Verified, Executable Parsing

Aditi Barthwal' and Michael Norrish

! Australian National University
Aditi.Barthwal@anu.edu.au
2 Canberra Research Lab., NICTA
Michael.Norrish@nicta.com.au

Abstract. We describe the mechanisation of SLR parsing, coveringdracikd
properties of context-free languages and grammars, asasdhe construction
of an SLR automaton. Among the various properties provedtdbe parser we
show, in particularsoundnessf the parser results in a parse tree on a given input,
then the parse tree is valid with respect to the grammar feniaives of the parse
tree match the inputompletenessf the input is in the language of the grammar
then the parser constructs the correct parse tree for the wigh respect to the
grammar; anehon-ambiguitygrammars successfully converted to SLR automata
are unambiguous.

We also develop versions of the algorithms that are exelbgtautomatic trans-
lation from HOL to SML. These alternative versions of theaaithms require
some interesting termination proofs.

1 Introduction

The (context-free) parsing problem is one of determiningethbr or not a string of
terminal symbols belongs to a language that has been spHojfimeans of a context-
free grammar. In addition, we imagine that the input is to bepssed by some later
form of analysise.g, a compiler. Therefore, we wish to generate the parse tiate th
demonstrates this membership when the string is in the Egmguather than just a
yes/no verdict.

The parsing problem can be solved in a general way for la@gsek of grammars
through the construction of deterministic push-down aw@@nGiven any grammar in
the acceptable class, the application of one function greslan automaton embodying
the grammar. This automaton then analyses its input, piodan appropriate verdict.
The particular function we have chosen to formally chamgssteand verify produces
what is known as an SLR automaton.

Thus, at a high level, our task is to specify and verify twodtions

slrmac : grammar -> automaton option
parse : automaton -> token list -> ptree option

Theslrmac function returnsSOME rif the grammar is in the SLR class, ahN®DNE
otherwise. Thearse function uses the machimato consume the input and produce
a parse tree for the input string, returniN@QNEnN case of a failure.

In the rest of the paper, we will describe the types and fonstithat appear above.
In Section 1.1, we describe grammars and their propertieSettion 1.2, we describe
the type of SLR automata, and the type of their results. Indet.3, we describe
the construction of automata from input grammars. We are ith@ position to verify
important properties about these functions. Our theoremsl@scribed in Section 2.
Finally, we also wish to be able to turn our verified HOL funai into functions that
can be executed in SML. To do this, a number of definitions lfaae rather abstract
or “semantic” characterisations need to be shown to haveugsele equivalents. The
derivation of executable forms is described in Section 3.

Literature and Technologyeing one of our field’s earliest examples of theory leading
to successful practice, parsing and language theory hageallgerature. On the other
hand, we are not aware of any existing work on a mechanisedhtloé parsing. Our
mechanisation has been performed in the HOL4 system [2n8]has been inspired
principally by Hopcroft and Ullman’s standard text [3].

Parsers as External Proof OracleHf an external, potentially untrusted, tool were to
generate the parse tree for a given string, it would be easggrify that this parse tree
was indeed valid for the given grammar. The parse tree waeikbbving as a proof that
the input string was indeed in the grammar’s language, aadrtisted infrastructure
need only check that proof. It is natural then to ask what taatthl value a verified
parser-generator might provide. Apart from the intellat@ppeal in mechanising in-
teresting mathematics, we believe there is at least onenatigbenefit: if the (verified)
construction of an SLR automaton succeeds, one has a patdhthgrammar in ques-
tion is unambiguous. When a parse is produced by the autormate knows that no
other parse is possible.

1.1 Context-Free Grammars

A context-free grammar (CFG) is represented in HOL usingalewing type defini-
tions:

symbol = TS of string | NTS of string
rule = rule of string => symbol list

grammar = G of rule list => string

(The=> arrow indicates curried arguments to an algebraic typeistractor. Thus, the
rule constructor is a term of typ&ring -> symbol list -> rule . We use
lists rather than sets for the grammar’s rules for ease ef teanslation to SML, and to
avoid frequent finite-ness side conditions.)

A rule is a mapping from a string to a symbol list, where théngtis interpreted
as a non-terminal. Similarly, a grammar consists of a listubds and a string giving
the start symbol. Traditional presentations of grammaenahclude separate sets cor-
responding to the grammar’s terminals and non-terminaéseWract these sets with
functionsterminals andnonTerminals respectively.

Definition 1. A list of symbols (osentential form s derivest in a single step it is of
the formaA~, t is of the forma3~, and if A — [is one of the rules in the grammar.
In HOL:

derives g sfl sf2 =

Js1 s2 rhs N.
(sfl = sl ++ [NTS N] ++ s2) A
(sf2 = sl ++ rhs ++ s2) A

MEM (rule N rhs) (rules g)

(The infix++ denotes list concatenation. TMEMrelation denotes list membership.)

We can form the reflexive and transitive closure of a binalatien likederives g
with the™ = operator, written as a suffix. Thuslerives g)° * sfl sf2 indicates
thatsf2 is derived fromsfl in zero or more steps, also denotedstls =* sf2 w.r.t
a grammar.

Later we will also use the rightmost derivation relaticaterives , and its closure.

Definition 2. Thelanguageof a grammar consists of all the words that can be derived
from the start symbol.

language g =
{ tsl | (derives g)" * [NTS (startSym g)] tsl A
EVERY isTmnISym tsl }

(Predicatei sTmrml Symis true of a symbol if it is of the formS s for some strings.
EVERY checks that every element of a list satisfies the given @tsljc

We also define the concept of nullability and relations fodifiry first sets and
follow sets for a symbol as stated below. These notions arealavhen the actions for
the SLR automaton are calculated (see Section 1.2).

Definition 3. A list of symbolsy is nullableiff o =* e:
nullable g sl = (derives g)° * sl]

Definition 4. Thefirst set of a symbol is the set of terminals that can appear firgtén t
sentential forms derivable from it:

firstSet g sym =
{ (TS fst) | Jrst.(derives g)° * [sym] (TS fst:rst) }

(:: represents the list ‘cons’ operator.)

Definition 5. Thefollow set of a symbaN is the set of terminals that can occur after
N in a sentential form derivable from any of the right-handesidbelonging to a rule in
the grammar.

followSet g N =
{TSts| 3IM rhs p s.
MEM (rule M rhs) (rules g) A
(derives g)° * rhs (p ++ [N;TS ts] ++ s) }

(This definition might be simplified by only considering dations from the start sym-
bol of the grammar. However, we choose to present it in thee@aba@y so it is compati-
ble with our executable definition, which ignores reachiagbdf non-terminals.)

Executable versions of these functions (which do not neescém all possible
derivations) are described in Section 3.1.

1.2 SLR Automata

An SLR machine is a push-down automaton where each state iautomaton corre-
sponds to a list oftems An item N — « - 3, is a grammar rule that has been split
in two by the dot () marking the progress that has been made in recognisinguée g
right-hand sided¢/3). In HOL.:

item = item of string => symbol list # symbol list
state = item list

In the mechanisation, an automaton state is a list of itentsttee empty list represents
an error state. The state of an execution is the current igouipled with a stack of
pairs of automaton states and parse trees. The root of eash fpee corresponds to a
terminal symbol that has been shifted from the input, or to-terminal that has been
produced through a reduction step.

Based on the next symbol in the input (we are implementing ®itR one symbol
lookahead), and the state the parser is in, the parser withqpe one of the following
actions:

— REDUCEthe parser recognizes a valid handle on the stack and rediube left-
hand side of the rule

— GOTOthe parser shifts an input symbol on to the stack and godsetinticates
state

— NA the parser throws an error

In our framework, the automaton is presented by two funstigoto andreduce .
The goto function takes asymbol and astate as arguments and returns a new
state . We have thus merged two tables in the traditional presentahe shift table
encoding information for terminals, and the goto table fon+#erminals.

Thereduce function takes aymbol and astate and returns a list of possible
rules that can be reduced in the given state. When the mabhséeen constructed
from an SLR grammar the list will always be empty or just onengnt long. If a
reduction is to be performed for rulé — «, the symbolsy are popped off the stack,
revealing a state,. The non-terminalV is pushed onto the stack, and the machine
shifts to the state given kyoto applied to/N andsy.

Given a state and input symbol, the next action is a shifefjito function returns
a non-error state. The next action is a reduction ifrbeduce function returns a list
containing one rule. The SLR construction ensures that battiditions can't be true
simultaneously. If neither is true, the machine throws aarer

These functions are combined using a while combinator o typ

(a -> bool) -> (a -> 'a option) -> 'a ->
'a option option

The type'a is the type of the execution state. The first argument is adawotondi-
tion on states specifying when the loop should continue.SHw®nd argument encodes
the loop body, allowing for the possibility that the loop emM@on terminates abnor-
mally (e.g.the parser detects a string not in the grammar’s language)tfird argu-
ment is the initial state. The result encodes normal tertiinaabnormal termination
(SOME NON&Nd failure to terminateNONE

1.3 Constructing the Parser

The architecture of the parser-construction process wisioFigure 1. The first step in

creating the SLR machine is to augment the grammar. The autgtien adds an extra

rule that introduces a new start symbol and a marker (a tedrsimbol) that appears

at the end of all the words in the language of the grammar. Engep uses this rule

for reduction exactly when it has accepted the input words €hsures that the parser
always ‘spots’ the end of input. The augmeraoggr is a function of type

grammar -> string -> string -> grammar option

We useSOMEQ’ to return the augmented gramngr when the symbols being in-
troduced are ‘fresh’ (not part of the old grammar). Otheenfiilure is indicated by
returningNONE

NONE
—>» gisnotan

SLR grammar

augmented slrmac
grammar (g)

SOME | (reduce, goto)

inpUt_l_) parser
stack —I_) /

parse tree (input in L(g)) error (input not in L(g))

Fig. 1. Architecture of the Parser Construction Process

Theslrmac function creates thgoto andreduce functions which representthe
three transition tables of the traditional presentatioarof R automaton. It checks that
the functions don't produce any shift-reduce or reducescedonflicts. If the functions
pass this test, they can be passed ontopwser function which implements the
machine (as described above in Section 1.2).

Building the Parsing Tables The construction of thgoto function is conceptually
simple: let the result of applyingoto to a states and the symbo$ (terminal or non-
terminal) be the list of item& — as - 3, whereN — « - s is an element of. This
behaviour is captured in the HOL functiomoveDot . Unfortunately, it is not sufficient.

When an item’s dot is before a non-terminal, s&y— « - B/, this indicates that
the parser expects to parse the non-termiBlr{ext. To ensure the item set contains
all possible rules the parser may be in the midst of parsimgyst additionally include
all items describing hov itself will be parsed. If there are rules fé that themselves
have non-terminals as the first element of a RHS, then thas¢arminals’ items must
also be included. Thus we must take a closure: repeatedlydimg all referenced non-
terminals until we reach a fix-point.

The finalgoto function is calculated byextState (which gets access to the
input grammar). The new state is computed by moving the det althe items in the
current state that have the input symbol after the dot, a@d tiking the closure.

nextState g itl sym = closure g (moveDot itl sym)

The other table we must computeréduce . This really is simple: for every com-
plete item (of the formV — «-) in a state, return the ruly — « if the input symbol
is in the follow set ofN. Because we use the entire follow set'df we are computing
an SLR machine. If we didn't use a follow set at all, and alwegduced on complete
items, we would be implementing an LR(0) parser. If we coradditllow sets for states
that depended on where a non-terminal had been used, we Wweutdplementing an
LALR parser.

Checking for Conflicts Whenslrmac has constructed the functiogsto andreduce ,
it then checks them for possible shift-reduce or reduceedonflicts. Checking for
such an error in a given state on a given symbol is done bgdBgror function:

noError (go,rd) sym st
case rd st sym of

o -7
|| Ir] -> (go st sym = [])

|| otherwise -> F

Theslrmac function thentestaoError on all reachable states in the automaton,
and for all possible terminal symbols. This is easy to explegically:

okSIr g initState =
Ysyms state tok.
trans g (initState, syms) = SOME state =
noError (goto g, reduce g) tok state

wheretrans g iterateggoto g over a sequence of symbols to find the resulting state
(if any). Hopcroft and Uliman call this functiof
Expressing this check executably is discussed in Section 3.

Putting it all Together Theparser functionis as given in Figure 1.

parser (initState, eof, oldS) m sl =
let out = mwhile (- o exitCond eof oldS)
(As.parse m s) (init initState sl)
in
case out of
NONE -> NONE
|| SOME (SOME (sI',[(state,ptree)],csl’)) ->
SOME (SOME ptree)
| SOME NONE -> SOME NONE
|| SOME _ -> SOME NONE

Theparse function implements a single step of the SLR machine (Sedtid).init
provides the initial execution state to get this processeslaTheexitCond function

is true of an execution state if the stack consists of jushthreaugmented grammar’s
start symbol, and if the input consists of just thef token. The while combinator
mwhile (Section 1.2) repeatedly performs tharse step untilexitCond is true.

2 Proofs

We now have a parser generator formally specified in HOL. Tifyéhat our speci-
fication is indeed correct, we would like to demonstrate thatlanguage accepted by
the automaton is the same as the language defined by the graiimnsagoal is natu-
rally split into two inclusion results: that everything apted by the machine is in the
language (“soundness”), and that everything in the langisgccepted by the machine
(“completeness”).

Before we delve into the proofs, we describe what it mean®ta balid parse tree
with respect to a grammar:

(validptree g (Node n ptl) =

MEM (rule n (getSymbols ptl)) (rules g) A

(Ve. MEM e ptl A isNode e — validptree g e)) A
(validptree g (Leaf tm) = F)

Here,getSymbols gives the list of symbols at the roots of a list of trees. Tlausee
is valid with respect to a grammar if there is a rule in the graanthat corresponds to
the root node deriving the roots of its sub-trees, and ifurgigely) all the sub-trees are
also valid.

The proofs to come also depend on a number of simple invar@mthe state of a
parse execution:

— par ser _i nv states implementation-specific properties about the stdwse prop-
erties ensure the items in each of the state on the stackspormd to some grammar
rule (validStates) and that the initial start state is never popped off from the
stack.

parser _inv g csl = validStates g csl A —=NULL csl

— The SLR automaton works by computing valid items for eacblei@refix. Predi-
cateval i dl t emi nv asserts that each of the states contains only those items tha
are valid for the viable prefix, which is the string of symbols that has been pushed
on to the stack to reach that state.

validlitem_inv g initState revStk =
Vstk'.
IS_PREFIX revStk stk’ A —NULL stk’
—
trans g (initState, stackSyms stk’) =
SOME (topState stk’)

2.1 Validity of the Parse Tree Generated

If the parser results in a parse tree, the tree is valid wipheet to the grammar for which
the parser was generated. Alternatively, the parse treeuittsusing rules present in
the given grammar.

Below we abbreviatgalidptree _inv for conditions which state that for all the
non-terminals on the stack, the associated parse treealaevth respect to the given
grammar. We prove that this property is preserved byptirse function, which takes
a single step of the execution. By induction over the whileg, if the parser is able to
reduce the stack symbols to the start symbol, then the @mneling parse tree must be
valid as well.

Theorem 1.
vg sl stl.
auggr g s eof = SOME ag A slrmac ag = SOME m A
parser_inv ag csl A validptree_inv g stl A

parser (initState, eof, oldS) (SOME m) sl =
SOME (SOME tree)
—
validptree ag tree

2.2 Equivalence of the Output Parse Tree And the Input StringParsed

The main predicate of interest here is thaves _eq_inv . Below it abbreviates con-
ditions which assert that at each state the leaves of thatessgual to the parsed string.
This ensures that the grammar rules being applied to formpahee tree, correspond to
the input string being parsed and the leaves of the resyfiamge tree are equal to the
original input string.
Theorem 2.
vYm g s eof sl csl.
auggr g s eof = SOME ag A slrmac ag = SOME m A
parser _inv ag csl A leaves _eq.inv sl sl [] A
parser (initState, eof, startSym g) (SOME m) sl =
SOME (SOME tree))
B
(sl=leaves tree)

2.3 Soundness of the Parser

To prove soundness, we have to show that the input string fidcchna valid parse tree
can be constructed, is in the language of the grammatr.

Theorem 3.
¥Ym g s eof sl csl.
auggr g s eof = SOME ag A slrmac ag = SOME m A

parser _inv ag (stl, csl) A
validptree _inv ag (stl, csl) A
leaves _eq._inv sl sl [] A

parser (initState, eof, startSym g) (SOME m) sl =
SOME (SOME tree))
B
sl € language ag

In turn, this result depends on a simple result stating thevatgence of being able to
derive a sentential form and having a valid parse tree wihfthrm as its leaves.

2.4 Completeness of the Parser

To show completeness, we have to prove that if a string isaathguage of a grammar
then the parser will terminate with a parse tree. Soundidsofem 3) already ensures
the validity of the output tree. We assume that the grammes dot have useless non-
terminals,i.e. all the non-terminal symbols generate some terminal s{fognerates
a word’, gaw). We earlier proved that removing useless symbols doesffaittdhe
language of a grammar, so we might extestrinac to do this for us, or just have it
report an error if given a grammar containing useless nonitels.

Theorem 4.
auggr g st eof = SOME ag A sl € language ag A
slrmac ag = SOME m A
(Vnt. nt € nonTerminals ag = gaw ag nt)
—
dtree.
parser (initState, eof, startSym g) (SOME m) sl =
SOME (SOME tree)

This result has by far the most complicated proof in the meidagion, and took
a considerable proportion of the total time spent. Much ef ime was spent cast-
ing about for a detailed version of the argument for LR(O)ngrears in Hopcroft and
Uliman [3,§10.7]. That argument specifies the construction of the aatomand con-
tinues:

We claim that whenV/ starts withw in L(G) on its input and only, on
the stack, it will construct a rightmost derivation ferin reverse order. The
only point still requiring proof...

Our eventual proof recasts this somewhat. We already havaraiirary) rightmost
derivation forw by virtue of the fact that it is i.(G). (We proved the lemma stating that
any derivation of a word has a rightmost equivalent.) We thigrue that the machine
will take a sequence of steps that mirror this derivation.

We make the actual derivation concrete (it is a list of seti@eforms), and write
R d<sfy— sf, if disaderivation ofsf, starting atsf,, and respecting derivation
relationR (i.e., R holds between each successive pair of elements in thé list

Each sentential form is derived from its predecessor by ¥pamsion of a non-
terminal. When moving backwards through the derivatiois, tbrresponds to a reduc-
tion step.

The crucial lemma supporting our proof states that if we haleives ¢ +
d < sf, — w, then there is a sequenceroparse -steps bringing the SLR automaton
to a state where it is just about to perform the first reduatioine derivationd. This is
by induction ond. This result in turn relies on knowing that when the curresudle
or RHS of the next reduction, is still partly or completelytire input, the machine will
perform a sequence of shift moves in order to bring the haomtie the stack.

All of these results depend on the invariants already desdriand the fact that the
automaton is SLR. For example, in the last lemma: if we kncat éhshift is possible,
then we also know that a reduction is not.

2.5 SLR grammars are unambiguous

A grammar is unambiguous if for each string L(G), w has a unique rightmost deriva-
tion.

Definition 6. A wordw in the language of grammay is represented by a derivation
list starting from the start symbol gfand ending inw. A derivation forw is unique iff
all possible derivation lists are identical.

isUnambiguous g =
vsl dl dI'.
sl € language g A
rderives g F dl < [NTS (startSym g)] — sl A
rderives g F dl < [NTS (startSym g)] — sl A
E
di=dI

Theorem 5.
auggr g st eof = SOME ag A slr ag = SOME m
E
isUnambiguous ag

A corollary of completeness and the fact that the SLR madisideterministic.

3 An Executable Parser

For the most part, the HOL definitions turn out to be execetabwever, for the sake
of simplicity and clarity, many of our definitions were waitt in a style that favoured

mathematical ease of expression. The use of existentialtifjeas, and the reflexive
and transitive closure in such definitions make them unexbder Here we describe
how the defined functions can be re-expressed in a way thatsrthkm acceptable to
HOL4'’s emitML technology. Our general approach was to take an existingtifum
f, and define a neyML constant. After proving termination for the typically colinp
cated recursion equations definifiglL, we then had to show thgMLs behaviour was
equivalent tof’s.

Would it save work to just use executable functions from théset? Sadly no;
the important thing about these executable functions istbiey should compute some
mathematical property. Proving that this is the case isdhngesproblem as showing the
equivalences we describe here.

In this section we describe our executable implementatibtige non-executable, or
“mathematical” HOL definitions. Even though the HOL versiomere more tractable
for proving properties such as our language inclusion testiiere have been places
where it was decided to value executability over succirsgrod presentation.

3.1 Executable Calculation of Nullable Non-terminals
The executable counterpart of thellable function is given below.

nullableML g sn [] = T A
nullableML g sn (TS ts:rest) = F A
nullableML g sn (NTS A:rest) =
if (MEM (NTS A) sn) then F
else
EXISTS (nullableML g (NTS A:sn))
(getRhs A (rules Q)) A
nullableML g sn rest

ThenullableML function determines whether or not a list of symbols (a sente
tial form) can derive the empty string. When the string igla a terminal symbol, the
result is false. When a non-terminal is encountered, wersaaly determine if any of
that non-terminal’'s RHSes might derive the empty string.

In order to ensure that this recursion terminates, we intteda “seen” list and
update this with the non-terminal that is being visited winenexpand it. To then con-
vince HOL that this function terminates, we must find a wellided relation on the
arguments ohullableML . Because a singleton list containing a non-terminal may
expand into a list of symbols of arbitrary length, we canimidy use the length of the
sentential form as a measure. Instead we use the lexicagregrhbination:

measure (A(g,sn). |[nonTerminals g \ set sn|)
LEX
measure LENGTH

We assert that either the number of symbols except the onéreiseen list de-
creases, or that the length of the sentential form decre@besformer corresponds to

the first conjunct in the third clause in the definition white tlatter takes care of the
second conjunct.

The next step is to show the equivalence between the new H@taiots and the
originals. Proving the equivalence requires showing thieviang two implications.

vYg sn sf. nullableML g sn sf = nullable g sf

vg sf. nullable g sf = nullableML g sn sf

As previously outlined, for a sentential form to be nullgliieannot have a terminal
symbol. We look at the non-trivial cases when the sentential form itself is not empty.
A sentential formN; N,...N,, is nullable iff the individual derivations for th&'s itself
are nullable.

Ni =* ¢
N, =% ¢

N, =* ¢

nullable asserts the existencesmederivation froms f to e. On the other hand,
nullableML looks at a concrete derivation with a specific propdrgin each indi-
vidual derivation, the symbols cannot be repeated. Thipgnty gives us termination
but it also makes the equivalence proof harder.

The first implication turns out to be easy to prove since weshosving the existence
of a particular form of derivation from a more generic one.

To prove the latter implication, we need to show that eaclvagon without any
constraints on its form, can be recast into a derivation wliee individual derivations
of e do not have repeated symbols. We do this by a complete irafucti the length of
the derivation and show that any derivation of the fa¥in="* ¢ can be recasted into a
new derivation (possibly smaller), that gets accepteddyable M L.

This ‘obvious’ property of nullable derivations is usudlgsumed’ textbook proofs,
but plays a centre role when proving the equivalence betaeeathematical definition
and an executable one.

With this equivalence we know now that execution of SML cod# provide a
behaviour corresponding to that of the formal HOL entity.

The executablérstSet andfollowSet definitions were defined in a similar
way (by introducing a “seen” list in the compuation). Themération and equivalence
proof follow similar lines of reasoning.

An Executablsl| r mrac Another interesting termination case is encountered when w
try to makeslrmac definition executableslrmac checks whether the resulting table
for the grammar has any conflict or not. It is not strictly aessary component of the
parser generator but does asssist in stating some of théspFay example, with this
function we can assert that if we can build a parse table famenghar and the input
belongs in the language of the grammar, then the parser wipiub a parse tree.

Building the parse table involves traversing the state sgadind the next state
for each of the symbols in the grammar, starting from theahgtate.neighbours
takes a state and returns a state list. The state list cansates that can be reached
by following each of the symbols in the inputg, transitions one-level deep). It uses
symNeighbour to shift the dot past the current symbol and get the statespond-
ing toit. The resulting state contains no duplicatesljupes). The conditiorDISTINCT
ensures that we don’tloop forever by considering statesevie same items might be
repeated. Another checkalidltl makes sure that the items in the state do corre-
spond to some rule in the grammar.

symNeighbour g itl sym =
rmDupes (closure g (moveDot itl sym))

neighbours g itl [] = [] A
neighbours g itl (x::xs) =
symNeighbour g itl x::neighbours g itl xs

visit g sn itl =
if —(DISTINCT itl) v —(validitl g itl) then []
else let s = neighbours g itl set (allSyms @) in
let rem = diff s sn in
rem++(FLAT (MAP (visit g (sn++rem)) rem))

The parse table builder here is tvisit ~ function. Starting in the initial state it follows
the transitions for each of the symbols in the grammar untiain reach no more new
states. The important thing here is to make sure states arepeated otherwise we
end up following the same path over and over again. Here, tihgber of states seen
increases at each recursive call. We also know that the nuofipessible states (even
though it might be large) is finitea{l Grammarltls). This is because we have a
finite number of symbols in our grammar and a finite number lgfsras well. From this
we can deduce that the number of states not been encounemezhdes at each call.
This forms our termination argument.

measure (A(g,sn,itl). |allGrammarltls g \ set sn|)

With this on hand, we can implement an executallimac that checks the entire
table for shift-reduce and reduce-reduce conflicts.

sIrML4Sym g [] sym = SOME (goto g, reduce Q) A
sirML4Sym g (i::itl) sym =
let s = goto g i sym in
let r = reduce g i (sym2Str sym) in

case (s,r) of ([I,[) -> sIrML4Sym g itl sym

I ([I.[v12]) -> sIrML4Sym g itl sym

[| (0,h:zh::t) -> NONE

| (hzt[]) -> sIrML4Sym g itl sym

[| (h:th:t’) -> NONE

sirML g itl] = SOME (goto g, reduce Q) A
sirML g itl (sym::rst) =
if (sIrML4Sym g itl sym = NONE) then NONE
else sIrML g itl rst

4 Future work

One piece of future work we would like to pursue is to demaistthat SLR parsers
terminate on all inputs, not just on strings in the langaddeés would then demon-
strate the decidability of language membership. (Our meish&ion currently admits
the possibility thaparser goes into an infinite loop.)

We would also like to improve the efficiency of the parser.réntly, the DFA states
are computed on the fly. This gives us simpler proof goalsstisg in reasoning about
the program’s properties. Changing this to be computedtatist would enhance the
performance of the parser when emitted as executable SM& cod

For the sake of simplicity, we have dealt with SLR parserspriactice however,
compiler-compilers such as yacc and GNU bison generate LpaRers. Instead of
follow sets, LALR parsers uses lookahead sets, which are rspecific as they take
more of the parsing context into account, allowing finerididtons. It will be interest-
ing to see to what extent the existing work on SLR will assgsiruverifying an LALR
parser generator.

5 Related Work

To realise the ambition of fully verified translation fromusoe to machine code, all
phases in the compilation process should either be verifiezslilbject to verification
after the fact. These two strategies are implemented in tdnzg been termecerified
orverifyingcompilers respectively. As we have already commented, agletimagine
that the appropriate strategy for parsing would be to venié&output of an external tool.
This then would be what one might calrifying parsing For example, a verifying
parser would mesh with Blazy, Dargaye and Leroy’s work orfthmal verification of
a compiler front-end for a subset of the C language [1], whitkerwise ignores parsing
as an issue.

In the field of language theory, Nipkow [4] provided a verifaatt executable lexical
analyzer generator. This is the closest in nature to théea&tion we have done. As with
our work, Nipkow faced issues in making his definitions exable, principally because
of the inductively defined transitive closure.

6 Conclusions

We have presented work towards the formal verification of BR $arser generator.
Most of the functions are directly executable. For those tha thought were bet-
ter expressed more “mathematically”, we have presenteclgdele definitions of be-
haviourally equivalent alternatives. This conversioroadlkustrated the gap between

simple textbook definitions and a verifiable executable en@ntation in a theorem
prover. Issues like termination which can be ignored whealidg with semantic defi-
nitions, become necessary when executability comes iago phis also highlights how
eminently suitable HOL is for developments of this kind,edplly with its facility of
emitting verified HOL definitions as SML code.

HOL sources for the work are available at http://usersraisu.edu.au/"aditi/. The
definitions and proofs are 21000 LOC. It took 7 months to catgthe work which
includes over 700 lemmas/theorems. This includes the tiefisi major proofs related
to SLR grammars and also lemmas about existing HOL typeg éets,lists) that were
not already present in the system.

References

1. Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Foumafication of a C compiler front-
end. InFM 2006: Int. Symp. on Formal Methadslume 4085 ot ecture Notes in Computer
Sciencepages 460-475. Springer, 2006.

2. M. J.C. Gordon and T. Melham, editofstroduction to HOL: a theorem proving environment
for higher order logic Cambridge University Press, 1993.

3. John E. Hopcroft and Jeffrey D. Ulimarntroduction to Automata Theory, Languages and
Computation Addison-Wesley, Reading, Ma., USA, 1979.

4. Tobias Nipkow. Verified lexical analysis. In J. Grundy aMdNewey, editorsProceedings of
the 11th International Conference on Theorem Proving inhgigOrder Logics (TPHOLS'98)
pages 1-15, Canberra, Australia, 1998. Springer-VerlaG&N479.

5. Konrad Slind and Michael Norrish. A brief overview of HOL4n Otmane Ait Mohamed,
César Muioz, and Sofiene Tahar, editafbeorem Proving in Higher Order Logics, 21st
International Conference, TPHOLs 200®lume 5170 of ecture Notes in Computer Science
pages 28-32. Springer, 2008. See also the HOL website afttipsourceforge.net.

