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Abstract Higher-order logic proof systems combine functional programming with logic,
providing functional programmers with a comfortable setting for the formalization of pro-
grams, specifications, and proofs. However, a possibly unfamiliar aspect of working in such
an environment is that formally establishing program termination is necessary. In many
cases, termination can be automatically proved, but there are useful programs that diverge
and others that always terminate but have difficult termination proofs. We discuss techniques
that support the expression of such programs as logical functions.

Keywords Higher order logic · Recursive definition · Termination · Well-foundedness ·
Regular expression pattern matching

1 Introduction

Many higher-order logics are based on Church’s simple type theory [9]. These logics support
general mathematical reasoning, which is not surprising since simple type theory was pro-
posed as a foundation for mathematics. Contemporary interactive proof assistants typically
implement extensions of simple type theory. For example, HOL [21] adds type variables,
Isabelle/HOL [46] provides type classes, PVS [50] adds predicate subtypes, Coq [6] is a
constructive logic with dependent types, and IMPS [14] supports partial functions. Each of
these systems provides a library of verified mathematics to base proofs on, plus a collection
of automated proof tools such as decision procedures and simplifiers.

Either directly or via definitional extension, the above logics support fundamental aspects
of typed functional programming: polymorphic simple types, algebraic datatypes, higher-
order functions, pattern matching, and recursive definitions. Thus, a user of one of these
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systems and a functional programmer define and reason about many of the same constructs.
In light of this connection, a higher-order logic verification environment could be thought of
as a functional programming environment in which functional programs, their specifications,
their executions, and their correctness proofs can be explored in a unified, semantically
powerful setting. The essential question is: is higher-order logic adequate to the task?

In order to meaningfully answer this, we must refine the question. Higher-order logic
can define the syntax and operational or denotational semantics of a programming language,
thereby supporting the formalization of individual programs. However, such formalizations
are bulky and awkward to deal with mathematically. Instead, functional programs can be
directly mapped to the native, built-in functions of higher-order logic: no domain theory and
no operational semantics required. In this way, functional programs live in the same milieu
as the mathematics they are specified with. For example, a factorial program is modeled as
a mathematical function on numbers, not as a function on the domain of lifted numbers, and
not as a syntax tree animated by an operational semantics.

We can now ask: are the native functions of higher-order logic adequate to the task of
formalizing functional programs? The answer is, of course, negative: most higher-order log-
ics express total functions, while a functional programming language expresses computable
functions. For example, extensional equality on functions—a heavily used feature of clas-
sical higher order logic—is not computable. On the other hand, functional languages can
easily define partial functions by non-terminating recursion. The functions provided by each
setting do not subsume each other. At first sight, this difference in expressivity is dismaying;
however, experience over many years has shown that a vast number of useful and important
algorithms can be directly defined as total functions.

There still remain important algorithms that are difficult to directly formalize as total
functions. Often, the difficulty stems from the termination proof requirements of a logic of
total functions. Termination proofs cannot be avoided in this setting, for without a termi-
nation proof for each recursive definition, the logic is inconsistent. Thus, termination is the
fundamental obstacle to overcome. This paper explores, via examples, some termination-
related difficulties with representing functional programs in higher-order logic, and shows
how they can be surmounted, and in some cases, solved.

Proving termination for each recursive function seems like a painful burden; fortunately,
proof automation can often deal with the termination of a proposed definition, particularly
for structurally recursive functions. Hence, the (numerous) cases that present the functional
programmer with no termination problems also present no such problems to the theorem-
proving system user. A marked difference arises when considering programs whose termi-
nation is not obvious, or programs that might diverge on some inputs. In these situations, a
functional programmer can establish termination in a number of ways: with the application
of the mechanically unsupported intellect, with testing, with a paper-and-pencil proof, or
even with a formal proof. In contrast, the higher-order logic user must always perform a for-
mal termination proof. (We are slightly overstating our case here: some functions satisfying
recursive specifications may be defined without proving termination. This will be discussed
in Sect. 5.)

We explore this requirement with three examples: depth-first traversal in directed, pos-
sibly cyclic, graphs; an unfold; and regular expression pattern matching. The first two ex-
amples illustrate ways of formalizing partial functions in a logic with only total functions,
while the last shows that, sometimes, an apparently partial function can be replaced by a
total function that works just as well. Although we emphasize termination, we have also
included a few correctness proofs: these may be safely skipped by the reader, but they serve
as ultimate justifications of the definitions, and illustrate how mathematical reasoning about
programs is performed in this context.
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Fig. 1 A correspondence
between functional programming
and higher-order logic

To help focus the discussion, we use the higher-order logic of the HOL system [21].
This logic (also called HOL) supports a direct, although imprecise, correspondence between
functional programs and logical functions. Figure 1 illustrates the relationship: logical types
are similar to, but not the same as, ML types and logical terms resemble ML expressions.
Executing a program on an argument can be carried out by performing a proof. Our ap-
proach therefore has nothing to do with the Curry-Howard correspondence, which precisely
relates types in functional programming to propositions in logic, and expressions in func-
tional programming to proofs.

We have performed all of our proofs in the HOL-4 verification system [48]. The formal-
izations can be found at the webpage http://dx.doi.org/10.1007/s10990-008-9038-0.

1.1 Notation and basic definitions

Detailed knowledge of the HOL logic is not needed to understand this paper. Syntactically,
HOL resembles a conventional predicate logic that allows λ-notation and quantification over
functions, sets, and relations; semantically, it resembles ordinary set-theoretic mathematics.
Gordon and Melham [21] present a formal description of the logic.

Throughout this paper, we use italicized font for variables, constants are written in
bold, sans-serif font, and keywords are in typewriter font. The following notation is
also used:

– Standard logical notation: ∨, ∧, ¬, =, ⇒, ⇔, ∀, ∃, true, false, and (·, . . . , ·) (tuples). Also
Hilbert’s indefinite description operator: εx. P x denotes some a such that P (a) holds; if
P holds of nothing, then εx. P x denotes some arbitrary object with the same type as x.

– List notation: :: (cons), [ ] (empty list), @ (append), mem (member), map, filter, and flat
(flatten), all_distinct (duplicate checking), foldr, and null (emptyness predicate).

– Set notation: ∈, ‖ · ‖ (cardinality), \ (set difference), {·|·} (set comprehension), Finite
(finiteness predicate), RTC (reflexive-transitive closure), ListToSet, and f |S (restriction
of the domain of f to set S).

– Lambda: λ.
– ML keywords: case, datatype, let, and if− then− else.
– ML notation for types: → (function space), α,β (type variables), bool, α list, and α option.

The num type represents N.

The polymorphic constant ARB : α denotes a fixed but arbitrary element that inhabits all
types. A form of function restriction can be defined using ARB as follows:

f |S x = if x ∈ S then f x else ARB

Thus, a function restricted to a set is not a partial function but is instead a total function
returning a fixed value when applied to a value not in the set. In some cases, this modelling
trick allows true partiality to be avoided. Logics with dependent types, or predicate subtypes
such as PVS, can avoid this approach, but it is a standard method for modelling partiality in
logics such as HOL and ACL2 [31].

http://dx.doi.org/10.1007/s10990-008-9038-0
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A binary relation, ≺: α → α → bool, is wellfounded, written WF(≺), if it contains no
infinite decreasing chains or, equivalently, if every non-empty set has a ≺-minimal element.
The principle of wellfounded induction arises from the definition of wellfoundedness.

Definition 1 (Wellfoundedness)

WF(R) ⇔ ∀P. (∃w. P w) ⇒ ∃min. P min ∧ ∀b. R b min ⇒ ¬P b

Theorem 1 (Wellfounded induction)

WF(R) ⇒ (∀x. (∀y. R y x ⇒ P y) ⇒ P x) ⇒ ∀x. P x

The lexicographic combination <lex of wellfounded relations <1 and <2 is itself well-
founded.

Definition 2 (Lexicographic comparison)

(x ′, y ′) <lex (x, y) ⇔ x ′ <1 x ∨ (x ′ = x ∧ y ′ <2 y)

Lexicographic combination can be iterated to treat tuples with more than two compo-
nents.

2 Defining recursive functions

In logic, a recursive definition requires proof of the unique existence of a function satis-
fying the given recursion equations. Certain constraints on the style of recursion, such as
primitive recursion, guarantee the unique existence of the specified function. Indeed, most
higher-order logic implementations automatically prove the primitive recursion theorem for
algebraic datatypes, and use it to justify the definition of functions on such types. How-
ever, for many functional programs the syntactic constraints of primitive recursion are too
restrictive. The more general mechanism of wellfounded recursion can accept any recursion
equation, provided it satisfies a semantic criterion—termination. A wellfounded relation ≺
on the function’s domain must witness termination of the function for all inputs, i.e. proving
x ′ ≺ x for all recursive calls f (x ′) that can be invoked from a call f (x) establishes termi-
nation of f for all inputs. Informally, if the arguments must get smaller by ≺ for each call
and there is a finite limit (by wellfoundedness) on the number of smaller things, then the
function terminates.

2.1 Wellfounded recursion

In untyped lambda calculus, the Y combinator supports recursive function definitions due
to the fixed-point equation Y F = F (Y F) which implies that Y F satisfies the recursion
equation giving rise to the functional F . However, higher-order logic cannot express the Y
combinator, for it would allow the definition of the function f (x) = f (x) + 1, from which
one can immediately get 0 = 1 by subtracting f (x) from both sides. Higher-order logic
can, however, define a wellfounded recursion combinator, WFREC, which behaves as a con-
trolled version of Y. The WFREC combinator takes two arguments: a binary relation ≺ and
a functional F . If ≺ is wellfounded, a Y-like fixed-point equation holds.

Theorem 2

WF(≺) ⇒ (WFREC≺ F) x = F ((WFREC≺ F) |{y|y≺x}) x



Higher-Order Symb Comput (2008) 21: 377–409 381

Although Y F = Fn(Y F) for any number n, each time the above equation is applied
for WFREC, the domain of (WFREC≺ F) is restricted to values smaller by ≺. Therefore,
due to the wellfoundedness of ≺, the WFREC combinator cannot be unrolled indefinitely
and so the function must terminate. If the recursion equation satisfies the condition that all
recursive calls have smaller arguments, then the restriction is redundant, and the fixed-point
equation becomes:

WFREC≺ F = F (WFREC≺ F)

The length function on lists provides a simple example of a definition by wellfounded
recursion (of course, primitive recursion can also be used to define length).

length [ ] = 0
length (h :: t) = 1 + length t

Abstracting the length name yields the following functional:

L = λlength �. case � of [ ] ⇒ 0 | h :: t ⇒ 1 + length t

The argument to length shrinks by the following wellfounded relation for each recursive
call.

x ≺ y ⇔ ∃a. (a :: x) = y

Thus WFREC≺ L uniquely satisfies the recursion equation for length and we may define
length = WFREC≺ L and derive the specified recursion equations for length as a logical
theorem. These steps have been mechanized for HOL-4 and Isabelle/HOL [55]. For further
discussion of wellfounded recursion in theorem provers, see [28, 51].

2.2 Termination relations

There exists a wide variety of wellfounded relations and combinators, such as <lex, to com-
bine them. For example, every inductively defined datatype has a wellfounded relation anal-
ogous to the above relation for length, known as the immediate sub-term relation. Well-
founded recursion based on this relation corresponds exactly to primitive recursion. In prac-
tice however, most non-trivial termination proofs reason about size of arguments, and so
they are most often based on wellfounded relations built by mapping into the < relation for
natural numbers using measure functions. Definition 3 formally justifies this practice.

Definition 3 (Measure functions)

Definitions : inv_image (≺) f x y = (f x) ≺ (f y)

measure = inv_image (<)

Consequences : WF(R) ⇒ WF (inv_image R f )

∀f : α → num. WF (measure f )

Thus termination of a recursive function over a type τ can often be proved by show-
ing that the recursive calls are in the relation measure(sizeτ ). For example, mergesort ter-
minates because each recursive call receives a shorter list. Lexicographic combinations of
wellfounded relations handle multiple argument functions that need to measure the size of
more than one argument.
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2.3 Induction principles

The most common induction principles are derived from datatype definitions. For example,
the induction principles for numbers and lists are:

∀P. P 0 ∧ (∀x. P x ⇒ P (x + 1)) ⇒ ∀x. P x

∀P. P [ ] ∧ (∀x �. P � ⇒ P (x :: �)) ⇒ ∀�. P �

However, just as primitive recursion can be too restrictive for definitions, datatype induction
can be unsuitable for some correctness proofs, especially those involving a function that
does not recur on sub-terms of its input. An example of such a function is variant (which
finds application in symbolic algorithms that need to create fresh entities):

variant x � = if mem x � then variant (x + 1) � else x

The variant function is somewhat unusual because it recurs with a larger number. Neverthe-
less it terminates, because the recursive calls eventually reach a number not contained in �.
The termination measure for variant counts the number of elements, y, in � such that y ≥ x.

Proving properties of variant by mathematical or complete induction is awkward. For-
tunately, the wellfounded relation used to prove termination of a function can be used to
derive an induction principle customized to the recursion structure of the function [7]. This
principle allows one to prove a property P of a function by assuming P holds for each recur-
sive call and then showing that P holds for the entire function. For example, the following
‘variant-induction’ principle mirrors variant’s recursion structure.

∀P. (∀x �. (mem x � ⇒ P (x + 1) �) ⇒ P x �) ⇒ ∀x �. P x �

Proving that, for example, variant finds the smallest number n such that n ≥ x and ¬mem n �

is almost trivial with variant-induction. We use similar custom induction theorems frequently
in our proofs.

Given recursion equations specifying a function f and a termination relation ≺ showing
that f terminates, the f -induction principle can be automatically derived from the well-
founded induction theorem [54]. Consequently, both a function definition and its associated
induction principle depend on a termination proof for the function.

3 Depth-first traversal

The depth-first traversal algorithm given in Fig. 2 folds a function f over a directed, possibly
cyclic, graph G, represented by a function returning the children nodes of a given node.

DFTp : (α → α list) → (α → β → β) → α list → α list → β → β

DFTp G f seen [ ] acc = acc
DFTp G f seen (visit_now :: visit_later) acc =
if mem visit_now seen

then DFTp G f seen visit_later acc
else DFTp G f (visit_now :: seen)

(G visit_now @ visit_later)
(f visit_now acc)

Fig. 2 Depth-first traversal as a partial function
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Notice that G : α → α list must branch finitely because it returns the children in a list,
whereas a choice such as G : α → α set need not branch finitely. DFTp maintains a set of
traversed nodes, seen, and a list of nodes that need to be visited. When DFTp visits a node
already seen, it ignores the node and continues on. When visiting a new node, it applies f

to the node and accumulator, acc, adds the node to seen, and adds all of the node’s children
to the visit list.

Although this function is perfectly acceptable in most functional programming lan-
guages, and all of the language constructs used in DFTp are available in HOL, the proof
system does not accept the definition because DFTp may diverge. Consider the infinite graph
λx. [x + 1], which can be pictured as:

· · · → 0 → 1 → 2 → 3 → ·· · → n → n + 1 → ·· ·
Depth-first traversal diverges when given an infinite number of reachable nodes, e.g., con-
sider the invocation DFTp (λx. [x + 1]) f [ ] [0] x. An inherently finite graph representation,
such as an adjacency list, would prohibit such examples and ensure termination, but would
also forgo the simplicity and abstraction offered by the functional graph representation.

Although DFTp is partial in general, it is total when restricted to input graphs and nodes
from which only a finite number of nodes are reachable. Graph reachability can be formal-
ized in higher-order logic as follows: let RG : α → α → bool be the single-step reachability
relation for G, so that its reflexive-transitive closure is G’s many-step reachability relation.
The reachlistG : α list → α → bool relation then captures reachability from a list of nodes.

Definition 4 (Reachability)

RG x y ⇔ mem y (G x)

reachG = RTC RG

reachlistG nodes y ⇔ ∃x. mem x nodes ∧ reachG x y

Unlike dependent types, simple types provide no good method of enforcing the finiteness
of the set of reachable nodes in the type of DFTp. However, the semantic power of HOL
allows the variant of DFT in Fig. 3 to itself check the finiteness constraint. On calls with
infinitely many reachable nodes, DFT returns an arbitrary element, ARB. This is the same
technique used to handle function restriction—indeed DFT is just DFTp restricted to inputs
with finite reachability.

The Finite predicate is easy to define inductively; however, finiteness is an undecidable
property. Thus, the definition of DFT mixes computable and non-computable elements: one
can consider this a price to pay for totality or—more positively—consider DFT as a version
of depth-first traversal which includes its requirements within the actual code.

Remark 1 The presentation of DFT is logically equivalent to the formulas in Fig. 4, so
the finiteness requirement can be ‘floated out’ past the recursion equations, leaving a clean
presentation of the function. It would be convenient to have the theorems in Fig. 4 directly
derived without entwining the requirements of the function and its recursion equation, as in
Fig. 3, but HOL-4’s current automation does not support that functionality.

3.1 Termination of DFT

Given that the set of reachable nodes is finite, the termination proof for DFT requires only
a small amount of ingenuity. Let ≺ be the lexicographic combination of the number of
reachable nodes not yet seen and the number of nodes in to_visit.
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DFT : (α → α list) → (α → β → β) → α list → α list → β → β

DFT G f seen to_visit acc =
if Finite (reachlistG to_visit)

then case to_visit
of [ ] ⇒ acc
| (visit_now :: visit_later) ⇒

if mem visit_now seen
then DFT G f seen visit_later acc
else DFT G f (visit_now :: seen)

(G visit_now @ visit_later)
(f visit_now acc)

else ARB

Fig. 3 Depth-first traversal as a total function

DFT G f seen [ ] acc = acc

Finite (reachlistG (visit_now :: visit_later))
⇒ (DFT G f seen (visit_now :: visit_later) acc =

if mem visit_now seen
then DFT G f seen visit_later acc
else DFT G f (visit_now :: seen)

(G visit_now @ visit_later)
(f visit_now acc))

Fig. 4 Derived presentation of DFT

Definition 5

(G,f, seen′, to_visit′, acc′) ≺ (G,f, seen, to_visit, acc)

iff
(‖reachlistG to_visit′ \ ListToSet seen′‖, length to_visit′) <lex

(‖reachlistG to_visit \ ListToSet seen‖, length to_visit)

In the first recursive call, the visit_now node has been previously seen, so the set of
unseen reachable nodes does not change, and the to_visit list gets smaller. In the second
call, the visit_now node is added to the seen list, and all of the nodes reachable from the
children of visit_now are also reachable from visit_now itself. Thus the set of reachable
nodes gets no additions, and since the addition to the seen list was previously reachable
(recall that we use the reflexive-transitive closure operation), the size of the calculated set
decreases. Since the cardinality measure only applies to finite sets, the termination proof
crucially relies on the finiteness of the reachable nodes.

Once termination is established, the custom induction theorem for DFT can be used to
prove properties of DFT. Recall that the shape of the induction theorem follows the recursive
structure of the program.
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Theorem 3 (DFT Induction)

∀P.⎛
⎜⎜⎜⎜⎜⎜⎝

∀G f s h t a.

P G f s [ ] a ∧⎛
⎜⎜⎝

(Finite (reachlistG (h :: t)) ∧ mem h s ⇒ P G f s t a) ∧
(Finite (reachlistG (h :: t)) ∧ ¬mem h s

⇒ P G f (h :: s) (G h @ t) (f h a))

⇒ P G f s (h :: t) a)

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

⇒
∀v v1 v2 v3 v4. P v v1 v2 v3 v4

3.2 Properties of DFT

The correctness of a fold on graphs may be informally summarized in the following claims:

– All reachable nodes are visited
– No unreachable nodes are visited
– No reachable node is visited twice

Formalizing these statements hinges on the meaning of visits. We capture this notion by
using cons as the folding function given to DFT, so that the returned list is just the visited
nodes. With this device, Theorem 4 states that DFT with folding function f is equal to
gathering all the visited nodes and then folding f over the resulting list.

Theorem 4 (DFT Fold)

Finite (reachlistG to_visit) ⇒
DFT G f seen to_visit acc = foldr f acc (DFT G cons seen to_visit [ ])

With this understanding, it suffices to prove that the invocation DFT G cons seen to_visit [ ]
returns a list that contains no duplicate entries, contains each node reachable from to_visit,
and contains no nodes not so reachable. The first property is expressed in Theorem 5 and
the other two are embodied in Theorem 6.

Theorem 5 (DFT Distinct)

Finite (reachlistG to_visit) ⇒ all_distinct (DFT G cons seen to_visit [ ])

Theorem 6 (DFT Reach)

Finite (reachlistG to_visit) ⇒
∀x. reachlistG to_visit x ⇔ mem x (DFT G cons [ ] to_visit [ ])

In these proofs, reasoning about DFT and transitive closures is crucially intertwined, and
the modelling of functional programs as ordinary mathematics makes this possible.
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3.3 Alternative termination criteria

The DFT equations (Fig. 4 and Theorem 3) rely on the constraint

Finite (reachlistG to_visit)

In many cases, simpler, but more restrictive, constraints that depend only on the graph itself
are more appropriate. We examine three such constraints in the following subsections.

3.3.1 Finite parents

Define the parents of a graph to be those nodes that have children.

Definition 6 (Parents) ParentsG = {x | G x �= [ ]}

A graph with a finite parents has finitely many reachable nodes.

Theorem 7

∀G. Finite (ParentsG) ⇒ Finite (reachlistG to_visit)

The implication does not hold in the other direction. Consider the graph λx.[0]: from any
given list of nodes, only those nodes and 0 are reachable; however, the parents encompass
the entire graph.

3.3.2 Finite types

Had we defined ParentsG as the entire set of nodes, instead of just the non-leaf nodes, DFT
would only work when given a graph over a finite type. Our definition of ParentsG permits
graphs with infinite isolated nodes, supporting standard graph constructions with natural
numbers for nodes, for example the graph defined by

λx. if 0 < x < 3 then [x + 1] else [ ]

which can be pictured as

· · · 0 1 → 2 → 3 4 5 · · ·
Higher order logic allows the definition of a type constructor α finite which has the property
that, for any type τ , the set of values of type τ finite is finite. Further, if the set of values of
type τ is finite, then both sets have the same cardinality. By using G : α finite → α finite list,
DFT would always terminate. However, such types do not seem to be available in functional
programming languages.1

1John Harrison showed us the possibility of type constructors such as finite.
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DFT (toGraph A) f seen [ ] acc = acc
DFT (toGraph A) f seen (visit_now :: visit_later) acc =
if mem visit_now seen

then DFT (toGraph A) f seen visit_later acc
else DFT (toGraph A) f (visit_now :: seen)

((toGraph A) visit_now @ visit_later)
(f visit_now acc)

Fig. 5 Derived presentation of DFT for adjacency lists

3.3.3 Adjacency lists

The representation of a graph as a function is general enough to encapsulate graphs defined
in other representations, e.g., adjacency lists. An adjacency list A : (α × α list) list gives a
listing of nodes paired with their children. The toGraph function converts an adjacency list
into a graph.

Definition 7 (toGraph)

toGraph a� n =
case filter (λ(k,__). (k = n)) a�

of [ ] → [ ]
| (__, x) :: t → x

The following theorem guarantees that DFT always terminates on a graph built with
toGraph.

Theorem 8

∀a�. Finite (Parents(toGraph a�))

Figure 5 presents DFT specialized to adjacency lists. Thus Theorems 7 and 8 allow the
derivation of unconstrained versions of DFT directly from the theorem in Fig. 4. The induc-
tion theorem for DFT can be similarly specialized. Other formalizations of graph traversals
over adjacency lists may be found in [32, 47].

4 Unfold

One expects to find unfolds in a functional programming environment. However, defining
an unfold in HOL is not completely straightforward since, unlike a fold, the termination
behavior of the unfold depends on its parameters.

Definition 8 (Unfold for lists)

unfold : (α → bool) → (α → β) → (α → α) → α → β list
unfold d f g x = if d(x) then [ ] else f (x) :: unfold d f g (g x)
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In an instance of unfold where d(x) is never true unfold will loop forever. The parameters
d and g must satisfy termination constraints for the definition of unfold to be accepted.
In particular, HOL requires a wellfounded relation ≺ such that whenever d(x) holds, then
g(x) ≺ x. Such constraints can be automatically synthesized by analyzing the structure of
the proposed recursion equations [56]. Consequently, defining unfold is similar to defining
an ordinary recursive function in logic: the only difference is that the resulting definition
is constrained by abstract termination requirements which are not provable until the d and
g parameters are instantiated. However, one can still prove theorems at this abstract, pre-
instantiation, level by using the constrained recursion equation and induction theorem for
unfold:

WF(≺) ∧ (∀x. ¬d(x) ⇒ g(x) ≺ x) ⇒
unfold d f g x = if d(x) then [ ] else f (x) :: unfold d f g (g x)

WF(≺) ∧ (∀x. ¬d(x) ⇒ g(x) ≺ x) ⇒
∀P. (∀x. (¬d(x) ⇒ P (g x)) ⇒ P x) ⇒ ∀v. P v

Thus, one works with unfold by manipulating theorems in which applications of unfold are
hedged about by abstract termination requirements. In this way, one can for example easily
prove the (constrained) fusion theorems for fold/unfold combinations [52, 56] used to justify
deforestation optimizations in compilers for functional languages. However, unfold is also
useful as a general programming technique [17]. In the following, we show that working in
HOL does not impede this kind of development.

Motivated by the breadth-first search example of Gibbons and Jones [17], we use unfold
to define exhaustive breadth-first search in n-ary trees.

Definition 9 (Breadth-first search on n-ary trees)

datatype α tree = Node of α ∗ (α tree list)

root (Node a tlist) = a

subtrees (Node a tlist) = tlist

BFS : (α → bool) → α tree list → α list list
BFS P � = unfold null︸︷︷︸

d

(filter P o map root)︸ ︷︷ ︸
f

(flat o map subtrees)︸ ︷︷ ︸
g

�

Most implementations of HOL fully automate definitions of algebraic datatypes such as
the above definition of n-ary trees (note that constructors in HOL are curried by default).

The BFS function proceeds level-by-level through a list of trees. From this definition
as an application of unfold, one can formally derive the recursion equation and induction
theorem for BFS:

Theorem 9 (BFS recursion and induction)

BFS P � =
if null � then [ ]
else filter P (map root �) :: BFS P (flat (map subtrees �))

∀P. (∀�. (¬null � ⇒ P (flat (map subtrees �))) ⇒ P �) ⇒ ∀v. P v
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The derivation amounts to proving that unfold, as instantiated, always terminates. The
termination proof is quite simple, using a measure function tsize that counts the number of
Nodes in a list of trees, omitting cons-cells.

Definition 10

tsize(Node x tlist) = 1 + ltsize tlist
ltsize [ ] = 0
ltsize (h :: t) = tsize h + ltsize t

4.1 Program equivalence

While one could prove the correctness of BFS by proceeding along the same general lines
as the correctness proof for DFT, we instead prove that BFS is equivalent to a queue-based
breadth-first search.

Definition 11 (Queue-based BFS)

BFSq : (α → bool) → α tree list → α list
BFSq P [ ] = [ ]
BFSq P (Node x tlist :: rst) =

if P x then x :: BFSq P (rst @ tlist) else BFSq P (rst @ tlist)

The proof that the two kinds of breadth-first traversal coincide is interesting, since they
traverse their data in such different ways: BFS goes level-by-level through the list of trees,
while BFSq descends into the tree at the head of the list, appending subtrees to the end of
the queue.

Lemma 1

∀�1�2. BFSq P (�1@ flat (map subtrees �2)) =
filter P (map root �1) @
BFSq P (flat (map subtrees �2 @ map subtrees �1))

Proof By list-induction on �1. �

Lemma 2

∀�. BFSq P � = filter P (map root �) @ BFSq P (flat (map subtrees �))

Proof By BFSq-induction on �, using Lemma 1. �

Theorem 10 (Equivalence of BFS and BFSq)

∀tlist. flat (BFS P tlist) = BFSq P tlist

Proof By BFS-induction on tlist, using Lemma 2. �

Although the proof tools in HOL-4 provide enough automation so that the proofs of the
above statements are short, phrasing the correct statements and choosing the right induction
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theorems was somewhat difficult. By using BFS-induction for the main theorem we arranged
a goal—essentially the statement of Lemma 2—that was purely about BFSq, considerably
simplifying the development. Lemma 1 is the crucial technical lemma, relating BFSq to the
recursion structure of BFS. We were unable to mentally conjure up the correct statement of
Lemma 1 just by pondering the two recursive functions; instead the theorem prover led us
to it in the course of trying to prove Lemma 2.

Again, the termination constraints on unfold allow us to remain in a set-theoretic setting,
rather than forcing us to build our formalization on top of domain theory, as the approach of
Gibbons and Jones [17] would mandate. Our approach supports the free mixture of ordinary
mathematics and programs, avoiding the tedious business of lifting elementary types like
lists and trees into domains.

Remark 2 Many functional programs can be viewed as instantiations of very general pat-
terns of recursion known as recursion schemes [30]. A scheme represents a class of termi-
nating programs each of which is obtainable by instantiating parameters in the scheme and
then proving termination. For example, the class of programs described by linear recursion
is captured by the following scheme:

linRec : (α → bool)
→ (α → α) → (α → β) → (β → γ → β) → (α → γ ) → α → β

linRec d e f g h (x) =
if d(x) then f (x) else g (linRec d e f g h (e x)) (h x)

The unfold function, itself a recursion scheme, is an instance of linRec:

unfold d f g = linRec d︸︷︷︸
d

g︸︷︷︸
e

(λx. [ ])︸ ︷︷ ︸
f

(λx y. y :: x)︸ ︷︷ ︸
g

f︸︷︷︸
h

Recursion schemes have been used to justify high-level program transformations such as
equivalences between recursive and tail-recursive presentations of a function, or fusion the-
orems. Shankar [52] and Slind [56] showed how recursion schemes can be supported in
higher-order logic mechanizations.

An interesting connection between program schemes and functional programming is il-
lustrated in Lewis et al. [36] wherein free variables are used to support a degree of dynamic
scoping in a statically scoped functional programming language. A program is treated as
being parameterized by its free variables: in essence, although Lewis et al. do not mention
it, such a program is a program scheme.

We have now discussed two examples in which partial functions are adapted to fit in a
world of total functions. In the depth-first search example, a constraint on the graph sufficient
to ensure termination needed to be formulated and included in the definition. In the unfold
example, the mechanization automatically synthesized abstract termination constraints in
order to make a stand-alone definition. These constraints had to be eliminated in order to
reason about the breadth-first traversal instantiation of unfold. Thus the main technique is
the application of additional constraints that ensure totality.

In the next two sections, we deal with unconstrained recursion: one recursive function
that apparently needs no termination argument; and another which is total without constraint,
obtained by adding a termination check to a non-terminating program.
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5 While loops

It is a curious fact that higher-order logic, although a logic of total functions, allows the
definition of functions that don’t seem total, at least from a computational perspective. A
trivial instance of this is the theorem

∀f x. f (x) = f (x)

which is just an instance of reflexivity. Read as a function definition, this would seem to
allow an (admittedly useless) non-terminating recursion. A more interesting example is
WHILE-loops.

Theorem 11 (WHILE)

WHILE P g x = if P x then WHILE P g (g x) else x

Clearly, if P in this theorem was instantiated to λx.true, the resulting instance of WHILE
would ‘run forever’ if executed. Why is such an “obviously” partial function definable in
higher-order logic?

The answer is originally due to J Moore, in the context of ACL2. In higher-order logic,
Moore’s insight can be formalized in a subtle definition for WHILE. Consider the following
total and non-recursive function:

λx. if ∃n. ¬P (gn x)

then g(εn. ¬P (gn x) ∧ ∀m. m<n⇒P (gm x))x

else ARB

This function does a case analysis on the iterations of function g: if there is an n such
that P (gn x) fails to hold, it picks the least such n, i.e., the n at which iteration stops, and
returns gn x. On the other hand, infinite iterations are mapped to ARB. This function is used
as the witness for f in the proof of the following theorem:

∀P g. ∃f. ∀x. f x = if P x then f (g x) else x

which justifies the introduction of a constant WHILE satisfying the recursion equation of
Theorem 11.

In other words, some recursive functions may be defined in higher-order logic by con-
structions that avoid the wellfounded recursion theorem, and thus seem to avoid considera-
tion of termination.

However, two facts prevent this from being an effective panacea for those who wish to
ignore termination issues. First, the trick used in the modelling only applies to tail-recursive
functions. Second, any inductive reasoning about a function defined in this manner will still
require a proof of termination in order to instantiate the wellfounded induction theorem, for
example to prove a Hoare-style WHILE rule. So termination cannot be avoided, if one wants
to reason about such functions after all. Further discussion of termination-free tail recursion
may be found in [3, 43].

6 Regular expression matching

In this section we examine several algorithms for regular expression matching. The majority
of the discussion concerns a matcher we developed to overcome a termination-related issue
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re = ε empty string (Epsilon)
| C character set, (Charset)
| (re | re) union of regular expressions (Or)
| (re · re) concatenation of regular expressions (Then)
| re∗ 0 or more repetitions (Repeat)

sem ε [ ]
mem c C

sem C [c]
sem r1 w

sem (r1 | r2) w

sem r2 w

sem (r1 | r2) w

sem r1 w1 sem r2 w2

sem (r1 · r2) (w1 @ w2)

sem r w1 ∧ . . . ∧ sem r wn

sem (r∗) (w1 @ . . . @ wn)

Fig. 6 Regular expression syntax and semantics

raised in a paper by Harper [27]. For contrast we have also included a simple algorithm from
Brzozowski [8], which operates along quite different principles.

Harper [27] makes a case for proof-directed debugging using the example of an elegant
recursive function for matching regular expressions. The matcher diverges for some expres-
sions, but terminates on an easily identified subset, so Harper adds a preliminary normaliza-
tion pass that converts expressions into the subset. Inspired by this example, we sought to
design and formally verify a total regular expression matching function, i.e., one that works
without a normalization pass. In our previous examples, we added constraints to partial func-
tions in order to define them in HOL. In this example, we seek a correct total function—and
one of the principal difficulties is dealing with termination. We discuss Harper’s matcher
further in Sect. 6.2.1 and fully in Sect. 6.5.1.

6.1 Syntax and semantics

A regular expression is a member of the re datatype defined in Fig. 6. Regular expressions
are matched against strings, represented as lists of characters. We write (sem r w) to mean
that expression r matches string w (see Fig. 6).

Because the semantic rules do not specify how to divide w in the Then and Repeat cases,
they do not define an algorithmic function. We aim to modify the semantics by removing
the guesswork from these cases. Because the string w can be partitioned into w1 and w2 in
a finite number of ways, we could implement the Then case by exhaustively searching all
possible partitions. The Repeat case could be implemented with a similar strategy. Unfor-
tunately this approach leads to somewhat complex code and a very slow function, so our
matcher will instead process w character by character.

6.2 Constructing the matcher

We proceed in three phases, first removing the existential quantification from the Then case,
then removing it from the Repeat case, and finally modifying the resulting function to ensure
termination. This process parallels our original development of the function.

6.2.1 Then

Consider the subset of the regular expressions having no Or or Repeat operations.
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match : re’ list → char list → bool
match [ ] [ ] = true
match [ ] __ = false
match (ε :: t) w = match t w

match (Charset C :: t) [ ] = false
match (Charset C :: t) (c :: w) = mem c C ∧ match t w

match ((r1 · r2) :: t) w = match (r1 :: r2 :: t) w

Fig. 7 Preliminary matcher

Definition 12
re’ = ε | C | (re’ · re’)

A naive, structurally recursive approach does not work for implementing a matcher for re’
expressions. When matching (r1 · r2) against string w, structural recursion suggests dividing
w into w1 and w2 and matching r1 with w1 and r2 with w2; however, this leads to difficulties:
for re’ expressions one could compute the length of the string that r1 should match and
partition w accordingly, but this approach fails once we add Or expressions, since then
r1 could match strings of many different lengths and we want to avoid checking multiple
partitions of w (the approach taken by Thompson [59]).

Harper [27] solves this problem with a continuation-passing-style (CPS) function that
matches r1 against w and builds a function to match r2 against whatever string the match of
r1 leaves over. This approach preserves structural recursion, and provides a nice example of
CPS. In contrast, we adopt a worklist approach that avoids CPS, but is otherwise similar. By
using a worklist, our proofs can directly inspect all of the arguments to each recursive call,
whereas in the CPS approach, the continuation function hides this data.

A regular expression of type re’ is a tree with εs and character sets at its leaves. A string
matched by such a regular expression can be obtained by the sequence of non-ε leaves in
left-to-right order. To match a regular expression of type re’ we flatten the tree on the fly
into a list of Charsets. As the first element of the list becomes a Charset, and not a concate-
nation, we test the head of the string for inclusion in the Charset and then proceed with the
flattening. Thus we will be matching a list of regular expressions against a string: matching
[r1, r2, . . . , rn] is the same as matching (r1 · r2 · · · · · rn). By using the list representation, we
can limit our operations to its head: if the head is a Then it will be further flattened, if it is
an ε it is ignored, and if it is a Charset, the head of the string will be tested for inclusion.
The tail-recursive function in Fig. 7 implements this algorithm. The intended correctness
property is match [r] w ⇔ sem r w.

Remark 3 Instead of matching a list of expressions, we could flatten Thens with the follow-
ing rule:

match ((r1 · r2) · r3) w = match (r1 · (r2 · r3)) w

However, looking ahead, the size measures in Sect. 6.3 need to distinguish between original
and introduced Thens, so we continue to use the cons representation.

6.2.2 Repeat

Having motivated the basic computational strategy of our algorithm, we now add Or and
Repeat. Dealing with Or is quite simple: (r1 | r2) matches w if either r1 matches w or
r2 matches w. Adding Repeat seems at first equally simple. The identity r∗ = ε | (r · r∗)
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match : re list → char list → bool
match [ ] [ ] = true
match [ ] __ = false
match (ε :: t) w = match t w

match (Charset C :: t) [ ] = false
match (Charset C :: t) (c :: w) = mem c C ∧ match t w

match ((r1 · r2) :: t) w = match (r1 :: r2 :: t) w

match ((r1 | r2) :: t) w = match (r1 :: t) w ∨ match (r2 :: t) w

match (r∗ :: t) w = match t w ∨ match (r :: r∗ :: t) w

Fig. 8 Regular expression matcher as a partial function

provides enough semantic information to directly implement matching for the Repeat case.
The matcher for full regular expressions in Fig. 8 uses this idea. This matcher simply and
directly expresses our intuition regarding how to match a regular expression against a string.
Unfortunately, it is too good to be true: the recursion in the Repeat clause may diverge. One
can easily verify that match loops when matching either ε∗ or (ε | a)∗ against a non-empty
string. Simply put: if match recursively processes (r · r∗) while processing r∗, it may diverge
if r can match the empty string.

We have arrived back at our starting point: the matcher in Fig. 8 fails to terminate on the
same set of inputs as Harper’s CPS function, for the same reason. (Section 6.5.1 discusses
restoration of termination for the CPS function.) Unlike our previous two examples, we shall
eliminate all divergence from match instead of constraining it to terminating cases.

6.2.3 Restoring termination

Our approach to the termination of match is inspired by the depth-first traversal algorithm of
Sect. 3, which tracks nodes as they are visited to ensure that no node is processed multiple
times. Provided that the graph is finite, the algorithm must then terminate.

The non-termination observed in Sect. 6.2.2 comes from a cycle in the graph of recursive
calls, and not from an infinite number of different calls, so we apply the depth-first traversal
methodology and keep a list of the arguments to all the recursive calls. The matcher will
detect calls that have happened previously and prune those branches of the computation.
Because it only needs to detect cycles, and not nodes revisited due to sharing in the graph,
the matcher does not need a global record of the arguments with which the function has
been invoked. A stop-list of the arguments along the path from the start of computation to
the current node suffices.

Scanning the path that the function has taken from the root on each recursive call is a
brute force approach to detecting cycles in its execution. However, three observations allow
a more elegant and efficient implementation.

Observation 1 Every cycle must include the Repeat case since the matcher without this
case is easily proven to terminate. So the path is only checked when entering the Repeat
case, and therefore the matcher only needs to keep a stop-list containing the history of the
entries into the Repeat case.

Observation 2 Whenever the function matches a character from the string, the computation
cannot revisit a node, as none of the recursive calls allow the string to grow. Thus the stop-list
need not track the string argument; the stop-list can simply be reset whenever the function
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matches a character. If the current regular expression is in the stop-list, then the string must
not have changed between the two calls and the function has entered a cycle. We have now
concluded that any cycle can be detected by keeping a stop-list comprising only the first
argument to the Repeat clause, i.e., the stop-list will be a list of (r∗ :: t) entries.

Observation 3 A careful analysis of the Repeat case shows that the tail of the stop-list is
never considered. Suppose that matching r∗ :: t against w causes a cycle such that r∗ :: t

will be matched against w again. The following diagram illustrates the path of recursive
calls (even though only calls starting with a Repeat would be recorded in the list):

(r∗ :: t) → (r :: r∗ :: t) → ·· · → (r∗ :: t)
If r contains no Repeat expressions, only the front of the stop-list will be needed, because
the next Repeat encountered is the cycle. As an example, let r = ε | a.

(ε | a)∗ :: t → (ε | a) :: (ε | a)∗ :: t
→ ε :: (ε | a)∗ :: t
→ (ε | a)∗ :: t

If r does contain a Repeat expression, say p∗, then the sequence can be refined as

r∗ :: t → r :: r∗ :: t
∗→ p∗ :: · · · :: r∗ :: t

→ p :: p∗ :: · · · :: r∗ :: t
∗→ r∗ :: t

and upon reaching the second (r∗ :: t), r∗ will not be the head of the stop-list. However, in

p :: p∗ :: · · · :: r∗ :: t ∗→ r∗ :: t
one transition must drop p (because our function only considers the head of the regular
expression list), before anything following p can be dropped. Thus the function must pass
through p∗ :: ... :: r∗ :: t a second time, and a cycle will be detected there. For a concrete
example, let r = ε∗.

(ε∗)∗ :: t → ε∗ :: (ε∗)∗ :: t
→ ε :: ε∗ :: (ε∗)∗ :: t
→ ε∗ :: (ε∗)∗ :: t

Thus, cycles can be ‘stacked up’ and by examining only the top of the stack, we can
always detect cycles. Therefore, only the top of the stack need be kept. When the matcher
detects a cycle, it immediately returns false. Because all branches in the computation tree
are combined with ∨, a false return value should not affect the computation. Figure 9 gives
the final, correct, algorithm. Notice that this matcher has exactly the same structure as the
matcher of Fig. 8, but has an extra stop argument which is only used to detect cycles.

Remark 4 (Equality) We have left the type of a regular expression’s characters unspecified.
The algorithm places a constraint on this choice: that the characters in a Charset admit an
equality test. Further, cycle detection relies on the ability to test lists of regular expressions
for equality (new_stop = stop), forcing re list to support equality as well. For concreteness,
we have chosen a list representation for Charsets; others would suffice such as a tree-based
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match : re list → char list → re list option → bool
match [ ] [ ] __ = true
match [ ] __ __ = false
match (ε :: t) w stop = match t w stop
match (Charset C :: t) [ ] __ = false
match (Charset C :: t) (c :: w) __ = mem c C ∧ match t w NONE
match ((r1 · r2) :: t) w stop = match (r1 :: r2 :: t) w stop
match ((r1 | r2) :: t) w stop = match (r1 :: t) w stop ∨ match (r2 :: t) w stop
match (r∗ :: t) w stop =

let new_stop = SOME (r∗ :: t) in
if new_stop = stop then false
else match t w stop ∨ match (r :: r∗ :: t) w new_stop

Fig. 9 Regular expression matcher as a total function

set representation. However, the elegant representation of Charset by a predicate (i.e., a
function of type α → bool) does not support the computable equality required by a program-
ming language, although it would be fine in HOL. Thus, moving terminating pure functional
programs into HOL is usually straightforward; in contrast, transporting a HOL function to a
functional programming language can be more problematic, since HOL functions freely rely
on extensional equality. This subtlety is another instance of imprecision in the connection
between functional programming and higher-order logic.

6.3 Formalizing termination

We formally prove termination by exhibiting a wellfounded relation ≺ over the arguments
to match. Part of the ≺ relation corresponds to the finiteness of the graph mentioned in
the previous section and part of it corresponds to the impossibility of a cycle. It will be
instructive to step through the construction of ≺ instead of simply defining it and showing
the proof.

The Charset case recurs with a shorter string. Certainly, when the string shrinks, the
function is closer to termination. The Epsilon and Or cases make the first argument, a regular
expression list, smaller. To take both into account, let ≺ be a lexicographic combination of
the two measures. In the Repeat case, the string size must be more significant, because
the string never gets larger, whereas the regular expression might. Thus, we have (for the
moment) the relation

(r�′,w′, stop′) ≺ (r�,w, stop)

iff
(length w′, size r�′) <lex (length w, size r�)

We have not yet made size precise. The size function of a data structure sometimes counts
all of the constructors. Since match operates on a list of regular expressions, that would mean
counting the :: occurrences, along with Epsilon, Charset, Or, Then and Repeat constructors.
(An alternative approach omits leaf nodes from the count, e.g., the Epsilon constructor would
not be counted for the same reason [ ] is omitted from the length measure on a list; however,
inspection of the Epsilon case of the algorithm reveals the need to count leaf constructors.)
The concatenation case removes one Then but adds two occurrences of cons. Thus the size
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of the regular expression list should count only the regular expression constructors and not
the conses in the list (reminiscent of BFS’s size measure).

size [r1, . . . , rn] = sizere r1 + · · · + sizere rn

It is easy to verify that all but one recursive call shrinks by ≺ with size defined in this
way. The unfolding step in the Repeat clause increases the size of the expression without
shortening the string. Since the current ≺ does not inspect the stop argument, and the stop
argument is the only reason the function always terminates for this case, ≺ should not be
expected to work yet.

The next step is inspired by the termination of β reduction in the simply typed lambda
calculus: β steps may make a term larger, but they reduce the depth of arrows in the types of
sub-terms. Similarly, we hoped that the star height2 of the list of regular expressions would
be reduced. Unfortunately, in going from r∗ :: t to r :: r∗ :: t , the star height of the list cannot
go down. However, the star height of r is less than that of r∗ (by exactly one), so the star
height of the head of the regular expression list goes down. We add this as a third component
to ≺, between the existing two:

(r�′,w′, stop′) ≺ (r�,w, stop) iff
(length w′,headStarHeight r�′, size r�′) <lex

(length w,headStarHeight r�, size r�)

Alas, this prospective ≺ no longer works in the Epsilon case, which takes the tail of
the list. Since we know nothing of the star height of the head of this tail, we cannot prove
that it is not larger. Of course, this attempted ≺ was doomed since it still ignores the stop
argument. We must consider the star height of at least some prefix of the list, but not all of
the list since r :: r∗ :: t has the same star height as r∗ :: t . Now we turn to the stop argument,
for it records where r∗ :: t starts. We thus consider the star heights of the regular expression
list only up to the portion of the list that equals the stop argument (if there is one). Replacing
headStarHeight with frontStarHeight finally yields a working ≺.

Definition 13 (Termination relation for match)

frontStarHeight : re list → re list option → num
frontStarHeight [ ] s� = 0
frontStarHeight (h :: t) s� =
if s� = SOME (h :: t) then 0
else max (starHeight h) (frontStarHeight t s�)

(r�′,w′, stop′) ≺ (r�,w, stop) ⇔
(length w′, frontStarHeight r�′ stop′, size r�′) <lex

(length w, frontStarHeight r� stop, size r�)

The ≺ relation is wellfounded because it is the lexicographic combination of wellfounded
relations (each is the < relation on natural numbers). Given ≺, HOL can prove the termina-
tion of match with a few term rewriting commands. We now consider each case, where we
give the arguments to the call, followed by the corresponding right hand side.

2The star height of a regular expression is the maximum nesting depth of Repeats in the expression; the star
height of a list of regular expressions is then the maximum of the star heights of the elements.
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– (Charset C :: t, c :: w, stop) ⇒ mem c C ∧ match t w NONE
In this case, the string shrinks from c :: w to w.

– (ε :: t,w, stop) ⇒ match t w stop
((r1 · r2) :: t,w, stop) ⇒ match (r1 :: r2 :: t) w stop
((r1 | r2) :: t,w, stop) ⇒ match (r1 :: t) w stop ∨

match (r2 :: t) w stop

In these cases, the string is unchanged, the frontStarHeight stays the same, and the size
of the regular expression list decreases.

– ((r∗ :: t),w, stop) ⇒
let new_stop = SOME (r∗ :: t) in
if new_stop = stop then false
else match t w stop ∨ match (r :: r∗ :: t) w new_stop

In the first recursive call, the string stays the same, but it throws away an r∗, which
looks like it could make frontStarHeight larger if r∗ :: t was the stop argument and there-
fore frontStarHeight was 0. Inspection of the if expression assures us that in that case, the
recursive call is never invoked. Thus frontStarHeight stays the same (or shrinks) and the
regular expression list gets smaller. In the second recursive call frontStarHeight shrinks
because it used to be at least starHeight(r∗) (again, if it was 0, the recursive call would
not be reached) and is now exactly starHeight(r) due to the new stop argument.

6.4 Correctness proof

We now turn to the proof that the terminating match algorithm correctly implements the
semantic specification of regular expressions.

Theorem 12

sem r w = match [r] w NONE

This theorem states that match, when called with appropriate arguments, has the same
result as the semantics. We split the equality into two implications.3

Lemma 3

match � w s ⇒ sem (fromList �) w

Lemma 3 follows easily from the match function’s induction principle.

Lemma 4

sem r w ⇒ match [r] w NONE

Lemma 4 is significantly more difficult. Our attempts to prove it by induction, either on
the definition of sem or on the definition of match, failed because we were unable to find an
appropriately strengthened induction hypothesis (or equivalently, a strong enough invariant).

3 fromList(�) converts a list of regular expressions � into a single regular expression i.e., fromList = foldr (·) ε.
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The case in match that detects a cycle and returns false confounds the local reasoning of
inductive approaches because it returns false at a point that may actually lead to a match if
allowed to continue (recall that the semantic specification places no constraints on evaluation
order). Induction cannot properly account for the stop accumulator because the accumulator
remembers state from before the previous iteration.

To begin a new approach, we note that since all branches in the match function are com-
bined with ∨ operations, the matcher returns true iff one of the leaves returns true. If match-
ing gets cut off prematurely in one branch by the cycle detector, we only need to show
that it will still match along a different path. To construct this path we use an auxiliary data
structure (in the proof only, we do not modify the match function) we call a match sequence.

Intuitively, a match sequence corresponds to a path through the computation tree of the
partial matcher of Fig. 8 ending at a true answer. We formally define a match sequence as a
list where each element is related to the following element by a one-step relation � and the
last element is ([ ], [ ], s) for some s. The relation � (written as an infix operator on triples)
relates arguments of match, (r�,w, stop) to (r�′,w′, stop′) if and only if match r�′ w′ stop′
can be a recursive call from match r� w stop.

Definition 14 (Match sequence)

�: (re list ∗ char list ∗ re list option) →
(re list ∗ char list ∗ re list option) → bool

(ε :: t,w, s) � (t,w, s)

(C :: t, c :: w, s) � (t,w,NONE) if (mem c C)

((r1|r2) :: t,w, s) � (r1 :: t,w, s)

((r1|r2) :: t,w, s) � (r2 :: t,w, s)

((r1 · r2) :: t,w, s) � (r1 :: r2 :: t,w, s)

(r∗ :: t,w, s) � (t,w, s)

(r∗ :: t,w, s) � (r :: r∗ :: t,w,SOME(r∗ :: t))
A match sequence is then a list of linked single steps.

match_seq : (re list ∗ char list ∗ re list option) list → bool

match_seq [ ] match_seq [ ([ ], [ ], s) ]
s1 � s2 match_seq (s2 :: t)

match_seq (s1 :: s2 :: t)

A match sequence serves as a witness bridging the semantics and the matching algorithm.
Match sequences closely correspond to the transitive closure of �, but the list representation
supports typical functional programming over match sequences, unlike the transitive closure
representation.

Three more steps finish the proof of correctness.
Step 1. Given a regular expression and string that match, we first construct a match se-

quence from the semantics. If sem r w, we can build a match sequence that starts with the
desired initial arguments to match.

sem r w ⇒ ∃ms. match_seq (([r],w,NONE) :: ms)

This lemma implies that the partial matcher of Fig. 8 matches whenever the semantics
do (provided it terminates). The proof proceeds by induction on the structure of regu-
lar expressions and hinges upon our ability to sequentially compose match sequences. If
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sem (r1 · r2) (w1 @ w2), then we get two match sequences ms1 and ms2 by inductive hypoth-
esis, the first from sem r1 w1 and the second from sem r2 w2. The needed match sequence
corresponds intuitively to (ms1 @ ms2). As such, this list does not satisfy the definition of
match sequence, but a somewhat more complicated composition function does produce a
match sequence.

We would now like to use the match sequence as a witness for the match function. How-
ever, the witness may contain elements of the form (r∗ :: t, w, SOME(r∗ :: t)). Such ele-
ments cause match to return false although the match sequence continues on. The construc-
tion of match sequences does not easily allow us to preclude generating such elements, so
we remove them in the next step.

Step 2. The match sequence is normalized to remove any useless cycles, as codified by
hasCycle.

Definition 15

hasCycle(ms) = ∃r t w. mem (r∗ :: t, w, SOME(r∗ :: t)) ms

The hasCycle predicate exactly captures the arguments that the match function must
avoid, and is so named because these bad arguments arise from the function entering into a
cycle. The NS function normalizes the match sequence by repeatedly applying the following
transformation. A sequence

· · · � (r�1,w1, stop1)

� (r�2,w2, stop2) � · · · � (r�2,w2,SOME r�2)︸ ︷︷ ︸
cycle

� (r�3,w3, stop3) � · · ·
becomes

· · · � (r�1,w1, stop1) � (r�2,w2, stop2) � (r�3,w3, stop3) � · · ·
Normalization preserves the property of being a match sequence.

match_seq(ms) ⇒ match_seq(NS ms)

A normalized match sequence will not have a cycle because r� is only in the stop argument
when it has already been encountered.

match_seq(ms) ⇒ ¬hasCycle (NS ms)

Step 3. Finally, the normalized match sequence is used to guide the proof that the match
algorithm works. If we have a match sequence ms that starts at (r�,w, s), and if ms has no
cycles, then match r� w s returns true.

⎛
⎝

match_seq ms ∧
hd(ms) = (r�,w, s) ∧
¬hasCycle ms

⎞
⎠ ⇒ match r� w s

Because the match sequence closely follows the structure of the match function, this theorem
is proved with a simple induction on the match sequence.
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6.5 Further challenges

A careful reader might ask if Observation 3 in Sect. 6.2.3 can be used to justify carrying at
most one regular expression as the stop argument, which would allow the final clause of the
definition to be

match (r∗ :: t) w stop =
let new_stop = SOME r in
if new_stop = stop then false
else match t w stop ∨ match (r :: r∗ :: t) w new_stop

Although we conjecture that this alteration of the algorithm is correct, the proof seems
more difficult than the proof just given.

6.5.1 Harper’s matcher

As previously mentioned, our motivation for approaching the regular expression problem
comes from Harper [27]. Figure 10 contains his algorithm translated to our notation. The
matchCPS function uses a continuation function to accumulate the regular expressions that
it needs to match in the future, whereas our match uses an explicit list of regular expressions.
As noted previously, matchCPS terminates only for a certain class of regular expression in-
puts. To formally prove termination of matchCPS, one would need to restrict it to this special
class of regular expressions using the same technique as the finiteness check in DFT. Alter-
nately, matchCPS could be modified to explicitly detect cycles with the following change to
the Repeat case:

matchCPS (r∗) w k =
k w ∨
matchCPS r w (λx.if x = w then false else matchCPS (r∗) x k)

Furthermore, the termination proof of the modified matchCPS is essentially the same as
Harper’s proof for his original function. Both proofs rely mainly on the fact that the contin-
uation k cannot be invoked with a longer string (or an equally-sized string, depending on the
case) than the string argument, w, when the continuation was created.

Although we can intuitively understand that this will hold, it seems difficult to capture
this intuition with a formal termination relation. Interestingly, Xi’s DML system [62] proves
that the following slight modification of the function terminates.

matchCPS (r∗) w k =
k w ∨
matchCPS r w (λx.if length x = length w then false

else matchCPS (r∗) x k)

Our HOL-based approach can easily prove termination when the comparison is
length x ≥ length w but seems to struggle with Xi’s formulation with length x = length w.
Therefore, this style of program provides an interesting point of comparison between a
syntactically based approach, such as Xi’s, and a denotational one, such as ours.

We expect a correctness proof for matchCPS to mirror the correctness proof of match,
the primary difficulty being the false return upon cycle detection.
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matchCPS : re → char list → (char list → bool) → bool
matchCPS ε w k = k w

matchCPS (Charset C) [ ] k = false
matchCPS (Charset C) (c :: w) k = if mem c C then k w else false
matchCPS (r1 · r2) w k = matchCPS r1 w (λw′. matchCPS r2 w′ k)

matchCPS (r1 | r2) w k = matchCPS r1 w k ∨ matchCPS r2 w k

matchCPS (r∗) w k = k w ∨ matchCPS r w (λx. matchCPS (r∗) x k)

Fig. 10 Harper’s matcher

6.6 Matching extended regular expressions

After the lengthy proofs above, it may be reassuring to know that there are also simple
algorithms for regular expression matching. For example, Brzozowksi’s classic paper on
derivatives of regular expressions [8] introduces an elegant method for computing a minimal
deterministic automaton equivalent to a given extended regular expression. To obtain the
extended regular expressions, Brzozowski added intersection and complementation to the
usual operations, thus obtaining all boolean operations on regular expressions. In passing,
the paper also describes a very simple matcher.

In Fig. 11 we provide the new constructors for the type (named rex) and their se-
mantics. Notice that the type rex allows the empty regular expression ∅ to be defined as
¬((c1 | c2 | · · · | cn)

∗), where char = {c1, . . . , cn}. The notion of a regular expression being
nullable, i.e., having ε in its language is also needed.

Definition 16 nullable : rex → bool

nullable (ε) = true
nullable (Charset _) = false
nullable (Not r) = ¬nullable r

nullable (r1 | r2) = nullable r1 ∨ nullable r2

nullable (r1 & r2) = nullable r1 ∧ nullable r2

nullable (r1 · r2) = nullable r1 ∧ nullable r2

nullable (r∗) = true

nullable r ⇔ sem r [ ] .

The derivative4 of a regular expression with respect to a string of characters can be de-
fined by primitive recursion.

Fig. 11 Extended regular
expression syntax and semantics

rex = . . . standard operators
| ¬rex complement (Not)
| (rex & rex) intersection of regular expressions (And)

¬sem r w

sem (¬r) w

sem r1 w sem r2 w

sem (r1 & r2) w

4The name derivative is used because some of the equations for D are formally similar to the rules for
differentiation.
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Definition 17 Derivative : char list → rex → rex

Derivative [ ] r = r

Derivative (h :: t) r = Derivative t (D h r)

D c ε = ∅
D c (Charset C) = if mem c C then ε else ∅
D c (Not r) = Not(D c r)

D c (r1 | r2) = (D c r1 | D c r2)

D c (r1 & r2) = (D c r1 & D c r2)

D c (r1 · r2) = ((D c r1) · r2) | (if nullable r1 then D c r2 else ∅)

D c (r∗) = (D c r) · r∗

Intuitively, D c r represents the set of strings that r can match after it has matched c. The
essential property of D is easily proved by induction on the structure of rex:

sem (D c r) w = sem r (c :: w)

From this it is a quick step to the correctness of Derivative:

sem r w ⇔ nullable(Derivative w r)

So a matcher can be built that takes the derivative of r with respect to the given string w and
then checks to see if the resulting regular expression is nullable.

This algorithm shows that there are, at least, two fundamentally different ways to
match regular expressions containing occurrences of Kleene star. Both approaches are ulti-
mately based on the identity r∗ = ε | r · r∗. However, the approach taken by match and its
associates—although natural—leads to a subtle termination problem, and relatively formi-
dable correctness proofs. In contrast, the derivative-based matcher has a trivial termination
problem and an easy correctness proof.

7 Related work

This paper touches on four areas of research: total functional languages, functional pro-
gramming in proof assistants, termination proofs, and implementations of regular expression
matching in functional languages.

7.1 Total functional languages

Perhaps the work closest to ours in the field of functional programming is the notion of
Strong Functional Programming [60], which emphasizes total functions; since higher-order
logics are based on total functions, they can be seen as environments for strong functional
programming.

Charity [10] is a category-theory based programming language which builds on ideas
in Hagino’s thesis [26]. Charity is explicitly founded on folds and unfolds, so its syntax
disallows general recursion.

The Cayenne system [2] incorporates a powerful (undecidable) type system so that func-
tional programs may be specified by their types. Unlike HOL, it does not require termination
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proofs for recursive definitions. As the Cayenne documentation notes, this makes the type
system unusable as a proof system. However, in principle, enough proof power is available
to prove program termination, should one wish to do so.

7.2 Functional programming in proof assistants

Formalization in higher-order logic typically uses a mixture of recursive functions, recursive
datatypes, inductively defined relations, and other mathematics as required. Thus users of
proof assistants such as ACL2, HOL, Isabelle/HOL, PVS, Nuprl, Coq, LEGO, etc. write
formal pure functional programs quite often in the course of building formalizations. Indeed,
the original LCF system, for which ML was invented, was aimed at verifying functional
programs using Scott’s PPλ logic [22]. Similarly, the NQTHM system of Boyer and Moore
[7] was also originally aimed at automating induction proofs of pure LISP programs.

ACL2 superseded NQTHM. It provides a healthy subset of Common Lisp to program
in and supports a close connection between the object language of the ACL2 logic and the
metalanguage in which the implementation is coded (Common Lisp). For example, object-
language functions can be compiled and executed as native code. This facility has been used
to advantage in large hardware and software formalizations using ACL2 [24, 25]: formal
descriptions of the system under investigation can be executed at ‘near-C’ speeds, and can
have theorems proved about them as well. PVS, HOL-4, and Isabelle/HOL [3, 53, 57] also
provide ground execution facilities based on the execution engine supplied by the metalan-
guage (Lisp for PVS, SML for HOL-4 and Isabelle/HOL). Recently, support for testing has
been added to higher-order logic environments [4, 13]. As well, some support for polytypism
is appearing [57]. Thus it can be seen that interactive proof environments are increasingly
taking on features that appear in functional programming environments.

Kreitz [33] has developed a lightweight embedding of a subset of OCAML, plus libraries,
in Nuprl in order to import Ensemble [38] programs into Nuprl so that the formal reasoning
power of the proof system can be applied to build and optimize network stacks. The embed-
ding uses a state-passing style in order to interpret ref-cells, which are used in the imported
Ensemble code. Other techniques for dealing with impure aspects of functional languages
may be found in the thesis work of Filliâtre [15] and in Krstić and Matthews [34].

7.3 Termination

The ACL2 system attempts to synthesize correct termination relations and automatically
prove termination for functions being defined, as do HOL-4 and Isabelle/HOL. However, in
any system complex definitions can require an explicitly given termination relation and the
termination proof can require substantial guidance. This is an impediment, for it requires
prospective users to learn termination notions, the concept of measure functions at least.
Even worse, termination problems can be arbitrarily hard, and it follows that users would
ultimately be forced to also become knowledgeable about theorem proving. Therefore, more
advanced support for termination automation is needed to push onerous termination require-
ments further away from an average user. Related work in Type Theory frameworks includes
Abel and Altenkirch [1] as well as Xi [62]. Some of the most advanced work on termination
for functional programs comes from term rewriting systems [18, 19]. The recent approach
to automatically proving termination of Lee et al. [35] is also promising, and has been in-
corporated into a termination tool for ACL2 definitions [39].
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7.4 Regular expression matchers

Regular expression matchers are, of course, quite well investigated. The standard way to
match regular expressions translates them to non-deterministic finite state automata and
performs on-the-fly reachability analysis [58]. Nipkow [45] proves the correctness of the
(standard) translations of regular expressions to non-deterministic state machines, and then
to deterministic machines as part of a formal development of a lexer. In [16] the matching
problem is approached from the perspective of using matches to produce structured data.

Brzozowski’s work, as developed by Berry and Sethi [5], has been incorporated into a
regular-expression matching library in OCAML [40]. Derivative-based matchers are also
finding use in XML schema validation [61] and lexer generators. For example, [49] find
that the derivative-based approach performs very well in a lexer generator for the DrScheme
environment.

The earliest CPS matcher we are aware of appears in a paper by Danvy and Filinski [11].
That program was incorrect, for the same reason that Harper’s first matcher failed (it lacked
a progress test for the Kleene star). In later work, Danvy and Nielsen [12] present informal
correctness proofs of a CPS matcher and a first-order matcher.

Recent applications of regular expressions in functional programming include elegant
solutions to classic puzzles [42] and pattern-matching for XML [29].

8 Discussion

The depth-first traversal, unfold, While-loop, and regular expression examples each illus-
trates different aspects of formalizing functional programs. The DFT program was adapted
to higher-order logic by having a (non-computable) user-defined constraint included in the
function specification. The unfold recursion scheme had its termination conditions automat-
ically computed by the system. Instantiating the unfold to a particular program, breadth-first
search (BFS), required instantiating abstract termination conditions and solving the ensuing
concrete termination conditions. The regular expression matcher match illustrates another
approach to partiality: sometimes a computable check for divergence can be incorporated
into the algorithm itself. Finally, in some cases, it may be possible to avoid termination is-
sues by defining functions with an unrestricted WHILE loop, although reasoning about such
functions still requires termination.

Because higher-order logic has a set-theoretic semantics, we used only ordinary mathe-
matics in the termination and correctness proofs for these examples; nowhere did we need to
appeal to domain-theoretic constructions, or operational semantics. Additionally, the HOL-4
proof system supported the mechanical verification of the proofs, ensuring their validity.

This paper’s approach to functional program verification relies on the similarities be-
tween programs in an ML-like language and terms in higher-order logic. Difficulties arise
from the differences between the two settings, primarily from higher-order logic’s inability
to handle partial functions. Our examples illustrate how to overcome this difficulty in practi-
cal situations. Indeed, discovering the termination relations themselves was the most difficult
part of embedding the programs into HOL, yet termination proof is an inherent challenge
in verifying program correctness in any setting. Thus, the true overhead in embedding func-
tional programs in HOL is quite small compared to the benefits of mechanically-checkable
mathematical reasoning about them.

What about our vision of using higher-order logic theorem provers as functional pro-
gramming environments? The examples we have discussed, along with the related work,
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show that pure functional programming is starting to be well-supported in such systems.
However, that conception of functional programming is too restrictive for many applica-
tions. Programs that use imperative features, such as exceptions, reference cells, and I/O, do
not usually correspond as closely to HOL terms as our examples. Although the usual trans-
formations, e.g., continuation-passing and store-passing styles, can translate many impera-
tive programs into purely applicative ones, these are global transformations and so increase
the differences between the program as verified and the program as executed. Furthermore,
the meaning of an imperative program often depends upon a defined ordering of evaluation,
but logic has no notion of evaluation ordering.

Given the above problems with connecting higher-order logic directly with imperative
features, a pure functional language, such as Haskell, might appear to mesh more easily with
HOL. Yet Haskell diverges from HOL in another important aspect: its recursive datatypes
describe potentially infinite structures whereas the inductive datatypes commonly used in
HOL describe only finite structures. The HOLCF extension of Isabelle/HOL formalizes
domain theory and also provides a datatype package that supports the definition of lazy
datatypes [44]. However, what if one wants to avoid domains? A non-domain-theoretic the-
ory of lazy lists has been built in HOL by Michael Norrish, based on work by John Matthews
[41]. These lazy lists can faithfully mirror Haskell’s lists, and the usual operations on lazy
lists can also be defined. The remaining challenge is automation: at present it seems that
the only proof system automating the definition of such co-datatypes and associated co-
recursive functions is Coq [20].

Formalizing programs in a logic of total functions has impressed upon us the virtue of
totality. Various factors drive programmers when writing code: first and foremost there is,
or ought to be, a drive for correctness, but also other considerations are important, such
as maintainability, speed, and efficient use of resources. To this list we would like to add
totality, when it is attainable. Hunting down and eliminating partiality from programs—
whether or not they will ever be verified—is simply good programming practice and can
even, as in the match example, lead to the invention of interesting new programs.

There is a deep, continuously evolving, connection between higher-order logic and func-
tional programming. This must be so, since they are both rooted in simple type theory.
Termination is of great importance in this connection: it is the price a functional program
pays to enter the logic so that simple mathematics can be used to reason about it. We think
that higher-order logic proof systems have the potential to be fruitful environments for func-
tional programming; in particular, they embody the notion of semantically-based program-
ming environments. As we have seen, that allows formal, mechanically checked proofs of
program termination and correctness. However, much more should be possible since pro-
gram transformation, partial evaluation, and even compilation [23, 37] can be viewed as
theorem proving procedures.

Acknowledgements Matthew Flatt, Michael Norrish, Alexander Krauss, and Steven Obua scrutinized
drafts of the paper and made useful comments. Mike Gordon pointed us to Harper’s algorithm. Thanks also
to Olivier Danvy for pointers to CPS regular expression matchers.
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