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1 Preliminaries

1.1 Finite automata and Myhill-Nerode theorem

A determinisitc finite automata (DFA) M is a 5-tuple (Q,Σ, δ, s, F ), where:

1. Q is a finite set of states, also denoted QM .

2. Σ is a finite set of alphabets, also denoted ΣM .

3. δ is a transition function of type Q × Σ ⇒ Q (a total function), also
denoted δM .

4. s ∈ Q is a state called initial state, also denoted sM .

5. F ⊆ Q is a set of states named accepting states, also denoted FM .

Therefore, we have M = (QM ,ΣM , δM , sM , FM ). Every DFA M can be in-
terpreted as a function assigning states to strings, denoted δ̂M , the definition
of which is as the following:

δ̂M ([]) ≡ sM
δ̂M (xa) ≡ δM (δ̂M (x), a)

(1)
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A string x is said to be accepted (or recognized) by a DFA M if δ̂M (x) ∈ FM .
The language recoginzed by DFA M , denoted L(M), is defined as:

L(M) ≡ {x | δ̂M (x) ∈ FM} (2)

The standard way of specifying a laugage L as regular is by stipulating that:
L = L(M) for some DFA M .

For any DFA M , the DFA obtained by changing initial state to another
p ∈ QM is denoted Mp, which is defined as:

Mp ≡ (QM ,ΣM , δM , p, FM ) (3)

Two states p, q ∈ QM are said to be equivalent, denoted p ≈M q, iff.

L(Mp) = L(Mq) (4)

It is obvious that ≈M is an equivalent relation over QM . and the parti-
tion induced by ≈M has |QM | equivalent classes. By overloading ≈M , an
equivalent relation over strings can be defined:

x ≈M y ≡ δ̂M (x) ≈M δ̂M (y) (5)

It can be proved that the the partition induced by ≈M also has |QM | equiv-
alent classes. It is also easy to show that: if x ≈M y, then x ≈L(M) y,
and this means ≈M is a more refined equivalent relation than ≈L(M). Since
partition induced by ≈M is finite, the one induced by ≈L(M) must also be
finite, and this is one of the two directions of Myhill-Nerode theorem:

Lemma 1 (Myhill-Nerode theorem, Direction two). If a language L is reg-
ular (i.e. L = L(M) for some DFA M), then the partition induced by ≈L
is finite.

The other direction is:

Lemma 2 (Myhill-Nerode theorem, Direction one). If the partition induced
by ≈L is finite, then L is regular (i.e. L = L(M) for some DFA M).

The M we are seeking when prove lemma ?? can be constructed out of ≈L,
denoted ML and defined as the following:

QML ≡ {JxK≈L | x ∈ Σ∗} (6a)

ΣML ≡ ΣM (6b)

δML ≡ (λ(JxK≈L , a).JxaK≈L) (6c)

sML ≡ J[]K≈L (6d)

FML ≡ {JxK≈L | x ∈ L} (6e)

It can be proved that QML is indeed finite and L = L(ML), so lemma 2
holds. It can also be proved that ML is the minimal DFA (therefore unique)
which recoginzes L.

2



1.2 The objective and the underlying intuition

It is now obvious from section 1.1 that Myhill-Nerode theorem can be estab-
lished easily when reglar languages are defined as ones recognized by finite
automata. Under the context where the use of finite automata is forbiden,
the situation is quite different. The theorem now has to be expressed as:

Theorem 1 (Myhill-Nerode theorem, Regular expression version). A lan-
guage L is regular (i.e. L = L(e) for some regular expression e) iff. the
partition induced by ≈L is finite.

The proof of this version consists of two directions (if the use of automata
are not allowed):

Direction one: generating a regular expression e out of the finite partition
induced by ≈L, such that L = L(e).

Direction two: showing the finiteness of the partition induced by ≈L, un-
der the assmption that L is recognized by some regular expression e
(i.e. L = L(e)).

The development of these two directions consititutes the body of this paper.

2 Direction regular language ⇒finite partition

Although not used explicitly, the notion of finite autotmata and its rela-
tionship with language partition, as outlined in section 1.1, still servers as
important intuitive guides in the development of this paper. For example,
Direction one follows the Brzozowski algebraic method used to convert finite
autotmata to regular expressions, under the intuition that every partition
member JxK≈L is a state in the DFA ML constructed to prove lemma 2 of
section 1.1.

The basic idea of Brzozowski method is to set aside an unknown for ev-
ery DFA state and describe the state-trasition relationship by charateristic
equations. By solving the equational system such obtained, regular expres-
sions characterizing DFA states are obtained. There are choices of how DFA
states can be characterized. The first is to characterize a DFA state by the
set of striings leading from the state in question into accepting states. The
other choice is to characterize a DFA state by the set of strings leading
from initial state into the state in question. For the first choice, the lau-
guage recognized by a DFA can be characterized by the regular expression
characterizing initial state, while in the second choice, the languaged of the
DFA can be characterized by the summation of regular expressions of all
accepting states.

end
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Figure 1: The relationship between automata and finite partition
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