
Verified, Executable Parsing

Aditi Barthwal1 and Michael Norrish2

1 Australian National University
Aditi.Barthwal@anu.edu.au
2 Canberra Research Lab., NICTA

Michael.Norrish@nicta.com.au

Abstract. We describe the mechanisation of SLR parsing, covering background
properties of context-free languages and grammars, as wellas the construction
of an SLR automaton. Among the various properties proved about the parser we
show, in particular,soundness: if the parser results in a parse tree on a given input,
then the parse tree is valid with respect to the grammar, and the leaves of the parse
tree match the input;completeness: if the input is in the language of the grammar
then the parser constructs the correct parse tree for the input with respect to the
grammar; andnon-ambiguity: grammars successfully converted to SLR automata
are unambiguous.
We also develop versions of the algorithms that are executable by automatic trans-
lation from HOL to SML. These alternative versions of the algorithms require
some interesting termination proofs.

1 Introduction

The (context-free) parsing problem is one of determining whether or not a string of
terminal symbols belongs to a language that has been specified by means of a context-
free grammar. In addition, we imagine that the input is to be processed by some later
form of analysis,e.g., a compiler. Therefore, we wish to generate the parse tree that
demonstrates this membership when the string is in the language, rather than just a
yes/no verdict.

The parsing problem can be solved in a general way for large classes of grammars
through the construction of deterministic push-down automata. Given any grammar in
the acceptable class, the application of one function produces an automaton embodying
the grammar. This automaton then analyses its input, producing an appropriate verdict.
The particular function we have chosen to formally characterise and verify produces
what is known as an SLR automaton.

Thus, at a high level, our task is to specify and verify two functions

slrmac : grammar -> automaton option
parse : automaton -> token list -> ptree option

Theslrmac function returnsSOME mif the grammar is in the SLR class, andNONE
otherwise. Theparse function uses the machinemto consume the input and produce
a parse tree for the input string, returningNONEin case of a failure.

In the rest of the paper, we will describe the types and functions that appear above.
In Section 1.1, we describe grammars and their properties. In Section 1.2, we describe
the type of SLR automata, and the type of their results. In Secton 1.3, we describe
the construction of automata from input grammars. We are then in a position to verify
important properties about these functions. Our theorems are described in Section 2.
Finally, we also wish to be able to turn our verified HOL functions into functions that
can be executed in SML. To do this, a number of definitions thathave rather abstract
or “semantic” characterisations need to be shown to have executable equivalents. The
derivation of executable forms is described in Section 3.

Literature and TechnologyBeing one of our field’s earliest examples of theory leading
to successful practice, parsing and language theory has a large literature. On the other
hand, we are not aware of any existing work on a mechanised theory of parsing. Our
mechanisation has been performed in the HOL4 system [2, 5], and has been inspired
principally by Hopcroft and Ullman’s standard text [3].

Parsers as External Proof OraclesIf an external, potentially untrusted, tool were to
generate the parse tree for a given string, it would be easy toverify that this parse tree
was indeed valid for the given grammar. The parse tree would be serving as a proof that
the input string was indeed in the grammar’s language, and the trusted infrastructure
need only check that proof. It is natural then to ask what additional value a verified
parser-generator might provide. Apart from the intellectual appeal in mechanising in-
teresting mathematics, we believe there is at least one pragmatic benefit: if the (verified)
construction of an SLR automaton succeeds, one has a proof that the grammar in ques-
tion is unambiguous. When a parse is produced by the automaton, one knows that no
other parse is possible.

1.1 Context-Free Grammars

A context-free grammar (CFG) is represented in HOL using thefollowing type defini-
tions:

symbol = TS of string | NTS of string

rule = rule of string => symbol list

grammar = G of rule list => string

(The=> arrow indicates curried arguments to an algebraic type’s constructor. Thus, the
rule constructor is a term of typestring -> symbol list -> rule . We use
lists rather than sets for the grammar’s rules for ease of later translation to SML, and to
avoid frequent finite-ness side conditions.)

A rule is a mapping from a string to a symbol list, where the string is interpreted
as a non-terminal. Similarly, a grammar consists of a list ofrules and a string giving
the start symbol. Traditional presentations of grammars often include separate sets cor-
responding to the grammar’s terminals and non-terminals. We extract these sets with
functionsterminals andnonTerminals respectively.

Definition 1. A list of symbols (orsentential form) s derivest in a single step ifs is of
the formαAγ, t is of the formαβγ, and ifA → β is one of the rules in the grammar.
In HOL:

derives g sf1 sf2 =
∃s1 s2 rhs N.

(sf1 = s1 ++ [NTS N] ++ s2) ∧
(sf2 = s1 ++ rhs ++ s2) ∧
MEM (rule N rhs) (rules g)

(The infix++ denotes list concatenation. TheMEM relation denotes list membership.)

We can form the reflexive and transitive closure of a binary relation likederives g
with theˆ * operator, written as a suffix. Thus,(derives g)ˆ * sf1 sf2 indicates
thatsf2 is derived fromsf1 in zero or more steps, also denoted assf1 ⇒∗ sf2 w.r.t
a grammar.

Later we will also use the rightmost derivation relation,rderives , and its closure.

Definition 2. Thelanguageof a grammar consists of all the words that can be derived
from the start symbol.

language g =
{ tsl | (derives g)ˆ * [NTS (startSym g)] tsl ∧

EVERY isTmnlSym tsl }

(PredicateisTmnlSym is true of a symbol if it is of the formTS s for some strings.
EVERY checks that every element of a list satisfies the given predicate.)

We also define the concept of nullability and relations for finding first sets and
follow sets for a symbol as stated below. These notions are central when the actions for
the SLR automaton are calculated (see Section 1.2).

Definition 3. A list of symbolsα is nullableiff α ⇒∗ ǫ:

nullable g sl = (derives g)ˆ * sl []

Definition 4. Thefirst set of a symbol is the set of terminals that can appear first in the
sentential forms derivable from it:

firstSet g sym =
{ (TS fst) | ∃rst.(derives g)ˆ * [sym] (TS fst::rst) }

(:: represents the list ‘cons’ operator.)

Definition 5. Thefollow set of a symbolN is the set of terminals that can occur after
N in a sentential form derivable from any of the right-hand sides belonging to a rule in
the grammar.

followSet g N =
{ TS ts | ∃M rhs p s.

MEM (rule M rhs) (rules g) ∧
(derives g)ˆ * rhs (p ++ [N;TS ts] ++ s) }

(This definition might be simplified by only considering derivations from the start sym-
bol of the grammar. However, we choose to present it in the above way so it is compati-
ble with our executable definition, which ignores reachability of non-terminals.)

Executable versions of these functions (which do not need toscan all possible
derivations) are described in Section 3.1.

1.2 SLR Automata

An SLR machine is a push-down automaton where each state in the automaton corre-
sponds to a list ofitems. An item N → α · β, is a grammar rule that has been split
in two by the dot (·) marking the progress that has been made in recognising the given
right-hand side (αβ). In HOL:

item = item of string => symbol list # symbol list
state = item list

In the mechanisation, an automaton state is a list of items, and the empty list represents
an error state. The state of an execution is the current input, coupled with a stack of
pairs of automaton states and parse trees. The root of each parse tree corresponds to a
terminal symbol that has been shifted from the input, or to a non-terminal that has been
produced through a reduction step.

Based on the next symbol in the input (we are implementing SLRwith one symbol
lookahead), and the state the parser is in, the parser will perform one of the following
actions:

– REDUCE: the parser recognizes a valid handle on the stack and reduces it the left-
hand side of the rule

– GOTO: the parser shifts an input symbol on to the stack and goes to the indicates
state

– NA: the parser throws an error

In our framework, the automaton is presented by two functions, goto andreduce .
The goto function takes asymbol and astate as arguments and returns a new
state . We have thus merged two tables in the traditional presentation: the shift table
encoding information for terminals, and the goto table for non-terminals.

Thereduce function takes asymbol and astate and returns a list of possible
rules that can be reduced in the given state. When the machinehas been constructed
from an SLR grammar the list will always be empty or just one element long. If a
reduction is to be performed for ruleN → α, the symbolsα are popped off the stack,
revealing a states0. The non-terminalN is pushed onto the stack, and the machine
shifts to the state given bygoto applied toN ands0.

Given a state and input symbol, the next action is a shift if thegoto function returns
a non-error state. The next action is a reduction if thereduce function returns a list
containing one rule. The SLR construction ensures that bothconditions can’t be true
simultaneously. If neither is true, the machine throws an error.

These functions are combined using a while combinator of type

(’a -> bool) -> (’a -> ’a option) -> ’a ->
’a option option

The type’a is the type of the execution state. The first argument is a boolean condi-
tion on states specifying when the loop should continue. Thesecond argument encodes
the loop body, allowing for the possibility that the loop execution terminates abnor-
mally (e.g.the parser detects a string not in the grammar’s language). The third argu-
ment is the initial state. The result encodes normal termination, abnormal termination
(SOME NONE) and failure to terminate (NONE).

1.3 Constructing the Parser

The architecture of the parser-construction process is shown in Figure 1. The first step in
creating the SLR machine is to augment the grammar. The augmentation adds an extra
rule that introduces a new start symbol and a marker (a terminal symbol) that appears
at the end of all the words in the language of the grammar. The parser uses this rule
for reduction exactly when it has accepted the input word. This ensures that the parser
always ‘spots’ the end of input. The augmentorauggr is a function of type

grammar -> string -> string -> grammar option

We useSOMEg’ to return the augmented grammarg’ when the symbols being in-
troduced are ‘fresh’ (not part of the old grammar). Otherwise failure is indicated by
returningNONE.

Fig. 1. Architecture of the Parser Construction Process

Theslrmac function creates thegoto andreduce functions which represent the
three transition tables of the traditional presentation ofan LR automaton. It checks that
the functions don’t produce any shift-reduce or reduce-reduce conflicts. If the functions
pass this test, they can be passed onto theparser function which implements the
machine (as described above in Section 1.2).

Building the Parsing Tables The construction of thegoto function is conceptually
simple: let the result of applyinggoto to a stateσ and the symbols (terminal or non-
terminal) be the list of itemsN → αs · β, whereN → α · sβ is an element ofσ. This
behaviour is captured in the HOL functionmoveDot . Unfortunately, it is not sufficient.

When an item’s dot is before a non-terminal, sayA → α · Bβ, this indicates that
the parser expects to parse the non-terminal (B) next. To ensure the item set contains
all possible rules the parser may be in the midst of parsing, it must additionally include
all items describing howB itself will be parsed. If there are rules forB that themselves
have non-terminals as the first element of a RHS, then those non-terminals’ items must
also be included. Thus we must take a closure: repeatedly including all referenced non-
terminals until we reach a fix-point.

The finalgoto function is calculated bynextState (which gets access to the
input grammar). The new state is computed by moving the dot over all the items in the
current state that have the input symbol after the dot, and then taking the closure.

nextState g itl sym = closure g (moveDot itl sym)

The other table we must compute isreduce . This really is simple: for every com-
plete item (of the formN → α·) in a state, return the ruleN → α if the input symbol
is in the follow set ofN . Because we use the entire follow set ofN , we are computing
an SLR machine. If we didn’t use a follow set at all, and alwaysreduced on complete
items, we would be implementing an LR(0) parser. If we computed follow sets for states
that depended on where a non-terminal had been used, we wouldbe implementing an
LALR parser.

Checking for Conflicts Whenslrmac has constructed the functionsgoto andreduce ,
it then checks them for possible shift-reduce or reduce-reduce conflicts. Checking for
such an error in a given state on a given symbol is done by thenoError function:

noError (go,rd) sym st =
case rd st sym of

[] -> T
|| [r] -> (go st sym = [])
|| otherwise -> F

Theslrmac function then testsnoError on all reachable states in the automaton,
and for all possible terminal symbols. This is easy to express logically:

okSlr g initState =
∀syms state tok.

trans g (initState, syms) = SOME state =⇒
noError (goto g, reduce g) tok state

wheretrans g iteratesgoto g over a sequence of symbols to find the resulting state
(if any). Hopcroft and Ullman call this functionδ.

Expressing this check executably is discussed in Section 3.

Putting it all Together Theparser function is as given in Figure 1.

parser (initState, eof, oldS) m sl =
let out = mwhile (¬ ◦ exitCond eof oldS)

(λs.parse m s) (init initState sl)
in

case out of
NONE -> NONE

|| SOME (SOME (sl’,[(state,ptree)],csl’)) ->
SOME (SOME ptree)

|| SOME NONE -> SOME NONE
|| SOME _ -> SOME NONE

Theparse function implements a single step of the SLR machine (Section 1.2).init
provides the initial execution state to get this process started. TheexitCond function
is true of an execution state if the stack consists of just thenon-augmented grammar’s
start symbol, and if the input consists of just theeof token. The while combinator
mwhile (Section 1.2) repeatedly performs theparse step untilexitCond is true.

2 Proofs

We now have a parser generator formally specified in HOL. To verify that our speci-
fication is indeed correct, we would like to demonstrate thatthe language accepted by
the automaton is the same as the language defined by the grammar. This goal is natu-
rally split into two inclusion results: that everything accepted by the machine is in the
language (“soundness”), and that everything in the language is accepted by the machine
(“completeness”).

Before we delve into the proofs, we describe what it means to be a valid parse tree
with respect to a grammar:

(validptree g (Node n ptl) =
MEM (rule n (getSymbols ptl)) (rules g) ∧
(∀e. MEM e ptl ∧ isNode e =⇒ validptree g e)) ∧

(validptree g (Leaf tm) = F)

Here,getSymbols gives the list of symbols at the roots of a list of trees. Thus,a tree
is valid with respect to a grammar if there is a rule in the grammar that corresponds to
the root node deriving the roots of its sub-trees, and if (recursively) all the sub-trees are
also valid.

The proofs to come also depend on a number of simple invariants on the state of a
parse execution:

– parser inv states implementation-specific properties about the stack. These prop-
erties ensure the items in each of the state on the stack correspond to some grammar
rule (validStates) and that the initial start state is never popped off from the
stack.

parser inv g csl = validStates g csl ∧ ¬NULL csl

– The SLR automaton works by computing valid items for each viable prefix. Predi-
catevalidItem inv asserts that each of the states contains only those items that
are valid for the viable prefixγ, which is the string of symbols that has been pushed
on to the stack to reach that state.

validItem_inv g initState revStk =
∀stk’.

IS_PREFIX revStk stk’ ∧ ¬NULL stk’
=⇒

trans g (initState, stackSyms stk’) =
SOME (topState stk’)

2.1 Validity of the Parse Tree Generated

If the parser results in a parse tree, the tree is valid with respect to the grammar for which
the parser was generated. Alternatively, the parse tree wasbuilt using rules present in
the given grammar.

Below we abbreviatevalidptree inv for conditions which state that for all the
non-terminals on the stack, the associated parse trees are valid with respect to the given
grammar. We prove that this property is preserved by theparse function, which takes
a single step of the execution. By induction over the while-loop, if the parser is able to
reduce the stack symbols to the start symbol, then the corresponding parse tree must be
valid as well.

Theorem 1.
∀g sl stl.

auggr g s eof = SOME ag ∧ slrmac ag = SOME m ∧
parser_inv ag csl ∧ validptree_inv g stl ∧
parser (initState, eof, oldS) (SOME m) sl =

SOME (SOME tree)
=⇒

validptree ag tree

2.2 Equivalence of the Output Parse Tree And the Input StringParsed

The main predicate of interest here is theleaves eq inv . Below it abbreviates con-
ditions which assert that at each state the leaves of the treeare equal to the parsed string.
This ensures that the grammar rules being applied to form theparse tree, correspond to
the input string being parsed and the leaves of the resultingparse tree are equal to the
original input string.

Theorem 2.
∀m g s eof sl csl.

auggr g s eof = SOME ag ∧ slrmac ag = SOME m ∧
parser inv ag csl ∧ leaves eq inv sl sl [] ∧
parser (initState, eof, startSym g) (SOME m) sl =

SOME (SOME tree))
=⇒

(sl=leaves tree)

2.3 Soundness of the Parser

To prove soundness, we have to show that the input string for which a valid parse tree
can be constructed, is in the language of the grammar.

Theorem 3.
∀m g s eof sl csl.

auggr g s eof = SOME ag ∧ slrmac ag = SOME m ∧
parser inv ag (stl, csl) ∧
validptree inv ag (stl, csl) ∧
leaves eq inv sl sl [] ∧
parser (initState, eof, startSym g) (SOME m) sl =

SOME (SOME tree))
=⇒

sl ∈ language ag

In turn, this result depends on a simple result stating the equivalence of being able to
derive a sentential form and having a valid parse tree with that form as its leaves.

2.4 Completeness of the Parser

To show completeness, we have to prove that if a string is in the language of a grammar
then the parser will terminate with a parse tree. Soundness (Theorem 3) already ensures
the validity of the output tree. We assume that the grammar does not have useless non-
terminals,i.e. all the non-terminal symbols generate some terminal string(‘generates
a word’, gaw). We earlier proved that removing useless symbols does not affect the
language of a grammar, so we might extendslrmac to do this for us, or just have it
report an error if given a grammar containing useless non-terminals.

Theorem 4.
auggr g st eof = SOME ag ∧ sl ∈ language ag ∧
slrmac ag = SOME m ∧
(∀nt. nt ∈ nonTerminals ag =⇒ gaw ag nt)

=⇒
∃tree.
parser (initState, eof, startSym g) (SOME m) sl =

SOME (SOME tree)

This result has by far the most complicated proof in the mechanisation, and took
a considerable proportion of the total time spent. Much of the time was spent cast-
ing about for a detailed version of the argument for LR(0) grammars in Hopcroft and
Ullman [3,§10.7]. That argument specifies the construction of the automaton and con-
tinues:

We claim that whenM starts withw in L(G) on its input and onlys0 on
the stack, it will construct a rightmost derivation forw in reverse order. The
only point still requiring proof. . .

Our eventual proof recasts this somewhat. We already have an(arbitrary) rightmost
derivation forw by virtue of the fact that it is inL(G). (We proved the lemma stating that
any derivation of a word has a rightmost equivalent.) We thenargue that the machine
will take a sequence of steps that mirror this derivation.

We make the actual derivation concrete (it is a list of sentential forms), and write
R ⊢ d � sf

0
→ sf

1
if d is a derivation ofsf

1
, starting atsf

0
, and respecting derivation

relationR (i.e., R holds between each successive pair of elements in the listd).
Each sentential form is derived from its predecessor by the expansion of a non-

terminal. When moving backwards through the derivation, this corresponds to a reduc-
tion step.

The crucial lemma supporting our proof states that if we haverderives g ⊢
d � sf

0
→ w, then there is a sequence ofn parse -steps bringing the SLR automaton

to a state where it is just about to perform the first reductionof the derivationd. This is
by induction ond. This result in turn relies on knowing that when the currenthandle,
or RHS of the next reduction, is still partly or completely inthe input, the machine will
perform a sequence of shift moves in order to bring the handleonto the stack.

All of these results depend on the invariants already described, and the fact that the
automaton is SLR. For example, in the last lemma: if we know that a shift is possible,
then we also know that a reduction is not.

2.5 SLR grammars are unambiguous

A grammar is unambiguous if for each stringw∈ L(G), w has a unique rightmost deriva-
tion.

Definition 6. A wordw in the language of grammarg is represented by a derivation
list starting from the start symbol ofg and ending inw. A derivation forw is unique iff
all possible derivation lists are identical.

isUnambiguous g =
∀sl dl dl’.

sl ∈ language g ∧
rderives g ⊢ dl � [NTS (startSym g)] → sl ∧
rderives g ⊢ dl’ � [NTS (startSym g)] → sl ∧

=⇒
dl=dl’

Theorem 5.
auggr g st eof = SOME ag ∧ slr ag = SOME m

=⇒
isUnambiguous ag

A corollary of completeness and the fact that the SLR machineis deterministic.

3 An Executable Parser

For the most part, the HOL definitions turn out to be executable. However, for the sake
of simplicity and clarity, many of our definitions were written in a style that favoured

mathematical ease of expression. The use of existential quantifiers, and the reflexive
and transitive closure in such definitions make them unexecutable. Here we describe
how the defined functions can be re-expressed in a way that makes them acceptable to
HOL4’s emitML technology. Our general approach was to take an existing function
f , and define a newfMLconstant. After proving termination for the typically compli-
cated recursion equations definingfML, we then had to show thatfML’s behaviour was
equivalent tof ’s.

Would it save work to just use executable functions from the outset? Sadly no;
the important thing about these executable functions is that they should compute some
mathematical property. Proving that this is the case is the same problem as showing the
equivalences we describe here.

In this section we describe our executable implementationsof the non-executable, or
“mathematical” HOL definitions. Even though the HOL versions were more tractable
for proving properties such as our language inclusion results, there have been places
where it was decided to value executability over succinctness of presentation.

3.1 Executable Calculation of Nullable Non-terminals

The executable counterpart of thenullable function is given below.

nullableML g sn [] = T ∧
nullableML g sn (TS ts::rest) = F ∧
nullableML g sn (NTS A::rest) =

if (MEM (NTS A) sn) then F
else

EXISTS (nullableML g (NTS A::sn))
(getRhs A (rules g)) ∧

nullableML g sn rest

ThenullableML function determines whether or not a list of symbols (a senten-
tial form) can derive the empty string. When the string includes a terminal symbol, the
result is false. When a non-terminal is encountered, we recursively determine if any of
that non-terminal’s RHSes might derive the empty string.

In order to ensure that this recursion terminates, we introduce a “seen” list and
update this with the non-terminal that is being visited whenwe expand it. To then con-
vince HOL that this function terminates, we must find a wellfounded relation on the
arguments ofnullableML . Because a singleton list containing a non-terminal may
expand into a list of symbols of arbitrary length, we cannot simply use the length of the
sentential form as a measure. Instead we use the lexicographic combination:

measure (λ(g,sn). |nonTerminals g \ set sn|)
LEX

measure LENGTH

We assert that either the number of symbols except the ones inthe seen list de-
creases, or that the length of the sentential form decreases. The former corresponds to

the first conjunct in the third clause in the definition while the latter takes care of the
second conjunct.

The next step is to show the equivalence between the new HOL constants and the
originals. Proving the equivalence requires showing the following two implications.

∀g sn sf. nullableML g sn sf =⇒ nullable g sf

∀g sf. nullable g sf =⇒ nullableML g sn sf

As previously outlined, for a sentential form to be nullable, it cannot have a terminal
symbol. We look at the non-trivial case,i.e.when the sentential form itself is not empty.
A sentential formN1N2...Nn is nullable iff the individual derivations for theNs itself
are nullable.

N1 ⇒∗ ǫ

N2 ⇒∗ ǫ

.

.

.
Nn ⇒∗ ǫ

nullable asserts the existence ofsomederivation fromsf to ǫ. On the other hand,
nullableML looks at a concrete derivation with a specific property,i.e.in each indi-
vidual derivation, the symbols cannot be repeated. This property gives us termination
but it also makes the equivalence proof harder.

The first implication turns out to be easy to prove since we areshowing the existence
of a particular form of derivation from a more generic one.

To prove the latter implication, we need to show that each derivation without any
constraints on its form, can be recast into a derivation where the individual derivations
of ǫ do not have repeated symbols. We do this by a complete induction on the length of
the derivation and show that any derivation of the formN ⇒∗ ǫ can be recasted into a
new derivation (possibly smaller), that gets accepted bynullableML.

This ‘obvious’ property of nullable derivations is usually‘assumed’ textbook proofs,
but plays a centre role when proving the equivalence betweena mathematical definition
and an executable one.

With this equivalence we know now that execution of SML code will provide a
behaviour corresponding to that of the formal HOL entity.

The executablefirstSet andfollowSet definitions were defined in a similar
way (by introducing a “seen” list in the compuation). The termination and equivalence
proof follow similar lines of reasoning.

An Executableslrmac Another interesting termination case is encountered when we
try to makeslrmac definition executable.slrmac checks whether the resulting table
for the grammar has any conflict or not. It is not strictly a necessary component of the
parser generator but does asssist in stating some of the proofs. For example, with this
function we can assert that if we can build a parse table for a grammar and the input
belongs in the language of the grammar, then the parser will output a parse tree.

Building the parse table involves traversing the state space to find the next state
for each of the symbols in the grammar, starting from the initial state.neighbours
takes a state and returns a state list. The state list contains states that can be reached
by following each of the symbols in the input (i.e., transitions one-level deep). It uses
symNeighbour to shift the dot past the current symbol and get the state correspond-
ing to it. The resulting state contains no duplicates (rmDupes). The conditionDISTINCT
ensures that we don’t loop forever by considering states where the same items might be
repeated. Another check,validItl makes sure that the items in the state do corre-
spond to some rule in the grammar.

symNeighbour g itl sym =
rmDupes (closure g (moveDot itl sym))

neighbours g itl [] = [] ∧
neighbours g itl (x::xs) =

symNeighbour g itl x::neighbours g itl xs

visit g sn itl =
if ¬(DISTINCT itl) ∨ ¬(validItl g itl) then []
else let s = neighbours g itl set (allSyms g) in

let rem = diff s sn in
rem++(FLAT (MAP (visit g (sn++rem)) rem))

The parse table builder here is thevisit function. Starting in the initial state it follows
the transitions for each of the symbols in the grammar until it can reach no more new
states. The important thing here is to make sure states are not repeated otherwise we
end up following the same path over and over again. Here, the number of states seen
increases at each recursive call. We also know that the number of possible states (even
though it might be large) is finite (allGrammarItls). This is because we have a
finite number of symbols in our grammar and a finite number of rules as well. From this
we can deduce that the number of states not been encountered decreases at each call.
This forms our termination argument.

measure (λ(g,sn,itl). |allGrammarItls g \ set sn|)

With this on hand, we can implement an executableslrmac that checks the entire
table for shift-reduce and reduce-reduce conflicts.

slrML4Sym g [] sym = SOME (goto g, reduce g) ∧
slrML4Sym g (i::itl) sym =

let s = goto g i sym in
let r = reduce g i (sym2Str sym) in

case (s,r) of ([],[]) -> slrML4Sym g itl sym
|| ([],[v12]) -> slrML4Sym g itl sym
|| ([],h::h’::t) -> NONE
|| (h::t,[]) -> slrML4Sym g itl sym
|| (h::t,h’::t’) -> NONE

slrML g itl [] = SOME (goto g, reduce g) ∧
slrML g itl (sym::rst) =

if (slrML4Sym g itl sym = NONE) then NONE
else slrML g itl rst

4 Future work

One piece of future work we would like to pursue is to demonstrate that SLR parsers
terminate on all inputs, not just on strings in the langauge.This would then demon-
strate the decidability of language membership. (Our mechanisation currently admits
the possibility thatparser goes into an infinite loop.)

We would also like to improve the efficiency of the parser. Currently, the DFA states
are computed on the fly. This gives us simpler proof goals, assisting in reasoning about
the program’s properties. Changing this to be computed statically would enhance the
performance of the parser when emitted as executable SML code.

For the sake of simplicity, we have dealt with SLR parsers. Inpractice however,
compiler-compilers such as yacc and GNU bison generate LALRparsers. Instead of
follow sets, LALR parsers uses lookahead sets, which are more specific as they take
more of the parsing context into account, allowing finer distinctions. It will be interest-
ing to see to what extent the existing work on SLR will assist us in verifying an LALR
parser generator.

5 Related Work

To realise the ambition of fully verified translation from source to machine code, all
phases in the compilation process should either be verified or subject to verification
after the fact. These two strategies are implemented in whathave been termedverified
or verifyingcompilers respectively. As we have already commented, one might imagine
that the appropriate strategy for parsing would be to verifythe output of an external tool.
This then would be what one might callverifying parsing. For example, a verifying
parser would mesh with Blazy, Dargaye and Leroy’s work on theformal verification of
a compiler front-end for a subset of the C language [1], whichotherwise ignores parsing
as an issue.

In the field of language theory, Nipkow [4] provided a verifiedand executable lexical
analyzer generator. This is the closest in nature to the verification we have done. As with
our work, Nipkow faced issues in making his definitions executable, principally because
of the inductively defined transitive closure.

6 Conclusions

We have presented work towards the formal verification of an SLR parser generator.
Most of the functions are directly executable. For those that we thought were bet-
ter expressed more “mathematically”, we have presented executable definitions of be-
haviourally equivalent alternatives. This conversion also illustrated the gap between

simple textbook definitions and a verifiable executable implementation in a theorem
prover. Issues like termination which can be ignored when dealing with semantic defi-
nitions, become necessary when executability comes into play. This also highlights how
eminently suitable HOL is for developments of this kind, especially with its facility of
emitting verified HOL definitions as SML code.

HOL sources for the work are available at http://users.rsise.anu.edu.au/˜aditi/. The
definitions and proofs are 21000 LOC. It took 7 months to complete the work which
includes over 700 lemmas/theorems. This includes the definitions, major proofs related
to SLR grammars and also lemmas about existing HOL types (e.g., sets,lists) that were
not already present in the system.

References

1. Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formalverification of a C compiler front-
end. InFM 2006: Int. Symp. on Formal Methods, volume 4085 ofLecture Notes in Computer
Science, pages 460–475. Springer, 2006.

2. M. J. C. Gordon and T. Melham, editors.Introduction to HOL: a theorem proving environment
for higher order logic. Cambridge University Press, 1993.

3. John E. Hopcroft and Jeffrey D. Ullman.Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, Ma., USA, 1979.

4. Tobias Nipkow. Verified lexical analysis. In J. Grundy andM. Newey, editors,Proceedings of
the 11th International Conference on Theorem Proving in Higher Order Logics (TPHOLs’98),
pages 1–15, Canberra, Australia, 1998. Springer-Verlag LNCS 1479.

5. Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Ait Mohamed,
César Muñoz, and Sofiène Tahar, editors,Theorem Proving in Higher Order Logics, 21st
International Conference, TPHOLs 2008, volume 5170 ofLecture Notes in Computer Science,
pages 28–32. Springer, 2008. See also the HOL website at http://hol.sourceforge.net.

