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Abstract

The paper proposes a characterization of the structure of derivatives, and proves several
properties of derivatives. The above work can be used to solve an issue in using Berry and
Sethi’s result, i. e., finding the unique representatives of derivatives.
keywords: Regular expressions, derivatives, finite automata.

1 Introduction

The construction of finite automata from regular expressions is an important issue and has been
studied for a long time. An elegant construction of deterministic finite automata, based on the
derivatives of regular expressions, was proposed by Brzozowski [4]. Among the well-known con-
structions of ϵ-free non-deterministic finite automata (NFA), the position automaton was proposed
separately by Glushkov [7] and McNaughton and Yamada [9]. Berry and Sethi [2] showed that
the position automaton has a natural connection with the notion of derivative [4], and related the
above two approaches.

The paper continues the investigation of derivatives along the line of Berry and Sethi. It
gives a characterization of the structure of derivatives of an expression E with distinct symbols,
showing that each non-null derivative of E is composed of one or more identical expressions (called
repeating terms), which implies Berry and Sethi’s result [2]. The paper proves several facts,
including computation of repeating terms, and several properties of repeating terms.

The above theoretical work solves an issue in using Berry and Sethi’s result. Berry and Sethi
showed that an arbitrary derivative in a certain class of derivatives of an expression E with distinct
symbols corresponds to a state of the position automaton of E. This means that the derivatives
corresponding to a state are not unique. In many cases, however, one needs a unique representative
for that class of derivatives to correspond to a state. This, however, turns out to be not trivial as
is discussed in Section 4. By the work on derivatives in the paper, the representatives are obtained
immediately.

Section 2 introduces notations and notions required in the paper. Section 3 proposes a char-
acterization of derivatives and several properties of derivatives. Section 4 contains concluding
remarks.

∗Work supported by the National Natural Science Foundation of China under Grants 60573013, 60721061.



2 Preliminaries

We assume the reader to be familiar with basic regular language and automata theory, e.g., from
[11], so that we introduce here only some notations and notions used later in the paper.

2.1 Regular expressions and finite automata

Let Σ be an alphabet of symbols. The set of all words over Σ is denoted by Σ∗. The empty word
is denoted ε. A regular expression over Σ is ∅, ε or a ∈ Σ, or is obtained from these by applying
the following rules finitely many times: the union E1 + E2, the concatenation E1E2, and the star
E∗

1 for two regular expressions E1 and E2. For a regular expression E, the language specified by
E is denoted by L(E). The number of symbol occurrences in E, or the alphabetic width of E, is
denoted ∥E∥. The symbols that occur in E, which is the smallest alphabet of E, is denoted by
ΣE .

Two regular expressions E1 and E2 which reduce to the same expression using associativity,
commutativity, and idempotence of + are called similar [4], which is denoted E1 ∼aci E2.

We assume that the rules E + ∅ = ∅+E = E,E∅ = ∅E = ∅, and Eε = εE = E (∅ε-rules) hold
in the paper.

For a regular expression E over Σ, we define the following functions:

first(E) = {a | aw ∈ L(E), a ∈ Σ, w ∈ Σ∗}
last(E) = {a | wa ∈ L(E), w ∈ Σ∗, a ∈ Σ}
follow(E, a) = {b | uabv ∈ L(E), u, v ∈ Σ∗, b ∈ Σ}, for a ∈ Σ

One can easily write equivalent inductive definitions of the above functions on E, which is
omitted here.

For a regular expression we can mark symbols with subscripts so that in the marked expression
each marked symbol occurs only once. For example (a1 + b1)

∗a2b2(a3 + b3) is a marking of the
expression (a + b)∗ab(a + b). A marking of an expression E is denoted by E. The same notation

will also be used for dropping of subscripts from the marked symbols: E = E. We extend the
notation for words and automata in the obvious way. It will be clear from the context whether ·
adds or drops subscripts.

In this way the subscribed symbols are called positions of the expression. In the literature,
positions are usually defined as the subscripts. This definition of positions, however, has draw-
backs because it separate subscripts from symbols. When both subscripts and related symbols
are required, presentations are awkward. For example, the definitions in [8] for the first, last,
and follow functions are actually not rigorous. On the other hand, rigorous definitions will be
very tedious in this manner. Here we use symbols in ΣE as the positions, which makes related
definitions concise, and is more flexible (subscripts can be same, as in the above example).

A finite automaton is a quintuple M = (Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is
the alphabet, δ ⊆ Q×Σ×Q is the transition mapping, q0 is the start state, and F ⊆ Q is the set
of accepting states. Denote the language accepted by the automaton M by L(M).

Let≡⊆ Q×Q be an equivalence relation. For q ∈ Q, [q]≡ denotes the equivalence class of q w.r.t.
≡ and Q/≡ denotes the quotient set Q/≡ = {[q]≡ | q ∈ Q}. We say that ≡ is right invariant w.r.t.
M iff (1) ≡⊆ (Q− F )2 ∪ F 2 and (2) for any p, q ∈ Q, a ∈ Σ, if p ≡ q, then δ(p, a)/≡ = δ(q, a)/≡.
If ≡ is right invariant, the quotient automaton M/≡ is M/≡ = (Q/≡,Σ, δ≡, [q0]≡, F/≡), where
δ≡ = {([p]≡, a, [q]≡) | (p, a, q) ∈ δ}. One can prove that L(M/≡) = L(M).

2.2 Derivatives

Given a language L and a finite word w, the derivative (or left quotient set) of L w. r. t. w is
w−1(L) = {u |wu ∈ L}. It has L = wL(w−1(L)).

Derivatives of regular expressions were introduced by Brzozowski [4].
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Definition 1 (Brzozowski [4]) Given a regular expression E and a symbol a, the derivative a−1(E)
of E with respect to a is defined inductively as follows:

a−1(∅) = a−1(ε) = ∅

a−1(b) =

{
ε, if b = a
∅, otherwise

a−1(F +G) = a−1(F ) + a−1(G)

a−1(FG) =

{
a−1(F )G+ a−1(G), if ε ∈ L(F )
a−1(F )G, otherwise

a−1(F ∗) = a−1(F )F ∗

Derivative with respective to a word is computed by ε−1(E) = E, (wa)−1(E) = a−1(w−1(E)).
It is known that L(w−1(E)) = w−1(L(E)). Brzozowski showed that an expression E has a

finite number of dissimiliar derivatives [4], which were used as states to construct a deterministic
finite automaton of E.

Partial derivatives were introduced by Antimirov [1].

Definition 2 (Antimirov [1]) Given a regular expression E and a symbol a, the set of partial
derivatives ∂a(E) of E with respect to a is defined as follows:

∂a(∅) = ∂a(ε) = ∅

∂a(b) =

{
{ε}, if b = a
∅, otherwise

∂a(F +G) = ∂a(F ) ∪ ∂a(G)

∂a(FG) =

{
∂a(F )G ∪ ∂a(G), if ε ∈ L(F )
∂a(F )G, otherwise

∂a(F
∗) = ∂a(F )F ∗

Partial derivative with respect to a word is computed by ∂ε(E) = {E}, ∂wa(E) =
∪

p∈∂w(E) ∂a(p).

The language denoted by ∂w(E) is L(∂w(E)) =
∪

p∈∂w(E) L(p)
1.

It is proved in [1] that the cardinality of the set PD(E) = ∪w∈Σ∗∂w(E) of all partial derivatives
of a regular expression E is less than or equal to ∥E∥+ 1.

2.3 Position and equation automata

The position automaton was introduced independently by Glushkov [7] and McNaughton and
Yamada [9].

Definition 3 The position automaton of E is

Mpos(E) = (Qpos,Σ, δpos, qE , Fpos),

where
1. Qpos = ΣE ∪ {qE}, qE is a new state not in ΣE

2. δpos(qE , a) = {x | x ∈ first(E), x = a} for a ∈ Σ
3. δpos(x, a) = {y | y ∈ follow(E, x), y = a} for x ∈ ΣE and a ∈ Σ

4. Fpos =

{
last(E) ∪ {qE}, if ε ∈ L(E),
last(E), otherwise

As shown by Glushkov [7], McNaughton and Yamada [9], L(Mpos(E)) = L(E). Mpos(E) can
be computed in quadratic time [3, 6, 10].

The equation automaton [1] is constructed by partial derivatives.

1In the definition RF = {EF |E ∈ R} for a set R of regular expressions and a regular expression F .
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Definition 4 The equation automaton of a regular expression E is

Mpd(E) = (PD(E),Σ, δpd, E, {q ∈ PD(E) | ε ∈ L(q)}),

where δpd(q, a) = ∂a(q), for any q ∈ PD(E), a ∈ Σ.

It is proved [?] that Mpd(E) is a quotient of Mpos(E).

3 Regular expressions with distinct symbols

From Brzozowski [4] and Berry and Sethi [2] the following two facts are easily derived.

Proposition 1 Let all symbols in E be distinct. Given x ∈ ΣE, for all words w,
1. If E = E1 + E2, then

(wx)−1(E1 + E2) =


(wx)−1(E1) if x ∈ ΣE1

, w ∈ Σ∗
E1

(wx)−1(E2) if x ∈ ΣE2 , w ∈ Σ∗
E2

∅ otherwise
(1)

2. If E = E1E2, then

(wx)−1(E1E2) =


(wx)−1(E1)E2 if x ∈ ΣE1 , w ∈ Σ∗

E1

(vx)−1(E2) if w = uv, ε ∈ L(u−1(E1)), x ∈ ΣE2 ,
u ∈ Σ∗

E1
, v ∈ Σ∗

E2

∅ otherwise

(2)

Proof. 1. It is directly from Berry and Sethi [2].
2. From Berry and Sethi [2] it is already known

(wx)−1(E1E2) =

{
(wx)−1(E1)E2 if x ∈ ΣE1 , w ∈ Σ∗

E1
(a)

Σw=uv,ε∈L(u−1(E1))(vx)
−1(E2) otherwise (b)

Let us consider (b) and set wx = a1a2 . . . at. For a concrete sequence of a1 . . . at, a subterm
(ar+1 . . . at)

−1(E2) in (b) can exist only if a1, . . . , ar ∈ E1 and ar+1, . . . , at ∈ E2. Since an, 1 ≤
n ≤ t is either in E1 or in E2, there is at most one such subterm in (b). If such condition is not
satisfied, then (wx)−1(E1E2) = ∅. 2

Proposition 2 Given x ∈ ΣE, for all words w, (wx)−1(E∗) is equivalent to a sum of subterms
chosen from the set {(vx)−1(E)E∗ |wx = uvx}.

Proof. It is directly from Brzozowski [4] or Berry and Sethi [2]. 2

Berry and Sethi [2] proved that

Proposition 3 (Berry and Sethi [2]) Let all symbols in E be distinct. Given a fixed x ∈ ΣE,
(wx)−1(E) is either ∅ or unique modulo ∼aci for all words w.

This is a very important property which was used to connect the class of non-null (wx)−1(E)
to the state x of Mpos(E) for an expression E.

We further investigate the structure of non-null (wx)−1(E) here.

Theorem 1 Let all symbols in E be distinct. Given a fixed x ∈ ΣE, for all words w, each non-null
(wx)−1(E) must be of one of the following forms: F or F + . . .+F , where F is a non-null regular
expression called the repeating term of (wx)−1(E) which does not contain + at the top level.
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Proof. We prove it by induction on the structure of E. If E = ∅ or ε, then no symbol is in E,
and no non-null derivative exists. Thus no repeating term exists. If E = a, a ∈ ΣE , then the only
symbol in a is a, and a−1(a) = ε, (wx)−1(E) = ∅ for w ̸= ε or x ̸= a. Thus ε is the repeating term
of a−1(a), in which no + appears.

1. E = E1 + E2. By equation (1), a non-null (wx)−1(E) is either (wx)−1(E1) or (wx)
−1(E2).

Suppose the first, then (wx)−1(E1) is non-null, and the repeating term of (wx)−1(E) is the same
as (wx)−1(E1). The inductive hypothesis applies to it, and no top-level + will be added. The
same is for the second.

2. E = E1E2. By equation (2), a non-null (wx)−1(E) is either (wx)−1(E1)E2 or (vx)−1(E2) for
some v such that w = uv. If (wx)−1(E) = (wx)−1(E1)E2, by the inductive hypothesis, (wx)−1(E1)
is F or F + . . . F where F does not contain + at the top level. Then FE2 is the repeating term
of (wx)−1(E), which does not contain top-level +. If (wx)−1(E) = (wx)−1(E2), the proof is the
same as in the above case 1.

3. E = E∗
1 . From Proposition 2 it is known that (wx)−1(E) is the sum of subterms of the

form (vx)−1(E1)E
∗
1 where wx = uvx. From the inductive hypothesis, each non-null (vx)−1(E1)

is F or F + . . . + F where F does not contain + at the top level, so (vx)−1(E1)E
∗
1 is FE∗

1 or
FE∗

1 + . . . + FE∗
1 . If (wx)−1(E) is non-null, it is a sum of one or more FE∗

1 , which does not
contain + at the top level. 2

Therefore each (wx)−1(E) is either ∅ or a sum of one or more repeating terms of (wx)−1(E).

Example 1 Let E = (a+ b)(a∗ + ba∗ + b∗)∗, then
E = (a1 + b2)(a

∗
3 + b4a

∗
5 + b∗6)

∗,
a−1
1 (E) = (a∗3 + b4a

∗
5 + b∗6)

∗ = τ1,
(a1a3)

−1(E) = a−1
3 (τ1) = a∗3τ1 = τ2,

(a1a3a3)
−1(E) = a−1

3 (τ2) = τ2 + τ2,
. . .

The repeating term for (wa1)
−1(E) is τ1, the repeating term for (wa3)

−1(E) is τ2.

Denote by rtx(E) the repeating term of (wx)−1(E). From Theorem 1 we have

Corollary 1 Let all symbols in E be distinct. If (wx)−1(E) is non-null, then (wx)−1(E) ∼aci

rtx(E).

Corollary 1 is a more precise version of Berry and Sethi’s result (i. e., Propostion 3), that is,
Theorem 1 implies Berry and Sethi’s result, but not vice versa.

Below we consider the question: For each x ∈ ΣE , whether there is a non-null (wx)−1(E)
containing one rtx(E), that is, rtx(E) is a derivative of E. The answer is positive. We show it by
a construction, the first appearance.

Let all symbols in E be distinct. We associate symbols in ΣE with an order. This is achieved
by setting up a one-to-one function ind : ΣE → {1, . . . , ∥E∥}: ind(x) = d if x is the dth occurrence
of symbols from left to right in E. For x, y ∈ ΣE , define x < y iff ind(x) < ind(y). For any
words w1, w2 ∈ Σ∗

E , define the graded lexicographical order by w1 ≺ w2 if either |w1| < |w2|, or
|w1| = |w2| and the condition is satisfied: let w1 = x1 . . . xn, w2 = x′

1 . . . x
′
n, there exists an integer

k, 1 ≤ k ≤ n, such that xt = x′
t for t = 1, . . . , k − 1, and xk < x′

k. A non-null (wx)−1(E) is
called the first appearance of derivative of E w.r.t. x, denoted Fx(E), if for any other non-null
(w1x)

−1(E) it has w ≺ w1. From Berry and Sethi [2] a non-null (wx)−1(E) exists for all x ∈ ΣE ,
which ensures the existence of Fx(E).

Example 2 For E = (a+ b)(a∗+ ba∗+ b∗)∗, E = (a1+ b2)(a
∗
3+ b4a

∗
5+ b∗6)

∗. The first appearances
of derivatives w.r.t. symbols in E, in which the symbols are underlined, are computed as follows.
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a1
−1(E) = (a∗3 + b4a

∗
5 + b∗6)

∗ = τ1, b2
−1(E) = (a∗3 + b4a

∗
5 + b∗6)

∗ = τ1,
(a1a3)

−1(E) = a−1
3 (τ1) = a∗3τ1 = τ2, (a1b4)

−1(E) = b−1
4 (τ1) = a∗5τ1 = τ3,

(a1b6)
−1(E) = b−1

6 (τ1) = b∗6τ1 = τ4, (b2a3)
−1(E) = a−1

3 (τ1) = τ2,
(b2b4)

−1(E) = b−1
4 (τ1) = τ3, (b2b6)

−1(E) = b−1
6 (τ1) = τ4,

(a1a3a3)
−1(E) = a−1

3 (τ2) = τ2 + τ2, (a1a3b4)
−1(E) = b−1

4 (τ2) = τ3,
(a1a3b6)

−1(E) = b−1
6 (τ2) = τ4, (a1b4a3)

−1(E) = a−1
3 (τ3) = τ2,

(a1b4b4)
−1(E) = b−1

4 (τ3) = τ3, (a1b4a5)
−1(E) = a−1

5 (τ3) = τ3.

From Example 2 we can see that no first appearance has duplicated repeating terms while other
derivatives may have. Generally we have

Proposition 4 Let all symbols in E be distinct. Given a fixed x ∈ ΣE, the first appearance Fx(E)
consists of only one repeating term.

Proof. We prove it by induction on the structure of E. The cases for E = ε, ∅, x, x ∈ ΣE are
obvious. Suppose wx is such that Fx(E) is (wx)−1(E).

1. E = E1 + E2. Consider equation (1). If (wx)−1(E) = (wx)−1(E1), we show that Fx(E1) is
(wx)−1(E1). Otherwise there is a word w1 ≺ w such that (w1x)

−1(E1) ̸= ∅. So (w1x)
−1(E) ̸= ∅,

which is a contradiction. Therefore (wx)−1(E1) is the first appearance and the inductive hypothesis
applies to it. The same is for (wx)−1(E) = (wx)−1(E2).

2. E = E1E2. Consider equation (2). If (wx)−1(E) = (wx)−1(E1)E2, similarly as above we
can prove that (wx)−1(E1) is the first appearance, and the inductive hypothesis applies to it. If
(wx)−1(E) = (v1x)

−1(E2) for some v1 such that wx = uv1x, we show that this subterm is Fx(E2).
Suppose the converse. Then there is a word v ≺ v1 such that (vx)−1(E2) ̸= ∅. So it is easy to see
that (uvx)−1(E) ̸= ∅. But uvx ≺ wx, which is a contradiction. Therefore (v1x)

−1(E2) is the first
appearance and the inductive hypothesis applies to it.

3. E = E∗
1 . From Proposition 2 (wx)−1(E) is the sum of subterms of the form (vx)−1(E1)E

∗
1

where wx = uvx. We show that when (wx)−1(E) is Fx(E) the above becomes (wx)−1(E) =
(wx)−1(E1)E

∗
1 . Suppose (wx)

−1(E) contains another non-null subterm (vx)−1(E1)E
∗
1 , w = uv,w ̸=

v. Then (vx)−1(E) is not ∅ since it contains (vx)−1(E1)E
∗
1 as a summand. However v ≺ w, which

is a contradiction. Similarly we can prove that (wx)−1(E1) is Fx(E1), so the inductive hypothesis
applies to it. 2

The choice of the order is not significant. Actually for different ind, the resulting Fx(E) is the
same.

Proposition 5 Let all symbols in E be distinct. Given any words w1, w2 ∈ Σ∗
E and x ∈ ΣE,

if |w1| = |w2| and (w1x)
−1(E), (w2x)

−1(E) ̸= ∅, and there is no w, such that |w| < |w1| and
(wx)−1(E) ̸= ∅, then (w1x)

−1(E) = (w2x)
−1(E).

Proof. We prove it by induction on the structure of E. If E = ∅ or ε, no non-null derivative exists.
If E = a for a symbol a, the only non-null derivative is a−1(E), in which case w1 = w2 = ε and
x = a. So (w1x)

−1(E) = (w2x)
−1(E).

1. E = E1 + E2. If x ∈ ΣE1 , from equation (1), we have (w1x)
−1(E) = (w1x)

−1(E1) and
(w2x)

−1(E) = (w2x)
−1(E1). We can see that there is no w, such that |w| < |w1| and (wx)−1(E1) ̸=

∅. Otherwise (wx)−1(E) = (wx)−1(E1) ̸= ∅ which is a contradiction. So the inductive hypothesis
applies to E1. The proof is the same for x ∈ ΣE2 .

2. E = E1E2. If x ∈ ΣE1 , from equation (2), we have (w1x)
−1(E) = (w1x)

−1(E1)E2 and
(w2x)

−1(E) = (w2x)
−1(E1)E2. Similar as in case 1 we can prove (w1x)

−1(E1) = (w2x)
−1(E1).

Thus (w1x)
−1(E) = (w2x)

−1(E).
If x ∈ ΣE2 , from equation (2), we have (w1x)

−1(E) = (v1x)
−1(E2) and (w2x)

−1(E) =
(v2x)

−1(E2) for some v1, v2 such that w1 = u1v1, w2 = u2v2, ε ∈ L(u−1
1 (E1)), ε ∈ L(u−1

2 (E1)), u1, u2 ∈
Σ∗

E1
, v1, v2 ∈ Σ∗

E2
. We show |v1| = |v2|. Suppose the converse. Without losing generality suppose
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|v1| < |v2|. Notice |w1| = |w2|, then |u1| > |u2|. Since ε ∈ L(u−1
2 (E1)), u2 ∈ Σ∗

E1
, v1 ∈ Σ∗

E2
, by

equation (2) (u2v1x)
−1(E) = (u2v1x)

−1(E2) ̸= ∅. But |u2v1| < |w1| which is a contradiction. So
|v1| = |v2| and the inductive hypothesis applies to E2.

3. E = E∗
1 . Similar as the proof of case 3 in the proof of Proposition 4, we can prove

(w1x)
−1(E) = (w1x)

−1(E1)E
∗
1 and (w2x)

−1(E) = (w2x)
−1(E1)E

∗
1 . Then by the inductive hy-

pothesis (w1x)
−1(E1) = (w2x)

−1(E1), thus (w1x)
−1(E) = (w2x)

−1(E). 2

In the above proposition it is easy to see that we have (w1x)
−1(E) = (w2x)

−1(E) = Fx(E).
Therefore Fx(E) is the same for varying ind.

Then

Proposition 6 Let all symbols in E be distinct. There exists a word w ∈ Σ∗
E for each x ∈ ΣE,

such that (wx)−1(E) = rtx(E).

Proof. The first appearance Fx(E) is one such (wx)−1(E) satisfying Fx(E) = rtx(E). 2

Thus repeating terms are derivatives of E, and any non-null derivative of E is built from one
of them. Next we present other properties for rtx(E).

Proposition 7 Let all symbols in E be distinct. For each x ∈ ΣE,
(1) rtx(E) exists, and rtx(E) ̸= ∅.
(2) rtx(E) is unique.

Proof. (1) From Berry and Sethi [2] it is known that a non-null (wx)−1(E) exists for each x ∈ ΣE .
Then from Theorem 1 rtx(E) exists and rtx(E) ̸= ∅.

(2) Suppose rtx(E) is not unique. That is, for some x ∈ ΣE , there are two repeating terms F
and F1, such that F ̸= F1. From Theorem 1 and Proposition 6 it implies F = F1 + . . . + F1 and
F1 = F + . . .+ F , which is a contradiction. Therefore rtx(E) is unique. 2

If E = ∅ or ε, no symbol is in E, so rtx(E) is undefined. We let rtx(∅) = rtx(ε) = ∅ for any
x ∈ ΣE for the sake of completeness. Then

Proposition 8 Let all symbols in E be distinct. For each x ∈ ΣE, rtx(E) can be computed
inductively:

rtx(∅) = ∅
rtx(ε) = ∅
rta(a) = ε

rtx(F +G) =

{
rtx(F ) if x ∈ ΣF

rtx(G) if x ∈ ΣG

rtx(FG) =

{
rtx(F )G if x ∈ ΣF

rtx(G) if x ∈ ΣG

rtx(F
∗) = rtx(F )F ∗

Proof. rtx(∅) and rtx(ε) is get directly.
The other cases can be get from the proof of Theorem 1. 2

Example 3 For E = (a+ b)(a∗ + ba∗ + b∗)∗, E = (a1 + b2)(a
∗
3 + b4a

∗
5 + b∗6)

∗.
rta1(E) = rta1(a1 + b2)(a

∗
3 + b4a

∗
5 + b∗6)

∗ = rta1(a1)(a
∗
3 + b4a

∗
5 + b∗6)

∗ = ε(a∗3 + b4a
∗
5 + b∗6)

∗ =
(a∗3 + b4a

∗
5 + b∗6)

∗ = τ1,
rtb2(E) = ε(a∗3 + b4a

∗
5 + b∗6)

∗ = τ1,
rta3(E) = rta3(a

∗
3+b4a

∗
5+b∗6)

∗ = rta3(a
∗
3+b4a

∗
5+b∗6)τ1 = rta3(a

∗
3)τ1 = rta3(a3)a

∗
3τ1 = a∗3τ1 = τ2,

rtb4(E) = rtb4(a
∗
3 + b4a

∗
5 + b∗6)

∗ = rtb4(b4a
∗
5)τ1 = a∗5τ1 = τ3,

rta5(E) = rta5(a
∗
3 + b4a

∗
5 + b∗6)

∗ = rta5(b4a
∗
5)τ1 = a∗5τ1 = τ3, and

rtb6(E) = rtb6(a
∗
3 + b4a

∗
5 + b∗6)

∗ = rtb6(b
∗
6)τ1 = b∗6τ1 = τ4.
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Now we have two approaches to compute rtx(E), one is by computing Fx(E), the other is
by Proposition 8. Of course the result is the same, but usually computation by Proposition 8 is
simpler.

The following lemma will be used in the proof of Proposition 9.

Lemma 1 Let all symbols in E be distinct. If (wx)−1(E) ∼aci E, then rtx(E) = E.

Proof. We prove by induction on the structure of E. If E = ∅, then (wx)−1(E) = ∅. By
Proposition 8, rtx(E) = ∅. So rtx(E) = E. If E = ε, then (wx)−1(E) = ∅, (wx−1(E) ̸∼aci E. If
E = a, then a−1(E) = ε, (wx)−1(E) = ∅ for w ̸= ε or x ̸= a. So (wx)−1(E) ̸∼aci E.

Induction. 1. E = F+G. If F = ∅, then (wx)−1(E) = (wx)−1(G). From (wx)−1(E) ∼aci E, we
have (wx)−1(G) ∼aci G. By the inductive hypothesis rtx(G) = G, thus rtx(E) = rtx(G) = G = E.
Similarly, if G = ∅, we have rtx(E) = E.

If F,G ̸= ∅, then (wx)−1(E) ∼aci E ̸= ∅. By equation (1), (wx)−1(E) is either (wx)−1(F )
or (wx)−1(G). If (wx)−1(E) = (wx)−1(F ), then (wx)−1(F ) ∼aci F + G. Since (wx)−1(F ) does
not contain symbols in G, we have G = ∅, which is a contradiction. Similarly, if (wx)−1(E) =
(wx)−1(G), we also have a contradiction.

2. E = FG. If F = ∅ or G = ∅, then E = ∅, rtx(E) = E. Otherwise F,G ̸= ∅, then since
(wx)−1(E) ∼aci E ̸= ∅, by equation (2) wx−1(E) is either (wx)−1(F )G or (vx)−1(G) for some v
such that w = uv. If wx−1(E) = (wx)−1(F )G, then (wx)−1(F )G ∼aci FG. So (wx)−1(F ) ∼aci F .
By the inductive hypothesis, we have rtx(F ) = F . By equation (2) wx−1(E) = (wx)−1(F )G
implies x ∈ ΣF . Hence, from Proposition 8, rtx(E) = rtx(F )G = FG. If wx−1(E) = (vx)−1(G),
then (vx)−1(G) ∼aci FG. Since (vx)−1(G) does not contain symbols in F , we have F = ε.
Then (vx)−1(G) ∼aci G. By the inductive hypothesis, we have rtx(G) = G. By equation (2)
wx−1(E) = (vx)−1(G) implies x ∈ ΣG. Hence, from Proposition 8, rtx(E) = rtx(G) = G = E.

3. E = F ∗. If E = ∅, then rtx(E) = E. Otherwise E ̸= ∅, then (wx)−1(E) ̸= ∅. From
Proposition 8 we have rtx(E) = rtx(F )F ∗. Thus (wx)−1(E) is a sum of one or more rtx(F )F ∗.
Since (wx)−1(E) ∼aci F

∗, we have rtx(F ) = ε. Hence rtx(E) = rtx(F )F ∗ = F ∗ = E. 2

Proposition 9 Let all symbols in E be distinct. If there are non-null (w1x1)
−1(E) and (w2x2)

−1(E),
such that (w1x1)

−1(E) ∼aci (w2x2)
−1(E), then rtx1(E) = rtx2(E), and vice versa.

Proof. (⇒) We prove it by induction on the structure of E. The cases for E = ε, ∅, x, x ∈ ΣE are
obvious.

1. E = F + G. From equation (1), the non-null (w1x1)
−1(E) is either (w1x1)

−1(F ) or
(w1x1)

−1(G). Likewise, the non-null (w2x2)
−1(E) is either (w2x2)

−1(F ) or (w2x2)
−1(G).

If (w1x1)
−1(E) = (w1x1)

−1(F ), (w2x2)
−1(E) = (w2x2)

−1(F ) (a),
then (w1x1)

−1(F ) ∼aci (w2x2)
−1(F ). By the inductive hypothesis, we have rtx1(F ) = rtx2(F ). In

addition, (a) implies x1, x2 ∈ ΣF . Then from Proposition 8, rtx1(E) = rtx1(F ), and rtx2(E) =
rtx2(F ). Hence rtx1(E) = rtx2(E).

If w1x1)
−1(E) = (w1x1)

−1(F ), (w2x2)
−1(E) = (w2x2)

−1(G) (b),
then (w1x1)

−1(F ) ∼aci (w2x2)
−1(G). Since symbols in F andG are distinct, we have (w1x1)

−1(F ) =
(w2x2)

−1(G) = ε. Then from Theorem 1 we have rtx1(F ) = rtx2(G) = ε. In addition, (b) implies
x1 ∈ ΣF and x2 ∈ ΣG. Hence from Proposition 8, rtx1(E) = rtx1(F ) = rtx2(G) = rtx2(E).

Proofs for the remaining two cases are similar to the above cases.
2. E = FG. From equation (2), the non-null (w1x1)

−1(E) is either (w1x1)
−1(F )G or

(v1x1)
−1(G) for some v1 such that w1 = u1v1. Likewise, the non-null (w2x2)

−1(E) is either
(w2x2)

−1(F )G or (v2x2)
−1(G).

If (w1x1)
−1(E) = (w1x1)

−1(F )G, (w2x2)
−1(E) = (w2x2)

−1(F )G (a),
then (w1x1)

−1(F )G ∼aci (w2x2)
−1(F )G, which implies (w1x1)

−1(F ) ∼aci (w2x2)
−1(F ). By the

inductive hypothesis, we have rtx1(F ) = rtx2(F ). In addition, (a) implies x1, x2 ∈ ΣF . Then from
Proposition 8, rtx1(E) = rtx1(F )G, and rtx2(E) = rtx2(F )G. Hence rtx1(E) = rtx2(E).
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If (w1x1)
−1(E) = (w1x1)

−1(F )G, (w2x2)
−1(E) = (v2x2)

−1(G) (b),
then (w1x1)

−1(F )G ∼aci (v2x2)
−1(G). Since (v2x2)

−1(G) does not contain symbols in F , we have
(w1x1)

−1(F ) = ε, and G ∼aci (v2x2)
−1(G). Since (w1x1)

−1(F ) = ε, from Theorem 1 we have
rtx1(F ) = ε. By Lemma 1 G ∼aci (v2x2)

−1(G) implies rtx2(G) = G. In addition, (b) implies
x1 ∈ ΣF and x2 ∈ ΣG. Hence rtx1(E) = rtx1(F )G = G = rtx2(G) = rtx2(E).

Proofs for the remaining two cases are similar to the above cases.
3. E = F ∗. Since (w1x1)

−1(E) ∼aci (w2x2)
−1(E), by Corollary 1 we have rtx1(E) ∼aci rtx2(E).

By Proposition 8 rtx1(E) = rtx1(F )F ∗, rtx2(E) = rtx2(F )F ∗. So rtx1(F ) ∼aci rtx2(F ), which
implies there are (u1x1)

−1(F ), (u2x2)
−1(F ) ̸= ∅, such that (u1x1)

−1(F ) ∼aci (u2x2)
−1(F ). Then

from the inductive hypothesis, we have rtx1(F ) = rtx2(F ). Hence rtx1(E) = rtx1(F )F ∗ = rtx2(E).
(⇐) This is obvious from Corollary 1. 2

Corollary 2 Let all symbols in E be distinct. If rtx1(E) ∼aci rtx2(E), then rtx1(E) = rtx2(E).

Remark 1. From the previous discussions, it is clear that rtx(E)’s are ‘atomic’ building blocks,
in the following meanings. (1) Each non-null (wx)−1(E) is uniquely decomposed into a sum of
rtx(E), that is, (wx)−1(E) = Σ rtx(E). (2) rtx(E) and rty(E) are either identical, or not equivalent
modulo ∼aci, if x ̸= y.

4 Concluding remarks

The paper proposed a characterization of the structure of derivatives and proved several properties
of derivatives for an expression with distinct symbols. Base on this, it gave a representative of
derivatives and presented a simpler proof of the fact that the equation automaton is a quotient of
the position automaton.

We believe that the characterization of derivatives given in the paper is a useful technique for
relevant researches.

The results can have many applications. One example is the correction of Ilie and Yu’s simplified
proof of the relation between the equation and position automata [8]. Champarnaud and Ziadi [5]
proved that the equation automaton [1] is a quotient of the position automaton. Ilie and Yu [8]
presented a simplified proof, which relies only on the work of Berry and Sethi [2]. The central issue
to use Ilie and Yu’s approach is to find a unique representative for (wx)−1(E). However, the proof
given by Ilie and Yu actually fails to find the correct representatives. Thus the proof is incorrect.
This may partly reflects the difficulty of finding the representatives. On the other hand, by the
results presented in the paper, the representatives are obtained immediately.
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