only with L1 in any pair, we know that the n − 1
pairs of the form (K1, Lj), j > 1, and the m − 1 pairs of the form (Ki, L1), i > 1,
will never appear. Next, if K2 and L2 are both uniquely reachable, then we know
that the n − 2 pairs (K2, Lj), j > 2, and m − 2 pairs (Ki, L1), i > 2, will not
appear. Finally, the n − r pairs (Kr, Lj), j > r, and the m − r pairs (Ki, Lr),
i > r, will not appear. Thus, we have the following reduction due to the r pairs:
α = m − 1 + · · · + m − r + n − 1 + · · · + n − r = r(m + n) − r(r + 1).

We have now examined r of the mu quotients that are uniquely reachable in K.
For each of the remaining mu − r uniquely reachable quotients of K we can eliminate
n− (r + 1) pairs of the form (Ki, Lj), r + 1 < i < mu, where Kw = Ki, but Lw 6= Lj.
This yields the second part of the reduction: β = (mu − r)(n − (r + 1)).

For each of the nu−r uniquely reachable quotients of L, we can eliminate m−mu−1
pairs of the form (Ki, Lj), r + 1 < i < mu, where Lw = Lj, but Kw 6= Ki, obtaining
the third reduction: γ = (nu − r)(m − mu − 1).

7The term “non-returning” suggests that once a state is left it cannot be visited again. However,
such non-returning states are not necessarily uniquely reachable.

Quotient Complexity of Regular Languages 11

For the product, each quotient of KL corresponds to one of the m quotients of K
together with a subset of the n quotients of L. If Kw is rejecting, then it can appear
with 2n subsets of quotients of L. This gives (m − k)2n such possible quotients of
KL. If a rejecting quotient of K is uniquely reachable, then it can appear with only
one subset. Hence there is a savings of s(2n −1). If Kw is accepting, then L is always
present in (KL)w. Hence there are at most k2n−1 such possible quotients of KL. But,
if t of the accepting quotients of K are uniquely reachable, then each can appear with
only one subset of quotients of L that does not include L, for a saving of t(2n−1 − 1).
Altogether, we have at most (m − k)2n − s(2n − 1) + k2n−1 − t(2n−1 − 1) quotients
of KL, as claimed. 2

The following observation was stated for union and intersection of finite languages
in [36]; we add the suffix-free case:

Corollary 4 If K and L are non-empty and finite or suffix-free and κ(K) = m > 1,
κ(L) = n > 1, then κ(K ◦ L) ≤ mn − (m + n − 2).

Proof. The quotients Kε and Lε are uniquely reachable if K and L are finite. This
also holds if K and L are suffix-free. For suppose Lε = Lw. Since L is non-empty,
we have ε ∈ Lx for some x ∈ Σ∗. Then also ε ∈ Lwx and both wx and x are in L,
contradicting suffix-freeness. 2

For finite languages, better bounds for union and intersection have been obtained by
Han and Salomaa in [10]. The bounds of mn−(m+n) for union and mn−3(m+n−4)
for intersection are reachable by witnesses using a growing alphabet, but not reachable
by witnesses over a fixed alphabet.

The bound mn − (m + n − 2) for union of suffix-free languages was shown to be
tight for quinary languages by Han and Salomaa [11]. It is also tight for the binary
languages K = a((ba∗)m−3b)∗(ba∗)m−3 and L = a((a ∪ b)n−3b)∗(a ∪ b)n−3, as shown
recently by Jirásková and Olejár [21].

(a) (b)

a, b

a, b
b

b 1

a

b

a

a

b a, b

a

a, b

a b
a

2

4

6

7

2

3

1

4

5

3

5

a
a

b

b b

Figure 2: Illustrating unique reachability

12 J. Brzozowski

Example 1 The DFA of Fig. 2 (a) accepting K has m = 7 and four uniquely reach-
able states: 1, 2, 3, and 4. The DFA of Fig. 2 (b) accepting L has n = 5 and
three uniquely reachable states: 1, 2, and 5. In pairs (1, 1) and (2, 2) both states are
reachable by the same word (ε and b, respectively); hence r = 2.

The m × n = 7 × 5 table of all pairs is shown below, where uniquely reachable
states are in boldface type. We have α = 18, where the removed pairs are all the
pairs in the first two rows and columns, except (1, 1) and (2, 2). Next, β = 4, and we
remove the pairs (3, 4), (3, 5), (4, 3) and (4, 5) from rows 3 and 4. Finally, γ = 2, and
we remove the pairs (6, 5) and (7, 5) from column 5.

(1,1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5)

(7, 1) (7, 2) (7, 3) (7, 4) (7, 5)

Altogether, we have removed 24 states from K ◦ L, leaving 11 possibilities. The
minimal DFA of K ∪ L has 8 states. Notice that state 7 corresponds to the quotient
Σ∗. Since Σ∗ ∪Lw = Σ∗ for all w, we need to account for only one pair (7, x), and we
could remove the remaining four pairs. However, we have already removed pair (7, 5)
by Theorem 3. Hence, there are only three pairs left to remove, and we have a DFA
with 8 states. More will be said about the effects of Σ∗ later.

It is also possible to use Theorem 3 if K has some uniquely reachable quotients
and L has none, or when L is completely unknown. If nu = 0, then r = 0, α = 0,
β = mu(n − 1), and γ = 0. Then, for any L,

κ(K ◦ L) ≤ mn − mu(n − 1). (20)

For example, for any L with n = 101 and K as in Fig. 2 (a), κ(K ∩L) ≤ 307, instead
of the general bound 707.

Let K and L be the DFA’s of Fig. 2 (a) and (b), respectively. Then the general
bound on κ(KL) is 192. Here s = 3 (states 1, 2, and 4), and t = 1 (state 3).
By Theorem 3 the bound is reduced by 93 + 15 = 108 to 84. The actual quotient
complexity of KL is 14.

The general bound for LK is 512, the reduced bound is 195, and the actual quotient
complexity is 12. �

5. Languages with ε, Σ+, ∅, or Σ∗ as Quotients

In this section we consider the effects of the presence of special quotients in a language.
In particular, we study the quotients ε, Σ+, ∅, and Σ∗.

Theorem 5 If κ(K) = m, κ(L) = n, and K and L have k > 0 and l > 0 accepting
quotients, respectively, then

Quotient Complexity of Regular Languages 13

1. If K and L have ε as a quotient, then

• κ(K ∪ L) ≤ mn − 2.

• κ(K ∩ L) ≤ mn − (2m + 2n − 6).

• κ(K \ L) ≤ mn − (m + 2n − k − 3).

• κ(K ⊕ L) ≤ mn − 2.

2. If K and L have Σ+ as a quotient, then

• κ(K ∩ L) ≤ mn − 2.

• κ(K ∪ L) ≤ mn − (2m + 2n − 6).

• κ(K \ L) ≤ mn − (2m + l − 3).

• κ(K ⊕ L) ≤ mn − 2.

3. If K and L have ∅ as a quotient, then

• κ(K ∩ L) ≤ mn − (m + n − 2).

• κ(K \ L) ≤ mn − (n − 1).

4. If K and L have Σ∗ as a quotient, then

• κ(K ∪ L) ≤ mn − (m + n − 2).

• κ(K \ L) ≤ mn − (m − 1).

5. • If L has ε as a quotient, then κ(LR) ≤ 2n−2 + 1.

• If L has Σ+ as a quotient, then κ(LR) ≤ 2n−2 + 1.

• If L has ∅ as a quotient, then κ(LR) ≤ 2n−1.

• If L has Σ∗ as a quotient, then κ(LR) ≤ 2n−1.

• Moreover, the effect of these quotients on complexity is cumulative. For
example, if L has both ∅ and Σ∗, then κ(LR) ≤ 2n−2, if L has both ∅ and
Σ+, then κ(LR) ≤ 2n−3 + 1, etc.

Proof. Suppose K and L satisfy the conditions of the Theorem.

1. The quotient of ε by every non-empty word is ∅; thus, if L has ε, it also has ∅.
Since ε ∪ ε = ∅ ∪ ε = ε ∪ ∅ = ε, we subtract two quotients for union.

For intersection, for any Ku and Lv, Ku ∩ ∅ = ∅ ∩ Lv = ∅. This eliminates
m − 1 + n − 1 possibilities. Moreover, if Ku, Lv are rejecting, then Ku ∩ ε =
ε ∩ Lv = ∅. This removes another m− k − 1 + n − l − 1 possibilities. If Ku, Lv

are accepting, then Ku∩ε = ε∩Lv = ε, and k−1+ l−1 quotients are removed.
Altogether, κ(K ∩ L) ≤ mn − (2m + 2n− 6).

For set difference, since K has ∅ and ∅ ∩ Lw = ∅ for all w, this saves n − 1
quotients. Since K has ε, if ε ∈ Lw, then ε ∩ Lw = ε; otherwise ε ∩ Lw = ∅.
This saves another n−1 quotients. If L has ε and ∅, then L has Σ+ and Σ∗. For
each rejecting quotient Kw, we have Kw ∩ Σ∗ = Kw ∩ Σ+. This saves another
(m − k) − 1 quotients of K \ L.

Since ∅ ⊕ ε = ε ⊕ ∅ = ε, and ε ⊕ ε = ∅ ⊕ ∅ = ∅, we can subtract two quotients
for symmetric difference.

14 J. Brzozowski

2. The proofs are dual to those of Part 1.

The quotient of Σ+ by every non-empty word is Σ∗; thus, if L has Σ+, it also
has Σ∗. Since Σ+ ∩Σ+ = Σ∗ ∩Σ+ = Σ+ ∩Σ∗ = Σ+, we subtract two quotients
for intersection.

For union, for any Ku and Lv, Ku ∪ Σ∗ = Σ∗ ∪ Lv = Σ∗. This eliminates
m− 1 + n− 1 possibilities. Moreover, if Ku, Lv are accepting, then Ku ∪Σ+ =
Σ+ ∪ Lv = Σ∗. This removes another k − 1 + l − 1 possibilities. If Ku, Lv are
rejecting, then Ku ∪ Σ+ = Σ+ ∪ Lv = Σ+, removing m − k − 1 + n − l − 1
quotients.

For set difference, if L has Σ+ and Σ∗, then L has ε and ∅. Since Kw ∩ ∅ = ∅
for all w, this saves m − 1 quotients. Also, if ε ∈ Kw, then Kw ∩ ε = ε, and
otherwise Kw ∩ ε = ∅. This saves another m − 1 quotients. Finally, for each
accepting quotient Lw, we have Σ∗ ∩ Lw = Σ+ ∩ Lw. This saves another l − 1
quotients.

Since Σ∗ ⊕ Σ+ = Σ+ ⊕ Σ∗ = ε and Σ∗ ⊕ Σ∗ = Σ+ ⊕ Σ+ = ∅, we can subtract
two quotients for symmetric difference.

3. Since Kw ∩ ∅ = ∅ ∩ Lw = ∅ ∩ ∅, we can subtract (m − 1) + (n − 1) quotients.
For difference, since ∅ ∩ Lw = ∅ for all w, this saves n − 1 quotients.

4. Dual to Part 3.

5. For reversal, it is more convenient to use quotient automata. We begin with the
quotient automaton A recognizing L, and then reverse it to obtain the NFA NR.
The initial state of A becomes the accepting state of NR, and each accepting
state of A becomes an initial state of NR. Next, the subset construction is used
to convert the NR to an equivalent DFA AR recognizing LR.

The state of NR corresponding to the empty quotient of L is not reachable from
the set of initial states, and the state of NR corresponding to the quotient ε
of L appears only in the set of initial states, but is not reachable from that set
by any non-empty word. Dually, the state corresponding to Σ∗ appears in all
the sets reachable from the set of initial states, and Σ+ appears in all the sets
reachable from the set of initial states, except the set of initial states itself.

2

Corollary 6 If K and L are both non-empty and both suffix-free with κ(K) = m and
κ(L) = n, then κ(K ∩ L) ≤ mn − 2(m + n − 3).

Proof. We have shown in Corollary 4 that κ(K∩L) ≤ mn− (m+n−2) by removing
all pairs (K, Lu) and (Kv, L), where Lu 6= L and Kv 6= K. If K is suffix-free, then
it must have ∅ as a quotient [11], and the same holds for L. Thus all pairs of the
form (Kw, ∅) and (∅, Lw) are equivalent to (∅, ∅). We have already removed (K, ∅)
and (∅, L) by unique reachability. Hence we can remove a further (m + n − 2) − 2
quotients, for a total of 2(m + n − 3). 2

It is shown in [11] that the bound can be reached with Σ = {a, b, #},

K = {#w | w ∈ {a, b}∗, |w|a ≡ 0 mod m − 2},

Quotient Complexity of Regular Languages 15

L = {#w | w ∈ {a, b}∗, |w|b ≡ 0 mod n − 2}.

It was recently proved in [21] that this bound can be reached also by the binary
languages given after Corollary 4.

Proposition 7 If κ(L) = n ≥ 3, L has l > 0 accepting quotients, and L has ε as a
quotient, then κ(L∗) ≤ 2n−3 + 2n−l−1 + 1.

Proof. If L has ε, then it also has ∅. From Equation (14), every quotient of L∗ by a
non-empty word is a union of a non-empty subset of quotients of L, followed by L∗.
We have two cases:

1. Suppose L is rejecting.

(a) If no accepting quotient is included, then there are 2n−l−1 − 1 non-empty
subsets of non-empty rejecting quotients plus the subset consisting of the
empty quotient alone, for a total of 2n−l−1.

(b) If an accepting quotient is included in the subset, then so is L. We can add
the subset {ε} or any non-empty subset S of accepting quotients that does
not contain ε, since S ∪ {ε} is equivalent to S. Thus we have 2l−1 subsets
of accepting quotients. To this we can add 2n−l−2 rejecting subsets, since
the empty quotient and L need not be counted. The total is 2l−12n−l−2 =
2n−3.

Adding 1 for (L∗)ε, we have a total of 2n−3 + 2n−l−1 + 1.

2. Suppose L is accepting. Since n ≥ 3, we have L 6= ε.

(a) If there is no accepting quotient, there are 2n−l−1 subsets, as before.

(b) If an accepting quotient is included, then L is included and L itself is
sufficient to guarantee that (L∗)w is accepting. Since L∪ε = L∪∅ = L, we
also exclude ε and ∅. Thus any one of the 2n−3 subsets of the remaining
quotients can be added to L.

The total is 2n−3 + 2n−l−1. We need not add (L∗)ε, since it is LL∗ and it has
been counted already.

The worst-case bound of 2n−3 + 2n−l−1 + 1 occurs in the first case only. 2

6. Prefix-Free Languages

As another example of the application of the quotient methods, we now derive the
bounds for basic operations on prefix-free languages [12].

Proposition 8 If K and L are both prefix-free and non-empty with κ(K) = m and
κ(L) = n, then

1. κ(K ∪ L) ≤ mn − 2,

2. κ(K ⊕ L) ≤ mn − 2,

16 J. Brzozowski

3. κ(K ∩ L) ≤ mn − (2m + 2n − 6),

4. κ(KL) ≤ m + n − 2,

5. κ(L∗) ≤ n.

Proof. If L is non-empty, then it has at least one accepting quotient Lw. If L is also
prefix-free, then ε ∈ Lw implies Lw = ε. Thus both K and L have ε as a quotient.
Parts 1–3 follow directly from Theorem 5.

For Part 4, consider Equation (13). If K = ε, then m = 2, KL = L and κ(KL) = n.
If n = 1, then L can only be Σ∗, which is not prefix-free. If n ≥ 2, then n ≤ m+n−2.
Assume now that ε 6∈ K; hence the term KεLw is missing in Equation (13). Consider
any w 6= ε. If ε 6∈ Kw, Kw 6= ∅, and ε ∈ Ku for some proper prefix u of w = uv, then
K cannot be prefix-free, because it contains u and wx, for some x ∈ Σ+. Thus, if
Kw is rejecting and non-empty, then (KL)w = KwL; there are m− 2 such quotients,
the remaining two quotients being ε and ∅. If Kw = ε, then (KL)w = L. Then
(KL)wx = Lx, for all x ∈ Σ∗, and there are n such quotients. If Kw = ∅, then
(KL)w = ∅, and this quotient has already been counted in the case where Kw = ε
and Lx = ∅. Thus the total is at most m + n − 2.

For Part 5, we have (L∗)ε = L∗, and for w ∈ Σ+, consider Equation (14). By the
argument we used in Part 4, if Lw is rejecting and non-empty, then (L∗)w = LwL∗,
and there are n − 2 such quotients. If Lw is accepting, then Lw = ε, and (L∗)w =
LwL∗ = L∗ = (L∗)ε. Finally, if Lw = ∅, then (L∗)w may be empty, if for every prefix
u of w, Lu is rejecting. Thus the bound is n. 2

It is shown in [12] that the bounds are tight: Let K = (am−2)∗b and L = (an−2)∗b.
Then κ(KL) = m + n − 2, and κ(L∗) = n. If Σ = {a, b, c} and

K = {wc | w ∈ {a, b}∗ and |w|a ≡ 0 mod m},

L = {wc | w ∈ {a, b}∗ and |w|b ≡ 0 mod n},

then κ(K ∩ L) = mn − (2m + 2n − 6). Finally, if Σ = {a, b, c, d} and

K = {wc | w ∈ {a, b, d}∗ and |w|a ≡ 0 mod m},

L = {wd | w ∈ {a, b, c}∗ and |w|b ≡ 0 mod n},

then κ(K ∪ L) = mn − 2.

7. Conclusions

Quotients provide a uniform approach for finding upper bounds for the complexity of
operations on regular languages, and for verifying that particular languages meet these
bounds. It is hoped that this is a step towards a theory of complexity of languages
and automata.

After writing the DCFS 2009 version of this paper, I felt that I had cheated to some
extent, since I used quotients only to prove known results. To verify the usefulness of
quotients for finding new results, four co-authors and I studied the quotient complexity

Quotient Complexity of Regular Languages 17

of operations in three classes of languages that have not been previously considered:
ideal languages [6], closed languages [7], and free languages [8] (other that prefix-
and suffix-free languages). Those projects provided ample evidence that the quotient
approach is very useful. There certainly exist cases where automaton constructions
are clearer and simpler than the quotient method, and vice versa. But, to say the
least, the quotient approach is a very useful addition to the previously used methods.

Acknowledgments I am very grateful to Galina Jirásková for correcting several
errors in early versions of this paper, suggesting better examples, improving proofs,
and helping me with references, in particular, with the early work on complexity.
I thank Sheng Yu for his help with references, and for answering many of my questions
on complexity. I also thank Baiyu Li, Shengying Pan, and Jeff Shallit for their
careful reading of the manuscript. I am grateful to the referees for pointing out some
additional references.

References

[1] J. C. Birget, Intersection of regular languages and state complexity. ACM
SIGACT News 22 (1991) 2, 49.

[2] J. C. Birget, Intersection of regular languages and state complexity. Inform.
Process. Lett. 43 (1992) 4, 185–190.

[3] H. Bordin, M. Holzer, M. Kutrib, Determination of finite automata accept-
ing subregular languages. Theoret. Comput. Sci. 410 (2009), 3209–3249.

[4] J. Brzozowski, Regular expression techniques for sequential circuits. Ph.D.
thesis, Princeton University, 1962.

[5] J. Brzozowski, Derivatives of regular expressions. J. ACM 11 (1964) 4, 481–
494.

[6] J. Brzozowski, G. Jirásková, B. Li, Quotient complexity of ideal languages.
In: A. López-Ortiz (ed.), Proceedings of the 9th Latin American Theoretical
Informatics Symposium, (LATIN). LNCS 6034, Springer, 2010, 208–221. (Full
paper at http://arxiv.org/abs/0908.2083).

[7] J. Brzozowski, G. Jirásková, C. Zou, Quotient complexity of closed lan-
guages. In: F. Ablayev, E. W. Mayr (eds.), Proceedings of the 5th Interna-
tional Computer Science Symposium in Russia, (CSR). LNCS 6072, Springer,
2010, 84–95.

[8] J. Brzozowski, J. Smith, Quotient complexity of bifix-, factor-, and subword-
free languages . In preparation.

[9] H. Gruber, M. Holzer, Finite automata, digraph connectivity, and regular ex-
pression size. In: L. Aceto, I. Damg̊ard, L. Goldberg, M. Halldórsson,
A. Ingólfsdóttir, I. Walukiewicz (eds.), Proceedings of the International
Conference on Automata, Languages, and Programming (ICALP), Part II .
LNCS 5126, Springer, 2008, 39–50.

18 J. Brzozowski

[10] Y.-S. Han, K. Salomaa, State complexity of union and intersection of finite
languages. Internat. J. Found. Comput. Sci. 19 (2008) 3, 581–595.

[11] Y.-S. Han, K. Salomaa, State complexity of basic operations on suffix-free
regular languages. Theoret. Comput. Sci. 410 (2009) 27-29, 2537–2548.

[12] Y.-S. Han, K. Salomaa, D. Wood, Operational state complexity of prefix-free
regular languages. In: Z. Ésik, Z. Fülöp (eds.), Automata, Formal Languages,
and Related Topics . University of Szeged, Hungary, 2009, 99–115.

[13] M. Holzer, M. Kutrib, Descriptional and computational complexity of finite
automata. In: A. H. Dediu, A.-M. Ionescu, C. Mart́ın-Vide (eds.), Proceed-
ings of the 3th International Conference on Language and Automata Theory and
Applications (LATA). LNCS 5457, Springer, 2009, 23–42.

[14] M. Hricko, Finite automata, regular languages, and state complexity. Master’s
thesis, P. J. Šafárik University in Košice, Slovakia, 2005.

[15] M. Hricko, G. Jirásková, A. Szabari, Union and intersection of regu-
lar languages and descriptional complexity. In: C. Mereghetti, B. Palano,
G. Pighizzini, D. Wotschke (eds.), Proceedings of the 7th International Work-
shop on Descriptional Complexity of Formal Systems. University of Milano, Mi-
lano, Italy, 2005, 170–181.

[16] J. Jirásek, G. Jirásková, A. Szabari, State complexity of concatenation and
complementation. Internat. J. Found. Comput. Sci. 16 (2005), 511–529.

[17] G. Jirásková, On the state complexity of complements, stars, and reversals
of regular languages. In: M. Ito, M. Toyama (eds.), Proceedings of the 12th
International Conference on Developments in Language Theory (DLT). LNCS
5257, Springer, 2008, 431–442.

[18] G. Jirásková, Concatenation of regular languages and descriptional complexity.
In: A. Frid, A. S. Morozov, A. Rybalchenko, K. W. Wagner (eds.),
Proceedings of the 4th International Computer Science Symposium in Russia,
(CSR). LNCS 5675, Springer, 2009, 203–214.

[19] G. Jirásková, Magic numbers and ternary alphabet. In: V. Diekert,
D. Nowotka (eds.), Proceedings of the 13th International Conference on De-
velopments in Language Theory (DLT). LNCS 5583, Springer, 2009, 300–311.

[20] G. Jirásková, A. Okhotin, State complexity of cyclic shift. RAIRO Theor.
Inform. Appl. 42 (2008), 335–360.

[21] G. Jirásková, P. Olejár, State complexity of union and intersection of binary
suffix-free languages. In: H. Bordihn, R. Freund, M. Holzer, M. Kutrib,
F. Otto (eds.), Proceedings of the Workshop on Non-Classical Models for Au-
tomata and Applications (NCMA). Austrian Computer Society, 2009, 151–166.

[22] G. Jirásková, G. Pighizzini, Converting self-verifying automata into deter-
ministic automata. In: A. H. Dediu, A.-M. Ionescu, C. Mart́ın-Vide (eds.),
Proceedings of the 3rd International Conference on Language and Automata The-
ory and Applications (LATA). LNCS 5457, Springer, 2009, 458–468.

Quotient Complexity of Regular Languages 19

[23] E. Leiss, Succinct representation of regular languages by boolean automata.
Theoret. Comput. Sci. 13 (2009), 323–330.

[24] J. I. Ljubič, Estimates of the number of states that arise in the determiniza-
tion of a nondeterministic autonomous automaton. Dokl. Akad. Nauk SSSR 155

(1964), 41–43 (Russian). English translation: Sov. Math., Dokl. 5, (1964) 345–
348.

[25] O. B. Lupanov, A comparison of two types of finite sources. Problemy Kiber-
netiki 9 (1963), 321–326 (Russian). German translation: Über den Vergleich
zweier Typen endlicher Quellen. Probleme der Kybernetik 6 (1966), 328–335.

[26] A. N. Maslov, Estimates of the number of states of finite automata. Dokl.
Akad. Nauk SSSR 194 (1970), 1266–1268 (Russian). English translation: Soviet
Math. Dokl. 11 (1970), 1373–1375.

[27] B. G. Mirkin, On dual automata. Kibernetika (Kiev) 2 (1970), 7–10 (Russian).
English translation: Cybernetics 2, (1966) 6–9.

[28] F. R. Moore, On the bounds for state-set size in the proofs of equivalence
between deterministic, nondeterministic, and two-way finite automata. IEEE
Trans. Comput. C20 (1971) 10, 1211–1214.

[29] A. Nerode, Linear automaton transformations. Proc. Amer. Math. Soc. 9

(1958), 541–544.

[30] D. Perrin, Finite automata. In: J. van Leewen (ed.), Handbook of Theoretical
Computer Science. B, Elsevier, 1990, 1–57.

[31] G. Pighizzini, J. Shallit, Unary language operations, state complexity and
Jacobsthal’s function. Internat. J. Found. Comput. Sci. 13 (2002), 145–159.

[32] M. Rabin, D. Scott, Finite automata and their decision problems. IBM J.
Res. and Dev. 3 (1959), 114–129.

[33] A. Salomaa, K. Salomaa, S. Yu, State complexity of combined operations.
Theoret. Comput. Science 383 (2007), 140–152.

[34] K. Salomaa, S. Yu, On the state complexity of combined operations and their
estimation. Internat. J. Found. Comput. Sci. 18 (2007), 683–698.

[35] S. Yu, Regular languages. In: G. Rozenberg, A. Salomaa (eds.), Handbook
of Formal Languages . 1, Springer, 1997, 41–110.

[36] S. Yu, State complexity of regular languages. J. Autom. Lang. Comb. 6 (2001),
221–234.

[37] S. Yu, Q. Zhuang, On the state complexity of intersection of regular languages.
ACM SIGACT News 22 (1991), 52–54.

[38] S. Yu, Q. Zhuang, K. Salomaa, The state complexities of some basic opera-
tions on regular languages. Theoret. Comput. Sci. 125 (1994) 2, 315–328.

