
A Semi-Functional Implementationof a Higher-Order Logic Programming LanguageConal Elliott Frank PfenningDraft of February 19901 IntroductionIn this chapter we develop an interpreter of a higher-order constraint logic programming languagein Standard ML (SML). The logic programming language is closely related to �Prolog [25], thoughthe type system supported by our implementation is more general, for example by allowing explicitabstraction over types. The implementation is closely modeled after eLP, an implementation of�Prolog in the Ergo Support System [8, 20] and may be considered as a rational reconstructionand explanation of the eLP implementation.This is not a tutorial on �Prolog (we present no �Prolog programs at all), but for someonefamiliar with ML this should serve as a high-level operational semantics of a variant of the �Prologlanguage. Prior knowledge of ML is assumed, but not at a very deep or sophisticated level (see [15]for an SML tutorial). We try to emphasize programming techniques as well as the gradual de-velopment of the interpreter in its full generality from a very simple starting point. For someoneconsidering experimentation with variations on logic programming languages, this chapter shouldprovide enough detail and techniques for the rapid implementation of a modi�ed interpreter ofrelated languages. Our approach is to write a true interpreter, and not to embed Prolog in MLthe way Prolog is embedded in Scheme in [9] and [17]. The primary di�erence is that we separatecarefully the name space of predicates of the logic programming language from the name space offunctions in ML.We do not address the use of the SML module system, nor do we discuss a number of featuresof �Prolog such as its module system, input/output, and other built-in special predicates. Alsoomitted are the front end of the interpreter (parsing, unparsing, type inference) and, due to spaceconstraints, we limit ourselves to a sketch of higher-order uni�cation. We hope to write a com-panion paper which concentrates primarily on a development of higher-order uni�cation and typereconstruction within the framework laid out in this chapter.One might also miss a discussion of compilation, which is not very well understood in thiscontext and is the subject of current research [24].We begin with an interpreter for propositional Horn logic, which introduces the central techniqueof the success continuation, due to Carlsson [2]. We then move on to �rst-order Horn logic, whichis very much in the tradition of Prolog. In Section 4 we generalize this to include embedded1

implication and universal quanti�cation (see [1, 11, 21] for the motivation for these constructs)which complicates primarily uni�cation. In Section 5 we introduce side-e�ects and assignment in acontrolled way to increase the e�ciency of uni�cation. This is re�ned in the next section where weaddress non-logical control constructs such as if-then-else and cut and introduce the trail. Section 7sketches a more e�cient clausal representation of programs which hitherto were simply formulasand hints at indexing. In Section 8 we generalize the underlying language of terms from �rst-orderterms to typed �-terms, at which point uni�cation no longer generates most general uni�ers andconstraints enter the interpreter. Finally we discuss how to make the transition from terms togoals to allow true higher-order logic programming. Throughout this chapter we remark on thedi�erences between the interpreter developed here and our Common Lisp implementation.2 Propositional Horn LogicWe begin the development with a very simple propositional logic amenable to an interpretation asa programming language: propositional Horn logic. Our presentation is non-standard in that wedo not require the formulas to be in clausal form: throughout our development we view this asa normal form, which must be justi�ed by an appropriate metatheorem. A more e�cient clausalrepresentation for formulas will be introduced in Section 7.2.1 The Language of Goals and ProgramsThe de�nition of propositional Horn logic is by induction in the form of a BNF grammar. G denotesthe legal goal formulas (which are also the legal queries) and D the legal program formulas.1 Wesometimes refer to these classes as D-formulas and G-formulas, respectively, and collectively asformulas. G ::= A j > j G1 ^G2 j G1 _ G2D ::= A j > j D1 ^D2 j G! DThe letter A generally stands for atomic formulas; here this means propositional constants,> stands for truth, ^ stands for conjunction, _ for disjunction, and ! for implication. In logicprogramming it is often more conspicuous to use , where D G can be read as \D if G" and isa purely notational variant of G! D.The following �gure shows how this would be translated into a datatype de�nition in SML(comments are enclosed in (* *)).datatype gform = (* Goal formula *)Gtrue (* Truth *)| Gand of gform * gform (* Conjunction *)| Gor of gform * gform (* Disjunction *)| Gatom of string (* Atomic G formula *)1D is derived from de�nite as in de�nite clauses, though our de�nition is broader.2

and dform = (* Program formula *)Dtrue (* Truth *)| Dand of dform * dform (* Conjunction *)| Dimplies of gform * dform (* Implication *)| Datom of string (* Atomic D formula *)This de�nes constructors such as Dand, which, when applied to two D-formulas, yields a D-formula. For example, the program p ^ (p! q) would be represented asDand(Datom("p"),Dimplies(Gatom("p"),Datom("q")))A query, such as whether q is true, would be represented asGatom("q")2.2 A First InterpreterThe next step is to give goals and programs an operational interpretation. For this simple logic, thisis straightforward, though the precise de�nition of \upon backtracking" is deferred to the actualinterpreter in ML. First comes the reduction of a goal to its subgoals, then the analysis of whetheran atomic goal follows from the program.1. Given goal >, succeed.2. Given goal G1 ^G2, attempt to solve G1 and, if it succeeds, attempt to solve G2.3. Given goal G1 _ G2, attempt to solve G1. If this succeeds, succeed. If this fails, attempt tosolve G2.4. Given an atomic goal A, look through the program for ways to establish A following thecontrol structure below.If we assumed the program to be in clausal form, we would enumerate the clauses of the formA G and attempt to solve G for each such clause. It is easy to see that the following programanalysis will behave this way on the special case of clausal form programs. We assume we are givena program D, and atomic goal A. We also have an \accumulated subgoal" which is initialized to>. 1. D = D1 ^D2. Attempt to infer A from D1. If this fails, attempt to infer A from D2.2. D = G! D1. Attempt to infer A from D1, but conjoin G to the subgoal that remains to besolved.3. D = A. Attempt to solve the accumulated subgoal.4. D = B for atomic B distinct from A. In this case D is not helpful in the attempt to deriveA and we backtrack. 3

Thus our program consists of two mutually recursive functions. solve analyzes a compositegoal, and match_atom analyzes the program with respect to an atomic goal. The fundamental ideaof the formulation as a functional program is that of a success continuation due to Carlsson [2]. Theobvious arguments to solve are the current goal and program. The non-obvious argument is thesuccess-continuation sc. sc is a function (of no arguments) that is to be called when the currentgoal succeeds. Backtracking is achieved simply by returning from the current function with anuninteresting value (we have chosen () : unit). The function match_atom calls a local recursivefunction rec_match, which accumulates subgoals as outlined above.fun solve (Gtrue) prog sc = sc ()| solve (Gand(g1,g2)) prog sc =solve g1 prog (fn () => solve g2 prog sc)| solve (Gor(g1,g2)) prog sc =(solve g1 prog sc ; solve g2 prog sc)| solve (Gatom(goal_const)) prog sc =match_atom goal_const prog scand match_atom goal_const prog sc =let fun rec_match (Dtrue) subgoal = ()| rec_match (Dand(d1,d2)) subgoal =(rec_match d1 subgoal ; rec_match d2 subgoal)| rec_match (Dimplies(g,d)) subgoal =rec_match d (Gand(subgoal,g))| rec_match (Datom(prog_const)) subgoal =if prog_const = goal_constthen solve subgoal prog scelse ()in rec_match prog (Gtrue) endLet us inspect this compact program line-by-line.1. If the current goal is >, we succeed by invoking the success continuation.2. If the current goal is G1 ^ G2, we attempt to solve G1, but also build a success continuationthat will eventually solve G2, which is necessary in order for the conjunction to succeed. (fn() => ...) is the SML way of constructing a function of no arguments.3. If the current goal is G1 _G2, we attempt to solve G1 with the same success continuation. Ifthis should fail and thus return, we attempt to solve G2. Semicolon is the SML sequencingoperator. Note that in a purely functional setting without any side-e�ects, it would make nosense to try the left and right subgoals in succession: if solving the left subgoal succeeds, itmust produce some record of this. In the framework of success continuations, this is achievedthrough the initial success continuation, which could be a function such as (fn () => print"Goal succeeded!") (see Section 2.3).4. If the current goal is atomic we look through the program to �nd D-formulas that might helpus prove the goal. 4

Next we consider the program analysis. We call rec_match with a current subgoal Gtrue, whichwill always succeed and the whole program prog as the current D-formula. Here are the cases forrec_match.1. If the program is >, any atomic goal (which excludes >) will fail. We return to indicatefailure.2. If the program is a conjunction we attempt to use the left conjunct and then the right conjunctto derive the atomic goal. This is dual to the case of a disjunctive goal.3. If the program is an implication G ! D, we conjoin G onto the subgoal that would have tobe solved if D matched the atomic goal, and continue by attempting to use D to derive theatomic goal.4. If the program is atomic and equal to the atomic goal, we attempt to solve the accumulatedsubgoal, otherwise we backtrack by returning.There are some obvious ine�ciencies in this control structure. Some of these will be addressedin later sections.2.3 The Initial Success ContinuationFrom the exposition above we can see thatval solve : gform -> dform -> (unit -> unit) -> unit}and solve goal prog sc may be read as \solve goal in program prog and call sc if successful,otherwise return." This is not quite accurate, since if sc returns, it will be called again for everyway of proving goal the interpreter can �nd.For example, let val psc = (fn () => print "Success! "). Then solve p (p ^ p) pscwill print Success! twice. On the other hand, due to the incompleteness of depth-�rst search,solve p ((p ! p) ^ p) psc will get into an in�nite loop, while solve p (p ^ (p ! p)) psc willprint an in�nite stream of Success!'s.At �rst this might seem like a serious limitation of this implementation technique. However,using exceptions we can prevent the initial success continuation from returning. For example, thefollowing top-level interface would stop after the �rst solution is found.fun one_solve goal prog =let exception Successin (solve goal prog (fn () => raise Success) ;print "no ")handle Success => print "yes "end 5

It is also easy to add a query of the user that checks if more solutions are desired or not. TheeLP implementation [8] plays even more tricks with the initial success continuation: it presentsthe �rst solution, but then works ahead without waiting for instructions as to whether additionalsolutions are required. If an externally visible side-e�ect is just about to be executed, it suspends.This has the advantage that we can often return to the top-level without user input if the queryhas only one solution.3 First-Order Horn LogicThe interpreter from the previous section can be generalized and improved in several di�erentdirections. Before we introduce some improvements, we continue with a few generalizations. Themost important and obvious step is that from a propositional to a �rst-order logic. This requiresthe introduction of uni�cation and substitution. Interestingly, the basic structure of the interpreterstays intact: success continuations can be generalized to deal with uni�cation and substitutions.This �rst version of an interpreter for �rst-order Horn logic requires no side-e�ects except for thepresentation of solutions.The de�nition of �rst-order Horn logic is again somewhat non-standard in that we do not requirea clausal form. G ::= A j > j G1 ^ G2 j G1 _G2 j 9x GD ::= A j > j D1 ^D2 j G! D j 8x DWe add two new cases for the quanti�ers to the datatypes gform and dform, but we also have tochange the de�nition of atomic formulas, since they now may consist of a predicate constant appliedto a number of terms built from constants, function constants, and variables. Partly for reasonsof simplicity and partly in preparation for a higher-order language, we do not distinguish betweenconstants, function constants, and predicate constants. Thus atomic formulas are considered tobe terms, which also means that not every gform or dform represents a well-formed formula of�rst-order Horn logic. However, this property can be checked statically and we thus consider it aproblem for an appropriate front-end for our interpreter that is beyond the scope of this chapter.Before we go into detail in the representation of terms, here is the changed de�nition of formulas.datatype gform = (* Goal formula *)Gtrue (* Truth *)| Gand of gform * gform (* Conjunction *)| Gor of gform * gform (* Disjunction *)| Gatom of term (* Atomic G formula *)| Gexists of varbind * gform (* Existential *)and dform = (* Program formula *)Dtrue (* Truth *)| Dand of dform * dform (* Conjunction *)| Dimplies of gform * dform (* Implication *)| Datom of term (* Atomic D formula *)| Dall of varbind * dform (* Universal *)6

3.1 Terms and SubstitutionOur inductive de�nition of terms has three base cases: Bvar for bound variables, Evar for logicvariables,2 and Const for constants, including predicate and function constants. These variablesand constants can be combined via application using the Appl constructor, giving the representationthe avor of a curried form, which will aid us in the transition to the higher-order language lateron, but also leads to more compact code here.datatype term =Bvar of string (* Bound Variables *)| Evar of string * int (* Logic Variables , Stamped *)| Const of string (* Constants *)| Appl of term * term (* Applications *)and varbind = Varbind of string (* Variable binders *)Varbind's are used to bind variables at quanti�ers, but seem to belong to the term languagerather than the formula language are thus implemented as a separate type rather than merely bystrings. Later, in Section 8 a Varbind will also contain the bound variable's type.Under this representation the Prolog clause append(nil ; K;K) has an explicit quanti�er on Kand is represented as3Dall(Varbind("K"),Datom(Appl(Appl(Appl(Const("append"),Const("nil")),Bvar("K")),Bvar("K"))))Logic variables must be generated many times in such a way as not to conict with previous logicvariables of the same name. For example, every time a clause in Prolog is used, its free variablesmust be instantiated with fresh logic variables. In our setting, the quanti�cation on the variables isexplicit, since this approach lends itself more easily to later generalizations. Nonetheless, we mustbe able to generate new unique logic variables when instantiating universally quanti�ed D-formulas(programs). We do this by attaching to each logic variable an integer stamp which makes it unique.We use the function new_evar to generate new logic variables from given variable names. In orderto properly explain substitution and later uni�cation, we will need to introduce some terminology.We say an occurrence of a Bvar is loose in a term or formula if it is not in the scope of a bindingoperator binding the same name. We say a term or formula is tight if it contains no loose Bvar's,and it is closed if it is tight and also contains no Evar's. Here are the types of some of the lower-levelfunctions implemented below.val new_evar : varbind -> termval shadow : varbind -> varbind -> boolval subst : term -> varbind -> term -> term2The name is derived from existential variables, since logic variables may be viewed as variables that are existen-tially quanti�ed in the meta-theory.3Note that we use the conventional Prolog uncurried notation in the concrete syntax of examples for this �rst-orderterm language. 7

shadow determines if one variable binding shadows another and is used to correctly substitutein formulas such as 8x (P (x) ^ 8x Q(x)). subst s x t substitutes the tight term s for all looseoccurrences of x in t. The implementations are straightforward as renaming can be avoided, sincet is required to contain no loose Bvar's.(* Externally invisible counter to create unique variables *)local val varcount = ref 0in fun new_evar (Varbind(vname)) =(varcount := !varcount + 1;Evar(vname,!varcount))end (* local val varcount *)fun shadow (Varbind(vname1)) (Varbind(vname2)) = (vname1 = vname2)fun subst s (Varbind(vname)) t =let fun sb (t as Bvar(bvname)) = if vname = bvname then s else t| sb (Appl(t1,t2)) = Appl(sb t1,sb t2)| sb t = t (* Evar , Const *)in sb t endThere are also functions that substitute in G-formulas and D-formulas. These are mutuallyrecursive,4 but each function changes only a subset of the arguments in the recursion. The followingillustrates a general implementation technique for such a recursion structure.local fun formsubst t x =let fun gsb (Gtrue) = Gtrue| gsb (Gand(g1,g2)) = Gand(gsb g1, gsb g2)| gsb (Gor(g1,g2)) = Gor(gsb g1, gsb g2)| gsb (Gexists(y,g)) =Gexists(y, if shadow x y then g else gsb g)| gsb (Gatom(s)) = Gatom(subst t vbd s)and dsb (Dtrue) = Dtrue| dsb (Dand(d1,d2)) = Dand(dsb d1, dsb d2)| dsb (Dimplies(g,d)) = Dimplies(gsb g, dsb d)| dsb (Datom(s)) = Datom(subst t vbd s)| dsb (Dall(y,d)) =Dall(y, if shadow x y then d else dsb d)in (gsb , dsb) endinfun gsubst t x g =let val (gsb , _) = formsubst t x in gsb g endand dsubst t x d =let val (_ , dsb) = formsubst t x in dsb d endend4Actually, in this version D-formulas may not occur in G-formulas, but this will change later on.8

3.2 Uni�cationThe basic new data structure we need is that of a substitution, which maps logic variables to terms.First, a section of the signature.type substitution = (term * term) listval unify : term -> term -> (substitution -> unit) -> substitution -> unitThe structure of unify is again based on the idea of a success continuation, except that we nowneed to communicate some information to the success continuation, namely the substitution thatarises from unifying two terms. Thus unify s t sc subst uni�es s and t under the substitutionsubst and applies sc to the resulting new substitution. This means that substitutions arising fromuni�cation are never explicitly applied, but when an Evar is encountered we need to see if it hasbeen instantiated to a term by previous uni�cations. If uni�cation fails, unify simply returns.unify requires the auxiliary function lookup, which returns the substitution term for a logicalvariable in a substitution, or the token NONE, if no such term exists.5First, we show a version that implements unsound uni�cation as used in Prolog. Omittingthe occurs-check as done here may be justi�ed by e�ciency arguments, but has the undesirableside-e�ect that X and f(X) are uni�able (where X is the variable).(* val lookup : term -> substitution -> term option *)fun lookup (Evar(_,stamp)) subst =let fun lk nil = NONE| lk ((Evar(_,tstamp),t)::tail) =if stamp = tstamp then SOME(t) else lk tailin lk subst endfun unify (s as Evar _) t sc subst = unify_evar s t sc subst| unify s (t as Evar _) sc subst = unify_evar t s sc subst| unify (Const(cname1)) (Const(cname2)) sc subst =if cname1 = cname2 then (sc subst) else ()| unify (Appl(s1,s2)) (Appl(t1,t2)) sc subst =unify s1 t1 (fn newsubst => unify s2 t2 sc newsubst) subst| unify _ _ sc subst = ()and unify_evar e t sc subst =case (lookup e subst)of NONE => sc ((e,t)::subst) (* Instantiate e to t, succeed *)| SOME(s0) => unify s0 t sc subst (* e is instantiated to s0 *)Adding the occurs-check requires a few auxiliary functions and a modi�cation of the de�nitionof unify_evar. The de�nitions of occurs_in and same_evar are straightforward and omitted here.The occurs-check is only called once we know that we are not trying to unify a variable with itself.The de�nition of unify remains unchanged and the new de�nition of unify_evar is5The frequently used type 'a option is not part of the de�nition of SML but de�ned as datatype 'a option =NONE | SOME of 'a. 9

unify_evar e t sc subst =case (lookup e subst)of NONE => if same_evar e t substthen sc subst (* e = e *)else if occurs_in e t substthen () (* Occurs check fails *)else sc ((e,t)::subst) (* Bind e to t *)| SOME(s0) => unify s0 t sc substThe obvious ine�ciency in the structure of this function is that substitutions must be built up,and that it may be very costly to continue to look up possible substitutions terms for Evar's. Thiscan be corrected using destructive substitutions (see Section 5).3.3 The InterpreterThe generalized version of the function solve now takes one additional argument (the currentsubstitution for Evar's), and the success continuation also expects to be passed a substitution.fun solve (Gtrue) prog sc subst = sc subst| solve (Gand(g1,g2)) prog sc subst =solve g1 prog (fn newsubst => solve g2 prog sc newsubst) subst| solve (Gor(g1,g2)) prog sc subst =(solve g1 prog sc subst ; solve g2 prog sc subst)| solve (Gatom(t)) prog sc subst =match_atom t prog sc subst| solve (Gexists(x,g)) prog sc subst =solve (gsubst (new_evar x) x g) prog sc substand match_atom t prog sc subst =let fun rec_match (Dtrue) subgoal = ()| rec_match (Dand(d1,d2)) subgoal =(rec_match d1 subgoal ; rec_match d2 subgoal)| rec_match (Dimplies(g,d)) subgoal =rec_match d (Gand(subgoal,g))| rec_match (Datom(s)) subgoal =unify s t (fn newsubst => solve subgoal prog sc newsubst) subst| rec_match (Dall(x,d)) subgoal =rec_match (dsubst (new_evar x) d) subgoalin rec_match prog (Gtrue) endAgain, the question arises how we call this interpreter at the top-level. The initial successcontinuation will have to be slightly more complicated than before since we would like to presenta substitution for the logic variables in the query. To this end we have functionsval project_substitution : term list -> substitution -> substitutionval print_substitution : substitution -> unit10

project_substitution evars subst takes a list of Evar's and determines their substitution termsin subst . This includes looking up of all the logic variables in the substitution terms that wereinstantiated during the uni�cation. print_substitution subst just presents the substitution ina human readable format. For the sake of brevity we will not show the implementation of thesestraightforward functions. It will also be the responsibility of the front end to ensure that all freeuppercase identi�ers in the original query are converted into new logic variables, and that the �nalsubstitution is projected onto these variables and then printed.4 Hereditary Harrop LogicWe now further generalize from the �rst-order Horn logic to allow hereditary Harrop formulas asgoals. This means that a goal can be an implication (called embedded implication) or a universallyquanti�ed formula (embedded universal quanti�cation). For some general motivation for theseconstructs refer to [1, 12, 11, 21, 25]. The mutually recursive de�nitions of the classes of goals andprograms now becomeG ::= A j > j G1 ^G2 j G1 _ G2 j 9x G j D ! G j 8x GD ::= A j > j D1 ^D2 j G! D j 8x DThe de�nition of gform is changed by adding two new cases.| Gimplies of dform * gform (* Embedded Implication *)| Gall of varbind * gform (* Embedded Universal *)The operational interpretation of these new constructs follows the intuitionistic reading of im-plication and universal quanti�cation.� Given goal D ! G, assume D into the program and then attempt to solve G. The additionalassumption is in e�ect only while solving G. D is added \to the beginning" of the program,which means that the most recently assumed formula is considered �rst when we are tryingto solve an atomic goal.� Given goal 8x G, create a new parameter a and attempt to solve [a=x]G. \New" means thata is not allowed to occur in the current program or G.As examples, consider the goals p! p (which clearly succeeds) and 9x (P (x)! (P (1)^P (2))),which fails (due to the intuitionistic reading of 9) where the classically equivalent (8x P (x)) !(P (1)^ P (2)) succeeds. Quanti�er dependence now also becomes an issue, as one can see from thegoals 9x 8y (P (x)! P (y)) (which fails) and 8y 9x (P (x)! P (y)) (which succeeds).4.1 Embedded ImplicationEmbedded implication can be added trivially to the interpreter as we have developed it so far,since the program is an explicit parameter to the solve function. We just add a new case to thede�nition of solve:| solve (Gimplies(d,g)) prog sc subst =solve g (Dand(d,prog)) sc subst 11

4.2 Embedded Universal Quanti�cationEmbedded universal quanti�ers require much more pervasive changes, since the dependence of exis-tential and universal quanti�ers on each other now must be taken into account. In theorem proversthis is typically addressed by a one-time Skolemization pass during the preprocessing stage. Herethis does not seem possible (since the logic is essentially intuitionistic). Moreover, we can takeadvantage of special properties of hereditary Harrop formulas to obtain a more e�cient implemen-tation.First of all, we need to update the de�nition of the datatype of term to include the casethat the term is a parameter. In our implementation we call these parameters Uvar's, thinkingof them as universally quanti�ed at the meta-level. Note that in uni�cation they act essentiallylike constants, except for certain quanti�er dependence considerations. The way we implementquanti�er dependence is for every Evar to explicitly contain a list of parameters on which it maydepend.datatype term =Bvar of string (* Bound Variables *)| Evar of string * int * term list(* Logic Variables , Stamped , Depends on *)| Uvar of string * int (* Parameters , Stamped *)| Const of string (* Constants *)| Appl of term * term (* Applications *)and varbind = Varbind of string (* Variable binders *)Consider, for example, the goal 8x 9y G. First we introduce a new parameter a for x and solve9y [a=x]G. Then we introduce a new logic variable Y and solve G00 = [Y=y][a=x]G. We are free toinstantiate Y with terms which contain a, that is, Y may depend on a. If, on the other hand, ourgoal is 9y 8x G, we �rst introduce a logic variable Y for y and then a parameter a for x. Note thathere Y may not contain occurrences of a!In the interpreter this is implemented by adding a new argument to solve, namely the list ofparameters (Uvar's) which have been introduced so far and thus may occur in the substitution termfor any logic variable (Evar) which is introduced subsequently. There are some additional minorinterface changes. For example, the function new_evar must now be passed the list of Uvar's onwhich the new Evar is allowed to depend on. Since the new parameter is passed along unchangedin all cases except the embedded universal quanti�er, we only show this case in solve.| solve (Gall(x,g)) prog uvars sc subst =let val a = new_uvar xin solve (gsubst a x g) prog (a::uvars) sc subst endThere are some further bookkeeping changes (for example, in substitution), but the crucialchange now is in the uni�er. More speci�cally, we have to extend the occurs-check to account fordependency. When the prospective substitution term t contains a Uvar on which the Evar s isnot allowed to depend, we have to fail. However, this is not quite su�cient. Consider the problem12

of unifying X with f(Y), where X and Y are logic variables, and X is allowed to depend only onparameter a, but Y is allowed to depend on parameters a and b. If we merely bind X to f(Y), Ymight later be instantiated to a term containing b, thus unwittingly violating the condition thatthe substitution term for X not depend on b. Thus we also need to restrict further instantiationsof Y not to depend on b.In general, all Evar's Y embedded in a substitution term for an Evar X can depend only on theintersection of the parameters legal for X and Y . This is implemented by instantiating Y with anew Evar Y 0 whose Uvar list is thus restricted. We don't need to implement this in full generalitydue to a metatheorem: when we have to consider the lists of Uvar's from two Evar's during theexecution of a logic program one of the lists will be an initial segment of the other.6Rather than using two passes, we combine the occurs-check with the restriction of Evar's. Sincerestriction of Evar's is an instantiation process, the extended occurs-check may need to change thesubstitution and thus is programmed using success continuations, just as unify itself.fun init_seg uvars1 uvars2 = length uvars1 <= length uvars2fun extended_occurs_check (Evar(_,stamp1,uvars1)) t sc subst =let fun eoc (e as Evar(x,stamp2,uvars2)) sc subst =(case (lookup e subst)of NONE => if (stamp1 = stamp2)then () (* fail *)else if init_seg uvars2 uvars1then sc substelse sc ((e,new_evar (Varbind(x)) uvars1)::subst)| SOME t0 => eoc t0 sc subst)| eoc (Appl(t1,t2)) sc subst =eoc t1 (fn newsubst => eoc t2 sc newsubst) subst| eoc (Uvar(_,stamp2)) sc subst =if exists (fn (Uvar(_,stamp1)) => stamp1 = stamp2| s => raise subtype("eoc",s,"is not a Uvar"))uvars1then sc substelse ()| eoc _ sc subst = sc substin eoc t sc subst end| extended_occurs_check s _ _ _ =raise subtype("extended_occurs_check",s,"is not an Evar")One more detail here is the use of a function subtype which generates an exception from afunction name, term, and error message. The intent is that these exceptions signal an internal6This also gives rise to the even more e�cient implementation used in eLP, where whole lists of parameters arerepresented by their upper bound (a single integer). 13

error, called subtype, because being a term, but not an Evar or Uvar constitutes a form of subtypeviolation (though subtypes are not supported in SML).The extended occurs-check is called from unify_evar. The only subtlety here is perhaps thatwe have to postpone the substitution until the extended occurs-check has succeeded. Note also thatwe have to previously check if we are unifying an Evar with itself and succeed without changingthe substitution|otherwise the occurs-check would fail for this case.and unify_evar e t sc subst =case (lookup e subst)of NONE => if same_evar e t substthen sc substelse extended_occurs_check e t(fn newsubst => sc ((e,t)::newsubst))subst| SOME s0 => unify s0 t sc subst5 Destructive SubstitutionOf the code presented so far, the two most important optimizations will be (a) introduction ofdestructive substitution in order to avoid repeated lookup of the substitution terms for logic vari-ables, and (b) the conversion of the program into clausal form in order to have ready access to thepart of the program relevant to a particular predicate symbol. In this section we will deal with the�rst issue.Up to now we were using almost exclusively purely functional code. Destructive substitutionswill violate this principle, but in a relatively disciplined way. This means that whenever theuni�cation algorithm instantiates a logic variable to a term it has to make provisions to undo thisinstantiation upon backtracking. Since backtracking is indicated simply by returning rather thancalling the success continuation, this is easy to implement.7Before plunging into the code, a brief word about assignment in SML. Traditionally in impera-tive languages we assign to variables. In SML, we assign to references. References are distinguishedby their type (which will be 'a ref for some type 'a) and are created by applications of the func-tion ref to a value. ref is also a constructor so that we can access the value stored in a locationusing match expressions as for usual function de�nitions. Thus the dereferencing operation ! canbe de�ned explicitly as fun ! (ref v) = v.In order to implement the idea of destructive substitutions, we give Evar's an additional slotthat could either hold the term to which the Evar was instantiated, or a token indicating that theEvar is not instantiated. We must be able to assign to this slot, and it will thus be a reference toan optional term. Here is the updated de�nition of the datatype of terms.datatype term =7In Section 6 we will be forced to abandon this assumption, and will thus require a more sophisticated implemen-tation of instantiation and uninstantiation of variables. 14

Bvar of string (* Bound Variables *)| Evar of string * int * term list * (term option) ref(* Logic Variables , Stamped , Depends on , Inst'd to *)| Uvar of string * int (* Parameters , Stamped *)| Const of string (* Constants *)| Appl of term * term (* Applications *)When a new Evar is created, it is uninstantiated and thus contains a reference to NONE. Nowmost operations will have to dereference Evar's if they are instantiated to a term. This is illustrated,for example, in the second clause in the de�nition of unify_evar below.8The most profound changes in unify are that (a) it no longer requires a substitution as anargument since it instantiates variables destructively, and (b) it needs to take action to uninstantiatevariables upon failure of the success continuation. Instantiation is accomplished by an assignmentto the reference in the value slot of an Evar, uninstantiation assigns NONE. The instantiation isperformed when the extended occurs-check succeeds and thus is passed in the success continuationto extended_occurs_check. The function for the extended occurs-check must also be changed inan analogous fashion.fun unify (s as Evar _) t sc = unify_evar s t sc| unify s (t as Evar _) sc = unify_evar t s sc| unify (Const(cname1)) (Const(cname2)) sc =if cname1 = cname2 then sc () else ()| unify (Uvar(_,stamp1)) (Uvar(_,stamp2)) sc subst =if stamp1 = stamp2 then (sc subst) else ()| unify (Appl(s1,s2)) (Appl(t1,t2)) sc =unify s1 t1 (fn () => unify s2 t2 sc)| unify _ _ sc = ()and unify_evar (e as Evar(_,_,_,(vslot as (ref NONE)))) t sc =if same_evar e tthen sc ()else extended_occurs_check e t(fn () => (vslot := SOME t ; sc () ; vslot := NONE ; ()))| unify_evar (Evar(_,_,_,ref (SOME s0))) t sc = unify s0 t sc| unify_evar s _ _ = raise subtype("unify_evar",s,"is not an Evar")The de�nition of G-formulas and D-formulas and the functions for substituting into formulasdoes not change from the previous section. The interpreter undergoes only a very minor change:since explicit substitutions are no longer required, solve and the success continuation both requireone argument less than before.8An important optimization arises from the invariant that an Evar is never instantiated to a term with a looseBvar: In the operation of substituting for a Bvar in a term, if the term is an instantiated Evar, we can simply returnit without dereferencing and further traversal. 15

6 Control Primitives and TrailingSo far, the only mechanism available for search control in our logic programming language hasbeen clause ordering. There are many programs where this is insu�cient and there are a numberof ways one can address this de�ciency. The most common construct is cut (!, in concrete Prologsyntax), though we will discuss this only briey in Section 6.2. Our focus will be on what iscommonly called if-then-else and written as G1 -> G2 | G3 . In our abstract syntax we havea corresponding guard constructor. guard is general enough to allow a direct de�nition of theconstructs once and not in a higher-order language (see Section 9), and most programs using cutcan easily be transformed into programs using guard. We show that the guard control primitive canbe implemented using SML exceptions without disturbing the general structure and organization ofthe interpreter. However, the use of exceptions relies on a non-local exit from a success continuation,which requires a di�erent implementation of the uninstantiation of variables on backtracking. Thisalternative implementation technique for backtracking is referred to as trailing.6.1 The guard Control ConstructThe operational reading of G1 ! G2 j G3 (not to be confused with implication) is� Solve the guard G1. If this succeeds, solve G2 (with the new substitution). On backtracking,do not reconsider the choices made while solving G1, but simply fail the overall goal G1 !G2 j G3.� If solving G1 fails, solve G3 and fail the overall goal G1 ! G2 j G3 on backtracking.In the interpreter, we �rst augment the de�nition of the gform data type and modify thesubstitution function to include the obvious additional case. A �rst, as it turns out, incorrectattempt at the additional case for the interpreter (from Section 5) would be| solve (Guard(g1,g2,g3)) prog sc =let exception Guard_success in(solve g1 prog (fn () => raise Guard_success) ;solve g3 prog sc)handle Guard_success => solve g2 prog scendIf we succeed in solving the guard g1, raising the exception Guard_success will transfer controlback to the handler for the exception, bypassing all the choice points, and then solve g2. Choicepoints are established, for example, when solving a disjunction, or when descending through aconjunction when analyzing the program in match_atom. One can now see what is wrong with thisattempt: the code in the uni�er which uninstantiates variables on backtracking (the assignment ofNONE below)extended_occurs_check e t(fn () => (vslot := SOME t ; sc () ; vslot := NONE ; ()))16

will not be executed when solving g2 eventually backtracks, because the call sc () exited with anexception, bypassing the second assignment.The solution to this problem is move the responsibility for uninstantiating variables from theuni�er to the choice points. Thus, in the case of a goal G1 _ G2, for example, we have to keeptrack of all the variables which may have been instantiated during an attempt to solve G1 anduninstantiate them before attempting to solve G2. Keeping track of these variables is the purposeof the trail.A SML variable global_trail contains a reference to a trail. When a variable is instantiated,it is added to the trail (which is accessed as a stack). At a choice point, when the �rst alternativebacktracks, we uninstantiate all variables which have been pushed onto the trail and simultaneouslyunwind the trail (that is, pop the stack). This is bundled up into a few functions and the datatypetrail. The function trail is used by the interpreter at choice points: it remembers the globalstack, evaluates its argument (by applying it to the unit element) and then uninstantiates all the\new" variables it �nds on the stack. The function instantiate_evar is used by the uni�er inorder to instantiate logic variables and simultaneously push them onto the trail. The variableglobal_trail is local to a context with these functions, which guarantees that no other functionscan obtain access to it and change the value of the location it refers to. In order to be able toproperly unwind the trail, we must have a reference (= pointer) to a trail which we can comparewith the result of unwinding it. Since the only way to compare for pointer equality is by comparingreferences, the tail of a trail must be implemented as a reference to a trail even though is nevermodi�ed.datatype trail =consTrail of term * (trail ref)| nilTraillocal val global_trail = ref (ref nilTrail)infun unwind_trail shorter_trail longer_trail =if longer_trail = shorter_trailthen (global_trail := shorter_trail; ())else (case !longer_trail of(consTrail (Evar(_,_,_,vslot),rest_trail)) =>(vslot := NONE; unwind_trail shorter_trail rest_trail)| _ => raise Subtype("unwind_trail: Ill-formed trail."))fun trail func =let val old_trail = !global_trail in(func () ; unwind_trail old_trail (!global_trail) ; ())endfun instantiate_evar (s as Evar(_,_,_,vslot)) t =(vslot := SOME t;global_trail := ref (consTrail(s,!global_trail)))17

| instantiate_evar s _ = raise subtype("instantiate_evar",s,"is not an Evar")end (* local val global_trail *)The main function of the uni�er does not change, but unify_evar changes, since it no longerhas the responsibility of uninstantiating variables upon backtracking. Thus the call to the extendedoccurs-check now looks likeextended_occurs_check e t (fn () => (instantiate_evar e t ; sc ()))The interpreter makes use of the functional trail where it establishes choice points. Thishappens in exactly three cases: Gor, Guard, Dand. The argument to trail is protected by avacuous abstraction in order to prohibit premature evaluation|just as success continuations.fun solve (Gtrue) prog uvars sc = sc ()| solve (Gand(g1,g2)) prog uvars sc =solve g1 prog uvars (fn () => solve g2 prog uvars sc)| solve (Gor(g1,g2)) prog uvars sc =(trail (fn () => solve g1 prog uvars sc) ;solve g2 prog uvars sc)| solve (Gatom(t)) prog uvars sc =match_atom t prog uvars sc| solve (Gexists(x,g)) prog uvars sc =solve (gsubst (new_evar x uvars) x g) prog uvars sc| solve (Gimplies(d,g)) prog uvars sc =solve g (Dand(d,prog)) uvars sc| solve (Gall(x,g)) prog uvars sc =let val a = new_uvar xin solve (gsubst a x g) prog (a::uvars) sc end| solve (Guard(g1,g2,g3)) prog uvars sc =let exception Guard_successin (trail (fn () => solve g1 prog uvars (fn () => raise Guard_success)) ;solve g3 prog uvars sc)handle Guard_success => solve g2 prog uvars scendand match_atom t prog uvars sc =let fun rec_match (Dtrue) subgoal = ()| rec_match (Dand(d1,d2)) subgoal =(trail (fn () => rec_match d1 subgoal) ;rec_match d2 subgoal)| rec_match (Dimplies(g,d)) subgoal =rec_match d (Gand(subgoal,g))| rec_match (Datom(s)) subgoal =unify s t (fn () => solve subgoal prog uvars sc)18

| rec_match (Dall(x,d)) subgoal =rec_match (dsubst (new_evar x uvars) x d) subgoalin rec_match prog (Gtrue) end6.2 CutInstead of the guard construct, we can use cut (written as !) as a non-logical control primitive.The operational reading of cut is� When encountering cut as a goal, succeed. When the interpreter backtracks to this point, donot simply backtrack further, but jump past all the choice points which have been createdsince the immediate atomic supergoal of the cut.The reference to the \immediate atomic supergoal" requires the addition of another argumentto solve and match_atom. This additional argument is an exception which, when raised, willtransfer control back to the immediate atomic supergoal. This additional argument ctag is merelypassed along in most cases in the interpreter, so we show only the critical changes to the previousincarnation of solve.fun solve (Gatom(t)) prog uvars ctag sc =let exception new_ctagin (match_atom t prog uvars new_ctag sc)handle new_ctag => ()end| solve (Gcut) prog uvars ctag sc =(sc () ; raise ctag)...and match_atom t prog uvars ctag sc =let fun rec_match (Datom(s)) subgoal =unify s t (fn () => solve subgoal prog uvars ctag sc)...in rec_match prog (Gtrue) endIn addition to the initial success continuation (see Section 2.3) we now also need to create aninitial exception to pass to solve. This is easily accomplished byfun top_solve goal free_vars prog =let exception top_ctagin (trail (fn () => solve goal prog nil top_ctag(fn () => print_substitution free_vars)))handle top_ctag => ()end 19

where free_vars is the list of variables (Evar's) free in goal. Trailing is necessary so thattop_solve does not have a side-e�ect on the variables among free_vars which are instantiatedduring the call to solve. Now we can also see how a Prolog-like top-level can be implemented: theinitial success continuation could present the substitution and then require user input. If the usertypes a semi-colon \;" it returns, and otherwise is raises the exception top_ctag.7 Clausal FormOne of the problems with the interpreter so far is the ine�ciency of the program analysis. Wewould like to restrict the search for potentially applicable assumptions as much as possible. Here,the clausal form theorem for Horn logic (and hereditary Harrop logic) is helpful: any legal D-formulais equivalent to one in clausal form. The clausal form is de�ned byD ::= > j C j C ^DC ::= G! A j 8x Cwhere C is a clause, A (referred to as the clause head) stands for an atomic formula, and G (referredto as the clause body) stands for a G-formula as before. Atomic formulas have the form P (t1; : : : ; tn)for a predicate symbol P and terms t1; : : : ; tn. We call P the head of A and, more generally, f thehead of a term of the form f(t1; : : : ; tn), including the cases where n = 0. We refer to the head ofthe clause head of a clause C as the head predicate of C. Given an atomic goal A with head P , theinterpreter, that is, match_atom, can only succeed in applying a clause if its head predicate is alsoP . Thus we can represent an arbitrary program as a list of clauses, and store with each clause itshead predicate, for direct comparison with the head of an atomic goal. In a �rst step, the programis searched clause by clause for one with a matching head predicate. A straightforward optimizationthat we do not discuss here further, stores a list of clauses relevant to each head predicate in a hashtable indexed by the head predicate. This can be carried even further by \indexing" on the headfunction symbol of one or more of the predicate arguments.Recall that in our implementation atomic formulas are represented by terms, since this simpli�esthe code. We now add the de�nition of the datatype of clause:datatype clause = Clause of head * varbind list * term * gformhead is a new type exported in the implementation of terms: it is the type of legal heads. Up toand including this section, a head can be only a constant and can be implemented simply as itsname. The varbind list is the list of the universally quanti�ed variables in the clause, term is theclause head, and gform is the clause body. Together with this we have a function that converts anarbitrary formula into clausal form. clausify carries three accumulator arguments: the body, theuniversally quanti�ed variables, and a list of clauses. Thus clausify D (Gtrue) nil nil willconvert a D-formula D into clausal form.fun gand_opt (Gtrue,g) = g| gand_opt (g,Gtrue) = g 20

| gand_opt (g1,g2) = Gand (g1,g2)fun clausify Dtrue _ _ rest = rest| clausify (Dand(d1,d2)) body vars rest =clausify d1 body vars (clausify d2 body vars rest)| clausify (Dall(x,d)) body vars rest =if exists (fn y => shadow x y) varsthen let val (new_x,sb) = rename_sb xin clausify (dapply_sb sb d) body (new_x::vars) rest endelse clausify d body (x::vars) rest| clausify (Dimplies(g,d)) body vars rest =clausify d (gand_opt (body,g)) vars rest| clausify (Datom(t)) body vars rest =Clause(head t,vars,t,body) :: restThe function gand_opt eliminates some Gtrue subgoals. Bound variables may have to be re-named during the conversion to clausal form (consider, for example, the clausal form of 8x (P x!8x (Qx ! Rx))). rename_sb returns the new variable name and also a renaming substitution.This notion of substitution is di�erent from the one discussed in Section 3: here we substitute forBvar's rather than for Evar's. The new version of match_atom below takes a list of clauses, insteadof a D-formula. It uses a function new_evar_sb, which takes a list of bound variables and returnsa substitution that, when applied, substitutes new Evar's for all the Bvar's. Note that the body ofa clause is not copied (that is, substituted into) until the uni�cation of the atomic goal with theclause head has succeeded.match_atom t clauses uvars sc =let val t_head = head tfun rec_match nil = ()| rec_match ((clause as Clause(s_head,vars,s,gbody))::rest) =if head_equal s_head t_headthen let val nesb = new_evar_sb vars uvars in(trail (fn () =>unify (apply_sb nesb s) t (fn () =>solve (gapply_sb nesb gbody) clauses uvars sc)) ;rec_match rest)endelse rec_match restin rec_match clauses endWe could store the head of atoms in the atomic formula, to avoid the call to head. Along similarlines, we could statically convert D-formulas which appear on the left-hand sides of embeddedimplications into clauses rather than convert them at assumption time. This is an importantoptimization, but it requires substitution functions into the clausal representation which we wouldlike to avoid in the presentation. Thus the case for embedded implication in solve looks as follows:21

| solve (Gimplies(d,g)) prog uvars sc =solve g (clausify d (Gtrue) nil prog) uvars scBefore, functions such as gsubst substituted for a single (bound) variable in order to achieveclause copying. Calls to this are now replaced with calls to gapply_sb, which achieves the moree�cient simultaneous substitution. Checking of variable name conicts is still avoided, except in arare case during conversion of programs to clausal form. Changes to the corresponding substitutionfunctions on formulas are straightforward, though with an interesting twist. When descendingthrough a quanti�ed formula, we augment the substitution by adding a pair substituting the boundvariable for itself. Noting that this still cannot introduce \capturing," we rewrite the substitutionas follows.type sb = (varbind * term) listexception Loose_Bvar of term(* val lookup_vbind : string -> sb -> term *)fun lookup_vbind vname sb =let fun lk ((Varbind(xname),t)::rest) =if vname = xname then t else lk rest| lk nil = raise Loose_Bvar(Bvar(vname))in lk sb end(* val apply_sb : sb -> term -> term *)fun apply_sb sb s =let fun asb (Bvar(vname)) = lookup_vbind vname sb| asb (Appl(s1,s2)) = Appl((asb s1),(asb s2))| asb t = t (* Evar , Uvar , Const *)in asb s endRemember that substitution due to uni�cation is done destructively and not by the functionabove.8 Higher-order TermsSo far we have been working with a �rst-order, untyped term language. We will now make thetransition to a higher-order, typed term language. This necessitates handling constraints in theinterpreter (a simple change) and a major change in uni�cation, which may now branch and is nolonger guaranteed to terminate.8.1 The InterpreterThe modules de�ning propositions and the interpreter need to change very little. The primarychange is that we have to introduce constraints, since the higher-order uni�cation algorithm gen-erates constraints, that is, sets of equations which are known to be satis�able. Though somewhat22

more general through our use of types, implication, and explicit quanti�cation, our language nowbecomes a constraint logic programming language in the sense of Ja�ar and Lassez [19]. The wayconstraints are handled in the interpreter is reminiscent of the way we handled substitutions inSection 3.3 before the introduction of destructive instantiation of variables: where the success con-tinuation previously expected a substitution subst, it now expects a constraint con as an argument.fun solve (Gtrue) clauses uvars con sc = sc con| solve (Gand(g1,g2)) clauses uvars con sc =solve g1 clauses uvars con (fn newcon => solve g2 clauses uvars newcon sc)| solve (Gor(g1,g2)) clauses uvars con sc =(trail (fn () => solve g1 clauses uvars con sc) ;solve g2 clauses uvars con sc)| solve (Gatom(M)) clauses uvars con sc =match_atom M clauses uvars con sc| solve (Gexists(x,g)) clauses uvars con sc =solve (gapply_sb (term_sb x (new_evar x uvars)) g) clauses uvars con sc| solve (Gimplies(d,g)) prog uvars con sc =solve g (clausify d (Gtrue) nil prog) uvars con sc| solve (Gall(x,g)) prog uvars con sc =let val a = new_uvar xin solve (gapply_sb (term_sb x a) g) prog (a::uvars) con sc end| solve (Guard(g1,g2,g3)) clauses uvars con sc =let exception Guard_success of constraintin (trail (fn () =>solve g1 clauses uvars con (fn newcon =>raise Guard_success(newcon))) ;solve g3 clauses uvars con sc)handle Guard_success(newcon) => solve g2 clauses uvars newcon scendand match_atom M clauses uvars con sc =let val M_head = head Mfun rec_match nil = ()| rec_match ((clause as Clause(N_head,vars,N,gbody))::rest) =if head_equal N_head M_headthen let val nesb = new_evar_sb vars uvarsin (trail (fn () =>unify (apply_sb nesb N) M con (fn newcon =>solve (gapply_sb nesb gbody) clausesuvars newcon sc)) ;rec_match rest)endelse rec_match restin rec_match clauses end 23

8.2 Representing Higher-Order TermsFor convenience, we use a single representation type term for both terms and types in our calculus.If we were only interested in implementing a logic programming language over the simply typed�-calculus without polymorphism this would be unnecessarily complicated, but we are interestedin including dependent types (in the form of LF [14]) and polymorphism, at which point it isconvenient to have to write only one function each for substitution and uni�cation, rather thantwo (one for unifying terms and one for unifying types, for example). The algorithm we outlinebelow will be complete only for certain fragments of the full calculus, but we can now implementvarious subcalculi merely by changing the type checking phase and the set of predeclared constantsin the front end. This basic approach, though di�erent in various details, is taken in the Calculusof Constructions [4]. The representation of terms is perhaps more direct, but less e�cient thandeBruijn indices [5] which are used in eLP and almost all other modern implementations of �-calculiwhich require access to the internal structure of �-terms. Nonetheless, we were quite surprised howlittle of the code depends on the choice of the representation of bound variables.datatype term =Bvar of string (* Bound Variables *)| Evar of varbind * int * term list * (term option) ref(* Logic Variables , Stamped , Depends on , Inst'd to *)| Uvar of varbind * int (* Parameters , Stamped *)| Const of string (* Constants *)| Appl of term * term (* Applications *)| Abst of varbind * term (* Abstractions *)and varbind = Varbind of string * term (* Variable binders , Type *)In the implementation of the term language and the type checker, we have two constantstype and pi. And, yes, type is a type, though this could be avoided by introducing universes(see [16]) without any changes to the code of the uni�er. As is customary, we use A ! B asan abbreviation for �x : A:B if x does not occur free in B. Also, however, �x : A:B is anabbreviation for the application piA (�x : A:B). In our formulation, then, the constant pi hastype �A :type: ((A! type)! type).As an example consider a predicate constant eq of type �A : type: A ! A ! o (where o isthe type of formulas as indicated in Section 9). The single clause eqAM M: correctly modelsequality, that is, a goal of the form eqAM N will succeed if M and N are uni�able. The fact thatuni�cation now has to branch can be seen by considering the goal eq int (F 1 1) 1 which has threesolutions for the functional logic variable F , namely �x : int: �y : int: x, �x : int: �y : int: y, and�x :int: �y :int: 1.The functions supporting substitution are extended in the obvious way. In particular, we nowhave to substitute inside Varbind's, since they contain terms which may contain free variables.The type of a constant is accessible in a signature which maps names of constants to their types,implemented, for example, as a list of pairs of strings and types.The uni�cation procedure we use is based on the one in [6, 7] for higher-order uni�cation withdependent types, which itself is an extension of Huet's procedure for (higher-order) uni�cation in24

the simply typed �-calculus [18]. This procedure is most easily understood in terms of a collectionof \transformations," some on terms, some on pairs of terms being uni�ed, and some on sets ofsuch pairs.With the right control structure (such as iterative deepening) the uni�er would be complete forthe LF fragment of our calculus, but logic variables ranging over types destroy this completeness.The uni�er detects if there is a possibility for incompleteness on a particular execution and cangive a warning in such a case, if desired.8.3 RewritingBecause we are using transformations as a fundamental structuring device in the implementationof uni�cation, we adopted a very elegant technique from Paulson's higher-order implementationof rewriting [27], which itself was patterned after the tactics and tacticals in LCF [13]. Becausewe are not worried about having our implementation prove the correctness of applications of itstransformations, we can use a somewhat simpler implementation than in [27]. The basic kind ofobject we deal with we call a rewriter, which is simply a partial function from some type to itself|\partial" because it may fail to apply (which is communicated by a raised exception) as well as failto terminate. Thus we have simplytype 'a rewriter = 'a -> 'aThe exception Fail may be raised in case a rewriter fails to apply and takes string as an argumentwhich is intended but not required to give some indication of reason for the failure of the rewriterto apply. Here are the general rewriting primitives we found useful.exception Fail of stringfun rew_and rew1 rew2 = rew2 o rew1fun rew_or rew1 rew2 x = (rew1 x) handle Fail _ => (rew2 x)fun rew_id x = xfun rew_try rew = rew_or rew rew_idfun rew_repeat rew x = rew_try (rew_and rew (rew_repeat rew)) x(* rew_first: 'a rewriter -> 'a list rewriter *)fun rew_first rew nil = raise Fail("rew_first")| rew_first rew (x :: l) = (rew x) :: l(* rew_rest: 'a list rewriter -> 'a list rewriter *)fun rew_rest list_rew nil = nil| rew_rest list_rew (x :: l) = x :: (list_rew l)25

8.4 Uni�cationThe basic structure of the uni�er involves maintaining a collection of pairs of terms to be uni�edsimultaneously. Traditionally such pairs are called disagreement pairs and such a collection is calleda disagreement set (though represented and used as a list).datatype dpair = Dpair of term * termtype dset = dpair listDuring uni�cation, we transform terms, disagreement pairs, and disagreement sets, as describedbelow. However, because some uni�cation problems have more than just a single most generaluni�er, we will also have one branching step. This will be implemented using success continuations,thus meshing nicely with the interpreter.98.4.1 NormalizationOne kind of rewriting we will need to do during uni�cation is \weak head normalization" of terms.This just means normalizing enough to determine the top-level structure of the �-normal form ofthe term.10 In mathematical notation, a weak head reduction step reduces a term of the form(�x :A:M)N1 : : :Nn to the term ([N1=x]M)N2 : : :Nn.11 Thus the rewriter below fails, if the giventerm does not have the form of the left-hand side of this rewriting rule (modulo dereferencing ofinstantiated Evar's).fun head_reduce_term (Appl(M,N)) =(let fun hrt (Abst(xofA,M0)) = apply_sb (term_sb xofA N) M0| hrt (Evar(_,_,_,ref(SOME M0))) = hrt M0| hrt _ = Appl(head_reduce_term M,N)in hrt M end)| head_reduce_term (Evar(_,_,_,ref(SOME M0))) = head_reduce_term M0| head_reduce_term _ = raise Fail("head_reduce_term")The conventions for naming ML variables in the code for the uni�er are as follows: we use Mand N for terms and A, B, and C for types.12 Furthermore, we use xofA and yofB for Varbind's (apair consisting of a variable name and its type) and Gamma for contexts (lists of Varbind's).Next, we raise this from a term rewriter to a disagreement pair rewriter that tries to head reducethe left member of the pair and, if this fails, tries to reduce the right member. The functionalrew_dpair does this kind of raising:fun rew_dpair rew =rew_or (fn (Dpair(M,N)) => Dpair(rew M, N))(fn (Dpair(M,N)) => Dpair(M, rew N))val head_reduce_dpair = rew_dpair head_reduce_term9Success continuations can be used for rewriting as well, but they do not seem as appropriate in this context withonly a very simple form of nondeterminism (succeed with the rewritten term or fail).10More speci�cally, \weak" here refers to not doing any normalization inside of abstractions.11Application associates to the left, so with parentheses the redex would be (: : : ((�x :A:M)N1) : : :Nn).12\Types" are simply terms used in the capacity of types.26

8.4.2 ExtensionalityThe next transformation involves a disagreement pair made up of one or two abstraction terms.This can be justi�ed by an extensionality principle or the �-rule. For example, consider unifying�x :A:M and �y :B:N . In this case we introduce a new parameter a and reduce the problem tounifying [a=x]M and [a=y]N . There are two similar cases in which only one of terms being uni�edis an abstraction where we simply form an application.fun abst_reduce_dpair (Dpair(Evar(_,_,_,ref(SOME M0)),N)) =abst_reduce_dpair (Dpair(M0,N))| abst_reduce_dpair (Dpair(M,Evar(_,_,_,ref(SOME N0)))) =abst_reduce_dpair (Dpair(M,N0))| abst_reduce_dpair (Dpair(Abst(xofA,M0), Abst(yofA,N0))) =let val a = new_uvar xofAin Dpair(apply_sb (term_sb xofA a) M0,apply_sb (term_sb yofA a) N0)end| abst_reduce_dpair (Dpair(Abst(xofA,M0), N)) =let val a = new_uvar xofAin Dpair(apply_sb (term_sb xofA a) M0, Appl(N,a))end| abst_reduce_dpair (Dpair(M,Abst(yofA,N0))) =let val a = new_uvar yofAin Dpair(Appl(M,a),apply_sb (term_sb yofA a) N0)end| abst_reduce_dpair _ = raise Fail("abst_reduce_dpair")8.4.3 Rigid pairsWe now focus on the case of unifying two terms, neither of which is subject to weak head reductionand neither of which is an abstraction. Of these, the simplest case is when each of the two termsis \rigid", i.e., its top-level structure does not change under substitution. This is the case whenthe head of a term is either a constant or a Uvar. The treatment in this case is to compare heads.If they are the same, we replace the disagreement pair with the corresponding pairs of arguments.Otherwise, we conclude that the two terms are non-uni�able, and hence the disagreement setcontaining them is non-uni�able as well.To distinguish non-uni�ability from non-applicability of a rewriter, we introduce a new exceptionwith exception Nonunifiable. Rather than extracting the heads and lists of arguments �rst,in the implementation below, we accumulate disagreement pairs matching up the correspondingarguments while descending to the heads. When we get to a head, we either succeed or fail.(* rigid_rigid : dpair -> dset -> dset,Adds result of rigid-rigid decomposition to the given dset.Fails if the dpair is not rigid-rigid.Can raise the exception Nonunifiable. *)27

fun rigid_rigid (Dpair(Evar(_,_,_,ref (SOME M0)), N)) dset =rigid_rigid (Dpair(M0,N)) dset| rigid_rigid (Dpair(M, Evar(_,_,_,ref (SOME N0)))) dset =rigid_rigid (Dpair(M,N0)) dset| rigid_rigid (Dpair(Appl(M1,N1),Appl(M2,N2))) dset =(* Note the "head-recursion" *)rigid_rigid (Dpair(M1,M2)) (Dpair(N1,N2)::dset)| rigid_rigid (Dpair(Const(name1),Const(name2))) dset =if name1 = name2 then dset else raise Nonunifiable| rigid_rigid (Dpair(Uvar(_,stamp1),Uvar(_,stamp2))) dset =if stamp1 = stamp2 then dset else raise Nonunifiable(* Otherwise, either not rigid-rigid or unification fails. *)| rigid_rigid (Dpair(M,N)) _ =if (is_rigid M) andalso (is_rigid N)then raise Nonunifiableelse raise Fail("rigid_rigid")It is a simple matter to make this function into a disagreement set rewriter that attempts toapply rigid_rigid to the �rst disagreement pair in a disagreement set:(* rigid_rigid_rew : dset rewriter *)fun rigid_rigid_rew nil = raise Fail("rigid_rigid_rew")| rigid_rigid_rew (dp :: rest) = rigid_rigid dp rest8.4.4 SIMPLWe can now assemble the previous rewriters into a main component of the uni�cation algorithm,corresponding to Huet's \SIMPL" phase. One step of the SIMPL phase is accomplished by thefollowing disagreement set rewriter, which tries �rst head reduction, then (if that fails to apply)extensionality, and �nally rigid-rigid decomposition.val SIMPL_rew =rew_or (rew_or (rew_first head_reduce_dpair)(rew_first abst_reduce_dpair))rigid_rigid_rewThe complete SIMPL phase repeats SIMPL_rew as long as it applies, transforming the �rstdisagreement pair, and then recursively works on the remaining disagreement pairs.fun SIMPL ds =rew_and (rew_repeat SIMPL_rew)(* if SIMPL_rew fails, (rew_repeat SIMPL_rew) succeeds andeither we have run out of disagreement pairs and are done,28

or the first is no longer rigid-rigid and we need to go on. *)(rew_rest SIMPL)ds8.4.5 MATCHThe SIMPL phase leads either to non-uni�ability or to a disagreement set made up completelyof disagreement pairs relating two exible (non-rigid) terms or one rigid and one exible term.As in Huet's algorithm, we defer treating exible-exible disagreement pairs, as their treatmentleads to an intractable explosion of the search space, or, if a particular solution is chosen, to anovercommitment which must be avoided in this setting of constraint logic programming. At leastin the LF sub-calculus, these disagreement sets are always uni�able when they arise [6].The \MATCH" phase examines a exible-rigid disagreement pair, instantiates the logic variableat the head of the exible term, and calls the success continuation on an augmented disagreementset. Upon backtracking, further instantiations may be tried. Once all possibilities are exhaustedMATCH returns. The interested reader can consult [6] for an explanation and justi�cation ofthese instantiations, as well as completeness proofs. Actually, completeness can in general onlybe guaranteed for a subcalculus where logic variables do not occur at the head of types. As logicvariables ranging over types are extremely useful in practice (they provide for polymorphism),and the algorithm will often be complete even in this case, enforcing this restriction statically iscounter-productive. Instead, we give a run-time warning if the uni�cation procedure might beincomplete.A full discussion of MATCH is beyond the scope of this chapter; we merely show some fragmentsof the code illustrating its control structure.(* MATCH : dpair -> dset -> (dset -> unit) *)fun MATCH (Dpair(flex,rigid)) ds sc =let val F as Evar(Varbind(Fname,Ftype),_,ok_uvars,_) = flex_term_head flex...(* Try a substitution given a term and its type *)(* Given M and A such that |- M : Ainstantiate F to M and constrain Ftype == A(not necessary in the simply typed lambda-calculus) *)fun try_subst_term M A =(instantiate_evar F M ;sc (Dpair(Ftype, A) :: ds))...in (* project_from and imitate enumerate the possible substitution terms forF, calling try_subst_term on each; expecting it to return uponbacktracking. *) 29

(trail (fn () => imitate ()) ; project_from Gamma_w)endThere is no distinction in �Prolog or our hypothetical language between choice points establishedduring uni�cation and choice points established during clause selection. Thus trailing must be doneat choice points during uni�cation, as in the interpreter.8.4.6 Putting it togetherNow we combine the various pieces into the function unify_dset. It expects a disagreement set anda success continuation, which is to be called on a possibly remaining constraint, if the disagreementset is uni�able. If not, we simply return to signify failure and initiate backtracking. Constraintsare nothing but disagreement sets with only exible-exible pairs.type constraint = dset(* unify_dset : dset -> (constraint -> unit) -> unit *)fun unify_dset ds sc =(* First SIMPL. This may raise exception Nonunifiable handled below. *)let val ds' = SIMPL dsin (* ds' will have only flex-rigid, rigid-flex, or flex-flex pairs.Select a flex-rigid or rigid-flex and call MATCH.If there is none, we succeed with the remaining constraints.MATCH returns upon backtracking. *)case (find_flex_rigid ds')of SOME(dp) => MATCH dp ds' (fn match_ds => unify_dset match_ds sc)| NONE => sc ds' (* Success: only flex-flex left *)endhandle Nonunifiable => () (* Failure in SIMPL *)(* unify : term -> term -> constraint -> (constraint -> unit) -> unit *)fun unify M N dset sc = unify_dset (Dpair(M,N) :: dset) sc9 Higher-Order LogicThe language of higher-order terms introduced so far has not changed the underlying logic of ourlogic programming language: it is still a �rst-order logic, though over a very rich domain. This issu�cient for many application programs (see, for example, [10]), but there are instances where it isvery elegant and natural to allow true higher-order programming. By higher-order programming wemean the ability of programs to construct other programs (to be assumed) and other goals (to beinvoked). In Prolog some semblance of such a facility is provided through the call primitive. Herewe have a higher-order term language, and, following Church [3], we introduce a distinguished typeof propositions (o) and constants representing the logical quanti�ers and connectives. For example,30

logical conjunction is represented by a constant and of type o! o! o, and the existential quanti�eris represented by a constant exists of type �A :type: ((A! o)! o).Two simple examples of higher-order programs in the sense given above are clauses de�ning onceand not (negation-as-failure), given the more general guard construct we adopted in Section 6. ?is simply a goal which always fails.once(G) (G! > j ?):not(G) (G! ? j >):Here G is a variable of type o and once and not are constants of type o ! o. Note that theargument G will be passed as a term, but has to be converted to a goal before it can be invoked.If we implemented strictly higher-order hereditary Harrop formulas (see [22]), some of the workbelow would not be necessary, but in practice it is important not to restrict statically to D-formulasand G-formulas whose predicate symbol is �xed and known at the time where terms are translatedinto propositions. Instead we introduce a new case in the de�nitions of the datatypes gform anddform, namely Gflex of term and Dflex of term, respectively. They convey that we do not yetknow whether this term will be atomic, a conjunction, etc., since it begins with a predicate variablewhich might be instantiated by uni�cation before the current G-formula or D-formula is needed bythe interpreter.The functions term_to_gform and term_to_dform (not shown here) translate a term to aformula. They proceed by converting the term to head normal form and then deciding from theconstant at the head of the term if it is a conjunction, disjunction, etc. If it matches none of thelogical constants, it is either atomic (if the head is rigid) or \ex" if the head is an Evar or a Bvar.The quanti�ers are represented as constants applied to abstractions.All that is required to complete the interpreter is to modify the clausi�cation function to allowDflex formulas and the interpreter to allow Gflex formulas. In either case, the argument isagain converted to a proposition. If the formula remains exible, an error results. Recall thatexible formulas may become rigid through instantiation during uni�cation. Consider, for example,9x(x = > ^ x). At translation time, x is exible, but by the time the goal x is encountered, it hasbeen instantiated to >, which should simply succeed. We thus add the following case to solve:| solve (Gflex(M)) clauses uvars con sc =(case term_to_gform Mof Gflex(M') => raise error("solve: Goal " ^ term_makestring(M')^ " with variable head predicate.")| g => solve g clauses uvars con sc)and a corresponding case to clausify| clausify (Dflex(M)) body vars rest =(case term_to_dform Mof Dflex(M') => raise error("clausify: Program " ^ term_makestring(M')^ " with variable head predicate.")| d => clausify d body vars rest)31

10 ConclusionThe interpreter we have developed is relatively close to eLP, our Common Lisp implementation of�Prolog in the Ergo Support System [8, 20]. Most of the di�erences have already been mentioned:clauses are indexed and stored in a global hashtable, bound variables are represented by deBruijnindices and parameters and logic variables are time-stamped for comparison and uni�cation ofterms that have not been Skolemized. There are also the front-end, that is, parsing, unparsing, andtype reconstruction, the implementation of �Prolog's module system, and \special" (non-logical)predicates which we ignored in this presentation, some of which are by no means trivial. Uni�cationalso di�ers: the one given here supports a much richer �-calculus, but does not implement a numberof important optimizations (see [23]) used in eLP. Finally, there are a number of design mistakeswhich are still part of the current eLP implementation which we chose not to expose here.We expect that the next set of signi�cant improvements in the implementation techniques for�Prolog and related languages will come from a more economical representation of �-terms [26]and the development of compilation technology [24].We conclude with the remark that the complete Standard ML code for all versions of theinterpreter discussed here including a modest front end are available via ftp over the Internet.13References[1] Anthony J. Bonner, L. Thorne McCarty, and Kumar Vadaparty. Expressing database querieswith intuitionistic logic. In Ewing Lusk and Ross Overbeek, editors, Proceedings of the NorthAmerican Conference on Logic Programming, pages 831{850, Cambridge, Massachusetts, 1989.MIT Press.[2] Mats Carlsson. On implementing Prolog in functional programming. New Generation Com-puting, 2(4):347{359, 1984.[3] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,5:56{68, 1940.[4] Thierry Coquand and G�erard Huet. The Calculus of Constructions. Information and Compu-tation, 76(2/3):95{120, February/March 1988.[5] N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for automaticformula manipulation with application to the Church-Rosser theorem. Indag. Math., 34(5):381{392, 1972.[6] Conal Elliott. Extensions and Applications of Higher-order Uni�cation. PhD thesis, CarnegieMellon University, May 1990. Available as Technical Report CMU{CS{90{134, Carnegie Mel-lon University, Pittsburgh.[7] Conal Elliott. Higher-order uni�cation with dependent types. In Rewriting Techniques andApplications, pages 121{136. Springer-Verlag LNCS 355, April 1989.13Please send mail to the second author at fp@cs.cmu.edu for more information.32

[8] Conal Elliott and Frank Pfenning. eLP: A Common Lisp implementation of �Prolog in theErgo Support System. Available via ftp over the Internet, October 1989. Send mail to elp-request@cs.cmu.edu on the Internet for further information.[9] Matthias Felleisen. Transliterating Prolog into Scheme. Technical Report 182, Indiana Uni-versity, Bloomington, Indiana, October 1985.[10] Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic Program-ming Language. PhD thesis, Department of Computer and Information Science, University ofPennsylvania, July 1989.[11] D. M. Gabbay. N-prolog: an extension of Prolog with hypothetical implications II. Journal ofLogic Programming, 2(4):251{283, 1985.[12] D. M. Gabbay and U. Reyle. N-prolog: an extension of Prolog with hypothetical implicationsI. Journal of Logic Programming, 1(4):319{355, 1985.[13] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF. Springer-Verlag LNCS 78, 1979.[14] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics. Submitted.A preliminary version appeared in Symposium on Logic in Computer Science, pages 194{204,June 1987, January 1989.[15] Robert Harper, Robin Milner, Kevin Mitchell, Nick Rothwell, and Don Sannella. Functionalprogramming in Standard ML. Notes to a �ve day course given at the University of Edinburgh,April 1988.[16] Robert Harper and Robert Pollack. Type checking, universe polymorphism, and typical am-biguity in the Calculus of Constructions. In TAPSOFT '89, Proceedings of the InternationalJoint Conference on Theory and Practice in Software Development, Barcelona, Spain, pages241{256. Springer-Verlag LNCS 352, March 1989.[17] Christopher T. Haynes. Logic continuations. Journal of Logic Programming, 4(2):157{176,June 1987.[18] G�erard Huet. A uni�cation algorithm for typed �-calculus. Theoretical Computer Science,1:27{57, 1975.[19] Joxan Ja�ar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of theFourteenth Annual ACM Symposium on Principles of Programming Languages, Munich, pages111{119. ACM, January 1987.[20] Peter Lee, Frank Pfenning, Gene Rollins, and William Scherlis. The Ergo Support System: Anintegrated set of tools for prototyping integrated environments. In Peter Henderson, editor,Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on PracticalSoftware Development Environments, pages 25{34. ACM Press, November 1988. Also availableas Ergo Report 88{054, School of Computer Science, Carnegie Mellon University, Pittsburgh.33

[21] Dale Miller. A logical analysis of modules in logic programming. Journal of Logic Programming,6(1-2):57{77, January 1989.[22] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as afoundation for logic programming. Journal of Pure and Applied Logic, 1988. To appear.Available as Ergo Report 88{055, School of Computer Science, Carnegie Mellon University,Pittsburgh.[23] Dale A. Miller. Uni�cation under mixed pre�xes. Unpublished manuscript, 1987.[24] Gopalan Nadathur and Bharat Jayaraman. Towards a WAM model for lambda Prolog. InProceedings of the 1989 North American Conference on Logic Programming, pages 1180{1198.MIT Press, October 1989.[25] Gopalan Nadathur and Dale Miller. An overview of �Prolog. In Robert A. Kowalski andKenneth A. Bowen, editors, Logic Programming: Proceedings of the Fifth International Con-ference and Symposium, Volume 1, pages 810{827, Cambridge, Massachusetts, August 1988.MIT Press.[26] Gopalan Nadathur and Debra Sue Wilson. A representation of lambda terms suitable foroperations on their intensions. In Proceedings of the 1990 Conference on Lisp and FunctionalProgramming. ACM Press, June 1990. To appear.[27] Lawrence Paulson. A higher-order implementation of rewriting. Science of Computer Pro-graming, 3:119{149, 1983.

34

