
A Provably Correct Implementation
of the Priority Inheritance Protocol

Christian Urban

joint work with Xingyuan Zhang and Chunhan Wu

from the PLA University of Science and Technology in Nanjing

London, 28 June 2012 � p. 1/21



Isabelle Theorem Prover

My background:

mechanical reasoning about languages with
binders (Nominal)

Barendregt's variable convention can lead to false

found a bug in a proof by Bob Harper and Frank
Pfenning (CMU) on LF (ACM TOCL, 2005)

London, 28 June 2012 � p. 2/21



Real-Time OSes

Processes have priorities

Resources can be locked and unlocked

London, 28 June 2012 � p. 3/21



Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid inde�nite priority inversion

London, 28 June 2012 � p. 4/21



Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid inde�nite priority inversion

London, 28 June 2012 � p. 4/21



Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid inde�nite priority inversion

London, 28 June 2012 � p. 4/21



Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid inde�nite priority inversion

London, 28 June 2012 � p. 4/21



Mars Pathfinder Mission
1997

London, 28 June 2012 � p. 5/21



Solution
Priority Inheritance Protocol (PIP):

High-priority process

Medium-priority process

Low-priority process

(temporarily raise its priority)

London, 28 June 2012 � p. 6/21



�Priority inheritance is neither ef�cient nor
reliable. Implementations are either incomplete
(and unreliable) or surprisingly complex and
intrusive.�

�I observed in the kernel code (to my disgust),
the Linux PIP implementation is a nightmare:
extremely heavy weight, involving maintenance
of a full wait-for graph, and requiring updates
for a range of events, including priority changes
and interruptions of wait operations.�

London, 28 June 2012 � p. 7/21



A Correctness “Proof” in
1990

a paper? in 1990 �proved� the
correctness of an algorithm for
PIP

. . . after the thread (whose priority has been
raised) completes its critical section and
releases the lock, it �returns to its original
priority level�.

? in IEEE Transactions on Computers
London, 28 June 2012 � p. 8/21



High-priority process 1

High-priority process 2

Low-priority process

Solution:
Return to highest remaining
priority

London, 28 June 2012 � p. 9/21



High-priority process 1

High-priority process 2

Low-priority process

Solution:
Return to highest remaining
priority

London, 28 June 2012 � p. 9/21



Events

Create thread priority
Exit thread
Set thread priority
Lock thread cs
Unlock thread cs

A state is a list of events (that happened

so far).

London, 28 June 2012 � p. 10/21



Events

Create thread priority
Exit thread
Set thread priority
Lock thread cs
Unlock thread cs

A state is a list of events (that happened

so far).

London, 28 June 2012 � p. 10/21



Precedences

prec th s
def

= (priority th s, last_set th s)

London, 28 June 2012 � p. 11/21



RAGs

th0 cs1

th1

th2 cs2

cs3

th3

holding
wait

ing

waiting
holding

hol
din

g

waiting

RAG wq
def

= {(T th, C cs) | waits wq th cs}
∪ {(C cs, T th) | holds wq th cs}

London, 28 June 2012 � p. 12/21



RAGs

th0 cs1

th1

th2 cs2

cs3

th3

holding
wait

ing

waiting
holding

hol
din

g

waiting

RAG wq
def

= {(T th, C cs) | waits wq th cs}
∪ {(C cs, T th) | holds wq th cs}

London, 28 June 2012 � p. 12/21



Good Next Events

th /∈ threads s

step s (Create th prio)

th ∈ running s resources s th = ∅
step s (Exit th)

th ∈ running s

step s (Set th prio)

London, 28 June 2012 � p. 13/21



Good Next Events

th ∈ running s (C cs, T th) /∈ (RAG s)+

step s (P th cs)

th ∈ running s holds s th cs

step s (V th cs)

London, 28 June 2012 � p. 14/21



Theorem
�No inde�nite priority inversion�

Theorem:? If th is the thread with the highest
precedence in state s, then in every future state s'
in which th is still alive

th is blocked by a thread th' that was alive in s

th' held a resource in s, and

th' is running with the precedence of th.

? modulo some further assumptions

It does not matter which process gets a released lock.

London, 28 June 2012 � p. 15/21



Theorem
�No inde�nite priority inversion�

Theorem:? If th is the thread with the highest
precedence in state s, then in every future state s'
in which th is still alive

th is blocked by a thread th' that was alive in s

th' held a resource in s, and

th' is running with the precedence of th.

? modulo some further assumptions

It does not matter which process gets a released lock.

London, 28 June 2012 � p. 15/21



Implementation
s = current state; s' = next state

Create th prio, Exit th

RAG s' = RAG s

precedences of descendants stay all the same

London, 28 June 2012 � p. 16/21



Implementation
s = current state; s' = next state

Set th prio

RAG s' = RAG s

we have to recalculate the precedence of the
direct descendants

London, 28 June 2012 � p. 17/21



Implementation
s = current state; s' = next state

Unlock th cs where there is a thread to take over

RAG s' = RAG s - {(C cs, T th), (T th', C cs)} ∪ {(C
cs, T th')}

we have to recalculate the precedence of the
direct descendants

Unlock th cs where no thread takes over

RAG s' = RAG s - {(C cs, T th)}

no recalculation of precedences

London, 28 June 2012 � p. 18/21



Implementation
s = current state; s' = next state

Lock th cs where cs is not locked

RAG s' = RAG s ∪ {(C cs, T th')}

no recalculation of precedences

Lock th cs where cs is locked

RAG s' = RAG s - {(T th, C cs)}

we have to recalculate the precedence of the
descendants

London, 28 June 2012 � p. 19/21



PINTOS
. . . small operating system developed at Stanford
for teaching; written in C

Event PINTOS function

Create thread_create
Exit thread_exit
Set thread_set_priority
Lock lock_acquire
Unlock lock_release

London, 28 June 2012 � p. 20/21



Conclusion
surprised how pleasant the experience was

no real speci�cation existed for PIP

general technique (a �hammer�):

events, separation of good and bad con�gurations

scheduler in RT-Linux

multiprocessor case

other �nails� ? (networks, . . . )

London, 28 June 2012 � p. 21/21




