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o fibzvenendadd

@ formal language theory
=> nice textbooks: Kozen, Hopcroft & Ullman. ..



Formal language theory...

in Nuprl

@ Constable, Jackson, Naumov, Uribe

@ 18 months for automata theory from Hopcroft &
Ullman chapters 1-11 (including Myhill-Nerode)



Formal language theory...

in Coq

@ Filliatre, Briais, Braibant and others

@ multi-year effort; a number of results in
automata theory, e.g.

@ Kleene's thm. by Filliatre (“rather big")

@ automata theory by Briais (5400 loc)

@ Braibant ATBR library, including Myhill-Nerode
(>2000 loc)

@ Mirkin's partial derivative automaton construction
(10600 loc)
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Formal language theory...

in HOL

@ automata => graphs, matrices, functions
@ combining automata/graphs

@ = @3

disjoint union:
def

AW A ={(1,z) [z € A1} U {(2,y) |y € A2}



Formal language theory...

in HOL

@ automata => graphs, matrices, functions
Problems with definition for regularity (Slind):

is_regular(A) £ 3M. is_dfa(M) A L(M) = A

def

AW A ={(1,z) [z € A1} U {(2,y) |y € A2}
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Formal language theory...

in HOL

@ automata => graphs, matrices, functions
@ combining automata/graphs

@ = @3

A solution: use nat = state nodes

You have to rename states!



Formal language theory...

in HOL

@ Kozen's paper proof of Myhill-Nerode:
requires absence of inaccessible states

is_regular(A) = 3M. is_dfa(M) A L(M) = A
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Definition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?
@ pumping lemma
@ closure under complementation

@ reguldrexpressiermaiching (=-Owens et al)

@ most textbooks are about automata
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The Myhill-Nerode Theorem

@ provides necessary and sufficient conditions
for a language being regular
(pumping lemma only necessary)

@ will help with closure properties of regular
languages

@ key is the equivalence relation:

mszd:ef‘v’z.w@zEA@y@zeA



The Myhill-Nerode Theorem

set of all
strings

@ finite (UNIV// =4) < A isregular
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The Myhill-Nerode Theorem

~ Two directions:
: 1) finite = regular

finite (UNIV// =,) = Ir. A = L(r)
— 2.) regular = finite

equliivdlence class
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Initial and Final States

EquiMalence Classes
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Initial and Final States

EquiMalence Classes




Transitions between Eq-Classes
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Systems of Equations

Inspired by a method of Brzozowski ‘'64:

start _)M

X17 b + X27
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Systems of Equations

Inspired by a method of Brzozowski ‘'64:

start _)M

Xl,b+X2,b+>\ ]
Xz X350+ Xssa
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X1 =X130+ X250+ A5 ]
Xo= X350+ Xssa

X;=X130+ X350+ As ]

X;=Xy5a-a*

Xi=X5b-b" + \;b*

X, =X5a-a*

Xl Xla . -b- b*+A; b*
=X a*

15 @
» X1 A;b* - (a-a*-b-b*)*

=X5a-a*

by Arden

by Arden
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X1 =X130+ X550+ A;]

Xo= X350+ Xssa

X;=X130+ X350+ As ]

X;=Xy5a-a*

X;=X25b:-b" + A\ b*

X, =X5a-a*

Xi=Xi3a-a*-b
Xo=Xy35a-a*

X=X (a-a*
X;=Xy5a-a*

Xi=Xb":-(a-a*-
Xo=X0"-(a-a*-

L b* 4 A b

.b- b*)*

by Arden

by Arden

by substitution

by Arden

by substitution



X1 =X+ Xo30+ As ]
X2:X1;a—|-X2;a

by Arden
Xl Xl,b+X2,b+)\ (]

- —%

by Arden

a
STGM - by substitution

X2—A1,U; u

by Arden
X=X (a-a*-b-b*)*
X;=Xy5a-a*

by substitution
Xi=Xb"-(a-a*-b-b*)*
Xo=X\b"-(a-a*-b-b*)"-a-a*



The Other Direction

One has to prove '

by induction on . Not trivial, but after a bit of
thinking, one can find a refined relation:

(m]oN P
o]/

UNIV UNIV// ~c»  UNIV//R
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Partial Derivatives

..(set of) regular expressions after a string has
been parsed

° Pders x r = pdersy r refines x X () Y

R,
' Antimirov ‘95

o finite(UNIV//R;)

@ Therefore finite(UNIV// =(()). Qed.
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What Have We Achieved?
@ finite (UNIV// =4) < A isregular

@ regular languages are closed under
complementation; this is now easy
UNIV// =o = UNIV// =4

@ non-regularity (a™b")
If there exists a sufficiently large set B
(for example infinitely large), such that

Ve,y E B.x Zy = x %4 y.
then A is not regular.

def

A=U,a"
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Conclusion

@ We have never seen a proof of Myhill-Nerode

Bold Claim: (not proved!)

95% of regular language theory can be
done without automatal

...and this is much more tasteful ;0)

@ I have not yet used it in teaching for
undergraduates.



Thank you!

Questions?





