
tphols-2011

By xingyuan

January 27, 2011

Contents

1 Preliminary definitions 1

2 Direction finite partition ⇒ regular language 5
2.1 The proof of this direction . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Basic properties . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Intialization . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Interation step . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Conclusion of the proof . . . . . . . . . . . . . . . . . 19

3 Direction: regular language ⇒ finite partitions 21
3.1 The scheme for this direction . . . . . . . . . . . . . . . . . . 21
3.2 Lemmas for basic cases . . . . . . . . . . . . . . . . . . . . . . 22
3.3 The case for NULL . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 The case for EMPTY . . . . . . . . . . . . . . . . . . . . . . 23
3.5 The case for CHAR . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 The case for SEQ . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 The case for ALT . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 The case for STAR . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 The main lemma . . . . . . . . . . . . . . . . . . . . . . . . . 29

theory Myhill
imports Main List-Prefix Prefix-subtract Prelude

begin

1 Preliminary definitions

types lang = string set

Sequential composition of two languages L1 and L2

definition Seq :: lang ⇒ lang ⇒ lang (- ;; - [100 ,100 ] 100 )
where

L1 ;; L2 = {s1 @ s2 | s1 s2 . s1 ∈ L1 ∧ s2 ∈ L2}

Transitive closure of language L.
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inductive-set
Star :: string set ⇒ string set (-? [101 ] 102 )
for L :: string set

where
start [intro]: [] ∈ L?
| step[intro]: [[s1 ∈ L; s2 ∈ L?]] =⇒ s1 @s2 ∈ L?

Some properties of operator ;;.

lemma seq-union-distrib:
(A ∪ B) ;; C = (A ;; C ) ∪ (B ;; C )

by (auto simp:Seq-def )

lemma seq-intro:
[[x ∈ A; y ∈ B ]] =⇒ x @ y ∈ A ;; B

by (auto simp:Seq-def )

lemma seq-assoc:
(A ;; B) ;; C = A ;; (B ;; C )

apply(auto simp:Seq-def )
apply blast
by (metis append-assoc)

lemma star-intro1 [rule-format ]: x ∈ lang? =⇒ ∀ y . y ∈ lang? −→ x @ y ∈ lang?
by (erule Star .induct , auto)

lemma star-intro2 : y ∈ lang =⇒ y ∈ lang?
by (drule step[of y lang []], auto simp:start)

lemma star-intro3 [rule-format ]:
x ∈ lang? =⇒ ∀ y . y ∈ lang −→ x @ y ∈ lang?

by (erule Star .induct , auto intro:star-intro2 )

lemma star-decom:
[[x ∈ lang?; x 6= []]] =⇒(∃ a b. x = a @ b ∧ a 6= [] ∧ a ∈ lang ∧ b ∈ lang?)

by (induct x rule: Star .induct , simp, blast)

lemma star-decom ′:
[[x ∈ lang?; x 6= []]] =⇒ ∃ a b. x = a @ b ∧ a ∈ lang? ∧ b ∈ lang

apply (induct x rule:Star .induct , simp)
apply (case-tac s2 = [])
apply (rule-tac x = [] in exI , rule-tac x = s1 in exI , simp add :start)
apply (simp, (erule exE | erule conjE )+)
by (rule-tac x = s1 @ a in exI , rule-tac x = b in exI , simp add :step)

Ardens lemma expressed at the level of language, rather than the level of
regular expression.

theorem ardens-revised :
assumes nemp: [] /∈ A
shows (X = X ;; A ∪ B) ←→ (X = B ;; A?)
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proof
assume eq : X = B ;; A?
have A? = {[]} ∪ A? ;; A

by (auto simp:Seq-def star-intro3 star-decom ′)
then have B ;; A? = B ;; ({[]} ∪ A? ;; A)

unfolding Seq-def by simp
also have . . . = B ∪ B ;; (A? ;; A)

unfolding Seq-def by auto
also have . . . = B ∪ (B ;; A?) ;; A

by (simp only :seq-assoc)
finally show X = X ;; A ∪ B

using eq by blast
next

assume eq ′: X = X ;; A ∪ B
hence c1 ′:

∧
x . x ∈ B =⇒ x ∈ X

and c2 ′:
∧

x y . [[x ∈ X ; y ∈ A]] =⇒ x @ y ∈ X
using Seq-def by auto

show X = B ;; A?
proof

show B ;; A? ⊆ X
proof−
{ fix x y

have [[y ∈ A?; x ∈ X ]] =⇒ x @ y ∈ X
apply (induct arbitrary :x rule:Star .induct , simp)
by (auto simp only :append-assoc[THEN sym] dest :c2 ′)

} thus ?thesis using c1 ′ by (auto simp:Seq-def )
qed

next
show X ⊆ B ;; A?
proof−
{ fix x

have x ∈ X =⇒ x ∈ B ;; A?
proof (induct x taking :length rule:measure-induct)

fix z
assume hyps:
∀ y . length y < length z −→ y ∈ X −→ y ∈ B ;; A?
and z-in: z ∈ X

show z ∈ B ;; A?
proof (cases z ∈ B)

case True thus ?thesis by (auto simp:Seq-def start)
next

case False hence z ∈ X ;; A using eq ′ z-in by auto
then obtain za zb where za-in: za ∈ X

and zab: z = za @ zb ∧ zb ∈ A and zbne: zb 6= []
using nemp unfolding Seq-def by blast

from zbne zab have length za < length z by auto
with za-in hyps have za ∈ B ;; A? by blast
hence za @ zb ∈ B ;; A? using zab

by (clarsimp simp:Seq-def , blast dest :star-intro3 )
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thus ?thesis using zab by simp
qed

qed
} thus ?thesis by blast

qed
qed

qed

The syntax of regular expressions is defined by the datatype rexp.

datatype rexp =
NULL
| EMPTY
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp

The following L is an overloaded operator, where L(x ) evaluates to the
language represented by the syntactic object x.

consts L:: ′a ⇒ string set

The L(rexp) for regular expression rexp is defined by the following overload-
ing function L-rexp.

overloading L-rexp ≡ L:: rexp ⇒ string set
begin
fun

L-rexp :: rexp ⇒ string set
where

L-rexp (NULL) = {}
| L-rexp (EMPTY ) = {[]}
| L-rexp (CHAR c) = {[c]}
| L-rexp (SEQ r1 r2 ) = (L-rexp r1 ) ;; (L-rexp r2 )
| L-rexp (ALT r1 r2 ) = (L-rexp r1 ) ∪ (L-rexp r2 )
| L-rexp (STAR r) = (L-rexp r)?

end

To obtain equational system out of finite set of equivalent classes, a fold
operation on finite set folds is defined. The use of SOME makes fold more
robust than the fold in Isabelle library. The expression folds f makes sense
when f is not associative and commutitive, while fold f does not.

definition
folds :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ′b ⇒ ′a set ⇒ ′b

where
folds f z S ≡ SOME x . fold-graph f z S x

The following lemma assures that the arbitrary choice made by the SOME
in folds does not affect the L-value of the resultant regular expression.

lemma folds-alt-simp [simp]:
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finite rs =⇒ L (folds ALT NULL rs) =
⋃

(L ‘ rs)
apply (rule set-eq-intro, simp add :folds-def )
apply (rule someI2-ex , erule finite-imp-fold-graph)
by (erule fold-graph.induct , auto)

lemma [simp]:
shows (x , y) ∈ {(x , y). P x y} ←→ P x y

by simp

≈L is an equivalent class defined by language Lang.

definition
str-eq-rel (≈- [100 ] 100 )

where
≈Lang ≡ {(x , y). (∀ z . x @ z ∈ Lang ←→ y @ z ∈ Lang)}

Among equivlant clases of ≈Lang, the set finals(Lang) singles out those
which contains strings from Lang.

definition
finals Lang ≡ {≈Lang ‘‘ {x} | x . x ∈ Lang}

The following lemma show the relationshipt between finals(Lang) and Lang.

lemma lang-is-union-of-finals:
Lang =

⋃
finals(Lang)

proof
show Lang ⊆

⋃
(finals Lang)

proof
fix x
assume x ∈ Lang
thus x ∈

⋃
(finals Lang)

apply (simp add :finals-def , rule-tac x = (≈Lang) ‘‘ {x} in exI )
by (auto simp:Image-def str-eq-rel-def )

qed
next

show
⋃

(finals Lang) ⊆ Lang
apply (clarsimp simp:finals-def str-eq-rel-def )
by (drule-tac x = [] in spec, auto)

qed

2 Direction finite partition ⇒ regular language

The relationship between equivalent classes can be described by an equa-
tional system. For example, in equational system (1), X0, X1 are equivalent
classes. The first equation says every string in X0 is obtained either by ap-
pending one b to a string in X0 or by appending one a to a string in X1 or
just be an empty string (represented by the regular expression λ). Similary,
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the second equation tells how the strings inside X1 are composed.

X0 = X0b+X1a+ λ

X1 = X0a+X1b
(1)

The summands on the right hand side is represented by the following data
type rhs-item, mnemonic for ’right hand side item’. Generally, there are
two kinds of right hand side items, one kind corresponds to pure regular
expressions, like the λ in (1), the other kind corresponds to transitions from
one one equivalent class to another, like the X0b,X1a etc.

datatype rhs-item =
Lam rexp
| Trn (string set) rexp

In this formalization, pure regular expressions like λ is repsented by Lam(EMPTY ),
while transitions like X0a is represented by Trn X0 (CHAR a).

The functions the-r and the-Trn are used to extract subcomponents from
right hand side items.

fun the-r :: rhs-item ⇒ rexp
where the-r (Lam r) = r

fun the-Trn:: rhs-item ⇒ (string set × rexp)
where the-Trn (Trn Y r) = (Y , r)

Every right hand side item itm defines a string set given L(itm), defined as:

overloading L-rhs-e ≡ L:: rhs-item ⇒ string set
begin

fun L-rhs-e:: rhs-item ⇒ string set
where

L-rhs-e (Lam r) = L r |
L-rhs-e (Trn X r) = X ;; L r

end

The right hand side of every equation is represented by a set of items. The
string set defined by such a set itms is given by L(itms), defined as:

overloading L-rhs ≡ L:: rhs-item set ⇒ string set
begin

fun L-rhs:: rhs-item set ⇒ string set
where L-rhs rhs =

⋃
(L ‘ rhs)

end

Given a set of equivalent classses CS and one equivalent class X among CS,
the term init-rhs CS X is used to extract the right hand side of the equation
describing the formation of X. The definition of init-rhs is:

definition
init-rhs CS X ≡
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if ([] ∈ X ) then
{Lam(EMPTY )} ∪ {Trn Y (CHAR c) | Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X }

else
{Trn Y (CHAR c)| Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X }

In the definition of init-rhs, the term {Trn Y (CHAR c)| Y c. Y ∈ CS ∧ Y
;; {[c]} ⊆ X } appearing on both branches describes the formation of strings
in X out of transitions, while the term {Lam(EMPTY )} describes the empty
string which is intrinsically contained in X rather than by transition. This
{Lam(EMPTY )} corresponds to the λ in (1).

With the help of init-rhs, the equitional system descrbing the formation of
every equivalent class inside CS is given by the following eqs(CS ).

definition eqs CS ≡ {(X , init-rhs CS X ) | X . X ∈ CS}

The following items-of rhs X returns all X -items in rhs.

definition
items-of rhs X ≡ {Trn X r | r . (Trn X r) ∈ rhs}

The following rexp-of rhs X combines all regular expressions in X -items
using ALT to form a single regular expression. It will be used later to
implement arden-variate and rhs-subst.

definition
rexp-of rhs X ≡ folds ALT NULL ((snd o the-Trn) ‘ items-of rhs X )

The following lam-of rhs returns all pure regular expression items in rhs.

definition
lam-of rhs ≡ {Lam r | r . Lam r ∈ rhs}

The following rexp-of-lam rhs combines pure regular expression items in rhs
using ALT to form a single regular expression. When all variables inside
rhs are eliminated, rexp-of-lam rhs is used to compute compute the regular
expression corresponds to rhs.

definition
rexp-of-lam rhs ≡ folds ALT NULL (the-r ‘ lam-of rhs)

The following attach-rexp rexp ′ itm attach the regular expression rexp ′ to
the right of right hand side item itm.

fun attach-rexp :: rexp ⇒ rhs-item ⇒ rhs-item
where

attach-rexp rexp ′ (Lam rexp) = Lam (SEQ rexp rexp ′)
| attach-rexp rexp ′ (Trn X rexp) = Trn X (SEQ rexp rexp ′)

The following append-rhs-rexp rhs rexp attaches rexp to every item in rhs.

definition
append-rhs-rexp rhs rexp ≡ (attach-rexp rexp) ‘ rhs
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With the help of the two functions immediately above, Ardens’ transfor-
mation on right hand side rhs is implemented by the following function
arden-variate X rhs. After this transformation, the recursive occurent of
X in rhs will be eliminated, while the string set defined by rhs is kept
unchanged.

definition
arden-variate X rhs ≡

append-rhs-rexp (rhs − items-of rhs X ) (STAR (rexp-of rhs X ))

Suppose the equation defining X is X = xrhs, the purpose of rhs-subst is
to substitute all occurences of X in rhs by xrhs. A litte thought may reveal
that the final result should be: first append (a1|a2| . . . |an) to every item of
xrhs and then union the result with all non-X -items of rhs.

definition
rhs-subst rhs X xrhs ≡

(rhs − (items-of rhs X )) ∪ (append-rhs-rexp xrhs (rexp-of rhs X ))

Suppose the equation defining X is X = xrhs, the follwing eqs-subst ES X
xrhs substitute xrhs into every equation of the equational system ES.

definition
eqs-subst ES X xrhs ≡ {(Y , rhs-subst yrhs X xrhs) | Y yrhs. (Y , yrhs) ∈ ES}

The computation of regular expressions for equivalent classes is accom-
plished using a iteration principle given by the following lemma.

lemma wf-iter [rule-format ]:
fixes f
assumes step:

∧
e. [[P e; ¬ Q e]] =⇒ (∃ e ′. P e ′ ∧ (f (e ′), f (e)) ∈ less-than)

shows pe: P e −→ (∃ e ′. P e ′ ∧ Q e ′)
proof(induct e rule: wf-induct

[OF wf-inv-image[OF wf-less-than, where f = f ]], clarify)
fix x
assume h [rule-format ]:
∀ y . (y , x ) ∈ inv-image less-than f −→ P y −→ (∃ e ′. P e ′ ∧ Q e ′)
and px : P x

show ∃ e ′. P e ′ ∧ Q e ′

proof(cases Q x )
assume Q x with px show ?thesis by blast

next
assume nq : ¬ Q x
from step [OF px nq ]
obtain e ′ where pe ′: P e ′ and ltf : (f e ′, f x ) ∈ less-than by auto
show ?thesis
proof(rule h)

from ltf show (e ′, x ) ∈ inv-image less-than f
by (simp add :inv-image-def )

next
from pe ′ show P e ′ .
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qed
qed

qed

The P in lemma wf-iter is an invaiant kept throughout the iteration proce-
dure. The particular invariant used to solve our problem is defined by func-
tion Inv(ES ), an invariant over equal system ES. Every definition starting
next till Inv stipulates a property to be satisfied by ES.

Every variable is defined at most onece in ES.

definition
distinct-equas ES ≡

∀ X rhs rhs ′. (X , rhs) ∈ ES ∧ (X , rhs ′) ∈ ES −→ rhs = rhs ′

Every equation in ES (represented by (X , rhs)) is valid, i.e. (X = L rhs).

definition
valid-eqns ES ≡ ∀ X rhs. (X , rhs) ∈ ES −→ (X = L rhs)

The following rhs-nonempty rhs requires regular expressions occuring in
transitional items of rhs does not contain empty string. This is necessary
for the application of Arden’s transformation to rhs.

definition
rhs-nonempty rhs ≡ (∀ Y r . Trn Y r ∈ rhs −→ [] /∈ L r)

The following ardenable ES requires that Arden’s transformation is appli-
cable to every equation of equational system ES.

definition
ardenable ES ≡ ∀ X rhs. (X , rhs) ∈ ES −→ rhs-nonempty rhs

definition
non-empty ES ≡ ∀ X rhs. (X , rhs) ∈ ES −→ X 6= {}

The following finite-rhs ES requires every equation in rhs be finite.

definition
finite-rhs ES ≡ ∀ X rhs. (X , rhs) ∈ ES −→ finite rhs

The following classes-of rhs returns all variables (or equivalent classes) oc-
curing in rhs.

definition
classes-of rhs ≡ {X . ∃ r . Trn X r ∈ rhs}

The following lefts-of ES returns all variables defined by equational system
ES.

definition
lefts-of ES ≡ {Y | Y yrhs. (Y , yrhs) ∈ ES}
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The following self-contained ES requires that every variable occuring on the
right hand side of equations is already defined by some equation in ES.

definition
self-contained ES ≡ ∀ (X , xrhs) ∈ ES . classes-of xrhs ⊆ lefts-of ES

The invariant Inv(ES ) is a conjunction of all the previously defined con-
staints.

definition
Inv ES ≡ valid-eqns ES ∧ finite ES ∧ distinct-equas ES ∧ ardenable ES ∧

non-empty ES ∧ finite-rhs ES ∧ self-contained ES

2.1 The proof of this direction

2.1.1 Basic properties

The following are some basic properties of the above definitions.

lemma L-rhs-union-distrib:
L (A::rhs-item set) ∪ L B = L (A ∪ B)

by simp

lemma finite-snd-Trn:
assumes finite:finite rhs
shows finite {r2. Trn Y r2 ∈ rhs} (is finite ?B)

proof−
def rhs ′ ≡ {e ∈ rhs. ∃ r . e = Trn Y r}
have ?B = (snd o the-Trn) ‘ rhs ′ using rhs ′-def by (auto simp:image-def )
moreover have finite rhs ′ using finite rhs ′-def by auto
ultimately show ?thesis by simp

qed

lemma rexp-of-empty :
assumes finite:finite rhs
and nonempty :rhs-nonempty rhs
shows [] /∈ L (rexp-of rhs X )

using finite nonempty rhs-nonempty-def
by (drule-tac finite-snd-Trn[where Y = X ], auto simp:rexp-of-def items-of-def )

lemma [intro!]:
P (Trn X r) =⇒ (∃ a. (∃ r . a = Trn X r ∧ P a)) by auto

lemma finite-items-of :
finite rhs =⇒ finite (items-of rhs X )

by (auto simp:items-of-def intro:finite-subset)

lemma lang-of-rexp-of :
assumes finite:finite rhs
shows L (items-of rhs X ) = X ;; (L (rexp-of rhs X ))

proof −
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have finite ((snd ◦ the-Trn) ‘ items-of rhs X ) using finite-items-of [OF finite]
by auto

thus ?thesis
apply (auto simp:rexp-of-def Seq-def items-of-def )
apply (rule-tac x = s1 in exI , rule-tac x = s2 in exI , auto)
by (rule-tac x= Trn X r in exI , auto simp:Seq-def )

qed

lemma rexp-of-lam-eq-lam-set :
assumes finite: finite rhs
shows L (rexp-of-lam rhs) = L (lam-of rhs)

proof −
have finite (the-r ‘ {Lam r |r . Lam r ∈ rhs}) using finite

by (rule-tac finite-imageI , auto intro:finite-subset)
thus ?thesis by (auto simp:rexp-of-lam-def lam-of-def )

qed

lemma [simp]:
L (attach-rexp r xb) = L xb ;; L r

apply (cases xb, auto simp:Seq-def )
by (rule-tac x = s1 @ s1a in exI , rule-tac x = s2a in exI ,auto simp:Seq-def )

lemma lang-of-append-rhs:
L (append-rhs-rexp rhs r) = L rhs ;; L r

apply (auto simp:append-rhs-rexp-def image-def )
apply (auto simp:Seq-def )
apply (rule-tac x = L xb ;; L r in exI , auto simp add :Seq-def )
by (rule-tac x = attach-rexp r xb in exI , auto simp:Seq-def )

lemma classes-of-union-distrib:
classes-of A ∪ classes-of B = classes-of (A ∪ B)

by (auto simp add :classes-of-def )

lemma lefts-of-union-distrib:
lefts-of A ∪ lefts-of B = lefts-of (A ∪ B)

by (auto simp:lefts-of-def )

2.1.2 Intialization

The following several lemmas until init-ES-satisfy-Inv shows that the initial
equational system satisfies invariant Inv.

lemma defined-by-str :
[[s ∈ X ; X ∈ UNIV // (≈Lang)]] =⇒ X = (≈Lang) ‘‘ {s}

by (auto simp:quotient-def Image-def str-eq-rel-def )

lemma every-eqclass-has-transition:
assumes has-str : s @ [c] ∈ X
and in-CS : X ∈ UNIV // (≈Lang)
obtains Y where Y ∈ UNIV // (≈Lang) and Y ;; {[c]} ⊆ X and s ∈ Y
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proof −
def Y ≡ (≈Lang) ‘‘ {s}
have Y ∈ UNIV // (≈Lang)

unfolding Y-def quotient-def by auto
moreover
have X = (≈Lang) ‘‘ {s @ [c]}

using has-str in-CS defined-by-str by blast
then have Y ;; {[c]} ⊆ X

unfolding Y-def Image-def Seq-def
unfolding str-eq-rel-def
by clarsimp

moreover
have s ∈ Y unfolding Y-def

unfolding Image-def str-eq-rel-def by simp
ultimately show thesis by (blast intro: that)

qed

lemma l-eq-r-in-eqs:
assumes X-in-eqs: (X , xrhs) ∈ (eqs (UNIV // (≈Lang)))
shows X = L xrhs

proof
show X ⊆ L xrhs
proof

fix x
assume (1 ): x ∈ X
show x ∈ L xrhs
proof (cases x = [])

assume empty : x = []
thus ?thesis using X-in-eqs (1 )

by (auto simp:eqs-def init-rhs-def )
next

assume not-empty : x 6= []
then obtain clist c where decom: x = clist @ [c]

by (case-tac x rule:rev-cases, auto)
have X ∈ UNIV // (≈Lang) using X-in-eqs by (auto simp:eqs-def )
then obtain Y

where Y ∈ UNIV // (≈Lang)
and Y ;; {[c]} ⊆ X
and clist ∈ Y
using decom (1 ) every-eqclass-has-transition by blast

hence
x ∈ L {Trn Y (CHAR c)| Y c. Y ∈ UNIV // (≈Lang) ∧ Y ;; {[c]} ⊆ X }
using (1 ) decom
by (simp, rule-tac x = Trn Y (CHAR c) in exI , simp add :Seq-def )

thus ?thesis using X-in-eqs (1 )
by (simp add :eqs-def init-rhs-def )

qed
qed

next
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show L xrhs ⊆ X using X-in-eqs
by (auto simp:eqs-def init-rhs-def )

qed

lemma finite-init-rhs:
assumes finite: finite CS
shows finite (init-rhs CS X )

proof−
have finite {Trn Y (CHAR c) |Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X } (is finite ?A)
proof −

def S ≡ {(Y , c)| Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X }
def h ≡ λ (Y , c). Trn Y (CHAR c)
have finite (CS × (UNIV ::char set)) using finite by auto
hence finite S using S-def

by (rule-tac B = CS × UNIV in finite-subset , auto)
moreover have ?A = h ‘ S by (auto simp: S-def h-def image-def )
ultimately show ?thesis

by auto
qed
thus ?thesis by (simp add :init-rhs-def )

qed

lemma init-ES-satisfy-Inv :
assumes finite-CS : finite (UNIV // (≈Lang))
shows Inv (eqs (UNIV // (≈Lang)))

proof −
have finite (eqs (UNIV // (≈Lang))) using finite-CS

by (simp add :eqs-def )
moreover have distinct-equas (eqs (UNIV // (≈Lang)))

by (simp add :distinct-equas-def eqs-def )
moreover have ardenable (eqs (UNIV // (≈Lang)))
by (auto simp add :ardenable-def eqs-def init-rhs-def rhs-nonempty-def del :L-rhs.simps)
moreover have valid-eqns (eqs (UNIV // (≈Lang)))

using l-eq-r-in-eqs by (simp add :valid-eqns-def )
moreover have non-empty (eqs (UNIV // (≈Lang)))

by (auto simp:non-empty-def eqs-def quotient-def Image-def str-eq-rel-def )
moreover have finite-rhs (eqs (UNIV // (≈Lang)))

using finite-init-rhs[OF finite-CS ]
by (auto simp:finite-rhs-def eqs-def )

moreover have self-contained (eqs (UNIV // (≈Lang)))
by (auto simp:self-contained-def eqs-def init-rhs-def classes-of-def lefts-of-def )

ultimately show ?thesis by (simp add :Inv-def )
qed

2.1.3 Interation step

From this point until iteration-step, it is proved that there exists iteration
steps which keep Inv(ES ) while decreasing the size of ES.

lemma arden-variate-keeps-eq :
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assumes l-eq-r : X = L rhs
and not-empty : [] /∈ L (rexp-of rhs X )
and finite: finite rhs
shows X = L (arden-variate X rhs)

proof −
def A ≡ L (rexp-of rhs X )
def b ≡ rhs − items-of rhs X
def B ≡ L b
have X = B ;; A?
proof−

have rhs = items-of rhs X ∪ b by (auto simp:b-def items-of-def )
hence L rhs = L(items-of rhs X ∪ b) by simp
hence L rhs = L(items-of rhs X ) ∪ B by (simp only :L-rhs-union-distrib B-def )
with lang-of-rexp-of
have L rhs = X ;; A ∪ B using finite by (simp only :B-def b-def A-def )
thus ?thesis

using l-eq-r not-empty
apply (drule-tac B = B and X = X in ardens-revised)
by (auto simp:A-def simp del :L-rhs.simps)

qed
moreover have L (arden-variate X rhs) = (B ;; A?) (is ?L = ?R)

by (simp only :arden-variate-def L-rhs-union-distrib lang-of-append-rhs
B-def A-def b-def L-rexp.simps seq-union-distrib)

ultimately show ?thesis by simp
qed

lemma append-keeps-finite:
finite rhs =⇒ finite (append-rhs-rexp rhs r)

by (auto simp:append-rhs-rexp-def )

lemma arden-variate-keeps-finite:
finite rhs =⇒ finite (arden-variate X rhs)

by (auto simp:arden-variate-def append-keeps-finite)

lemma append-keeps-nonempty :
rhs-nonempty rhs =⇒ rhs-nonempty (append-rhs-rexp rhs r)

apply (auto simp:rhs-nonempty-def append-rhs-rexp-def )
by (case-tac x , auto simp:Seq-def )

lemma nonempty-set-sub:
rhs-nonempty rhs =⇒ rhs-nonempty (rhs − A)

by (auto simp:rhs-nonempty-def )

lemma nonempty-set-union:
[[rhs-nonempty rhs; rhs-nonempty rhs ′]] =⇒ rhs-nonempty (rhs ∪ rhs ′)

by (auto simp:rhs-nonempty-def )

lemma arden-variate-keeps-nonempty :
rhs-nonempty rhs =⇒ rhs-nonempty (arden-variate X rhs)
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by (simp only :arden-variate-def append-keeps-nonempty nonempty-set-sub)

lemma rhs-subst-keeps-nonempty :
[[rhs-nonempty rhs; rhs-nonempty xrhs]] =⇒ rhs-nonempty (rhs-subst rhs X xrhs)

by (simp only :rhs-subst-def append-keeps-nonempty nonempty-set-union nonempty-set-sub)

lemma rhs-subst-keeps-eq :
assumes substor : X = L xrhs
and finite: finite rhs
shows L (rhs-subst rhs X xrhs) = L rhs (is ?Left = ?Right)

proof−
def A ≡ L (rhs − items-of rhs X )
have ?Left = A ∪ L (append-rhs-rexp xrhs (rexp-of rhs X ))

by (simp only :rhs-subst-def L-rhs-union-distrib A-def )
moreover have ?Right = A ∪ L (items-of rhs X )
proof−
have rhs = (rhs − items-of rhs X ) ∪ (items-of rhs X ) by (auto simp:items-of-def )
thus ?thesis by (simp only :L-rhs-union-distrib A-def )

qed
moreover have L (append-rhs-rexp xrhs (rexp-of rhs X )) = L (items-of rhs X )

using finite substor by (simp only :lang-of-append-rhs lang-of-rexp-of )
ultimately show ?thesis by simp

qed

lemma rhs-subst-keeps-finite-rhs:
[[finite rhs; finite yrhs]] =⇒ finite (rhs-subst rhs Y yrhs)

by (auto simp:rhs-subst-def append-keeps-finite)

lemma eqs-subst-keeps-finite:
assumes finite:finite (ES :: (string set × rhs-item set) set)
shows finite (eqs-subst ES Y yrhs)

proof −
have finite {(Ya, rhs-subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) ∈ ES}

(is finite ?A)
proof−

def eqns ′ ≡ {((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) ∈ ES}
def h ≡ λ ((Ya::string set), yrhsa). (Ya, rhs-subst yrhsa Y yrhs)
have finite (h ‘ eqns ′) using finite h-def eqns ′-def by auto
moreover have ?A = h ‘ eqns ′ by (auto simp:h-def eqns ′-def )
ultimately show ?thesis by auto

qed
thus ?thesis by (simp add :eqs-subst-def )

qed

lemma eqs-subst-keeps-finite-rhs:
[[finite-rhs ES ; finite yrhs]] =⇒ finite-rhs (eqs-subst ES Y yrhs)

by (auto intro:rhs-subst-keeps-finite-rhs simp add :eqs-subst-def finite-rhs-def )
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lemma append-rhs-keeps-cls:
classes-of (append-rhs-rexp rhs r) = classes-of rhs

apply (auto simp:classes-of-def append-rhs-rexp-def )
apply (case-tac xa, auto simp:image-def )
by (rule-tac x = SEQ ra r in exI , rule-tac x = Trn x ra in bexI , simp+)

lemma arden-variate-removes-cl :
classes-of (arden-variate Y yrhs) = classes-of yrhs − {Y }

apply (simp add :arden-variate-def append-rhs-keeps-cls items-of-def )
by (auto simp:classes-of-def )

lemma lefts-of-keeps-cls:
lefts-of (eqs-subst ES Y yrhs) = lefts-of ES

by (auto simp:lefts-of-def eqs-subst-def )

lemma rhs-subst-updates-cls:
X /∈ classes-of xrhs =⇒

classes-of (rhs-subst rhs X xrhs) = classes-of rhs ∪ classes-of xrhs − {X }
apply (simp only :rhs-subst-def append-rhs-keeps-cls

classes-of-union-distrib[THEN sym])
by (auto simp:classes-of-def items-of-def )

lemma eqs-subst-keeps-self-contained :
fixes Y
assumes sc: self-contained (ES ∪ {(Y , yrhs)}) (is self-contained ?A)
shows self-contained (eqs-subst ES Y (arden-variate Y yrhs))

(is self-contained ?B)
proof−
{ fix X xrhs ′

assume (X , xrhs ′) ∈ ?B
then obtain xrhs

where xrhs-xrhs ′: xrhs ′ = rhs-subst xrhs Y (arden-variate Y yrhs)
and X-in: (X , xrhs) ∈ ES by (simp add :eqs-subst-def , blast)

have classes-of xrhs ′ ⊆ lefts-of ?B
proof−

have lefts-of ?B = lefts-of ES by (auto simp add :lefts-of-def eqs-subst-def )
moreover have classes-of xrhs ′ ⊆ lefts-of ES
proof−

have classes-of xrhs ′ ⊆
classes-of xrhs ∪ classes-of (arden-variate Y yrhs) − {Y }

proof−
have Y /∈ classes-of (arden-variate Y yrhs)

using arden-variate-removes-cl by simp
thus ?thesis using xrhs-xrhs ′ by (auto simp:rhs-subst-updates-cls)

qed
moreover have classes-of xrhs ⊆ lefts-of ES ∪ {Y } using X-in sc

apply (simp only :self-contained-def lefts-of-union-distrib[THEN sym])
by (drule-tac x = (X , xrhs) in bspec, auto simp:lefts-of-def )

moreover have classes-of (arden-variate Y yrhs) ⊆ lefts-of ES ∪ {Y }
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using sc
by (auto simp add :arden-variate-removes-cl self-contained-def lefts-of-def )

ultimately show ?thesis by auto
qed
ultimately show ?thesis by simp

qed
} thus ?thesis by (auto simp only :eqs-subst-def self-contained-def )

qed

lemma eqs-subst-satisfy-Inv :
assumes Inv-ES : Inv (ES ∪ {(Y , yrhs)})
shows Inv (eqs-subst ES Y (arden-variate Y yrhs))

proof −
have finite-yrhs: finite yrhs

using Inv-ES by (auto simp:Inv-def finite-rhs-def )
have nonempty-yrhs: rhs-nonempty yrhs

using Inv-ES by (auto simp:Inv-def ardenable-def )
have Y-eq-yrhs: Y = L yrhs

using Inv-ES by (simp only :Inv-def valid-eqns-def , blast)
have distinct-equas (eqs-subst ES Y (arden-variate Y yrhs))

using Inv-ES
by (auto simp:distinct-equas-def eqs-subst-def Inv-def )

moreover have finite (eqs-subst ES Y (arden-variate Y yrhs))
using Inv-ES by (simp add :Inv-def eqs-subst-keeps-finite)

moreover have finite-rhs (eqs-subst ES Y (arden-variate Y yrhs))
proof−

have finite-rhs ES using Inv-ES
by (simp add :Inv-def finite-rhs-def )

moreover have finite (arden-variate Y yrhs)
proof −

have finite yrhs using Inv-ES
by (auto simp:Inv-def finite-rhs-def )

thus ?thesis using arden-variate-keeps-finite by simp
qed
ultimately show ?thesis

by (simp add :eqs-subst-keeps-finite-rhs)
qed
moreover have ardenable (eqs-subst ES Y (arden-variate Y yrhs))
proof −
{ fix X rhs

assume (X , rhs) ∈ ES
hence rhs-nonempty rhs using prems Inv-ES

by (simp add :Inv-def ardenable-def )
with nonempty-yrhs
have rhs-nonempty (rhs-subst rhs Y (arden-variate Y yrhs))

by (simp add :nonempty-yrhs
rhs-subst-keeps-nonempty arden-variate-keeps-nonempty)

} thus ?thesis by (auto simp add :ardenable-def eqs-subst-def )
qed
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moreover have valid-eqns (eqs-subst ES Y (arden-variate Y yrhs))
proof−

have Y = L (arden-variate Y yrhs)
using Y-eq-yrhs Inv-ES finite-yrhs nonempty-yrhs
by (rule-tac arden-variate-keeps-eq , (simp add :rexp-of-empty)+)

thus ?thesis using Inv-ES
by (clarsimp simp add :valid-eqns-def

eqs-subst-def rhs-subst-keeps-eq Inv-def finite-rhs-def
simp del :L-rhs.simps)

qed
moreover have

non-empty-subst : non-empty (eqs-subst ES Y (arden-variate Y yrhs))
using Inv-ES by (auto simp:Inv-def non-empty-def eqs-subst-def )

moreover
have self-subst : self-contained (eqs-subst ES Y (arden-variate Y yrhs))

using Inv-ES eqs-subst-keeps-self-contained by (simp add :Inv-def )
ultimately show ?thesis using Inv-ES by (simp add :Inv-def )

qed

lemma eqs-subst-card-le:
assumes finite: finite (ES ::(string set × rhs-item set) set)
shows card (eqs-subst ES Y yrhs) <= card ES

proof−
def f ≡ λ x . ((fst x )::string set , rhs-subst (snd x ) Y yrhs)
have eqs-subst ES Y yrhs = f ‘ ES

apply (auto simp:eqs-subst-def f-def image-def )
by (rule-tac x = (Ya, yrhsa) in bexI , simp+)

thus ?thesis using finite by (auto intro:card-image-le)
qed

lemma eqs-subst-cls-remains:
(X , xrhs) ∈ ES =⇒ ∃ xrhs ′. (X , xrhs ′) ∈ (eqs-subst ES Y yrhs)

by (auto simp:eqs-subst-def )

lemma card-noteq-1-has-more:
assumes card :card S 6= 1
and e-in: e ∈ S
and finite: finite S
obtains e ′ where e ′ ∈ S ∧ e 6= e ′

proof−
have card (S − {e}) > 0
proof −

have card S > 1 using card e-in finite
by (case-tac card S , auto)

thus ?thesis using finite e-in by auto
qed
hence S − {e} 6= {} using finite by (rule-tac notI , simp)
thus (

∧
e ′. e ′ ∈ S ∧ e 6= e ′ =⇒ thesis) =⇒ thesis by auto

qed
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lemma iteration-step:
assumes Inv-ES : Inv ES
and X-in-ES : (X , xrhs) ∈ ES
and not-T : card ES 6= 1
shows ∃ ES ′. (Inv ES ′ ∧ (∃ xrhs ′.(X , xrhs ′) ∈ ES ′)) ∧

(card ES ′, card ES ) ∈ less-than (is ∃ ES ′. ?P ES ′)
proof −

have finite-ES : finite ES using Inv-ES by (simp add :Inv-def )
then obtain Y yrhs

where Y-in-ES : (Y , yrhs) ∈ ES and not-eq : (X , xrhs) 6= (Y , yrhs)
using not-T X-in-ES by (drule-tac card-noteq-1-has-more, auto)

def ES ′ == ES − {(Y , yrhs)}
let ?ES ′′ = eqs-subst ES ′ Y (arden-variate Y yrhs)
have ?P ?ES ′′

proof −
have Inv ?ES ′′ using Y-in-ES Inv-ES

by (rule-tac eqs-subst-satisfy-Inv , simp add :ES ′-def insert-absorb)
moreover have ∃ xrhs ′. (X , xrhs ′) ∈ ?ES ′′ using not-eq X-in-ES

by (rule-tac ES = ES ′ in eqs-subst-cls-remains, auto simp add :ES ′-def )
moreover have (card ?ES ′′, card ES ) ∈ less-than
proof −

have finite ES ′ using finite-ES ES ′-def by auto
moreover have card ES ′ < card ES using finite-ES Y-in-ES

by (auto simp:ES ′-def card-gt-0-iff intro:diff-Suc-less)
ultimately show ?thesis

by (auto dest :eqs-subst-card-le elim:le-less-trans)
qed
ultimately show ?thesis by simp

qed
thus ?thesis by blast

qed

2.1.4 Conclusion of the proof

From this point until hard-direction, the hard direction is proved through a
simple application of the iteration principle.

lemma iteration-conc:
assumes history : Inv ES
and X-in-ES : ∃ xrhs. (X , xrhs) ∈ ES
shows
∃ ES ′. (Inv ES ′ ∧ (∃ xrhs ′. (X , xrhs ′) ∈ ES ′)) ∧ card ES ′ = 1

(is ∃ ES ′. ?P ES ′)
proof (cases card ES = 1 )

case True
thus ?thesis using history X-in-ES

by blast
next

case False
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thus ?thesis using history iteration-step X-in-ES
by (rule-tac f = card in wf-iter , auto)

qed

lemma last-cl-exists-rexp:
assumes ES-single: ES = {(X , xrhs)}
and Inv-ES : Inv ES
shows ∃ (r ::rexp). L r = X (is ∃ r . ?P r)

proof−
let ?A = arden-variate X xrhs
have ?P (rexp-of-lam ?A)
proof −

have L (rexp-of-lam ?A) = L (lam-of ?A)
proof(rule rexp-of-lam-eq-lam-set)

show finite (arden-variate X xrhs) using Inv-ES ES-single
by (rule-tac arden-variate-keeps-finite,

auto simp add :Inv-def finite-rhs-def )
qed
also have . . . = L ?A
proof−

have lam-of ?A = ?A
proof−

have classes-of ?A = {} using Inv-ES ES-single
by (simp add :arden-variate-removes-cl

self-contained-def Inv-def lefts-of-def )
thus ?thesis

by (auto simp only :lam-of-def classes-of-def , case-tac x , auto)
qed
thus ?thesis by simp

qed
also have . . . = X
proof(rule arden-variate-keeps-eq [THEN sym])

show X = L xrhs using Inv-ES ES-single
by (auto simp only :Inv-def valid-eqns-def )

next
from Inv-ES ES-single show [] /∈ L (rexp-of xrhs X )

by(simp add :Inv-def ardenable-def rexp-of-empty finite-rhs-def )
next

from Inv-ES ES-single show finite xrhs
by (simp add :Inv-def finite-rhs-def )

qed
finally show ?thesis by simp

qed
thus ?thesis by auto

qed

lemma every-eqcl-has-reg :
assumes finite-CS : finite (UNIV // (≈Lang))
and X-in-CS : X ∈ (UNIV // (≈Lang))
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shows ∃ (reg ::rexp). L reg = X (is ∃ r . ?E r)
proof −

from X-in-CS have ∃ xrhs. (X , xrhs) ∈ (eqs (UNIV // (≈Lang)))
by (auto simp:eqs-def init-rhs-def )

then obtain ES xrhs where Inv-ES : Inv ES
and X-in-ES : (X , xrhs) ∈ ES
and card-ES : card ES = 1
using finite-CS X-in-CS init-ES-satisfy-Inv iteration-conc
by blast

hence ES-single-equa: ES = {(X , xrhs)}
by (auto simp:Inv-def dest !:card-Suc-Diff1 simp:card-eq-0-iff )

thus ?thesis using Inv-ES
by (rule last-cl-exists-rexp)

qed

lemma finals-in-partitions:
finals Lang ⊆ (UNIV // (≈Lang))
by (auto simp:finals-def quotient-def )

theorem hard-direction:
assumes finite-CS : finite (UNIV // (≈Lang))
shows ∃ (reg ::rexp). Lang = L reg

proof −
have ∀ X ∈ (UNIV // (≈Lang)). ∃ (reg ::rexp). X = L reg

using finite-CS every-eqcl-has-reg by blast
then obtain f

where f-prop: ∀ X ∈ (UNIV // (≈Lang)). X = L ((f X )::rexp)
by (auto dest :bchoice)

def rs ≡ f ‘ (finals Lang)
have Lang =

⋃
(finals Lang) using lang-is-union-of-finals by auto

also have . . . = L (folds ALT NULL rs)
proof −

have finite rs
proof −

have finite (finals Lang)
using finite-CS finals-in-partitions[of Lang ]
by (erule-tac finite-subset , simp)

thus ?thesis using rs-def by auto
qed
thus ?thesis

using f-prop rs-def finals-in-partitions[of Lang ] by auto
qed
finally show ?thesis by blast

qed
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3 Direction: regular language ⇒ finite partitions

3.1 The scheme for this direction

The following convenient notation x ≈Lang y means: string x and y are
equivalent with respect to language Lang.

definition
str-eq (- ≈- -)

where
x ≈Lang y ≡ (x , y) ∈ (≈Lang)

The very basic scheme to show the finiteness of the partion generated by
a language Lang is by attaching tags to every string. The set of tags are
carefully choosen to make it finite. If it can be proved that strings with
the same tag are equivlent with respect Lang, then the partition given rise
by Lang must be finite. The reason for this is a lemma in standard library
(finite-imageD), which says: if the image of an injective function on a set
A is finite, then A is finite. It can be shown that the function obtained by
lifting tag to the level of equivalence classes (i.e. ((op ‘ ) tag)) is injective (by
lemma tag-image-injI ) and the image of this function is finite (with the help
of lemma finite-tag-imageI ). This argument is formalized by the following
lemma tag-finite-imageD.

Theorems tag-image-injI and finite-tag-imageI do not exist. Can this
comment be deleted? COMMENT

lemma tag-finite-imageD :
fixes L1 ::lang
assumes str-inj :

∧
m n. tag m = tag n =⇒ m ≈L1 n

and range: finite (range tag)
shows finite (UNIV // ≈L1 )

proof (rule-tac f = (op ‘ ) tag in finite-imageD)
show finite (op ‘ tag ‘ UNIV // ≈L1 ) using range

apply (rule-tac B = Pow (tag ‘ UNIV ) in finite-subset)
by (auto simp add :image-def Pow-def )

next
show inj-on (op ‘ tag) (UNIV // ≈L1 )
proof−
{ fix X Y

assume X-in: X ∈ UNIV // ≈L1
and Y-in: Y ∈ UNIV // ≈L1
and tag-eq : tag ‘ X = tag ‘ Y

then obtain x y where x ∈ X and y ∈ Y and tag x = tag y
unfolding quotient-def Image-def str-eq-rel-def str-eq-def image-def
apply simp by blast

with X-in Y-in str-inj [of x y ]
have X = Y by (auto simp:quotient-def str-eq-rel-def str-eq-def )

} thus ?thesis unfolding inj-on-def by auto
qed

22



qed

3.2 Lemmas for basic cases

The the final result of this direction is in rexp-imp-finite, which is an in-
duction on the structure of regular expressions. There is one case for each
regular expression operator. For basic operators such as NULL, EMPTY,
CHAR, the finiteness of their language partition can be established directly
with no need of tagging. This section contains several technical lemma for
these base cases.

The inductive cases involve operators ALT, SEQ and STAR. Tagging func-
tions need to be defined individually for each of them. There will be one
dedicated section for each of these cases, and each section goes virtually the
same way: gives definition of the tagging function and prove that strings
with the same tag are equivalent.

3.3 The case for NULL

lemma quot-null-eq :
shows (UNIV // ≈{}) = ({UNIV }::lang set)
unfolding quotient-def Image-def str-eq-rel-def by auto

lemma quot-null-finiteI [intro]:
shows finite ((UNIV // ≈{})::lang set)

unfolding quot-null-eq by simp

3.4 The case for EMPTY

lemma quot-empty-subset :
UNIV // (≈{[]}) ⊆ {{[]}, UNIV − {[]}}

proof
fix x
assume x ∈ UNIV // ≈{[]}
then obtain y where h: x = {z . (y , z ) ∈ ≈{[]}}

unfolding quotient-def Image-def by blast
show x ∈ {{[]}, UNIV − {[]}}
proof (cases y = [])

case True with h
have x = {[]} by (auto simp: str-eq-rel-def )
thus ?thesis by simp

next
case False with h
have x = UNIV − {[]} by (auto simp: str-eq-rel-def )
thus ?thesis by simp

qed
qed
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lemma quot-empty-finiteI [intro]:
shows finite (UNIV // (≈{[]}))

by (rule finite-subset [OF quot-empty-subset ]) (simp)

3.5 The case for CHAR

lemma quot-char-subset :
UNIV // (≈{[c]}) ⊆ {{[]},{[c]}, UNIV − {[], [c]}}

proof
fix x
assume x ∈ UNIV // ≈{[c]}
then obtain y where h: x = {z . (y , z ) ∈ ≈{[c]}}

unfolding quotient-def Image-def by blast
show x ∈ {{[]},{[c]}, UNIV − {[], [c]}}
proof −
{ assume y = [] hence x = {[]} using h

by (auto simp:str-eq-rel-def )
} moreover {

assume y = [c] hence x = {[c]} using h
by (auto dest !:spec[where x = []] simp:str-eq-rel-def )

} moreover {
assume y 6= [] and y 6= [c]
hence ∀ z . (y @ z ) 6= [c] by (case-tac y , auto)
moreover have

∧
p. (p 6= [] ∧ p 6= [c]) = (∀ q . p @ q 6= [c])

by (case-tac p, auto)
ultimately have x = UNIV − {[],[c]} using h

by (auto simp add :str-eq-rel-def )
} ultimately show ?thesis by blast

qed
qed

lemma quot-char-finiteI [intro]:
shows finite (UNIV // (≈{[c]}))

by (rule finite-subset [OF quot-char-subset ]) (simp)

3.6 The case for SEQ

definition
tag-str-SEQ :: lang ⇒ lang ⇒ string ⇒ (lang × lang set)

where
tag-str-SEQ L1 L2 = (λx . (≈L1 ‘‘ {x}, {(≈L2 ‘‘ {x − xa}) | xa. xa ≤ x ∧ xa
∈ L1}))

lemma append-seq-elim:
assumes x @ y ∈ L1 ;; L2

shows (∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ y ∈ L2) ∨
(∃ ya ≤ y . (x @ ya) ∈ L1 ∧ (y − ya) ∈ L2)

proof−
from assms obtain s1 s2

where x @ y = s1 @ s2
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and in-seq : s1 ∈ L1 ∧ s2 ∈ L2

by (auto simp:Seq-def )
hence (x ≤ s1 ∧ (s1 − x ) @ s2 = y) ∨ (s1 ≤ x ∧ (x − s1) @ y = s2)

using app-eq-dest by auto
moreover have [[x ≤ s1; (s1 − x ) @ s2 = y ]] =⇒

∃ ya ≤ y . (x @ ya) ∈ L1 ∧ (y − ya) ∈ L2

using in-seq by (rule-tac x = s1 − x in exI , auto elim:prefixE )
moreover have [[s1 ≤ x ; (x − s1) @ y = s2]] =⇒

∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ y ∈ L2

using in-seq by (rule-tac x = s1 in exI , auto)
ultimately show ?thesis by blast

qed

lemma tag-str-SEQ-injI :
tag-str-SEQ L1 L2 m = tag-str-SEQ L1 L2 n =⇒ m ≈(L1 ;; L2) n

proof−
{ fix x y z

assume xz-in-seq : x @ z ∈ L1 ;; L2

and tag-xy : tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y
havey @ z ∈ L1 ;; L2

proof−
have (∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ z ∈ L2) ∨

(∃ za ≤ z . (x @ za) ∈ L1 ∧ (z − za) ∈ L2)
using xz-in-seq append-seq-elim by simp

moreover {
fix xa
assume h1 : xa ≤ x and h2 : xa ∈ L1 and h3 : (x − xa) @ z ∈ L2

obtain ya where ya ≤ y and ya ∈ L1 and (y − ya) @ z ∈ L2

proof −
have ∃ ya. ya ≤ y ∧ ya ∈ L1 ∧ (x − xa) ≈L2 (y − ya)
proof −

have {≈L2 ‘‘ {x − xa} |xa. xa ≤ x ∧ xa ∈ L1} =
{≈L2 ‘‘ {y − xa} |xa. xa ≤ y ∧ xa ∈ L1}

(is ?Left = ?Right)
using h1 tag-xy by (auto simp:tag-str-SEQ-def )

moreover have ≈L2 ‘‘ {x − xa} ∈ ?Left using h1 h2 by auto
ultimately have ≈L2 ‘‘ {x − xa} ∈ ?Right by simp
thus ?thesis by (auto simp:Image-def str-eq-rel-def str-eq-def )

qed
with prems show ?thesis by (auto simp:str-eq-rel-def str-eq-def )

qed
hence y @ z ∈ L1 ;; L2 by (erule-tac prefixE , auto simp:Seq-def )

} moreover {
fix za
assume h1 : za ≤ z and h2 : (x @ za) ∈ L1 and h3 : z − za ∈ L2

hence y @ za ∈ L1

proof−
have ≈L1 ‘‘ {x} = ≈L1 ‘‘ {y}

using h1 tag-xy by (auto simp:tag-str-SEQ-def )
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with h2 show ?thesis
by (auto simp:Image-def str-eq-rel-def str-eq-def )

qed
with h1 h3 have y @ z ∈ L1 ;; L2

by (drule-tac A = L1 in seq-intro, auto elim:prefixE )
}
ultimately show ?thesis by blast

qed
} thus tag-str-SEQ L1 L2 m = tag-str-SEQ L1 L2 n =⇒ m ≈(L1 ;; L2) n

by (auto simp add : str-eq-def str-eq-rel-def )
qed

lemma quot-seq-finiteI [intro]:
fixes L1 L2 ::lang
assumes fin1 : finite (UNIV // ≈L1 )
and fin2 : finite (UNIV // ≈L2 )
shows finite (UNIV // ≈(L1 ;; L2 ))

proof (rule-tac tag = tag-str-SEQ L1 L2 in tag-finite-imageD)
show

∧
x y . tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y =⇒ x ≈(L1 ;; L2 ) y

by (rule tag-str-SEQ-injI )
next

have ∗: finite ((UNIV // ≈L1 ) × (Pow (UNIV // ≈L2 )))
using fin1 fin2 by auto

show finite (range (tag-str-SEQ L1 L2 ))
unfolding tag-str-SEQ-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

3.7 The case for ALT

definition
tag-str-ALT :: lang ⇒ lang ⇒ string ⇒ (lang × lang)

where
tag-str-ALT L1 L2 = (λx . (≈L1 ‘‘ {x}, ≈L2 ‘‘ {x}))

lemma quot-union-finiteI [intro]:
fixes L1 L2 ::lang
assumes finite1 : finite (UNIV // ≈L1 )
and finite2 : finite (UNIV // ≈L2 )
shows finite (UNIV // ≈(L1 ∪ L2 ))

proof (rule-tac tag = tag-str-ALT L1 L2 in tag-finite-imageD)
show

∧
x y . tag-str-ALT L1 L2 x = tag-str-ALT L1 L2 y =⇒ x ≈(L1 ∪ L2 ) y

unfolding tag-str-ALT-def
unfolding str-eq-def
unfolding Image-def
unfolding str-eq-rel-def
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by auto
next

have ∗: finite ((UNIV // ≈L1 ) × (UNIV // ≈L2 ))
using finite1 finite2 by auto

show finite (range (tag-str-ALT L1 L2 ))
unfolding tag-str-ALT-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

3.8 The case for STAR

This turned out to be the trickiest case.

definition
tag-str-STAR :: lang ⇒ string ⇒ lang set

where
tag-str-STAR L1 = (λx . {≈L1 ‘‘ {x − xa} | xa. xa < x ∧ xa ∈ L1?})

lemma finite-set-has-max : [[finite A; A 6= {}]] =⇒
(∃ max ∈ A. ∀ a ∈ A. f a <= (f max :: nat))

proof (induct rule:finite.induct)
case emptyI thus ?case by simp

next
case (insertI A a)
show ?case
proof (cases A = {})

case True thus ?thesis by (rule-tac x = a in bexI , auto)
next

case False
with prems obtain max

where h1 : max ∈ A
and h2 : ∀ a∈A. f a ≤ f max by blast

show ?thesis
proof (cases f a ≤ f max )

assume f a ≤ f max
with h1 h2 show ?thesis by (rule-tac x = max in bexI , auto)

next
assume ¬ (f a ≤ f max )
thus ?thesis using h2 by (rule-tac x = a in bexI , auto)

qed
qed

qed

lemma finite-strict-prefix-set : finite {xa. xa < (x ::string)}
apply (induct x rule:rev-induct , simp)
apply (subgoal-tac {xa. xa < xs @ [x ]} = {xa. xa < xs} ∪ {xs})
by (auto simp:strict-prefix-def )

27



lemma tag-str-STAR-injI :
tag-str-STAR L1 m = tag-str-STAR L1 n =⇒ m ≈(L1?) n

proof−
{ fix x y z

assume xz-in-star : x @ z ∈ L1?
and tag-xy : tag-str-STAR L1 x = tag-str-STAR L1 y
have y @ z ∈ L1?
proof(cases x = [])

case True
with tag-xy have y = []

by (auto simp:tag-str-STAR-def strict-prefix-def )
thus ?thesis using xz-in-star True by simp

next
case False
obtain x-max

where h1 : x-max < x
and h2 : x-max ∈ L1?
and h3 : (x − x-max ) @ z ∈ L1?
and h4 :∀ xa < x . xa ∈ L1? ∧ (x − xa) @ z ∈ L1?

−→ length xa ≤ length x-max
proof−

let ?S = {xa. xa < x ∧ xa ∈ L1? ∧ (x − xa) @ z ∈ L1?}
have finite ?S

by (rule-tac B = {xa. xa < x} in finite-subset ,
auto simp:finite-strict-prefix-set)

moreover have ?S 6= {} using False xz-in-star
by (simp, rule-tac x = [] in exI , auto simp:strict-prefix-def )

ultimately have ∃ max ∈ ?S . ∀ a ∈ ?S . length a ≤ length max
using finite-set-has-max by blast

with prems show ?thesis by blast
qed
obtain ya

where h5 : ya < y and h6 : ya ∈ L1? and h7 : (x − x-max ) ≈L1 (y − ya)
proof−

from tag-xy have {≈L1 ‘‘ {x − xa} |xa. xa < x ∧ xa ∈ L1?} =
{≈L1 ‘‘ {y − xa} |xa. xa < y ∧ xa ∈ L1?} (is ?left = ?right)
by (auto simp:tag-str-STAR-def )

moreover have ≈L1 ‘‘ {x − x-max} ∈ ?left using h1 h2 by auto
ultimately have ≈L1 ‘‘ {x − x-max} ∈ ?right by simp
with prems show ?thesis apply

(simp add :Image-def str-eq-rel-def str-eq-def ) by blast
qed
have (y − ya) @ z ∈ L1?
proof−

from h3 h1 obtain a b where a-in: a ∈ L1

and a-neq : a 6= [] and b-in: b ∈ L1?
and ab-max : (x − x-max ) @ z = a @ b
by (drule-tac star-decom, auto simp:strict-prefix-def elim:prefixE )

have (x − x-max ) ≤ a ∧ (a − (x − x-max )) @ b = z
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proof −
have ((x − x-max ) ≤ a ∧ (a − (x − x-max )) @ b = z ) ∨

(a < (x − x-max ) ∧ ((x − x-max ) − a) @ z = b)
using app-eq-dest [OF ab-max ] by (auto simp:strict-prefix-def )

moreover {
assume np: a < (x − x-max ) and b-eqs: ((x − x-max ) − a) @ z = b
have False
proof −

let ?x-max ′ = x-max @ a
have ?x-max ′ < x

using np h1 by (clarsimp simp:strict-prefix-def diff-prefix )
moreover have ?x-max ′ ∈ L1?

using a-in h2 by (simp add :star-intro3 )
moreover have (x − ?x-max ′) @ z ∈ L1?

using b-eqs b-in np h1 by (simp add :diff-diff-appd)
moreover have ¬ (length ?x-max ′ ≤ length x-max )

using a-neq by simp
ultimately show ?thesis using h4 by blast

qed
} ultimately show ?thesis by blast

qed
then obtain za where z-decom: z = za @ b

and x-za: (x − x-max ) @ za ∈ L1

using a-in by (auto elim:prefixE )
from x-za h7 have (y − ya) @ za ∈ L1

by (auto simp:str-eq-def str-eq-rel-def )
with z-decom b-in show ?thesis by (auto dest !:step[of (y − ya) @ za])

qed
with h5 h6 show ?thesis

by (drule-tac star-intro1 , auto simp:strict-prefix-def elim:prefixE )
qed

} thus tag-str-STAR L1 m = tag-str-STAR L1 n =⇒ m ≈(L1?) n
by (auto simp add :str-eq-def str-eq-rel-def )

qed

lemma quot-star-finiteI [intro]:
fixes L1 ::lang
assumes finite1 : finite (UNIV // ≈L1 )
shows finite (UNIV // ≈(L1?))

proof (rule-tac tag = tag-str-STAR L1 in tag-finite-imageD)
show

∧
x y . tag-str-STAR L1 x = tag-str-STAR L1 y =⇒ x ≈(L1?) y

by (rule tag-str-STAR-injI )
next

have ∗: finite (Pow (UNIV // ≈L1 ))
using finite1 by auto

show finite (range (tag-str-STAR L1 ))
unfolding tag-str-STAR-def
apply(rule finite-subset [OF - ∗])
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unfolding quotient-def
by auto

qed

3.9 The main lemma

lemma rexp-imp-finite:
fixes r ::rexp
shows finite (UNIV // ≈(L r))

by (induct r) (auto)

end
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