
tphols-2011

By xingyuan

February 13, 2011

Contents

1 Preliminaries 1
1.1 Finite automata and Myhill-Nerode theorem 1
1.2 The objective and the underlying intuition 3

2 Direction regular language ⇒finite partition 3

3 Direction finite partition ⇒ regular language 6
theory Myhill
imports Myhill-2

begin

1 Preliminaries

1.1 Finite automata and Myhill-Nerode theorem

A determinisitc finite automata (DFA) M is a 5-tuple (Q,Σ, δ, s, F), where:

1. Q is a finite set of states, also denoted QM .

2. Σ is a finite set of alphabets, also denoted ΣM .

3. δ is a transition function of type Q × Σ ⇒ Q (a total function), also
denoted δM .

4. s ∈ Q is a state called initial state, also denoted sM .

5. F ⊆ Q is a set of states named accepting states, also denoted FM .

Therefore, we have M = (QM ,ΣM , δM , sM , FM). Every DFA M can be in-
terpreted as a function assigning states to strings, denoted δ̂M , the definition
of which is as the following:

δ̂M ([]) ≡ sM

δ̂M (xa) ≡ δM (δ̂M (x), a)
(1)

1

A string x is said to be accepted (or recognized) by a DFA M if δ̂M (x) ∈ FM .
The language recoginzed by DFA M , denoted L(M), is defined as:

L(M) ≡ {x | δ̂M (x) ∈ FM} (2)

The standard way of specifying a laugage L as regular is by stipulating that:
L = L(M) for some DFA M .
For any DFA M , the DFA obtained by changing initial state to another
p ∈ QM is denoted Mp, which is defined as:

Mp ≡ (QM ,ΣM , δM , p, FM) (3)

Two states p, q ∈ QM are said to be equivalent, denoted p ≈M q, iff.

L(Mp) = L(Mq) (4)

It is obvious that ≈M is an equivalent relation over QM . and the parti-
tion induced by ≈M has |QM | equivalent classes. By overloading ≈M , an
equivalent relation over strings can be defined:

x ≈M y ≡ δ̂M (x) ≈M δ̂M (y) (5)

It can be proved that the the partition induced by ≈M also has |QM | equiv-
alent classes. It is also easy to show that: if x ≈M y, then x ≈L(M) y,
and this means ≈M is a more refined equivalent relation than ≈L(M). Since
partition induced by ≈M is finite, the one induced by ≈L(M) must also be
finite, and this is one of the two directions of Myhill-Nerode theorem:

Lemma 1 (Myhill-Nerode theorem, Direction two). If a language L is reg-
ular (i.e. L = L(M) for some DFA M), then the partition induced by ≈L
is finite.

The other direction is:

Lemma 2 (Myhill-Nerode theorem, Direction one). If the partition induced
by ≈L is finite, then L is regular (i.e. L = L(M) for some DFA M).

The M we are seeking when prove lemma ?? can be constructed out of ≈L,
denoted ML and defined as the following:

QML ≡ {JxK≈L | x ∈ Σ∗} (6a)
ΣML ≡ ΣM (6b)
δML ≡ (λ(JxK≈L , a).JxaK≈L) (6c)
sML ≡ J[]K≈L (6d)
FML ≡ {JxK≈L | x ∈ L} (6e)

It can be proved that QML is indeed finite and L = L(ML), so lemma 2
holds. It can also be proved that ML is the minimal DFA (therefore unique)
which recoginzes L.

2

1.2 The objective and the underlying intuition

It is now obvious from section 1.1 that Myhill-Nerode theorem can be estab-
lished easily when reglar languages are defined as ones recognized by finite
automata. Under the context where the use of finite automata is forbiden,
the situation is quite different. The theorem now has to be expressed as:

Theorem 1 (Myhill-Nerode theorem, Regular expression version). A lan-
guage L is regular (i.e. L = L(e) for some regular expression e) iff. the
partition induced by ≈L is finite.

The proof of this version consists of two directions (if the use of automata
are not allowed):

Direction one: generating a regular expression e out of the finite partition
induced by ≈L, such that L = L(e).

Direction two: showing the finiteness of the partition induced by ≈L, un-
der the assmption that L is recognized by some regular expression e
(i.e. L = L(e)).

The development of these two directions consititutes the body of this paper.

2 Direction regular language ⇒finite partition

Although not used explicitly, the notion of finite autotmata and its rela-
tionship with language partition, as outlined in section 1.1, still servers as
important intuitive guides in the development of this paper. For example,
Direction one follows the Brzozowski algebraic method used to convert finite
autotmata to regular expressions, under the intuition that every partition
member JxK≈L is a state in the DFA ML constructed to prove lemma 2 of
section 1.1.
The basic idea of Brzozowski method is to extract an equational system
out of the transition relationship of the automaton in question. In the
equational system, every automaton state is represented by an unknown,
the solution of which is expected to be a regular expresion characterizing
the state in a certain sense. There are two choices of how a automaton
state can be characterized. The first is to characterize by the set of strings
leading from the state in question into accepting states. The other choice is
to characterize by the set of strings leading from initial state into the state
in question. For the second choice, the language recognized the automaton
can be characterized by the solution of initial state, while for the second
choice, the language recoginzed by the automaton can be characterized by
combining solutions of all accepting states by +. Because of the automaton

3

used as our intuitive guide, the ML, the states of which are sets of strings
leading from initial state, the second choice is used in this paper.
Supposing the automaton in Fig 1 is the ML for some language L, and
suppose Σ = {a, b, c, d, e}. Under the second choice, the equational system
extracted is:

X0 = X1 · c+X2 · d+ λ (7a)
X1 = X0 · a+X1 · b+X2 · d (7b)
X2 = X0 · b+X1 · d+X2 · a (7c)

X3 =
X0 · (c+ d+ e) +X1 · (a+ e) +X2 · (b+ e)+
X3 · (a+ b+ c+ d+ e)

(7d)

X0start

X1

X2

X3

a

b

b

a

c c

d

d

Σ− {a, b}

Σ− {b, c, d}

Σ−
{a,
c, d
}

Σ

Figure 1: An example automaton

Every ·-item on the right side of equations describes some state transtions,
except the λ in (7a), which represents empty string []. The reason is that:
every state is characterized by the set of incoming strings leading from initial
state. For non-initial state, every such string can be splitted into a prefix
leading into a preceding state and a single character suffix transiting into
from the preceding state. The exception happens at initial state, where the
empty string is a incoming string which can not be splitted. The λ in (7a)
is introduce to repsent this indivisible string. There is one and only one λ
in every equational system such obtained, becasue [] can only be contaied
in one equivalent class (the intial state in ML) and equivalent classes are
disjoint.
Suppose all unknowns (X0, X1, X2, X3) are solvable, the regular expression
charactering laugnage L is X1 +X2. This paper gives a procedure by which
arbitrarily picked unknown can be solved. The basic idea to solve Xi is
by eliminating all variables other than Xi from the equational system. If

4

X0 is the one picked to be solved, variables X1, X2, X3 have to be removed
one by one. The order to remove does not matter as long as the remaing
equations are kept valid. Suppose X1 is the first one to remove, the action is
to replace all occurences of X1 in remaining equations by the right hand side
of its characterizing equation, i.e. the X0 ·a+X1 ·b+X2 ·d in (7b). However,
because of the recursive occurence of X1, this replacement does not really
removed X1. Arden’s lemma is invoked to transform recursive equations
like (7b) into non-recursive ones. For example, the recursive equation (7b)
is transformed into the follwing non-recursive one:

X1 = (X0 · a+X2 · d) · b∗ = X0 · (a · b∗) +X2 · (d · b∗) (8)

which, by Arden’s lemma, still characterizes X1 correctly. By subsituting
(X0 · a+X2 · d) · b∗ for all X1 and removing (7b), we get:

X0 =
(X0 · (a · b∗) +X2 · (d · b∗)) · c+X2 · d+ λ =
X0 · (a · b∗ · c) +X2 · (d · b∗ · c) +X2 · d+ λ =
X0 · (a · b∗ · c) +X2 · (d · b∗ · c+ d) + λ

(9a)

X2 =
X0 · b+ (X0 · (a · b∗) +X2 · (d · b∗)) · d+X2 · a =
X0 · b+X0 · (a · b∗ · d) +X2 · (d · b∗ · d) +X2 · a =
X0 · (b+ a · b∗ · d) +X2 · (d · b∗ · d+ a)

(9b)

X3 =
X0 · (c+ d+ e) + ((X0 · a+X2 · d) · b∗) · (a+ e)
+X2 · (b+ e) +X3 · (a+ b+ c+ d+ e)

(9c)

Suppose X3 is the one to remove next, since X3 dose not appear in either X0

or X2, the removal of equation (9c) changes nothing in the rest equations.
Therefore, we get:

X0 = X0 · (a · b∗ · c) +X2 · (d · b∗ · c+ d) + λ (10a)
X2 = X0 · (b+ a · b∗ · d) +X2 · (d · b∗ · d+ a) (10b)

Actually, since absorbing state like X3 contributes nothing to the language
L, it could have been removed at the very beginning of this precedure with-
out affecting the final result. Now, the last unknown to remove is X2 and
the Arden’s transformaton of (10b) is:

X2 = (X0 ·(b+a·b∗ ·d))·(d·b∗ ·d+a)∗ = X0 ·((b+a·b∗ ·d)·(d·b∗ ·d+a)∗) (11)

By substituting the right hand side of (11) into (10a), we get:

X0 = X0 · (a · b∗ · c)+
X0 · ((b+ a · b∗ · d) · (d · b∗ · d+ a)∗) · (d · b∗ · c+ d) + λ

= X0 · ((a · b∗ · c)+
((b+ a · b∗ · d) · (d · b∗ · d+ a)∗) · (d · b∗ · c+ d)) + λ

(12)

5

By applying Arden’s transformation to this, we get the solution of X0 as:

X0 = ((a · b∗ · c) + ((b+ a · b∗ · d) · (d · b∗ · d+ a)∗) · (d · b∗ · c+ d))∗ (13)

Using the same method, solutions for X1 and X2 can be obtained as well
and the regular expressoin for L is just X1 +X2. The formalization of this
procedure consititues the first direction of the regular expression verion of
Myhill-Nerode theorem. Detailed explaination are given in paper.pdf and
more details and comments can be found in the formal scripts.

3 Direction finite partition ⇒ regular language

It is well known in the theory of regular languages that the existence of
finite language partition amounts to the existence of a minimal automaton,
i.e. the ML constructed in section 1, which recoginzes the same language
L. The standard way to prove the existence of finite language partition is
to construct a automaton out of the regular expression which recoginzes the
same language, from which the existence of finite language partition follows
immediately. As discussed in the introducton of paper.pdf as well as in [5],
the problem for this approach happens when automata of sub regular expres-
sions are combined to form the automaton of the mother regular expression,
no matter what kind of representation is used, the formalization is cuber-
some, as said by Nipkow in [5]: ‘a more abstract mathod is clearly desirable’.
In this section, an intrinsically abstract method is given, which completely
avoid the mentioning of automata, let along any particular representations.

The main proof structure is a structural induction on regular expressions,
where base cases (cases for NULL, EMPTY, CHAR) are quite straightfor-
ward to proof. Real difficulty lies in inductive cases. By inductive hypoth-
esis, languages defined by sub-expressions induce finite partitiions. Under
such hypothsis, we need to prove that the language defined by the composite
regular expression gives rise to finite partion. The basic idea is to attach a
tag tag(x) to every string x. The tagging fuction tag is carefully devised,
which returns tags made of equivalent classes of the partitions induced by
subexpressoins, and therefore has a finite range. Let Lang be the composite
language, it is proved that:

If strings with the same tag are equivalent with respect to Lang,
expressed as:

tag(x) = tag(y) =⇒ x ≈Lang y

then the partition induced by Lang must be finite.

There are two arguments for this. The first goes as the following:

6

1. First, the tagging function tag induces an equivalent relation (=tag=)
(defiintion of f-eq-rel and lemma equiv-f-eq-rel).

2. It is shown that: if the range of tag (denoted range(tag)) is finite, the
partition given rise by (=tag=) is finite (lemma finite-eq-f-rel). Since
tags are made from equivalent classes from component partitions, and
the inductive hypothesis ensures the finiteness of these partitions, it is
not difficult to prove the finiteness of range(tag).

3. It is proved that if equivalent relation R1 is more refined than R2 (ex-
pressed as R1 ⊆ R2), and the partition induced by R1 is finite, then
the partition induced by R2 is finite as well (lemma refined-partition-finite).

4. The injectivity assumption tag(x) = tag(y) =⇒ x ≈Lang y implies
that (=tag=) is more refined than (≈Lang).

5. Combining the points above, we have: the partition induced by lan-
guage Lang is finite (lemma tag-finite-imageD).

We could have followed another approach given in appendix II of Brzo-
zowski’s paper [?], where the set of derivatives of any regular expression can
be proved to be finite. Since it is easy to show that strings with same deriva-
tive are equivalent with respect to the language, then the second direction
follows. We believe that our apporoach is easy to formalize, with no need
to do complicated derivation calculations and countings as in [???].

end

7

	Preliminaries
	Finite automata and Myhill-Nerode theorem
	The objective and the underlying intuition

	Direction regular language finite partition
	Direction finite partition regular language

