

AND THEIR
FORMAL LANGUAGES

RELATION TO AUTOMATA

FORMAL LANGUAGES
AND THEIR RELATION TO AUTOMATA

JOHN E. HOPCROFT

Cornell University, Ithaca, New York

JEFFREY D. ULLMAN

Bell Telephone Laboratories, Murray Hill, New Jersey

A
V V

Reading, Massachusetts

ADDISON-WESLEY PUBLISHING C O M P A N Y
Menlo Park, California • London • Don Mills, Ontario

This book is in the

ADDISON-WESLEY SERIES
IN COMPUTER SCIENCE AND INFORMATION PROCESSING

Consulting Editors

MICHAEL A. HARRISON

RICHARD S. VARGA

Copyright © 1969 by Addison-Wesley Publishing Company, Inc. All rights reserved. No
part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the United States of America.
Published simultaneously in Canada. Library of Congress Catalog Card No. 69-14297.

PREFACE

The study of formal languages constitutes an important subarea of computer
science. This area sprang to life around 1956 when Noam Chomsky gave a
mathematical model of a grammar in connection with his study of natural
languages. Shortly afterwards, the concept of a grammar was found to be
of great importance to the programmer when the syntax of the programming
language ALGOL was defined by a context-free grammar. This development
led naturally to syntax-directed compiling and the concept of a compiler
compiler. Since then a considerable flurry of activity has taken place, the
results of which have related formal languages and automata theory to such
an extent that it is impossible to treat the areas separately. By now, no
serious study of computer science would be complete without a knowledge of
the techniques and results from language and automata theory.

This book presents the theory of formal languages as a coherent theory
and makes explicit its relationship to automata. The book begins with an
explanation of the notion of a finite description of a language. The funda-
mental descriptive device--the grammar--is explained, as well as its three
major subclasses--regular, context-free, and context-sensitive grammars.
The context-free grammars are treated in detail, and such topics as normal
forms, derivation trees, and ambiguity are covered. Four types of automata
equivalent to the four types of grammars are described. These automata are
the finite automaton, the pushdown automaton, the linear bounded autom-
aton, and the Turing machine. The Turing machine is covered in detail,
and unsolvability of the halting problem shown. The book concludes with
certain advanced topics in language theory--closure properties, computational
complexity, deterministic pushdown automata, LR(k) grammars, stack
automata, and decidability.

The emphasis is on ideas and ease of understanding rather than undue
formalism. In some cases the details of long and tedious proofs are omitted.
However, in all cases sufficient intuitive explanation is given so that the reader
may easily provide the rigorous proof if desired.

The book is intended primarily as a textbook for a first or second year
graduate course in formal languages. It is self-contained and presupposes
only the normal level of maturity expected of a beginning graduate student.

Although not essential, it has been found that a course in finite state machines
or Turing machines is useful preparation. The book is not intended as a
research monogram on formal languages, although it covers many of the
known results, and much of the material presented previously existed only in
journals of mathematics and computer science. The chapters are provided
with a guide to references on the material covered and related topics. The
problems are an integral part of the text and their difficulty ranges from
almost trivial to extremely difficult.

The material for this book is based upon class notes for courses in
language theory taught by the authors at Princeton, Columbia, and Cornel1.
The authors would like to thank the many people who offered their sugges-
tions and criticism. In particular, we would like to thank A. V. Aho, S.
Amoroso, A. Korenjak, and M. Harrison. Thanks are also due to Bell
Telephone Laboratories, and Princeton and Cornell Universities for provid-
ing the facilities for the preparation of the work.

J. E. H.
J. D. U.

CONTENTS

Chapter 1 Languages and Their Representations

1.1 A l p h a b e t s a n d Languages 1

1.2 P rocedure s and A lgo r i t hms 2

1.3 R e p r e s e n t a t i o n s of Languages 5

P r o b l e m s 7

Chapter 2 Grammars

2.1 M o t i v a t i o n 8

2.2 The F o r m a l N o t i o n of a G r a m m a r 10

2.3 The Types of G r a m m a r s 13

2.4 The E m p t y Sentence 15

2.5 Recurs iveness of Contex t -Sens i t ive G r a m m a r s 16

2.6 De r iva t i on Trees for C o n t e x t - F r e e G r a m m a r s 18

P r o b l e m s 24

References 25

Chapter 3 Finite Automata and Regular Grammars

3.1 The Fini te A u t o m a t o n 26

3.2 Equ iva lence Re la t ions a n d Fini te A u t o m a t a 28

3.3 Nonde t e rmin i s t i c Fini te A u t o m a t a 30

3.4 Fin i te A u t o m a t a and T y p e 3 Languages 33

3.5 Proper t i e s of T y p e 3 Languages 35

3.6 Solvable P r o b l e m s Conce rn ing Fin i te A u t o m a t a 39

3.7 T w o - w a y Fini te A u t o m a t a 41

P rob l ems 44

References 45

Chapter 4 Context-Free Grammars

4.1 Simpli f icat ion of C o n t e x t - F r e e G r a m m a r s 46

4.2 C h o m s k y N o r m a l F o r m 51

4.3 G r e i b a c h N o r m a l F o r m 53

4.4 Solvabi l i ty of Fini teness and the "uvwxy T h e o r e m " . . . 57

4.5 The Se l f -Embedd ing P r o p e r t y 61

vii

4.6 ~-Rules in Context-Free G r a m m a r s 62

4.7 Special Types of Context-Free Languages and G r a m m a r s . . 63

Problems 65

References 67

Chapter 5 Pushdown Automata

5.1 Informal Descript ion 68
5.2 Definitions 70

5.3 Nondeterminist ic Pushdown Au toma ta and Context-Free

Languages 74

Problems 79

References 79

Chapter 6 Turing Machines

6.1 In t roduc t ion 80

6.2 Def in i t ions and No ta t i on 80

6.3 Techniques for Turing Machine Construct ion 84

6.4 The Turing Machine as a Procedure 91

6.5 Modifications of Turing Machines 92

6.6 Restricted Turing Machines Equivalent tO the Basic Model . 98

Problems 101

References 101

Chapter 7 Turing Machines: The Halting Problem,
Type 0 Languages

7.1 Informal Discussion 102

7.2 A Universal Turing Machine 102

7.3 The Unsolvabil i ty of the Halt ing Problem 108

7.4 The Class of Recursive Sets 109

7.5 Turing Machines and Type 0 G r a m m a r s 111

Problems 113

References 114

Chapter 8 Linear Bounded Automata and Context-Sensitive
Languages

8.1 I n t r o d u c t i o n 115

8.2 Rela t ion of Linear Bounded Au toma ta to Context-Sensitive

Languages 116

8.3 The Context-Sensitive Languages as a Subclass of the Recursive

Sets 117
Problems 118
References 119

Chapter 9 Operations on Languages

9.1 In t roduct ion 120

9.2 Closure Under Elementary Operat ions 120

9.3 Closure Under Mappings 124

Problems 133

References 134

Chapter 10 Time- and Tape-Bounded Turing Machines

10.1 In t roduct ion , . . 135

10.2 Definitions 135

10.3 "Speed U p " and "Tape Reduc t ion" Theorems 137

10.4 Single-Tape Turing Machines and Crossing Sequences . . 143

10.5 Lower Bounds on Tape Complexi ty 147

10.6 Tape and Time Hierarchies 149

Problems 154

References 155

Chapter 11 Time and Space Bounds for Recognizing Context-Free
Languages

11.1 In t roduct ion 156

11.2 Time Requirements for Recogni t ion of Context-Free Languages 156

11.3 Space Requirements for Recogni t ion of Context-Free Languages 160

Problems 164

References 165

Chapter 12 Deterministic Pushdown Automata

12.1 In t roduct ion 166

12.2 Complements of Determinist ic Languages 167
12.3 Properties of Deterministic Languages 171

12.4 Context-Free Languages That Are Not Deterministic . . . 180

12.5 LR(k) G r a m m a r s 180

Problems 187

References 188

Chapter 13 Stack Automata

13.1 Definitions 189

13.2 Restricted Types of Stack Au toma ta 192
13.3 The Power of Two-Way Stack A u t o m a t a 192

13.4 The Power of One-Way Stack A u t o m a t a 201

13.5 Recursiveness of Stack Au toma ta 207

13.6 Closure Properties 209

Problems 209

References 209

Chapter 14 Decidability

14.1 Decidable and Undecidable Questions 211

14.2 Post ' s Correspondence Prob lem 212

14.3 A Quest ion Concerning Context-Sensitive Languages . . . 219

14.4 Unsolvable Questions for Context-Free Languages 219

14.5 Ambigui ty in Context-Free Languages 222

14.6 Unsolvable Questions Concerning Determinist ic Context-Free

Languages 229

14.7 Summary of Decision Problems for Regular , LR(k), Context-

Free, Context-Sensitive, and Type 0 G r a m m a r s 231

Problems 231

References 232

Bibliography 2 3 3

Index 239

CHAPTER 1

LANGUAGES A N D THEIR REPRESENTATIONS

1.1 ALPHABETS AND LANGUAGES

What is the theory of languages ? To answer this question we first ask" What
is a language ? Webster defines a language as "the body of words and methods
of combining words used and understood by a considerable community."
However, this definition is not sufficiently precise for building a mathematical
theory of languages. Thus we shall define a formal language abstractly as a
mathematical system. This formality will enable us to make rigorous state-
ments about formal languages and to develop a body of knowledge which
can then be applied to those languages which are suitably modeled. With
these ideas in mind, we make the following definitions.

An alphabet or vocabulary is any finite set of symbols. Although a non-
countably infinite number of symbols exists, we shall consider only a count-
ably infinite t subset from which all finite sets will be drawn. This subset
will include digits, the Latin and Greek letters both upper and lower case
(possibly with combinations of subscripts, superscripts, underscores, etc.),
and special symbols such as #, ¢, and so on. Any countable number of
additional symbols that the reader finds convenient may be added. Some
examples of alphabets are the Latin alphabet, {A, B, C , . . . , Z}, the Greek

~ alphabet, {a, fl, 7 , . . . , co}, and the binary alphabet, {0, 1}.
A sentence over an alphabet is any string of finite length composed of

symbols from the alphabet. Synonyms for sentence are string and word. The
empty sentence, e, is the sentence consisting of no symbols. If Vis an alphabet,
then V* denotes the set of all sentences composed of symbols of V, including
the empty sentence. We use V + to denote the set V* - {e}. Thus, if V =
{0, 1}, then V* = {e, 0, 1, 00, 01, 10, 11,000, . . .} and V + = {0, 1, 00 , . . .} .

A language is any set of sentences over an alphabet. Most languages
of interest will contain an infinite number of sentences. Three important
questions are raised.

First, how do we represent (i.e., specify the sentences of) a language ?
If the language contains only a finite number of sentences, the answer is easy.

I" A set is countably infinite if it is in one-to-one correspondence with the integers
(i.e., if it makes sense to talk about the ith element of the set).

2 LANGUAGES AND THEIR REPRESENTATIONS 1.2

One simply lists the finite set of sentences. On the other hand, if the language
is infinite, we are facedwith the problem of finding a finite representation for
the language. This finite representation will itself usually be a string of
symbols over some alphabet, together with some understood interpretation
which associates a particular representation with a given language.

Second, does there exist a finite representation for every language ? One
would suspect that the answer is no. We shall see that the set of all sentences
over an alphabet is countably infinite. A language is any subset of the set of
all such sentences. It is a well-known fact of set theory that the set of all
subsets of a countably infinite set is not countably infinite. Although we have
not defined what constitutes a finite representation, we intuitively feel that
any meaningful definition of a finite representation will result only in a
countable number of finite representations, since one should be able to write
down any such representation as some string of symbols. Thus, there are
many more languages than finite representations.

Third, we might ask what can be said about the structure of those classes
of languages for which there exist finite representations. Much of this book
will be devoted to presenting various systems of representing and charac-
terizing these classes of languages.

1.2 PROCEDURES AND ALGORITHMS

Before discussing the idea of a finite representation we informally introduce
the concepts of a procedure and an algorithm. A procedure is a finite sequence
of instructions that can be mechanically carried out, such as a computer
program.

We are somewhat vague in our definition of a procedure. We give a
formal definition in Chapter 6 in terms of Turing machines. For the time
being, if we cannot determine whether or not a step can be mechanically
carried out, then we reduce the step to a sequence of simpler steps which we
can determine can be carried out. For example, we might object to the step
"Find the smallest integer, x, satisfying such and such a condition," unless
it was obvious how to find the smallest x. Even if one knows that such a
smallest x must exist, it may not be possible to find the x by mechanical
means.

An example of a procedure which determines if an integer i, greater than
one, is prime is given in Fig. 1.1. A second example of a procedure is given
in Fig. 1.2; this procedure determines, for an integer i, whether there exists
a perfect number t greater than i.

"I" A perfect number is an integer which is equal to the sum of all its divisors except
itself. Thus 6 is a perfect number since 1 + 2 + 3 = 6. 12 is not perfect since
its divisors are 1, 2, 3, 4, and 6, which sum to 16.

1.2 PROCEDURES AND ALGORITHMS 3

Note that the first procedure will terminate for all values of i, since either
a value of j will be reached which divides i, or j will eventually become equal
to or greater than i. In either case the procedure terminates and tells us
whether i is prime. A procedure which always terminates is called an algor-
ithm. Thus we refer to the procedure of Fig. 1.1 as an algorithm for deter-
mining if an integer greater than one is prime.

Instructions"

1. Set j = 2.
2. If j __> i, then halt. i is prime.
3. If i/j is an integer, then halt. i is not prime.
4. S e t j = j + 1.
5. Go back to Instruction 2.

I Start I

=I '1 y e s =
"1 " i ~ i? I "

• 0

Isi,# an
integer?

no

' 1 I i = i + 1

yes =
v

Halt.
i is prime.

Halt.
i is not prime.

Fig. 1.1. A procedure for determining whether an integer greater than one is prime.

The second procedure need not always terminate. If there are only a
finite number of perfect numbers,t then the procedure will not stop for any
integer larger than the largest perfect number. Rather the procedure will
keep testing larger and larger k, looking for another perfect number. In
other words, if i is such that there is a perfect number greater than i, the
procedure will find it. However, if no such perfect number exists, the pro-
cedure will run forever. As long as the procedure continues to run, we have

t The question of whether or not there are an infinity of perfect numbers is an
unsolved problem of number theory.

4 LANGUAGES AND THEIR REPRESENTATIONS

Instructions"

l ,
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

Set k = i.
Set k = k + 1.
Set sum = 0.
S e t j = 1.

I f j < k, then go to Inst ruct ion 8.
I f sum ¢ k, then go to Ins t ruct ion 2.
Halt. k is a perfect number greater than i.
I f k/j is not an integer, then go to Instruct ion 10.
Set sum = sum + j.
S e t j = j + 1.
Go to Ins t ruct ion 5.

1.2

j = j + 1 L no a"

t

l stao

l

! k=k+.l~L, ,p

1

j., j=l

I s j < k ?

yes

Is k,,~" an
integer?

yes

L no

I

no

"1 Does sum = k?

lyes ,

• a perfect number
greater than i.

Fig. 1.2. A procedure for determining if there is a perfect number greater than i.

1.3 REPRESENTATIONS OF LANGUAGES 5

no way of knowing if it will eventually halt. Thus we may say that the
procedure determines if there exists a perfect number greater than a given
integer in the sense that, if such a perfect number exists, the procedure will
eventually supply an affirmative answer. If no such perfect number exists,
the procedure will supply no answer at all, since at no time do we know if
the procedure might halt at some later time.

1.3 REPRESENTATIONS OF LANGUAGES

Let us now return to the problem of finite representations for languages.
One way to represent a language is to give an algorithm which determines if
a sentence is in the language or not. A more general way is to give a pro-
cedure which halts with the answer "yes" for sentences in the language and
either does not terminate or else halts with the answer "no" for sentences
not in the language. Such a procedure or algorithm is said to recognize the
language. In Chapter 7 we see that there are languages we can recognize by
a procedure, but not by any algorithm.

These above methods represent languages from a recognition point of
view. We can also represent languages from a generative point of view. That
is, we can give a procedure which systematically generates successive sentences
of the language in some order.

If we can recognize the sentences of a language over alphabet V with
either an algorithm or a procedure, then we can generate the language, since
we can systematically generate all sentences in V*, test each sentence to see
if it is in the language, and output in a list only those sentences in the language.
One must be careful in doing so. For if we generate the sentences in order
and use a procedure which does not always halt for testing the sentences, we
never get beyond the first sentence for which the procedure does not halt.
The way to get around this problem is to organize the testing in such a
manner that the procedure never continues to test one sentence forever.
This organization requires that we introduce several constructions.

Assume that there are p symbols in V. We can think of the sentences of
V* as numbers represented in base p, plus the empty sentence e. We can
number the sentences in order of increasing length and in "numerical" order
for sentences of the same length. In Fig. 1.3 we have the enumeration of the
sentences of{a, b, c}*. We have implicitly assumed that a, b, and c correspond
to 0, 1, and 2, respectively. (This argument shows that the set of sentences
over an alphabet is countable, as we have claimed.)

Let P be a procedure for testing a sentence to see if the sentence is in a
language L. We assume that P can be broken down into discrete steps so
that it makes sense to talk about the ith step in the procedure for any given
sentence. Before giving a procedure to enumerate the sentences of L, we
first give a procedui'e to enumerate pairs of positive integers.

6 LANGUAGES AND THEIR REPRESENTATIONS 1.3

1 E

2 a
3 b
4 c
5 aa
6 ab
7 ac
8 ba
9 bb
• °

• .

1
2

x 3
4
5

Y
1 2 3 4 5

1 3 6 10 15
. 2 5 9 14

4 8 13 .
7 12

11
z(x, y)

Fig. 1.3. The enumeration of
sentences in {a, b, c}*.

Fig. 1.4. Mapping of ordered pairs of
integers onto the integers.

We can map all ordered pairs of positive integers (x, y) onto the set of
positive integers as shown in Fig. 1.4 by the formula

(x + y - 1)(x + y - 2) + y . z = 2

We can enumerate ordered pairs of integers according to the assigned
value of z. Thus the first few pairs are (1, 1), (2, 1), (1, 2), (3, 1), (2, 2),
Given any pair of integers (i, j) , it will eventually appear in the list. In fact,

it will be t h e (i + J - 1) (i + j - 2) 2 + j th pair enumerated. This technique

of enumerating ordered pairs will be used throughout the book.
We can now give a procedure for enumerating the strings of L. Enumer-

ate ordered pairs of integers. When the pair (i, j) is enumerated, generate the
ith sentence in V* and apply the first j steps of procedure P to the sentence.
Whenever it is determined that a generated sentence is in L, add that sentence
to the list of members of L. If word i is in L, it will be so determined by P
in j steps, for some finitej. When (i, j) is enumerated, word i will be generated.
It is easy to see that this procedure will indeed enumerate all sentences in L.

If we have a procedure for generating the sentences of a language, then
we can construct a procedure for recognizing the sentences of the language,
but not necessarily an algorithm. To determine if a sentence x is in L, simply
enumerate the sentences of L and compare x with each sentence. If x is
generated, the procedure halts, having recognized x as being in L. Of course,
if x is no t in L, the procedure will never terminate.

A language whose sentences can be generated by a procedure is said to
be recursively enumerable. Alternatively, a language is said to be recursively
enumerable if there is a procedure for recognizing the sentences of the
language. A language is said to be recursive if there exists an algorithm for
recognizing the language. As we shall see in Chapter 7, the class of recursive
languages is a proper subset of the class of recursively enumerable languages.
Furthermore, there are languages which are not even recursively enumerable.

PROBLEMS 7

That is, there are languages for which we cannot even effectively list the
sentences of the language.

Returning to the original question, "What is language theory ?," we can
say that language theory is the study of sets of strings of symbols, their
representations, structures, and properties' Beyond this, we shall leave the
question to be answered by the remaining chapters.

P R O B L E M S

1.1 The function

J (x , y) = (x + y - 1)(x2 + y - 2) + Y

maps ordered pairs of integers onto the integers. Find the inverse functions
K and L with the property that K(J(x , y)) = x and L(J(x , y)) -- y.

1.2 Let J(w, x, y) = J(w, J(x , y)). What triple is assigned the number 1000 ?

1.3 Describe a simple procedure for enumerating the sentences of a recursive
language.

1.4 Prove that if a language and its complement are both recursively enumerable,
then the language is recursive.

1.5 Prove that if there exists a procedure for enumerating a set of integers in a
monotolaic order, then the set is recursive in the sense that there is an
algorithm to determine if an integer is in the set.

1.6 Show that all finite sets are recursive.

CHAPTER 2

G R A M M A R S

2.1 MOTIVATION

There is one class of generating systems of primary interest to usmsystems
known as grammars. The concept of a grammar was originally formalized
by linguists in their study of natural languages. Linguists were concerned
not only with defining precisely what is or is not a valid sentence of a lan-
guage, but also with providing structural descriptions of the sentences. One
of their goals was to develop a formal grammar capable of describing
English.

It was hoped that if, for example, one had a formal grammar to describe
the English language, one could use the computer in ways that require it to
"understand" English. Such a use might be language translation or the
computer solution of word problems.

To date, this goal is for the most part unrealized. We still do not have a
definitive grammar for English, and there is even disagreement as to what
types of formal grammar are capable of describing English. However, in
describing computer languages, better results have been achieved. For

<Sentence>

<Noun phrase>

<Adjective>

<Noun phrase>

<Adjective> <Singular noun>

The little boy

<Verb phrase>

<Singular verb> ,<Adverb>

[
ran quickly.

Fig. 2.1. A diagram of the sentence "The little boy ran quickly."
8

2.1 MOTIVATION 9

example, the Backus Normal Form used to describe ALGOL is a "context-
free grammar," a type of grammar with which we shall deal.

We are all familiar with the idea of diagramming or parsing an English
sentence. For example, the sentence "The little boy ran quickly" is parsed
by noting that the sentence consists of the noun phrase "The little boy" fol-
lowed by the verb phrase "ran quickly." The noun phrase is then broken
down into the singular noun "boy" modified by the two adjectives "The"
and "little." The verb phrase is broken down into the singular verb "ran"
modified by the adverb "quickly." This sentence structure is indicated in
the diagram of Fig. 2.1. We recognize the sentence structure as being gram-
matically correct. If we had a complete set of rules for parsing all English
sentences, then we would have a technique for determining whether or not a
sentence is grammatically correct. However, such a set does not exist. Part
of the reason for this stems from the fact that there are no clear rules for
determining precisely what constitutes a sentence.

The rules we applied to parsing the above sentence can be written in the
following form"

(sentence) --~
(noun phrase)
(noun phrase) --~
(verb phrase)

(adjective)
(adjective)

(singular noun)

(noun phrase) (verb phrase)
(adjective) (noun phrase)
(adjective) (singular noun)
(singular verb) (adverb)
The
little
boy

(singular verb) ~ ran
(adverb) --~ quickly

The arrow in the above rules indicates that the item to the left of the
arrow can generate the items to the right of the arrow. Note that we have
enclosed the names of the parts of the sentence such as noun, verb, verb
phrase, etc., in brackets to avoid confusion with the English words and
phrases "noun," "verb," "verb phrase," etc.

One should note that we cannot only test sentences for their grammatical
correctness, but can also generate grammatically correct sentences by starting
with the quantity (sentence) and replacing (sentence) by (noun phrase)
followed by (verb phrase). Next we select one of the two rules for (noun
phrase) and apply it, and so on, until no further application of the rules is
possible. In this way any one of an infinite number of sentences can
be derived--that is, any sentence consisting of a string of occurrences of
"the" and "little" followed by "boy ran quickly" such as "little the the boy
ran quickly" can be generated. Most of the sentences do not make sense but,
nevertheless, are grammatically correct in a broad sense.

10 G R A M M A R S 2.2

2.2 THE FORMAL NOTION OF A G R A M M A R

Let us formalize the partial grammar for English which was mentioned in
Section 2.1. Four concepts were present. First, there were certain syntactic
categories--<singular noun), (verb phrase), (sentence), etc., from which
strings of words could be derived. The objects corresponding to syntactic
categories we call "nonterminals" or "variables." Second, there were the
words themselves. The objects which play the role of words we shall call
"terminals."

The third concept is the relation that exists between various strings
of variables and terminals. These relationships we call "productions."
Examples of productions are (noun phrase) --~ (adjective) (noun phrase) or
(singular noun) (singular predicate) --~ (singular noun) (adverb) (singular
verb). Finally, one nonterminal is distinguished, in that it generates exactly
those strings of terminals that are deemed in the language. In our example,
(sentence) is distinguished. We call the distinguished nonterminal the "sen-
tence" or "start" symbol.

Formally, we denote a grammar G by (VN, Vr, P, S). The symbols VN,
Vr, P, and S are, respectively, the variables, terminals, productions, and start
symbol. VN, Vr, and P are finite sets. We assume that VN and Vr contain no
elements in common; that is,

v~ c~ v~ = ~t .

We conventionally denote VN w Vr by V.
The set of productions P consists of expressions of the form a--~/3,

where ~ is a string in V + and/3 is a string in V*. Finally, S is always a
symbol in VN.

Customarily, we shall use capital Latin-alphabet letters for variables.
Lower case letters at the beginning of the Latin alphabet are used for termi-
nals. Strings of terminals are denoted by lower case letters near the end of
the Latin alphabet, and strings of variables and terminals are denoted by
lower case Greek letters.

We have presented a grammar, G = (VN, Vr, P, S), but have not yet
defined the language it generates. To do so, we need the relations ~ and

G

between strings in V*. Specifically, if ~ --~ fi is a production of P and 7'
G

and 3 are any strings in V*, then y~3 ~ - 7'fl3~. We say that the production

--~/3 is applied to the string y~3 to obtain yfl3. Thus ~ - relates two strings

exactly when the second is obtained from the first by the application of a
single production.

t 99 denotes the empty set.
~: Say y~8 directly, derives y[38 in grammar G.

2.2 THE FORMAL NOTION OF A GRAMMAR 11

Suppose that ~ , ~ 2 , . . . , ~,~ are strings in V*, and ~ 7 ~2, ~2 o ==>" ~3,
.

. . . , am-1 =b =~" ~m. Then we say ~1 =b =~ ~m.~f In simple terms, we say for two

strings ~ and/3 that ~ Z~./3 if we can obtain/3 f rom ~ by application of some
G

ak
number of productions of P. By convention, ~ ==~ ~ for each string ~.

G

We define the language generated by G [denoted L(G)] to be {wlw is in V*

and S =~ w}.~ That is, a string is in L(G) if:
G

1. The string consists solely of terminals.
2. The string can be derived from S.

A string of terminals and nonterminals c~ is called a sentential form if

S 2 , . ~. (Usually, if it is clear which g rammar G is involved, we use ==>- for

==~ and Z~. for ~=~.)
G

We define grammars G1 and G2 to be equivalent if L(Gi) = L(G2).

Example 2.1. Let us consider a g rammar G = (VN, VT, P, S), where VN =
{S}, VT = {0, 1}, P = {S ~ 0S1, S -+ 01}. Here, S is the only variable, 0
and 1 are terminals. There are two productions, S ~ 0S1 and S -+ 01. By
applying the first product ion n - 1 times, fo l l owedby an application of the
second production, we have

S ==~ 0S1 ==~ 0 0 S l l ==~ 03S13 ==>- •. • =+ 0n- iS1 "-1 ==~ 0nl".§

Fur thermore , these are the only strings in L(G). After using the second
production, we find that the number of S ' s in the sentential form decreases
by one. Each time the first product ion is used, the number of S 's remains
the same. Thus, after using S--~ 01, no S 's remain in the resulting string.
Since both productions have an S on the left, the only order in which the
productions can be applied is S - + 0S1 some number of times followed by
one application of S ~ 01. Thus, L(G) = {0"l"]n > 1}.

Example 2.1 was a simple example of a grammar . It was relatively easy
to determine which words were derivable and which were not. In general, it
may be exceedingly hard to determine what is generated by the grammar .
Here is another, more difficult, example.

t Say ~1 derives ~ in grammar G.
~: We shall often use the notation L = {xlq~(x)), where ~(x) is some statement
about x, to define languages. It stands for "the set of all x such that q~(x) is true."
Sometimes, x itself will have some special form. For example, {wwlw is in V*} is
the set of words of V* whose first half and second half are the same.
§ If w is any string, w ~ will stand for w repeated i times. So 03 = 000. Note"
W0 --- E.

12 G R A M M A R S 2.2

Example 2.2. Let G = (VN, V~, P, S), VN = {S, B, C}, VT = {a, b, c}. P
consists of the following productions"

1. S ~ a S B C 5. bB--> bb
2. S ~ aBC 6. bC ~ bc
3. CB--~ B C 7. cC--> cc
4. aB .-~ ab

The language L(G) contains the word a"b"c '~ for each n > 1, since we

can use production (1) n - 1 times to get S =~- a '~- 1S(BC)"-1 . Then, we use

production (2) to get S =~- a"(BC) ~. Production (3) enables us to arrange the
B's and C's so that all B's precede all C's. For example, if n = 3,

a a a B C B C B C ~ - a a a B B C C B C ~ a a a B B C B C C ~ aaaBBBCCC.

Thus, S ~ anB"C n.

Next we use production (4) once to get S ~0- a~bB "- 1C~. Then use pro-

duction (5) n - 1 times to get S ~ - a"b'~C ~. Finally, use production (6) once

and production (7) n - 1 times to get S *==~ a"b"c ~.
Now, let us show that the words a"b"c n for n > 1 are the only terminal

strings in L(G). In any derivation beginning with S, until we use production
(2), wecanno t use (4), (5), (6), or (7), for each of productions (4) through (7)
requires a terminal immediately to the left of a B or C. Until production (2)
is used, all strings derived consist of a's followed by an S, followed by B's
and C's.

After (2) is used, the string consists of n a's, for some n > 1, followed
by n B's and n C's in some order. Now no S's appear in the string, so pro-
ductions (1) and (2) may no longer be used. Note that the form of the string
is all terminals followed by all variables. After applying any of productions
(3) through (7), we see that the string will still have that property. Note that
(4) through (7) are only applicable at the boundary between terminals and
variables. Each has the effect of converting one B to b or one C to c. Pro-
duction (3) causes B's to migrate to the left, and C's to the right.

Suppose that a C is converted to e before all B's are converted to b's.
Then the string can be written as a"b~cc~, where i < n and ~ is a string of B's
and C's, but not all C's. Now, only productions (3) and (7) may be applied;
(7) at the interface between terminals and variables, and (3) among the vari-
ables. We may use (3) to reorder the B's and C's of ~, but not to remove any
B's. Production (7) can convert C's to o's at the interface, but eventually, a
B will be the leftmost variable. There is no production that can change the
B, so this string can never result in a string with no variables.

We conclude that all B's must be converted to b's at the interface between
terminals and variables before any C's are converted to c's. Thus, from a n
followed by n B's and n C's in any order, a"bnc ~ is the only derivable terminal
string. Therefore, L(G) = {a"b'~cn[n > 1}.

2.3 THE TYPES OF GRAMMARS 13

2.3 THE TYPES OF G R A M M A R S

We call the type of grammar we have defined a type 0 grammar. Certain
restrictions can be made on the nature of the productions of a grammar to
give three other types of grammars, sometimes called types 1, 2, and 3.

Let G = (VN, Vr, P, S) be a grammar. Suppose that for every produc-
tion ~ ---> fl in P, I#1 >-- I l.t Then the grammar G is type 1 or context sensi-
tive. We shall use the latter name more often than the former.

As an example, consider the grammar discussed in Example 2.2. Each
of the seven productions of the grammar has at least as many symbols on
the right as on the left. So, this grammar is context sensitive. Likewise the
grammar in Example 2.1 is also context sensitive.

Some authors require that the productions of a context-sensitive grammar
be of the form ~1A~2 ~ ~1/%~2, with ~1, ~2 and/3 in V*, t3 -¢ ~ and A in VN.
It can be shown that this restriction does not change the class of languages
generated. However, it does motivate the name context sensitive since the
production cqA~2 -+ ~z/3~2 allows A to be replaced by t3 whenever A appears
in the context of ~ and ~2.

Let G = (VN, Vr, P, S). Suppose that for every production a -+/3 in P,

1. ~ is a single variable. 2. /3 is any string other than e.

Then the grammar is called type 2 or context free. Note that a production
of the form A --~/3 allows the variable A to be replaced by the string t3 inde-
pendent of the context in which the A appears. Hence the name context free.

Example 2.3. Let us consider an interesting context-flee grammar. It is
G = (VN, Vr, P, S), where VN = {S, A, B}, Vr = {a, b} and P consists of
the following.

S --> aB A ~ bAA
S---~ bA B---~ b
A ---~a B - + b S
A ~ aS B ~ aBB

The grammar G is context free since for each production, the left-hand
side is a single variable and the right-hand side is a nonempty string of
terminals and variables.

The language L(G) is the set of all words in VTt consisting of an equal
number of a's and b's. We shall prove this statement by induction on the
length of a word.

Inductive Hypothesis. For w in Vat,

1. S ~ w if and only if w consists of an equal number of a's and b's.

2. A * ~ w if and only if w has one more a than it has b's.

3. B * ~ w if and only if w has one more b than it has a's.

I" We use Ixl to stand for the length, or number of symbols in the string x.

14 GRAMMARS 2.3

The inductive hypothesis is certainly true if [w] = 1, since A =-~ a,

B * ~ b, and no terminal string of length one is derivable from S. Also,
no strings of length one, other than a and b are derivable from A and B,
respectively.

Suppose that the inductive hypothesis is true for all w of length k - 1

or less. We shall show that it is true for]w[= k. First, if S ~ w, then
the derivation must begin with either S --> aB or S ---> bA. In the first case,

w is of the form aw~, where I = k - 1 and B ~ w~. By the inductive
hypothesis, the number of b's in wa is one more than the number of a's, so w
consists of an equal number of a's and b's. A similar argument prevails
if the derivation begins with S ~ bA.

We must now prove the "only if" of part (1), that is, if Iw[= k and w

consists of an equal number of a's and b's, then S * ~ w. Either the first
symbol of w is a or it is b. Assume that w = aw~. Now Iw l = k - 1, and

w~ has one more b than a. By the inductive hypothesis, B ~ w~. But then

S ~ aB ~ awl = w. A similar argument prevails if the first symbol of w
is b.

Our task is not done. To complete the proof, we must show parts (2)
and (3) of the inductive hypothesis for w of length k. These parts are proved
in a manner similar to our method of proof for part (1). They will be left
to the reader.

Let G = (VN, Vr, P, S) be a grammar. Suppose that every production
in P is of the form A ~ aB or A ~ a, where A and B are variables and a is
a terminal. Then G is called a type 3 or regular grammar. In Chapter 3, we
shall introduce the finite state machine and see that the languages generated
by type 3 grammars are precisely the sets accepted by finite-state machines.

Example 2.4. Consider the grammar G = ({S, A, B}, {0, 1}, P, S), where P
consists of the following:

S---~ OA B--~ 1B

S--+ 1B B---~ 1

A ---~OA B---~O

A --+OS S---~O

A -~ IB

Clearly G is a regular grammar. We shall not describe L(G), but rather
leave it to the reader to determine what is generated and prove his conclusion.

It should be clear that every regular grammar is context free; every
context-free grammar is context sensitive; every context-sensitive grammar
is type 0. We shall call a language that can be generated by a type 0 grammar

2.4 THE EMPTY SENTENCE 15

a type 0 language. A language generated by a context-sensitive, context-flee,
or regular grammar is a context-sensitive, context-free, or regular language,
respectively.

We shall abbreviate context-sensitive, context-free, and regular grammar
by csg, cfg, and rg,? respectively. Context-sensitive and context-free lan-
guages are abbreviated csl and cfl, respectively. In line with current practice,
a type 3 or regular language will often be called a regular set. A type 0
language is abbreviated r.e. set, for recursively enumerable set. It shall be
seen later that the languages generated by type 0 grammars correspond,
intuitively to the languages which can be enumerated by finitely described

procedures.

2.4 THE EMPTY SENTENCE

We might note that, as defined here, e can be in no csl, cfl, or regular set.
Recalling that our motivation for thinking of grammars was to find finite
descriptions for languages, we would have to agree that if L had a finite
description, Lz = Z u {E} would likewise have a finite description. We could
add "e is also in Li" to the description of L to get a finite description of L~.

We shall extend our definition of csg, cfg, and rg to allow productions
of the form S ~ e, where S is the start symbol, provided that S does not
appear on the right-hand side of any production. In this case, it is clear that
the production S--> e can only be used as the first step in a derivation. We
shall use the following lemma.

Lernrna 2.1. If G = (VN, Vr, P, S) is a context-sensitive grammar, then
there is another csg G1 generating the same language as G, for which the
start symbol of G~ does not appear on the right of any production of G~.
Also, if G is a cfg, then such a cfg G~ can be found. If G is an rg, then
such an rg G~ can be found.

Proof Let $1 be a symbol not in VN or Vr. Let G1 = (VN U {$1}, Vr, P~, $i).
P~ consists of all the productions of P, plus all productions of the form
S~ ~ ~ where S ~ a is a production of P. Note that S~ is not a symbol of
VN or Vr, so it does not appear on the right of any production of P1.

We claim that L(G) = L(G1) For suppose that S ~ w. Let the first
• G

production used be S --~ c~. Then we can write S =0- ~ =~ w. By definition
G G

of P~, $1 -~ ~ is in P~, so S~ ~ ~. Also, since P~ contains all productions of
Gz

P, ~ =0- w. Thus S~ *~ w. We can conclude that L(G) ~_ L(G~).
Gz Gz

t In most cases, we shall abbreviate the names of commonly used devices without
periods to conform to current convention.

16 GRAMMARS 2.5

If we show that L(GI) ~ L(G), we prove that L(G) = L(Gi). Suppose
.

that S~ ~,- w. The first production used is S~ ~ ~, for some ~. Then,
Gz

S ~ ~ is a production of P, so S ~ ~. Now, ~ =-> w, but ~ cannot have $1
G Gi.

among its symbols. Since S~ does not appear on the right of any production

of P~, no sentential form in the derivation ~ ~ w can involve S~. Thus the
Gz

derivation is also a derivation in grammar G" that is, ~ ~ w. We conclude
' G

that S ~ w, and L(G) = L(G~).

It is easy to see that if G is a csg, cfg, or rg, G~ will be likewise.

Theorem 2.1. If L is context sensitive, context flee, or regular, then
L u {E} and L - {~} are csl's, cfl's, or regular sets, respectively.

Proof Given a csg, we can find by Lemma 2.1 an equivalent csg G, whose
start symbol does not appear on the right of any production. Let G = (IN,
Vr, P, S). Define G~ = (VN, Vr, P~, S), where P~ is P plus the production
S ~ E. Note that S does not appear on the right of any production of P1.
Thus S ~ E cannot be used, except as the first and only production in a
derivation. Any derivation of G1 not involving S ~ e is a derivation in G,
s o L(G) = L (G) u (,).

If the csg G = (VN, Vr, P, S) generates L, and ~ is in L, then P must
contain the production S ~ E. Also S does not appear on the right of any
production in P. Form grammar G~ = (VN, VT, P~, S) where P~ is P -
{S-+ ~}. Since S ~ E cannot be used in the derivation of any word but E,
L(G~) = L - {,}.

If L is context free or regular, the proof is analogous.

Example 2.5. Consider the grammar G of Example 2.2. We can find a
grammar G1 = ({S, $i, B, C}, {a, b, c}, P~, S~) generating L(G) by defining
P1 to have the seven productions of P (see Example 2.2) plus the productions
$1 ~ aSBC and SI ~ aBC. L(G1) = L(G) = {a"bnc"ln >= 1}. We can add
E to L(G~) by defining grammar G2 = ({S, S~, B, C}, {a, b, c}, P2, S~), where
P2 = P1 U {$1 --> ~}. Then

L(G2) = L(G1) u {,} = {a~b'~c'~[n => 0}.

2.5 RECURSlVENESS OF CONTEXT-SENSITIVE G R A M M A R S

We say that a grammar G is recursive if there is an algorithm which will
determine for any word w, whether w is generated by G. To say that a
grammar is recursive is a stronger statement than to say that there is a pro-
cedure for enumerating sentences in the language generated by the grammar. t

1" There is, of course, always such a procedure for any grammar.

2.5 RECURSlVENESS OF CONTEXT-SENSITIVE GRAMMARS 17

Let G = (VN, Vr, P, S) be a csg. The sentence e is in L(G) if and only
if P contains the produc t ion S ~ E. Thus we have a test to see if e is in L(G).
By removing S ~ E f rom P if it is there, we can form a new csg

G~ = (VN, Vr, P~, S)

generating L(G) - {~}. Every product ion of Pz satisfies the original restriction
on a csg. That is, the r ight-hand side is at least as long as the left-hand side.
As a consequence, in every derivation in Gz, the successive sentential forms

are nondecreasing in length.
Let V = VN u Vr have k symbols. Suppose that w ~ E, and that there

is a derivation S ~ . - w . Let this derivation be S ~-~ az ~ a2" ' " ~ " am,
Gz

where am = w. We have observed that [all __<]a2[_-< " '" --< [am[. Suppose
that a,, a~ + ~ , . . . , a, ÷ j are all of the same length, say length p. Also, suppose
that j _>_ k p. Then two of a~, a~ ÷ ~ , . . . , a,÷ j must be the same, for there are
only k p strings of length p in V*. In this case, we can omit at least one step

in the derivation. For, let a~ = a~, where r < s. Then S ~ a~ ~ . . . ~-~
a~ ~ - a~÷~ ~ . . . ~ am = w is a shorter derivation of w in g r ammar G~.

Intuitively, then, if there is a derivation of w, there is one which is " n o t
too long." We shall give an algori thm in the next theorem which essentially

incorporates this idea.

Theorem 2.2. I f G = (VN, Vr, P, S) is a context-sensitive grammar , then

G is recursive.

Proof. In the preceding paragraphs we saw that one could determine by
inspection if e was in L(G) and then remove S -+ c f rom the product ions if E
was there. We assume that P does not contain S ~ E andilet w be a string
in V~. Suppose that [w I = n. Define the set Tm as the set of strings a in

V ÷, of length at mos t n, such that S ~,- a by a derivation of at mos t m steps.

Clearly, To = {S}.
It is easy to see that we can calculate Tm f rom Tm-x by seeing what

strings of length less than or equal to n can be derived f rom strings in Tm-
by a single applicat ion of a product ion. Formal ly ,

T,r, = Tm-z W {a[for some fl in Tm-x,/3 =0- ~ and [~1 =< n}.

Also, if S ~ ~, and [~] =< n, then ~ will be in Tm for some m; if S does not

derive ~, or I~1 > n, then c~ will not be in Tm for any m.
It should also be evident that Tm ~ Tm-1 for all m => 1. Since Tm de-

pends only on Tm- 1, if Tm = T m - 1, then Tm = Tm÷ 1 = Tm+ 2 Our
algori thm will be to calculate T1, T2, T a , . . . until for some m, Tm = Tm-x.
I f w is not in Tm, then it is not in L(G), because for j > m, Tj = Tm. Of

,
course, if w is in Tm, then S ==~ w.

18 GRAMMARS 2.6

We have now to show that for some rn Tm = Tin-1. Recall that for
each i _>_ 1, ~ p_ 73-1. If T~ ¢: ~ - 1 , then the number of elements in T~ is at
least one greater than the number in T~_ 1. But, let V have k elements. Then
the number of strings in V ÷ of length less than or equal to n is k + k 2 + . . .
+ k ", which is less than or equal to (k + 1) n + 1. These are the only strings
that may be in any T,. Thus Tm = Tin-1 for some m =< (k + 1) n+ 1. Our
procedure, which is to calculate ~ for all i _>_ 1 untill two equal sets are
found, is thus guaranteed to halt. Therefore, it is an algorithm.

It should need no mention that the algorithm of Theorem 2.2 also applies
to context-free and regular grammars.

Example 2.6. Consider the grammar G of Example 2.2, with productions"

1. S ---> a S B C 5. bB ---> bb
2. S ~ aB C 6. bC -->. be
3. CB ~ B C 7. cC ~ cc
4. aB ~ ab

We determine if w = abac is in L(G), using the algorithm of Theorem 2.2.

To = { s } .
T1 = {S, aSBC, a B e } .

The first of these strings is in To, the second comes from S by application of
production (1), the third, by application of (2).

T2 = {S, aSBC, aBC, abC}.

The first three sentences of T2 come from T1, the fourth comes from aBC by
application of (4). Note that although a a S B C B C and a a B C B C can be
derived from a S B C by productions (1) and (2), they are not in T2, since their
lengths are greater than]w], which is 4. Similarly,

Ta = {S, aSBC, aBC, abC, abc}.

We can easily see that T4 = Ta. Since abac is not in Ta, it is not in L(G).

2,6 DERIVATION TREES FOR CONTEXT-FREE GRAMMARS

We now consider a visual method of describing any derivation in a context-
free grammar. A tree is a finite set of nodes connected by directed edges,
which satisfy the following three conditions (if an edge is directed from node
1 to node 2, we say the edge leaves node 1 and enters node 2):

1. There is exactly one node which no edge enters. This node is called the
root.

2. For each node in the tree there exists a sequence of directed edges from
the root to the node. Thus the tree is connected.

2.6 DERIVATION TREES FOR CONTEXT-FREE GRAMMARS 19

3. Exactly one edge enters every node except the root. As a consequence,

there are no loops in the tree.

The set of all nodes n, such that there is an edge leaving a given node m
and entering n, is called the set of direct descendants of m. A node n is called
a descendant of node m if there is a sequence of nodes nl, n 2 , . . . , nk such
that n~ = n, nl = m, and for each i, n~ + ~ is a direct descendant of n~. We
shall, by convention, say a node is a descendant of itself.

For each node in the tree, we can order its direct descendants. Let nl
and n2 be direct descendants of node n, with n~ appearing earlier in the
ordering than n2. Then we say that n~ and all the descendants of nz are to
the left o f n2 and all the descendants of n2. Note that every node is a descend-
ant of the root. If nl and n2 are nodes, and neither is a descendant of the
other, then they must both be descendants of some node. (This may not be
obvious, but a little thought should suffice to make it clear.) Thus, one of

n l and n2 is to the left of the other.
Let G = (VN, Vr, P, S) be a cfg. A tree is a derivation tree for G if:

1. Every node has a label, which is a symbol of V.
2. The label of the root is S.
3. If a node n has at least one descendant other than itself, and has label A,

then A must be in VN.
4. If nodes nl, n2 , nk are the direct descendants of node n, in order

from the left, with labels A~, A2, • •., Ak, respectively, then

A ~ A 1 A 2 . . . A k

must be a production in P.

These ideas may be confusing, but an example should clarify things.

Example 2.7. Consider the grammar G = ({S, A}, {a, b},P, S), where P

consists of:
S - + aA S S--~ a
A--+ SbA A---~ ba

A --+ S S

We draw a tree, just this once with circles instead of points for the nodes.
The nodes will be numbered for reference. The labels will be adjacent to the
nodes. Edges are assumed to be directed downwards. See Fig. 2.2.

Some general comments will illustrate the definitions we have made.
The label of node 1 is S. Node 1 is the root of the tree. Nodes 2, 3, and 4
are the direct descendants of node 1. Node 2 is to the left of nodes 3 and 4.
Node 3 is to the left of node 4. Node 10 is a descendant of node 3, although
not a direct descendant. Node 5 is to the left of node 10. Node 11 is to the
left of node 4, for surely node 3 is to the left of node 4, and 11 is a descendant

of node 3.

20 GRAMMARS 2.6

The nodes with direct descendants are 1, 3, 4, 5, and 7. Node 1 has
label S, and its direct descendants, from the left, have labels a, A, and S.
Note that S ~ a A S is a production. Likewise, node 3 has label A, and the
labels of its direct descendants are S, b, and A from the left. A --> SbA is
also a production. Nodes 4 and 5 each have label S. Their only direct
descendants each have label a, and S ~ a is a production. Lastly, node 7
has label A and its direct descendants, from the left, have labels b and
a. A -+ ba is also a production. Thus, the conditions that Fig. 2.2 represent
a derivation tree for G have been met.

a(U
Fig. 2.2. Example of a derivation tree.

We shall see that a derivation tree is a very natural description of the
derivation of a particular sentential form of the grammar G. Some of the
nodes in any tree have no descendants. These nodes we shall call leaves.

Given any two leaves, one is to the left of the other, and it is easy to tell
which is which. Simply backtrack along the edges of the tree, toward the
root, from each of the two leaves, until the first node of which both leaves
are descendants is found.

If we read the labels of the leaves from left to right, we have a sentential
form. We call this string the result of the derivation tree. Later, we shall see
that if ~ is the result of some derivation tree for grammar G = (VN, Vr, P, S),

,
then S ==~ ~.

We need one additional concept, that of a subtree. A subtree of a deri-
vation tree is a particular node of the tree together with all its descendants,
the edges connecting them, and their labels. It looks just like a derivation
tree, except that the label of the root may not be the start symbol of the
grammar.

2.6 DERIVATION TREES FOR CONTEXT-FREE G R A M M A R S 21

Example 2.8. Let us consider the grammar and derivation tree of Example
2.7. The derivation tree of Fig. 2.2 is reproduced without numbered nodes
as Fig. 2.3(a). The result of the tree in Fig. 2.3(a) is aabbaa. Referring to
Fig. 2.2 again, we see that the leaves are the nodes numbered 2, 9, 6, 10, 11,
and 8, in that order, from the left. These nodes have labels a, a, b, b, a, a,
respectively. Note that in this case all leaves had terminals for labels, but

there is no reason why this should always be so. Note that S . ~ aabbaa by a
the derivation

S =~ aAS =~- aSbAS =~- aabAS =-~ aabbaS ~ aabbaa.

S

a A S

S b A a

a b a

A

S

a b a

(a) (b)
Fig. 2.3. Derivation trees and subtrees.

In part (b) of Fig. 2.3 is a subtree of the tree illustrated in part (a). It is
node 3 of Fig. 2.2, together with its descendants. The result of the subtree is

abba. The label of the root of the subtree is A, and A *~ abba. The deriva-
tion in this case is"

A ~ - SbA ~ abA ~ - a b b a .

We shall now prove a useful theorem about derivation trees for context-
free grammars and, since every regular grammar is context free, for regular
grammars also.

Theorem 2.3. Let G = (VN, Vr, P, S) be a context-free grammar. Then,

for c~ ~ E, S *~ c~ if and only if there is a derivation tree in grammar G
with result ~.

Proof We shall find it easier to prove something in excess of the theorem.
What we shall prove is that if we define Ga to be the grammar (Vn, Vr, P, A)
(i.e., G with the variable A chosen as the start symbol), then for any A in

22 GRAMMARS 2.6

VN, A ~ c~ if and only if there is a tree in grammar GA with ~ as the result.t
Note that for all grammars mentioned, the productions are the same. There-

fore A ~ - ~ is equivalent to saying A ~.- a, for any B in VN. Also, since
GA Gs

$
Gs = G, it is the same as saying A =-~ a.

G
Suppose, first, that a is theresul t of a derivation tree for grammar GA.

We prove, by induction on the number of nodes in the tree that are not leaves,

that A ~.- a. If there is only one node that is not a leaf of the tree, the tree
GA

Fig. 2.4. Tree with one nonleaf.

A

A1 A2 • • • An

must look like the one in Fig. 2.4. In that case, A 1 A z . . . An must be ~, and
A ~ ~ must be a production of P by definition of a derivation tree.

Now, suppose that the result is true for trees with up to k - 1 nodes
which are not leaves. Also, suppose that ~ is the result of a tree with root
labeled A, and suppose that that tree has k nodes which are not leaves,
k > 1. Consider the direct descendants of the root. These could not all be
leaves. Let the labels of the direct descendants be At, A z , . . . , An in order
from the left. Number these nodes 1, 2 , . . . , n. Then, surely, S--~ A ~ A z . . . A ,
is a production in P. Note that n may be any integer greater than or equal
to one in the argument that follows.

If the node i is not a leaf, it is the root of a subtree. Also, A~ must be a
variable. The subtree is a tree in grammar GA,, and has some result a,. If
node i is a leaf, let A~ = a~. It is easy to see that i f j < i, node j and all of
its descendants are to the left of node i and all of its descendants. Thus

= ~1~2...an. A subtree must have fewer nodes that are not leaves
than its tree does, unless the subtree is the entire tree. By the inductive

hypothesis, for each node i which is not a leaf, A~ =-~ c~. Thus A~ ~ ~.
Gas Ga

$ z
If A~ = a~, then surely A~ b~" a~. We ~ can put all these partial derivations

together, to see that

A ==~ A 1 A 2 . . . A n =~ oc lAz . . .A , ==~ ~1(~2A3. A,~ ==~... ==~ ~lO~z...o~ = a.
GA GA GA " " GA GA

Thus A ~ a.
GA

"I" The introduction of these grammars is necessary only because a tree in grammar
G always has a root labeled S.

2.6 DERIVATION TREES FOR CONTEXT-FREE GRAMMARS 23

A

A 1 A 2 . . . A n

(a)

Fig. 2.5

A

A 1 A2 A3 • . . An_ 1 An
(terminal) ~ ~ (terminal) ~

(b)

Now, suppose that A ~ - a . We must show that there is a derivation
GA

tree with result ~ in grammar GA. If A ~ ~ by a single step, then A ---> a is
GA

a production in P, and there is a tree with result c~, of the form shown in

Fig. 2.4.
Now, assume that if A ~ ~ by a derivation of less than k steps, then

GA

there is a derivation tree in grammar GA with result ~. Suppose that A ~
O,4

by a derivation of k steps. Let the first step be A ~ A1A2.. .An. Now, it
should be clear that any symbol in ~ must either be one of A1, A2 , . . . , A~
or be derived from one of these. Also, that portion of c~ derived from A~
must lie to the left of the symbols derived from Aj, if i < j. Thus, we can

.
write c~ as c~1~2.. ~,, where for each i between 1 and n, A~ ==~ ~.

" GA~
By the inductive hypothesis, there is a derivation tree for each variable

A~, in grammar GA,, with result c~. Let this tree be T~. We begin by con-
structing a derivation tree in grammar GA with root labeled A, and n leaves
labeled A~, A2 , . . . , An, and no other nodes. This tree is shown in Fig. 2.5(a).
Each node with label A~, where A~ is not a terminal, is replaced by the tree
T~. If A~ is a terminal, no replacement is made. An example appears in
Fig. 2,5(b). In a straightforward manner, it can be shown that the result of

this tree is ~.
S S

Fig. 2.6 (a) a (b) a A
Example 2.9. Consider the derivation S ~ aabbaa of Example 2.8. The
first step is S --> aAS. If we follow the derivation, we see that A eventually
is replaced by SbA, then by abA, and finally, by abba. Part (b) of Fig. 2.3
is a derivation tree for this derivation. The only symbol derived from S in
aAS is a. (This replacement is the last step.) Part (a) of Fig. 2.6 is a tree for
the latter derivation.

24 GRAMMARS

Part (b) of Fig. 2.6 is the derivation tree for S ==> aAS. If we replace
the node with label A in Fig. 2.6(b) by the tree of Fig. 2.3(b), and the node
with label S in Fig. 2.6(b) with the tree of Fig. 2.6(a), we get the tree of
Fig. 2.3(a), whose result is aabbaa.

P R O B L E M S

2.1 Give a regular grammar generating

L = {w[w is in {0, 1}*, and w does not contain two consecutive l's}.

2.2 Give a context-free grammar generating

L = {w[w is in {a, b}* and w consists of twice as many a's as b's}.

2.3 Give a context-free grammar generating the FORTRAN arithmetic state-
ments.

2.4 Give a context-sensitive grammar generating

L = {wlw in {a, b, e}*, and w consists of equal numbers of a's, b's, and o's}.

2.5 Give a context-sensitive grammar generating

L = {wwlw is in {0, 1}*).

That is, L is all words in {0, 1)* whose first and last halves are equal.
2.6 Informally describe the words generated by the grammar G of Example 2.7.
2.7 Use the algorithm of Theorem 2.2 to determine if the following words are

in L(G), where G is as in Example 2.7.

a) abaa b) abbb c) baaba

2.8 If G is context free, can you improve upon the bound on m in Theorem 2.2 ?
What if G is regular ?

2.9 Consider the grammar G of Example 2.3. Draw a derivation tree in G for
the following words.

a) ababab b) bbbaabaa c) aabbaabb

2.10 Let G = (VN, VT, P, S) , where VN = {A, B, S} and VaT = {0, 1}. P con-
sists of the productions:

S --+ OAB B --+ 01
1B --+ 0 A1 --+ SB1

B ~ S A AO --+ SOB

Can you prove that L(G) is empty ?

2.11 In Fig. 2.7 is a derivation tree of some context-free grammar,

G = (VN, V~ ,P ,S) ,

for which the productions and symbols are not known. What is the
result of the tree ? What symbols are necessarily in VN ? What symbols
might be in Vr ? Disregarding our convention that lower case italic letters
denote terminals, do we find that b and c must be in VT, or could they be in
VN ? What productions must be in P? Is the word bcbbcbb in L (G) ?

REFERENCES 25

S

c f ~ ~ b b B
]

Fig. 2.7 b c b

2.12 Let G be a grammar where all productions are of the form A ~ x B and
A --~ x, where A and B are single variables and x is a string of terminals.
Show that L(G) can be generated by a regular grammar.

R E F E R E N C E S

Early works on generating systems are found in Chomsky [1956], Chomsky and
Miller [1958], Chomsky [1959], and Bar-Hillel, Gaifman, and Shamir [1960].
The notation of grammar used here and the classification by type is due to
Chomsky [1959].

For references on regular, context-free, recursively enumerable, and context-
sensitive sets, check the references given at the end of Chapters 3, 4, 6, and 8,
respectively. Two survey papers with additional references are Chomsky [1963]
and Floyd [1964c].

CHAPTER 3

FI N ITE AUTO M A T A
AND REGULAR G R A M M A R S

3.1 THE FINITE A U T O M A T O N

In Chapter 2, we were introduced to a generating scheme--the grammar.
Grammars are finite specifications for languages. In this chapter we shall
see another method of finitely specifying infinite languages--the recognizer.
We shall consider what is undoubtedly the simplest recognizer, called a finite
automaton. The finite automaton (fa) cannot define all languages defined
by grammars, but we shall show that the languages defined are exactly
the type 3 languages. In later chapters, the reader will be introduced to
recognizers for type 0, 1, and 2 languages. Here we shall define a finite auto-
maton as a formal system, then give the physical meaning of the definition.

A finite automaton M over an alphabet E is a system (K, Z, 3, qo, F),
where K is a finite, nonempty set of states, Z is a finite input alphabet, 3 is a
mapping of K x Z into K, q0 in K is the initial state, and F _ K is the set
of final states.

Our model in Fig. 3.1 represents a finite control which reads symbols
from a linear input tape in a sequential manner from left to right. The set of
states K consists of the states of the finite control. Initially, the finite control
is in state qo and is scanning the leftmost symbol of a string of symbols in 2;
which appear on the input tape. The interpretation of ~(q, a) - p , for q
and p in K and a in Z, is that M, in state q and scanning the input symbol a,
moves its input head one cell to the right and goes to state p.

The mapping 8 is from K x Z to K. We can extend 3 to domain t
K x E* by defining a mapping ~ as follows:

~(q, ,) = q

~(q, xa) = 3(~(q, x), a) for each x in ~* and a in Z.

Thus the interpretation of ~(q, x) = p is that M, starting in state q with the
string x written on the input tape, will be in state p when the input head
moves right from the portion of the input tape containing x. Since 3 and

t The domain of a mapping is the set of valid arguments for the mapping. The
set of values which the mapping could take is called the range.

26

M = (K, ~, 8, qo, F)
= {0,1)

K = (qo, ql, q2, qs}
F = {qo}

THE FINITE AUTOMATON 27

Fig. 3.1. A finite automaton.

10111,0111111101110101
F•inite
control

agree wherever 3 is defined, no confusion will arise if we fail to distinguish
between 8 and ~. Thus, for the remainder of the book, we shall use 8 for
both 3 and ~.

A sentence x is said to be accepted by M if 8(qo, x) = p for some p in F.
The set of all x accepted by M is designated T(M). That is,

T(M) = (x[3(q, x) is in F}.

Any set of strings accepted by a finite au tomaton is said to be regular.

Example 3.1. The specifications for a finite au tomaton are given in Fig.
3.2(a). A state diagram for the au tomaton is shown in Fig. 3.2(b). The state
diagram consists of a node for every state and a directed line from state q to
state p with label a (in Z) if the finite automaton, in state q, scanning the
input symbol a, would go to state p. Final states, i.e., states in F, are indi-
cated by a double circle. The initial state is marked by an arrow labeled
start.

Consider the state diagram of Fig. 3.2(b). Suppose that 110101 is the
input to M. Since 3(qo, 1) = ql and 3(ql, 1) = qo, 3(qo, 1 1) = qo. We
might comment that thus, 11 is in T(M), but we are interested in 110101.
Now 3(q0, 0) = q2, so 3(qo, 110) = qz. Next 3(q2, 1) = qa, so 3(qo, 1101) =
qa. Finally, 3(qa, 0) = ql and 3(q~, 1) = q0, so 8(qo, 110101) = q0, and thus
110101 is in T(M). It is easily shown that T(M) is the set of all sentences
in {0, 1}* containing both an even number of O's and an even number of l's. Sta"i
~(qo, O) = q2 8(qo, 1) = qz
8(ql, 0) = q3 ~(ql, 1) = qo
~(q2, 0) = qo 8(q2, 1) = qa
3(qa, 0) = ql 3(qa, 1) = qz

(a)

Fig. 3.2. A finite automaton accepting
the set of strings with an even number
of O's and an even number of l's. (a) A
finite automaton. (b) State diagram of
the finite automaton.

3.1

(b)

28 FINITE AUTOMATA AND REGULAR GRAMMARS 3.2

3.2 EQUIVALENCE RELATIONS A N D FINITE A U T O M A T A

A binary relation R on a set S is a set of pairs of elements in S. If (a, b) is in
R, then we are accustomed to seeing this fact written as aRb.

Example 3.2. For a familiar example, consider the relation "less than"
usually denoted by the symbol < on the set of integers. In the formal sense,
this relation is the set: {(i, j) [i is less than j}. Thus 3 < 4, 2 < 17, etc.

We are going to be concerned with some relations on sets of strings over
a finite alphabet.

A binary relation R over a set S is said to be"

1. reflexive if for each s in S, sRs,
2. symmetric if for s and t in S, sRt implies tRs,
3. transitive if for s, t, and u in S, sRt and tRu imply sRu.

A relation which is reflexive, symmetric, and transitive is called an
equivalence relation. An example of an equivalence relation over the set of
positive integers is the relation E, given by" iEj if and only if [i - j[is
divisible by 3.

An important property of equivalence relations is that if R is an equiva-
lence relation on the set S then we can divide S into k disjoint subsets, called
equivalence classes, for some k between 1 and infinity, inclusive, such that
aRb if and only if a and b are inthe same subset.

The proof is simple. Define [a] to be {b[aRb}. For any a and b in S,
either [a] = [b], or [a] and [b] are disjoint. Otherwise, let e be in [a] and [b],
and d be in [b] but not [a]. That is, aRe, bRe, and bRd, but not aRd. By
symmetry, we have oRb. By transitivity, we can show eRd and aRd. The
latter statement is a contradiction. The distinct sets that are [a] for some a
in S are the equivalence classes. Clearly, a and b are in the same set if and
only if they are equivalent.

Example 3.3. The relation E given by iEj if and only if l i - J l is divisible
by 3 divides the set of positive integers into three classes {1, 4, 7, 10, . . .} ,
{2, 5, 8, 11 , . . . }, and {3, 6, 9, 12 , . . . }. Any two elements from the same class
are equivalent (1E4, 3E6, etc.), and any two elements from different classes
fail to satisfy the equivalence relation (not 7E9, 1E5, etc.).

The index of an equivalence relation is the number of equivalence
classes generated. Thus the equivalence relation E has index 3.

Consider the finite automaton of Example 3.1. For x and y in {0, 1}*,
let (x, y) be in R if and only if 3(qo, x) = 3(qo, Y). The relation R is reflexive,
symmetric, and transitive, since " = " has these properties, and thus, R is an
equivalence relation. R divides the set {0, 1}* into four equivalence classes
corresponding to the four states. In addition, if xRy, then xz R yz for all z
in {0, 1}*, since

3(qo, xz) = 3(3(qo, x), z) = 3(3(q0, y), z) = 3(qo, yz).

3.2 EQUIVALENCE RELATIONS AND FINITE AUTOMATA 29

Such an equivalence relation is said to be right invariant. We see that every
finite automaton induces a right invariant equivalence relation defined as R
was defined, on its set of input strings. This result is formalized in the fol-
lowing theorem.

Theorem 3.1. The following three statements are equivalent:
1. The set L __%_ Z* is accepted by some finite automaton.
2. L is the union of some of the equivalence classes of a right invariant
equivalence relation of finite index.
3. Let equivalence relation R be defined by: xRy if and only if for all z
in Z*, xz is in L exactly when yz is in L. Then R is of finite index.

Proof (1)==~ (2). Assume that L is accepted by some fa M = (K, Z, 3,
qo, F). Let R' be the equivalence relation xR'y if and only if 3(q0, x) =
3(qo, y). R' is fight invariant since, for any z, if 8(q0, x) = 8(q0, y), then

3(q0, xz) = 3(q0, yz).

The index of R' is finite since the index is at most the number of states in K.
Furthermore, L is the union of those equivalence classes which include an
element x such that ~(q0, x) is in F.

(2) =~- (3). We show that any equivalence relation R' satisfying (2) is a
refinement of R; that is, every equivalence class of R' is entirely contained
in some equivalence class of R. Thus the index of R cannot be greater than
the index of R' and so is finite. Assume that xR'y. Then since R' is right
invariant, for each z in Z*, xzR'yz, and thus yz is in L if and only if xz is in
L. Thus xRy, and hence, the equivalence class of x in R' is contained in the
equivalence class of x in R. We conclude that each equivalence class of R' is
contained within some equivalence class of R.

(3) ~ (1). Assume that xRy. Then for each w and z in Z*, xwz is in L
if and only if ywz is in L. Thus xwRyw, and R is right invariant. Now let K'
be the finite set of equivalence classes of R and [x] the element of K' containing
x. Define 3'([x], a) = [xa]. The definition is consistent, since R is right in-
variant. Let q~ = [~] and let F ' = {[x][x ~L}. The finite automaton
M ' = (K', Z, 3', q~, F') accepts L since ~'(q~, x) = Ix], and thus x is in
T(M') if and only if ix] is in F'.

Theorem 3.2. The minimum state automaton accepting L is unique up
to an isomorphism (i.e., a renaming of the states) and is given by M' of
Theorem 3.1.

Proof In the proof of Theorem 3.1 we saw that any fa M = (K, Z, 3, qo, F)
accepting L defines an equivalence relation which is a refinement of R. Thus
the number of states of M is greater than or equal to the number of states of
M ' of Theorem 3.1. If equality holds, then each of the states of M can be
identified with one of the states of M'. That is, let q be a state of M. There

30 FINITE AUTOMATA AND REGULAR GRAMMARS 3.3

must be some x in X~*, such that ~(qo, x) = q, otherwise q could be removed
from K, and a smaller automaton found. Identify q with the state 8'(q;, x),
of M' . This identification will be consistent. If ~(q0, x) = 8(q0, y) = q,
then, by Theorem 3.1, x and y are in the same equivalence class of R. Thus
8'(q;, x) = 8'(q;, y).

3.3 NONDETERMINISTIC FINITE A U T O M A T A

We now introduce the notion of a nondeterministic finite automaton. It will
turn out that any set accepted by a nondeterministic finite automaton can
also be accepted by a deterministic finite automaton.

However, the nondeterministic finite automaton is a useful concept in
proving theorems. Also, the concept of a nondeterministic device is not an
easy one to grasp. It is well to begin with a simple device. Later we deal
with nondeterministic devices that are not equivalent to their deterministic
counterparts. It is hoped that the study of nondeterministic finite automata
will help in the understanding of those devices.

A nondeterministic finite automaton M is a system (K, 2, ~, q0, F), where
K is a finite nonempty set of states, E the finite input alphabet, 8 is a mapping
of K x E into subsets of K, q0 in K is the initial state, and F _c K is the set
of final states.

The important difference between the deterministic and nondeterministic
case is that 8(q, a) is a (possibly empty) set of states rather than a single state.
The interpretation of 3(q, a) = {pl, p2,. •. , Pk} is that M, in state q, scanning
a on its input tape, moves its head one cell to the right and chooses any one
of pl, p 2 , . . . , pk as the next state.

The mapping 8 can be extended to domain K x Z* by defining

8(q, ,) = {q} and 8(q, xa) = I,.J 8(p, a),
in d(q,x)

for each x in 2", and a in 2.
The mapping 8 can be further extended to domain 2 K x X*t by defining

k

8({p~,p2, . . . , Pk}, x) = I,_J 8(p,, x).
/ = 1

A sentence x is accepted by M if there is a state p in both F and 8(qo, x).
The set of all x accepted by M is denoted T(M).

Example 3.4. A nondeterministic fa which accepts the set of all sentences
with either two consecutive O's or two consecutive l 's is given in Fig. 3.3.
The fa will make many choices upon reading an input string. Thus, suppose
that 010110 is the input. After reading the first 0, M may stay in state qo or
go to qa. Next, with a 1 input, M can go nowhere from qa, but from q0 can

t 2 K, for any set K, denotes the power set or set of all subsets of K.

3.3 NONDETERMINISTIC FINITE AUTOMATA 31

go to qo or q~. Similarly, by the time the fourth input symbol is read, M can
still be in only qo or q~. When the fifth symbol, a 1, is read, M can go from
q~ to q2 and from qo to qo or q~. Thus M may be in state qo, q~, or qa. Since
there is a sequence of states leading to q2, 01011 is accepted. Likewise,
after the sixth symbol is read, M can be in state qo, qz, or q3. Thus 010110
is also accepted. 1

M = ({q0, ql, q2, q3, q4},
{0, 1 }, 8, go, {qa, q4})

8(qo, 0) = {qo, q3};
8(q~, 0) = ~;
8(q2, 0) = {q2};
3(q3, 0) = {q4};
~(q~, 0) = {q~};

~(qo, 1) = {qo, ql}.
8(ql, 1) = {qz}.
~(q2, 1) = {qz}.
8(q3, 1) = %
3(q,, 1) = (q,}.

(a)

0#

0,1

1 0

(b)

Fig. 3.3. A nondeterministic finite automaton which accepts the set of all sen-
tences containing either two consecutive O's or two consecutive l's. (a) Specifica-
tion. (b) State diagram.

Theorem 3.3. Let L be a set accepted by a nondeterministic finite auto-
maton. Then there exists a deterministic finite automaton that accepts L.

P r o o f Let M = (K, Z, 3, qo, E) be a nondeterministic fa accepting L. Define
a deterministic fa, M ' = (K', Z, 3', q;, F ') as follows. The states of M ' are
all the subsets of the set of states of M. That is, K ' = 2 K. M ' will keep
track of all the states M could be in at any given time. F ' is the set of all
states in K' containing a state of F. An element of K' will be denoted by
[q~, q 2 , . . . , q~], where q~, q 2 , . . . , q~ are in K. Note that q; = [qo].

We define

8'([q~, q2, . . . , q~], a) = [p~, p 2 , . . . , P j]

if and only if

3({q~, q 2 , . . . , q,), a) = {p~, P 2 , . . . , P,).

That is, 3' applied to an element Q of K ' is computed by applying 3 to each
state of K represented by Q = [q~, q 2 , . . . , q~]. On applying 3 to each of
q~, q2,. •. , q~ and taking the union, we get some new set of states, p~, P 2 , . • . ,

pj. This new set of states has a representative, [p~, P 2 , . •. , Pj] in K' , and that
element is the value of 3'([q~, q 2 , . . . , q~], a).

32 FINITE AUTOMATA AND REGULAR GRAMMARS 3.3

It is easy to show by induction on the length of the input string x that

8'(q~, x) = [ql, q z , . . . , q~]

if and only if

3(qo, x) = {q~, q2, . . . , q,}.

The result is trivial for [x[= 0, since q~ = [qo]. Suppose that it is true for
Ix[< L Then, for a in Z,

3'(q~,, x a) = 3'(3'(q~, x), a).

By the inductive hypothesis,

3'(q~, x) = [p~ ,p2 , . . . , Pj]

if and only if

3(qo, x) = {p~, P 2 , . . . , Pj}.

But by definition,

if and only if

Thus,

if and only if

3'([Pl, P z , . . . , Pj], a) = [rl, r2,. •., rk]

3({pl, P2, . . . , P j} , a) = { r l , r2, . . . , rz) .

8'(q~, x a) = [rl, r 2 , . . . , rk]

3(qo, x a) = { r l , r2, . . . , rk}.

To complete the proof, we have only to add that 3'(q~, x) is in F ' exactly
when 3(qo, x) contains a state of K which is in F. Thus T (M) = T (M ') .

Since the deterministic and nondeterministic finite automata accept the
same sets, we shall not distinguish between them unless it becomes necessary,
but shall simply refer to both as finite automata.

Example 3.5. Let M = ({qo, ql}, {0, 1}, 8, qo, {ql)) be a nondeterministic fa,
where:

3(qo, 0) = {qo, ql} 3(qo, 1) =- {q~} 8(q~, O) = ¢p 3(q~, l) = {qo, ql}.

We can construct a deterministic fa, M ' = (K, {0, 1}, 8', [qo], F), accepting
T (M) as follows. K consists of all subsets of {qo, ql}. We denote the elements
of K by [qo], [q~], [qo, ql] and 9. Since 3(qo, 0) = {qo, ql},

3'([qo], 0) = [qo, q~].

Likewise,

3'([qo], 1) = [ql], 3'([ql], 0) = q~ and 3'([q~], 1) = [qo, q l] .

3.4 FINITE AUTOMATA AND TYPE 3 LANGUAGES 33

Naturally, 3'(9, 0) = 3'(% 1) = ~o. Lastly,

3'([qo, ql], 0) = [qo, ql],

since

8({qo, ql}, 0) = 3(qo, 0) w 3(ql, 0) = {qo, ql} w 9~ = {qo, q~};

and

since

3'([qo, ql], 1) = [q0, ql],

3({qo, ql}, 1) -- 3(qo, 1) w 3(ql, 1) -- {ql} w {qo, ql} = {qo, ql}.

The set F of final states is {[ql], [qo, ql]}.

3.4 FINITE A U T O M A T A A N D TYPE 3 L A N G U A G E S

We now turn to the relationship between the languages generated by type 3
grammars and the sets accepted by finite automata .

Theorem 3.4. Let G = (VN, Vr, P, S) be a type 3 grammar . Then there
exists a finite au tomaton M = (K, Vr, 3, S, F) with T(M) = L(G).

Proof M will be a nondeterminist ic fa. The states of M are the variables
of G, plus an addit ional state A, n o t in VN. Thus, K = VN U {A}. The
initial state of M is S. If P contains the product ion S ~ E, then F = {S, A}.
Otherwise, F = {A}. Recall that S will not appear on the right of any pro-
duction if S ~ e is in P. The state A is in 3(B, a) if B ~ a is in P. In addi-
tion, 8(B, a) contains all C such that B ~ aC is in P. 3(A, a) = ,p for each
a i n Vr.

The fa M, when accepting a sentence x, simulates a derivation of x by
the g rammar G. We shall show that T(M) = L(G). Let x = ala2...a,~ be
in L(G), n _>_ 1. Then

S=->-alAl=-~. . .=->-aza2. . .an- lAn-l=-~-azaz. . .an-zan

for some sequence of variables A1, A z , . . . , A~_i. From the definition of 3,
we can see that 8(S, al) contains A1, that 3(A1, a2) contains A2, etc., and
that 3(A~_1, a~) contains A. Thus x is in T(M), since 3(S, x) contains A,
and A is in F. If ~ is in L(G), then S is in F, so E is in T(M).

Likewise, if x is in T(M), Ix] >= 1, then there exists a sequence of states
S, A1, A 2 , . . . , An- l , A such that 3(S, al) contains A1, 3(A1, a2) contains A2,
and so forth. Thus, P contains rules S - + alA~, A1 ~ a2A2, . . , and
A~_~ ---> a~. Therefore, S ==>- alA~ ==~ ala2A2 ==~ . . . ==~ a~a2. . .an_~A,~_~ ==~
ala2. . , a,~ is a derivation in G and x is in L(G). If ~ is in T(M), then S is in
F, so S ~ ~ is a product ion in P, and E is in L(G).

Theorem 3.5. Given a finite au tomaton M, there exists a type 3 gram-
mar G, such that L(G) = T(M).

34 FINITE AUTOMATA AND REGULAR GRAMMARS 3.4

Proof Without loss of generality let M - (K, Z, 3, q0, F) be a deterministic
finite automaton. Define a type 3 grammar G = (K, Z, P, q0) as follows.

1. B ~ aC is in P if 3(B, a) = C .

2. B ~ a i s i n P i f 3 (B , a) = C a n d C i s i n F .

The proof that qo ~ w if and only if 8(qo, w) is in F, for]w[> 1 is

similar to the proof of Theorem 3.4, and will be left to the reader. If qo is
in F, then E is in T(M). In that case, L(G) = T(M) - {~}. By Theorem 2.1,
we can obtain from G, a new type 3 grammar G~, where

L(G~) = L(G) u {E} = T(M).

If q0 is not in F, then e is not in T(M), so L(G) = T(M).

Example 3.6. Consider the following regular grammar, G = ({S, B}, {0, 1},
P, S), where P consists of: S -+ 0B, B ~ 0B, B --+ 1S, B ~ 0.

We can construct a nondeterministic finite automaton M = ({S, B, A},
{0, 1}, 3, S, {A}), where 3 is given by:

1. 3(S, 0) = {B}, since S ~ 0B is the only production in P with S on the
left and 0 on the right.

2. 8(S, 1) = % since no production has S on the left and 1 on the right.
3. 8(B, 0) = {B, A}, since B --+ 0B and B --> 0 are in P.
4. 8(B, 1) = {S}, since B --~ 1S is in P.
s. 8(A, 0) = ~(A, 1) = ~.

By Theorem 3.4, T(M) = L(G), as one can easily verify.
We now use the construction of Theorem 3.3 to find a deterministic

finite automaton M1 equivalent to M. Then, we use the construction of
Theorem 3.5 to find a grammar G~, generating L(G).

Let M~ = (K, {0, 1}, 3', [S], r) .

K = {% [S], [A], [B], [A, S], [A, B], [B, S], [A, B, S]}.

F = {[A], [A, S], [A, B], [A, B, S]}.

8'([S], 0) = [B] 8'([$1, 1) = q~
8'([B], 0) = [A, B] ~'([B], 1) = [S]

~'([a, B], 0) = [A, B] ~'([A, B], 1) = [S]
8'(~, 0) = 8'(~, 1) =

There are other rules of 3'. However, no states other than % [S], [B],
and [A, B] will ever be entered by M1, and the other states can be removed
from K and F.

Now, let us construct grammar G1 = (K, {0, 1}, P1, [S]) from M1. From
3'([S], 0) = [B] we get the production [S] ~ 0[B]. From 3'([B], 0) =
[A, B l, we get [B]--> 0[A, B] and, since [A, B] is a final state of M1, we

3.5 PROPERTIES OF TYPE 3 LANGUAGES 35

place production [B] --~ 0 in P1, and so on. A complete list of the produc-
tions of P~ is:

[S] --> 0[B] [S] --> 19
[B] -+ 0[A, B] [B] -+ 1IS]

[A, B] --> 0[A, B] [A, B] --> I[S]
~ - + 0 ~ ~--~ 1~

[B] --> 0
[A, B] ---> 0

The grammar Gt is much more complicated than is G, but L(Gt) =
L(G). The reader can simplify grammar G1 so that its equivalence to G is
readily observable.

3.5 PROPERTIES OF TYPE 3 LANGUAGES

Since the class of languages generated by type 3 grammars is equivalent to
the class of sets accepted by finite automata, we shall use both formulations
in establishing the properties of the class of type 3 languages. First we in-
tend to show that the type 3 languages form a Boolean algebra1" of sets.

Lemma 3.1. The class of type 3 languages is closed under union.

Proof Two proofs are possible. One involves the use of nondeterministic
finite automata. We leave this proof to the reader. A proof using grammars
is also easy, and is given here.

Let Lt and L2 be type 3 languages generated by type 3 grammars

Gt = (rzct)_N, V~),Pt, S~) and G2 = (V~), V~), P2, $2),

respectively. By renaming symbols, if necessary, we can assume that -Nre(t)
and V~) contain no symbols in common, and that S is in neither. We con-
struct a new grammar,

G3 = (V~) u V~) u {S}, V~) U V~), P3, S),

where P3 consists of the productions of Pt and P2 except for S~-+ ~ or
$2--> ~, plus all productions of the form S - + ~ such that either St ~ a is
in Pz or $2 ~ a is in P2.

It should be obvious that S ~ a if and only if St ~ ~ or $2 ~ a. In
G3 G1 G2

the first case, only strings in alphabet V~ ~ u V~ ~ can be derived from a. In
the second case, only strings in V~ > u V(r 2> can be derived from a. Formally,

if St =-> a, then a ~ w if and only if a ==> w, and if $2 ==> a, then a =-> w
GI G3 G1 G2 G8

if and only if a =-~ w. Putting the above together, S =%.- w if and only if
G2 G3

either St =4- w or $2 =>- w. That is, L(G3) = L(G1) w L(G2).
G1 G2

t For our purposes a Boolean algebra of sets is a collection of sets closed under
union, complement, and intersection. By the complement L of a language L, we
mean Z* - L, for a finite set of symbols Z, such that L ~ Z*.

36 FINITE AUTOMATA AND REGULAR GRAMMARS 3.5

Lemma 3.2. The class of sets accepted by finite automata (generated by
type 3 grammars) is closed under complement.

Proof Let M~ = (K, E~, 6~, qo, F) be a deterministic fa accepting a set S~.
Let Z2 be a finite alphabet containing Z~ and let d be a new state not in K.
We construct M2 to accept Z* - $1. Let

M2 = (K u {d}, Z2, 82, qo, (K - F) u {d}),

where 62(q, a) = 61(q, a) for each q in K and a in Z~, 32(q, a) = d for each
q in K and a in Z2 - Z~, and 32(d, a) = d for each a in Z2. Intuitively, M2
is obtained by extending the input alphabet of Mz to Z2, adding the " t rap"
state d and then interchanging final and nonfinal states. Clearly, M2 accepts
X * - $1.

Theorem 3.6. The class of sets accepted by finite automata forms a
Boolean algebra.

Proof Immediate from Lemmas 3.1 and 3.2 and the fact that

L~ n L 2 = L1 u L 2 .

We now give some additional theorems which will culminate in the
characterization of the type 3 languages.

Theorem 3.7. All finite sets are accepted by finite automata.

Proof Consider the set containing only the sentence x = a~a2...a,. We
can design a finite automaton M with n + 2 states qo, ql, q2, • •., q,, and p.
The initial state is q0, and q, is the only final state. As M sees successive
symbols of x, it moves to successively higher-numbered states. If M sees a
symbol which is not the next symbol of x, M goes to state p which is a
" t rap state" with no exit. Formally,

6(q,_1, a,) = qi, 1 < i < n,

6(q~_~, a) = p, 1 < i -< n, i f a # ai

and

3(q,, a) = 3(p, a) = p for all a.

The reader should be able to supply the steps necessary to show that M
accepts the sentence x. The set containing only the empty sentence is ac-
cepted by M = ({qo, P}, Z, 3, qo, {qo}) where 3(qo, a) = 3(p, a) = p for each a
in Z. The empty set is accepted by M = ({q0}, Z, 6, q0, q~) where 3(qo, a) = q0
for each a in X.

The theorem follows immediately from the closure of type 3 languages
under union.

3.5 PROPERTIES OF TYPE 3 LANGUAGES 37

We now define the productt UV of two languages U and V by

UV = {x[x = uv, u is in U and v is in V}.

That is, each string in the set UV is formed by concatenating a string in U
with a string in V. As an example, if U = {01, 11 } and V = { l, 0, 101 }, then
the set UV is {011,010, 01101, 111,110, 11101}.

Theorem 3.8. The class of sets accepted by finite automata (generated
by type 3 grammars) is closed under product.

Proof Let M~ = (K~, E~, 3~, q~,/71) and M2 = (K2, Z2, 32, q2, ['2) be deter-
ministic finite automata accepting languages L~ and L2, respectively. Assume
that K~ and K2 are disjoint. Furthermore, without loss of generality, we can
assume that Z~ = Zz = Z. (Otherwise, we can add "dead" states to/£1 and
K2 as in the proof of Lemma 3.2.) We construct a nondeterminisfic finite
automaton 3/3, accepting L~Lz, which operates as follows. If the input
string is x, 3/3 behaves as 3/1 until some initial portion (possibly E) of x has
been scanned. At this point, if M~ would accept, 3/3 guesses whether the
end of the string from Lz has been reached, or whether a longer initial por-
tion is the string from L~. In the former case, 3//3 acts subsequently as M2,
and in the latter case, 3/3 continues to behave as M~.

Formally, let 3/3 = (/£1 u/£2, Z, 33, q~, F). For each a in Z let:

1. 33(q, a) = {3~(q, a)} for each q in K~ - F~.
2. ~3(q, a) = {8~(q, a), 82(q2, a)} for each q in F~.
3. 33(q, a) = {3z(q, a)} for each q in K2.

The purpose of Rule 1 is to allow 3/3 to act like M~ for some initial
segment of the input (possibly E). Rule 2 allows Ma to continue the simula-
tion of M~ or to guess that a given symbol starts a word in L2, provided
that the previous symbol completed a word in L~. Rule 3 allows only the
simulation of 312 after M3 has guessed that the word from L~ has been
started.

If E is not in L~, then F - F2. If ~ is in Lz, then F = F~ u F2.
The closure of a languageL, denoted by L*, is the set consisting of the

empty string and all finite-length strings formed by concatenating words in
L. Thus, if L = {01, 11}, then L* = {E, 01, 11, 0101, 0111, 1101, 1111,
010101,.. .}. An alternative definition is L* = L ° u L ~ u L ~ w . . . , where
L ° = {E}andL i = U - 1 L , f o r i > 0.

Theorem 3.9. The class of sets accepted by finite automata is closed
under set closure.

t Also known as concatenation of sets.

38 FINITE AUTOMATA AND REGULAR GRAMMARS 3.5

Proof Let M = (K, Z, 3, qo, F) be a finite au tomaton accepting L. We
construct a nondeterministic finite au tomaton M' , which behaves as M until
an initial port ion of a sentence x takes M to a final state. At this time, M '
will guess whether or not this point corresponds to a point where a new
string from L starts. Formally,

M ' = (K w {q;}, E, 3', {q;), F w {q;}),

where qo is a new state, and

3'(q;, a) = {3(qo, a), q0},

= {3(qo, a)},
3'(q, a) = {3(q, a), qo},

= {3(q, a)},

if 3(qo, a) is in F,
otherwise.
if 8(q, a) is in F,
otherwise, for all q in K.

The purpose of the new initial state q~, is to accept the empty string. If
q0 is not in F, we cannot simply make qo a final state since M may come
back to qo for some input strings. Since the p roof is somewhat more difficult
than that of the previous theorems, we give a formal proof.

Assume that x is in L*. Then either x = e, or x = xlx2. . .x~, where
x~ is in L for all i between 1 and n. Clearly M ' accepts e. Now x~ in L im-
plies 3(q0, x0 is in F. Thus 3'(q;, x~) and 3'(qo, x~) each contain qo and some
p (possibly p -- qo) in F. Hence, 8'(q;, x) contains some state in F, and x
is in T(M').

Now assume that x = ala~i...am is in T(M'). Then there exists some
sequence of states ql, q~,. . . ,qm such that 3'(q;, al) contains ql, a n d
3'(q~, a~ + 1) contains q~ + 1, 1 __< i < m, and qm is in F. Thus, for each i, either
q~ + 1 = qo and 3(q~, a~ + 1) is in F or 8(q~, a~ + 1) = q~+ 1. Thus x can be written
as xlx2. . .xn, so that 3(q0, x~) is in F for 1 __< i =< n, implying that x~ is in L.

Theorem 3.10. The class of sets accepted by finite au tomata is the
smallest class containing all finite sets and closed under union, product,
and closure.

Proof That the class of sets accepted by finite au tomata contains the smallest
class containing all finite sets and closed under union, product, and closure,
is an immediate consequence of Lemma 3.1 and Theorems 3.7, 3.8, and 3.9.
It remains to show that the smallest class containing all finite sets and closed
under union, product, and closure contains the class of sets accepted by
finite automata.

Let L1 be a set accepted by some finite automaton,

M = ({q~, . . . , q,}, Z, 8, q~, F).

Let R~. denote the set of all,strings x such that 3(q,, x) = qj, and if 3(q,, y) =
q~, for any y which is an initial segment of x other than x or ~, then l < k.

3.6 SOLVABLE PROBLEMS CONCERNING FINITE AUTOMATA 39

That is, R~. is the set of all strings which take the finite automaton from state
q~ to state qj without going through any state qz, 1 > k. Note that by "going
through a state," we mean both entering and leaving. Thus i or j may be
greater than k. We can define R~. recursively"

R~. = R~; ~(R~; ~)*R~; ~ u R~ -~

R~°j = {al3(q~, a) = qj}.

Informally, the definition of R~. above means that the inputs that cause
M to go from q~ to qj without passing through a state higher than qk are
either"

1. in R~j-1, that is, they never reach a state as high as qk.
2. composed of a string in R~[1 (which takes M to q~ for the first time)

followed by some number of strings in R~-1 (which take M from q~ back
to qk without passing through qk otherwise) followed by a string in R~; 1
(which takes M from state qk to qj).

We can show, by induction on k, that R~., 0 _<_ k _<_ l, is, for all i and j,
within the smallest class containing all finite sets and closed under union,
complex product, and closure. The induction hypothesis is true for l = 0,
since all R~°j are finite sets. If true for all k =< l, then it is true for k = l + 1
since we can express R~[1 in terms of union, concatenation, and closure of
various sets of the form RZm~, each of which is presumed to be in the smallest
class of sets containing the finite sets and closed under union, concatenation,
and closure. Now L1 = ~qj in ~ R[j. Thus L1 is in the smallest class of sets
containing the finite sets, and closed under union, concatenation, and closure.

As a result of Theorem 3.10, we know that any expression made up of
finite subsets of E* for some finite alphabet E, and a finite number of the
operators w, • ~ and , , with parentheses to determine the order of operations,
denotes a set that is accepted by a finite automaton. Furthermore, every set
accepted by some fa can be so expressed. This provides us with a good
notation for describing regular sets. For example, {0, 1}*{000}{0, 1}* denotes
the set of all strings with three consecutive 0's, and ({0, 1}{0, 1})* w ({0, 1}
{0,1}{0, 1})* denotes the set of all strings whose length is divisible by two
or three.

3.6 SOLVABLE P R O B L E M S CONCERNING FINITE A U T O M A T A

In this section we show that there are algorithms to answer many questions
concerning finite automata and type 3 languages. In Chapter 14 we shall
see that no such algorithms can possibly exist to answer some of these ques-
tions for the other types of languages discussed in Chapter 2.

t $1" $2 is the product $1S2.

40 FINITE AUTOMATA AND REGULAR GRAMMARS 3.6

Theorem 3.11. The set of sentences accepted by a finite automaton with
n states is"

1. nonempty if and only if the finite automaton accepts a sentence of
length less than n.

2. infinite if and only if the automaton accepts a sentence of length l,
n_< l < 2n.

Thus, there is an algorithm to determine if a finite automaton accepts
zero, a finite number, or an infinite number of sentences.

Proof. (1) The "if" portion is obvious. Suppose that a finite automaton
M = (K, N, 3, q0, F), with n states accepts some word. Let w be a word as
short as any other word accepted. We might as well assume that I wl n,
else the result is proven for M. Since there are but n states, M must pass
through the same state twice in accepting w. Formally, we can find q in K
such that we can write w - w~w2w3, with w2 ¢ E, ~(qo, w~) = q, ~(q, w2) = q,
and 3(q, w3) in F. Then w~wa is in T(M) , since

3(qo, wl w3) = 3(qo, wl w2w3).

But Iwlwal < Iw[, contradicting the assumption that w is as short as any
word in T(M).

(2) We leave most of this part to the reader. We merely observe that if
w is in T (M) and n =< Iw I < 2n, then we can write w = wlw2w3, w2 ¢ E,

w ~ is in T(M) . Next, if M accepts an infinity of words, and for all i, l w2wz
and none is of length between n and 2n - l, then let w be of length at least
2n, but as short as any word in T (M) whose length is => 2n. Then, we can
write w = wlw2wa, with 1 =<]wzl =< n, and w~wa in T(M) , thus deriving a
contradiction.

In part (1), the algorithm to decide if T (M) is empty is" "See if any
word of length up to n is in T(M) ." Clearly there is such a procedure which
is guaranteed to halt. In part (2), the algorithm to decide if T(M) i s infinite
is" "See if any word of length between n and 2n - 1 is in T(M) ." Again,
clearly there is such a procedure which is guaranteed to halt.

We now show that there is an algorithm to determine if two type 3
grammars generate the same language. As we shall see later, no such algorithm
exists for type 0, 1, or 2 grammars.

Theorem 3.12. There is an algorithm to determine if two finite automata
are equivalent (i.e., if they accept the same language).

Proof Let M~ and M2 be fa, accepting L~ and L2, respectively. By Theorem
m

3.6, (L1 n L2) u (L1 n L2) is accepted by some finite automaton, 2143. It is
easy to see that M3 accepts a word if and only if L~ ¢ Lz. Hence, by
Theorem 3.11, there is an algorithm to determine if L~ = L2.

3.7 TWO-WAY FINITE AUTOMATA 41

3.7 T W O - W A Y FINITE A U T O M A T A

We now turn our attention to finite automata that can move two ways on
their input tapes. Our reason for studying these is twofold. First it is easier
to introduce the concept of moving two ways on the input with finite auto-
mata than with more complicated automata. Second, we wish to introduce
the concept of a finite table being stored in a finite control, a tool we shall
find useful later on.

A two-way finite automaton M will be represented by a 5-tuple (K, Z,
3, qo, F), where K is a set of states, E is the set of input symbols, 3 is a o mapping
from K × Z to K × {L, R, S}, q0 in K is the initial state, and F _~ K is the
set of final states. The interpretation of 3(q, a) = (p, D), p in K and D in
{L, R, S} is that M, in state q, scanning the input symbol a, will move its
input head one cell to the left, to the right, or not move its input head at all,
depending on whether D equals L, R, or S, respectively. The state of M will
also be changed to state p. Note that 3 cannot be extended from K x Z to
K × Z* in the obvious manner, since one must keep track of the net change
in input position.

We define a configuration of M to be a state and a number (q, i), where
q is the present state of M and i is the location of the input head. That is,
i is the number of cells the input head is from the left end of the input.

A two-way finite automaton will start in state q0 with its input head
scanning the leftmost cell on the input tape. Should M ever move off either
end of x, M halts. An input word will be accepted by M if and only if M
eventually moves off the right end of x at the same time it enters a final state.

M can reject a word x by"

1. moving off the left end of x.
2. moving off the right end of x in a nonfinal state.
3. looping.

Theorem 3.13. The class of sets accepted by two-way finite automat~ is
the same as the class of sets accepted by one-way finite automata.

Proof Let M = (K, E, 3, q0, F) be a two-way finite automaton and x =
a~a2...a, be the input to M. We can associate with each initial segment of
x, a~a2...a, a mapping A~ of K to K u {R}. We say that A~ is associated
with a~a2...a~. The interpretation of At(q) -- p, p in K, is that if M is
started in state q, scanning the ith cell, M will eventually move right to the
i + 1st cell. On the move which takes M to the i + 1st cell for the first
time, M enters state p, Note that before reaching the i + 1st cell M may
move its input head back and forth on cells 1 through i many times.

The interpretation of At(q) = R is that if M is started in state q scan-
ning the ith cell, M will reject x without ever having moved right from the
ith cell to the i + 1st cell. That is, M will either enter a loop or move off
the input tape to the left.

42 FINITE AUTOMATA AND REGULAR GRAMMARS 3.7

The number of distinct mappings of K to K u {R} is (s + 1) s, where
s is the number of elements in K. We can define a one-way finite au tomaton
M ' = (K', ~, 3', q;, F ') , whose states except one are ordered pairs [q, A]
where q is in K and A is a mapping of K to K u {R}.t Also in K ' is a " t rap
state" t, having the property that 3'(t, a) = t for all a in E. The interpreta-
tion of the state [q, zX] is that the one-way fa M ' will be in state [q, A] after
reading an input x if and only if the two-way finite au tomaton M would
be in state q the first time M moves right from string x and the mapping A
is the mapping associated with the string x. Thus M ' carries in its finite
control a table which contains the information as to the eventual outcome if
M moves left into x in any state.

We define the mapping 3' as follows.

3'([qz, A~], a) = [qz, A2]

exactly when we can compute q2 and A2 from ql and A~ by"

1. A2(pl) = p if there exists a sequence of states P2, P3, • •. , P,, P, such that
either

3(p,, a) = (p, + 1, S)

o r

and
3(p~, a) = (p~, L)

zX~(p ;) = p , + ~

for all i, where 1 < i < n. Finally, 3(p,, a) = (p, R).
2. A2(pl) = R if there is no finite sequence satisfying (1). Note that if any

sequence Pl, p 2 , . . . , p , , p satisfies (1), then there is a sequence satisfying
(1) such that no state appears twice in the sequence.

3. q2 = A2(ql). If A2(ql) = R, however, there is no such q2, therefore
3'([ql, A~], a) is t, the trap state.

Informally, to compute A2(pl), assume that A~ is associated with the
first j - 1 symbols. We begin constructing a sequence of states p ~ , p 2 , . . .
by adding to the sequence, each time M scans the j th cell, the state of M at
that time. Hopefully, from one of these states, M will move to the right and
enter some state p. Then we can end the sequence, since we have zX2(pl) - p.
Suppose that we have constructed the sequence P l , P 2 , . . . , p~. Then the fa
M will be in configuration (p~, j) , scanning an a on its input. Three cases
arise'

1. ~(p~, a) = (q, S). Here M will again scan cell j, this time in state q. So

P~+i = q.

t Do not confuse R in the range of 4, which means reject, with R in the range of
which means move right.

3.7 TWO-WAY FINITE AUTOMATA 43

2. 3(p, a) = (q, R). Here, we have our answer. M has moved to cell
j + 1 for the first time and entered state q. Thus, q has the role o fp in
the sequence, i.e., Az(pl) = q.

3. 3(p,, a) = (q, L). Here, M next moves left t o cell j - 1. We consult
A1 to see what happens next. If ,51(q) = R, then M will never again
scan cell j, so it cannot scan j + 1 either. We therefore let A2(pl) = R.
If zXl(q) = q', then p~ ÷ 1 = q'.

The above process will produce a value for zX2(pl) in all cases, provided
that the sequence p~, P2 , . . . never repeats a state. If a state is repeated, M
is in a loop and will never reach cell j + 1. In this case, A2(p~) = R. We
have now covered all contingencies. We leave it to the reader to see that if
A~ is the table associated with input x, then A2 will be the table associated
with xa.

If M ' is to be a one-way finite automaton simulating M, we must let its
initial state, q~, be [qo, Ao], where ZXo is the table associated with E, i.e.,
Ao(q) = R for all q. Also,

F ' = {[q, A]lq is in F}.

We must now prove by induction on the length of input x that M '
moves right in state [q, A] (for some A) from x if and only if M moves right
from x in q. Thus M ' accepts x if and only if M does. If x is of length 1,
the result follows from the way 3'([qo, Ao], x) is constructed. That is, if and
only if 3'([q0, Ao], x) = [q, A], will M eventually move to the right from its
first input symbol and enter state q at that time. Note [q, A] is accepting if
and only if q is accepting for M.

Suppose that the result is true for Ix l < k, and let xa be an input of
length k. Then M will scan the final symbol, a, of xa for the first time in
state q if and only if 3'([qo, Ao], x) = [q, A~] for some A~. But then M will
move to the right from xa and enter state p if and only if 3'([q, A~], a) =
[P, A2], for the proper A2. This follows from the construction of A2 from
A~ just given. The acceptance of xa by M occurs if and only if p is in F.
But then [p, ZX2] is in F', so M ' accepts xa.

Example 3.7. Consider the two-way finite automaton.

M = ({qo, q~}, {a, b}, 5, qo, {q~})

where 3 is defined by:

3(qo, a) = (qo, R) 3(qo, b) = (ql, S) 3(q~, a) = (qo, L) 3(q~, b) = (qo, L).

We can construct a one-way finite automaton M ' = (K, {a, b}, 3', q~, F)
equivalent to M. Here K is the set of objects of the form [q, A], where
q = qo or q~ and A is a map from {qo, ql} to {qo, q~, R}, plus a trap state.
There are nine possible values of A. The set of all [q~, A] is F.

q~ = [qo, Ao], where Ao(qo) = Ao(q~) = R.

44 FINITE AUTOMATA AND REGULAR GRAMMARS

Since M ' has 19 states, we shall not construct 8' for all of these, but
simply give one case. We compute

8'([qo, A~], a) and 8'([qo, A~], b),

where Al(qo) = qo and Al(ql) = ql. Let

8'([qo, Ax], a) = [qa, Aa] and 8'([qo, A1], b) = [qb, Ab].

To compute A~(qo), we note that 8(qo, a) = (qo, R). Thus M immediately
moves to the right f rom a and enters state qo. We have A,(qo) = qo. For
A~(q~), we note that 8(q~, a) = (qo, L). Thus, we must consult A~(qo) to see
if M will ever return to the symbol a. We have A~(qo) = qo, so M does
return in state qo. F rom a, in state qo, M next moves to the right, remaining
in qo, since 8(qo, a) = (qo, R). Hence

A=(qz) = qo and qa = Aa(qo) = qo.

To compute Ab(qo), note that 8(qo, b) = (q~, S), so M would remain
scanning the b, but in state q~. Next, 8(ql, b) -- (qo, L). Now, Al(qo) = qo,
so M would return to a in state qo, where it started. M is in a loop, so
Ab(qo) = R. Likewise, A b (q l) = R. But Ab(qo)= R, so 8'([qo, A~], b) is
the trap state.

PROBLEMS

3.1 Find a one-way, deterministic finite automaton accepting all strings in
{0, 1}* such that every 0 has a 1 immediately to its right.

3.2 From the finite automaton of Problem 3.1, construct a type 3 grammar
generating the language of that problem.

3.3 Give an example of a relation which is:

a) reflexive and symmetric, but not transitive.
b) symmetric and transitive, but not reflexive.
c) reflexive and transitive, but not symmetric.

3.4 Let
M = ({qo, ql, q2}, {a, b}, 8, qo, {q2})

be a nondeterministic finite automaton, with

8(qo, a) = {ql, q2} ~(q~, a) = (qo, q~} 8(q2, a) = {qo, q2}

~(qo, b) = {qo) ~(qz, b) = 9~ 8(q2, b) = {q~}.

Find a deterministic finite automaton accepting T (M) .

3.5 Complete the specification of the one-way finite automaton in Example 3.7.

3.6 Use the notion of a nondeterministic finite automaton to show that if L
is a type 3 language, then

L r~ = {w[w reversed is in L}

is a type 3 language.

REFERENCES 45

3.7 From Problem 3.6, show that grammars where all productions are of the
form A --+ Bb or A -+ b, A and B variables, b terminal, generate all and
only the type 3 languages.

3.8 A nondeterministic two-way finite automaton is denoted by M = (K, Z,
8, q0, F) as the two-way deterministic finite automaton, except that 3(q, a),
for q in K and a in ~, is a subset of K x {L, R, S}. Each (p, D) in 3(q, a)
represents a possible move of M when the automaton is in state q scanning
a on its input. If any sequence of choices of moves causes M to move
off the right end of its input in an accepting state, M accepts. Show that
only type 3 languages are accepted by nondeterministic, two-way finite
automata.

3.9 Let L be a type 3 language. Let Init (L) be the set of words x, such that for
some word y, x y is in L. Show that Init (L) is a type 3 language.

3.10 Let R be a type 3 language consisting only of words whose length is divisible
by 3. Consider the language formed by taking the first third of each
sentence in R. Is this language a type 3 language ? What about the last
third ? Middle third ? What about the language formed by concatenating
the first and last third of each word in R ?

3.11 Some people allow a two-way finite automaton to have an end marker, ¢,
at the left end of each tape. This finite automaton is said to accept w if it
moves off the right end of ¢w while entering a final state. Show that under
this definition, it is still only regular sets which are accepted.

R E F E R E N C E S

The notion of a finite state device is usually attributed to McCulloch and Pitts
[1943]. The formalism we have used was suggested in Moore [1956] and is found
in Rabin and Scott [1959].

Theorem 3.1 is from Nerode [1958] and was proven in a slightly weaker form
by Myhill. The minimization of finite automata (Theorem 3.2) appeared originally
in Huffman [1954] and Moore [1956]. Nondeterministic finite automata and
Theorem 3.3 are from Rabin and Scott [1959]; Theorem 3.13 and two-way
finite automata are found in Rabin and Scott [1959] and Shepherdson [1959].
Theorem 3.10 is from Kleene [1956]. The description of regular languages that
follows Theorem 3.10 is known as a "regular expression," and is from Kleene
[1956]. Many results concerning regular expressions can be found in Brzozowski
[1962] and McNaughton and Yamada [1960]. The algorithms in Section 3.6 are
from Moore [1956], and the results of Section 3.4 relating type 3 grammars and
finite automata are from Chomsky and Miller [1958].

Many books have been written on the subject of finite automata. Among
them are Gill [1962] and Ginsburg [1962]. Finite automata are also covered
extensively by Harrison [1965], Booth [1967], and Minsky [1967].

CHAPTER 4

CONTEXT-FREE G R A M M A R S

4.1 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS

In this chapter we describe some of the basic simplifications of context-free
grammars and prove several important normal-form theorems. One of these
will be the Chomsky Normal-Form Theorem, which states that every context-
free language is generated by a grammar for which all productions are of
the form A ~ BC or A ~ b.t Here A, B, and C are variables, and b is a
terminal.

Another is the Greibach Normal-Form Theorem, which states that every
context-free language is generated by a grammar for which all productions
are of the form A --~ bet, where b is a terminal and ~ is a string of variables.

We also show that there exist algorithms to determine whether the lan-
guage generated by a context-free grammar is empty, finite, or infinite. We
define a property of certain context-free grammars, called the self-embedding
property, and show that a context,free language is nonregular if and only if
every type 2 grammar generating the language has the self-embedding prop-
erty. Finally we consider certain special types of restricted context-free
grammars such as sequential grammars and linear grammars.

The formal definition of a context-free grammar allows for certain
structures which are in a sense "wasteful." For example, the vocabulary
could include variables that can never be used in the derivation of a terminal
string, or there might be a production of the form A --~ A for some variable,
A. Thus we prove several theorems to show that every context-free language
can be generated by a context-free grammar of a specified form. Further-
more, we show that algorithms exist which, for any context-free grammar,
will find an equivalent context-free grammar in one of the specified forms.
First, we prove a result which is quite important in its own right.

Theorem 4.1. There is an algorithm for determining if the language
generated by a given context-free grammar is empty.

t Until Section 4.6, we shall revert to the original definition of a cfg and not
allow E to be in any cfl. The reader can easily supply the appropriate modification
to include the case where S ~ E can be a production.

46

4.1 S I M P L I F I C A T I O N OF C O N T E X T - F R E E G R A M M A R S 47

Proo f Let G = (VN, Vr, P, S) be a context-free grammar. Suppose that

S ~ w for some terminal string w. Consider a derivation tree of w in the
grammar G. Suppose that there is a path in the tree with two nodes, nl and
n2, having the same label A, with nl higher on the path than n2.t Here we can
refer to Fig. 4.1. The subtree with root at nl represents the generation of a

word wl, such that A ==~ wt. The subtree with root at n2 likewise represents

the generation of a word w2, such that A =-~ wz. (Note that Wa must be a
subword of w~, perhaps all of w~.)

s s

A a A a

a B a

8

• j

W 2 = a b

, J (a) (b)

w 1 --~aaba

G = ({S,A,B}, {a,b}, {S--*Aa,A~aB, B~Aa, B~b },S).

Fig. 4.1. Obtaining the tree for the derivation of w3w2w4 = aba from the tree
for the derivation of w = aabaa.

Now the word w can be written in the form wawlw4 where wa or w4, or
both, may be ~. I f we replace the subtree of nl by that of n2, we have a new

word, waw2w4 (possibly the same word), such that S ~ w3w2w~. In Fig.

4.1, w3 = ~ and w4 = a. A tree for S - ~ wawzw4 is shown in Fig. 4.1(b).
However, we have eliminated at least one node, nl, from the tree. I f the new
tree has a path with two identically labeled nodes, the process may be re-
peated with wawzw4 instead of w. In fact, the process may be repeated until

t A path is a connected sequence of directed edges. The length of a path is the
number of edges in the path.

48 CONTEXT-FREE GRAMMARS 4.1

there are no paths in the tree with two nodes labeled identically. Since each
iteration eliminates one or more nodes, the process must eventually terminate.

Now consider the tree which is ultimately produced. If there are m
variables in the grammar G, then there can be no path of length greater than
m, lest some variable would be repeated in this path. We conclude that if G
generates any word at all, then there is a derivation of a word whose tree
contains no path of length greater than m. Thus the following algorithm
will determine if L(G) is empty.

Form a collection of trees corresponding to derivations in G as follows.
Start the collection with the tree containing the single node labeled S. Re-
peatedly add to the collection any tree that can be obtained from a tree
already in the collection by application of a single production and that:

1. is not already in the collection, and
2. does not have any path of length greater than m.

Since there are a finite number of trees corresponding to derivations
with no path length greater than m, the process must eventually terminate.
Now L(G) is nonempty if and only if at least one of the trees in the collection
corresponds to the derivation of a terminal string.

The existence of an algorithm to determine whether a given cfl is empty
is very important. We shall use this fact extensively in simplifying context-
free grammars. As we shall see later, for more complex types of grammars,
such as the context-sensitive grammars, no such algorithm exists.

Theorem 4.2. Given any context-flee grammar G = (VN, Vr, P, S),
generating a nonempty language, it is possible to find an equivalent
grammar G1, such that for every variable A of G1 there is a terminal

,
string w, such that A =~- w.

Proof. For each variable .,4 in VN, consider the grammar GA = (VN, Vr, P, A).
If the language L(GA) is empty, then we can remove A from Vw, and we can
remove all productions involving A, either on the right or left, from P.

After deleting from G all occurrences of variables A such that L(GA) is
empty, we have a new grammar G~ = (V~, VT, P', S) where V~ and P ' are
the remaining variables and productions. Clearly L(G~)~_ L(G), since a
derivation in G~ is a derivation in G. Suppose that there is a word w in L(G)
which is not in L(G~). Then some derivation of w must involve a sentential

form a~Aa2, where A is in VN -- V~ and S ~ a~Aa2 ~ w. Then, however,
G G

there must be some w~ in Vr* such that A =0- w~, a fact that contradicts the
G

requirement that A be in VN - V~r.

4.1 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS 49

In addition to removing variables from which no terminal string can be
derived, we can also remove variables which are useless in the sense that
they can never appear in a derivation.

Theorem 4.3. Given any context-free grammar generating a nonempty
cfl L, it is possible to find a grammar G, generating L, such that for each
variable A there is a derivation

S L_~ w~Aw3 ~ w~w2w3,

where wl, w2, and w3 are in V*.

Proof Let G1 = (VN, VT, P, S) be any grammar generating L that satisfies

Theorem 4.2. If S ~ ~lAa2, al and a2 in V*, then there exists a derivation
.

S Z~. wlAw2 ==~ wlw2w3, since terminal strings can be derived from A and
from all variables appearing in ~1 and ~z. We can effectively construct the

set Vk of all variables A, such that S *=~ cqA~2, as follows. Start by placing
S in the set. Add to the set any variable which appears on the right-hand
side of any production A -+ c~, if A is in the set. The procedure stops when
no new members can be added to the set.

Let Gz = (V~, Vr, P', S) where P ' is the set of productions remaining
after removing all productions from P which have variables in VN -- V/v on
either the left or right. Now L(G) = L(G'), as one can easily show, and G2
satisfies the condition of the theorem.

Before the next theorem, let us introduce the concept of a leftmost
derivation. We say that a derivation is leftmost if, at every step, the variable
replaced has no variable to its left in the sentential form from which the
replacement is made. That is, if S ==~ ~1 ~ ~2 ==~""" ==~ c~, is a leftmost
derivation in some grammar G = (VN, Vr, P, S), then for 1 < i < n, we
can write c~ as x~A~, where the string x~ is in the set V*,/3~ is an arbitrary
string in V*, A~ is a variable and A~ ~ ~,~ is a production of P. Finally,
x~7,~/3~ is ~ + 1, and c~ + 1 was derived from ~ by replacing A~ by 7'~-

Lemma 4.1. Given a context-free grammar G = (VN, Vr, P, S), if S =0" w,

then there is a leftmost derivation of w in G.

Proof We prove by induction on the number of steps in the derivation that
,

if A is any variable and A ~ - w, w in Vr* then A ~ w by a leftmost deriva-
G ~ G

tion. The statement is trivially true for one-step derivations. Suppose that

it is true for derivations of k or fewer steps. Let A =-~ ~1 => w be a k + 1
step derivation in G and suppose that ~1 = B1Bz...Bin, where B~ is in V,
1 =< i __< m. The first step of the derivation is clearly A =-~ B1B2...Bin. We

can write w as ulu2...urn, where B~ *~ u~, for 1 __< i =< m. By the inductive
hypothesis, there exist leftmost derivations of u~ from B,, 1 __< i =< m. Note

50 CONTEXT-FREE GRAMMARS 4.1

that B, may be a terminal, in which case B, = u, and the derivation takes no
steps. Thus the first step of the derivation of w is followed by a leftmost
derivation of ul from B1, yielding a leftmost derivation of uzB2Ba...Bm
from A. Now u~ is in VT*, so a leftmost derivation of u2 from B2 will not
violate the definition of a leftmost derivation of w from A. In turn, we
replace each B, which is not a terminal by u, according to a leftmost deriva-

,
tion. It is easy to see that the definition of a leftmost derivation for A =-~ w
is never violated.

Theorem 4.4. Given a context-free grammar G, we can find an equiva-
lent grammar G1 with no productions of the form A --> B, where A and
B are variables.

Proof. Let G be the grammar (VN, Vr, P, S). Call the productions in P of
the form A --> B, A and B in VN, "type x" productions and all other pro-
ductions "type y."

We construct a new set of productions P1 from P by first including all

type y productions of P. Then, suppose that A * ~ B, for A and B in VN. a
We add to P1 all productions of the form A ~ a, where B ~ a is a type y
production of P.

Observe that we can easily test if A ~ - B, since if
G

A ~a gl o==~ B2 =-,~"'a ==~ Bm =~ B,

and some variable appears twice in the sequence, we can find a shorter

sequence of type x productions which will result in A *=~ B. Thus it is
c

sufficient to consider only those sequences of type x productions whose
length is less than the number of variables of G.

We now have a modified grammar, G1 = (VN, VT, P1, S). Surely, if

A --+ c~ is a production of P1, then A *==~ c~. Thus if there is a derivation of
c

w in G~, then there is a derivation of w in G.
Now suppose that w is in L(G) and consider a leftmost derivation of w

in G, say S = S o ~ C q = = ~ . . - c ==~c ~" = w. If, for 0_< i < n, ~ i ~ c ~ + l

by a type y production, then ~ c ~ c~ + 1. Suppose that ~ ~ ~ + ~ by a type

x production, but that ~ _ 1 ~-~ ~ by a type y production unless i - 0. Also,

suppose that ~+~ ~ ~+2 ==~"" ==~ ~; all by type x productions and
t3 t3

~j ~ ~j+ 1 by a type y production. Then a~, ~ + ~ , . . . , ~j are all of the same

length, and since the derivation is leftmost, the symbol replaced in each of
these must be at the same position. But then ~ ==~ ~.+ 1 by one of the pro-

G1
ductions of P~ - P. Hence L(Gi) = L(G).

4.2 C H O M S K Y N O R M A L FORM 51

4.2 CHOMSKY NORMAL FORM

We now prove the first of two normal-form theorems. These each state
that all context-free grammars are equivalent to grammars with restrictions
on the forms of productions.

_ . .

Theorem 4.5. (Chomsky Normal Form.) Any context-free language can
be generated by a grammar in which all productions are of the form
A ~ B C or A ~ a. Here A, B, and C are variables and a is a terminal.

Proof. Let G be a context-free grammar. By Theorem 4.4, we can find an
equivalent grammar, G~ = (VN, Vr, P, S), such that P contains no produc-
tions of the form A ~ B, where A and B are variables. Thus, if a produc-
tion has a single symbol on the right, that symbol is a terminal, and the
production is already in an acceptable form.

Now consider a production in P, of the form A --~ BIB2. . .B in , where
m __> 2. Each terminal B~ is replaced by a new variable C~, which appears
on the right of no other production. We then create a new production
C~ ~ B~ which is of allowable form, since B~ is a terminal. The production
A ~ BIB2 . . .B in is replaced by A ~ C1C2. . .Cm where C~ = Bi if B~ is a
variable.

Let the new set of variables be V~r, and the new set of productions, P ' .

Consider the grammar G2 = (V~r, Vr, P ' S) . t If c~ =~-/3, then ~ =-~/3.
' Gz G2

Thus L(Gz) ~ L(G2). Now we show by induction on the number of steps

in a derivation that if A *~ w, A in VN and w in V~, then A ~ w. The
G2 G1

result is trivial for one-step derivations. Suppose that it is true for deriva-

tions of up to k steps. Let A *~ w by a k + 1 step derivation. The first
G2

step must be of the form

A ~ C1C2. . .Cm, m >= 2.

We can write

w = wlw2. . .wm, w h e r e C ~ w ~ , 1 _< i_< m.
172 - -

If C~ is in V~ - VN, then there is only one production of P ' we may use,
namely C~ --~ a~ for some a~ in Vr. In this case, a~ = w~. By the construc-
tion of P', there is a production A ~ B1B2 . . .Bm of P where B~ = C~ if C~
is in VN andB~ = a~ i fC~ i s in V~ - VN. For those C~in VN, we know

that the derivation C~ ~ w~ takes no more than k steps, so by the inductive
G2

hypothesis, B~ ~ - w~. Hence A ==~ w.
G1 G1

t Note that G2 is not yet in Chomsky normal form.

52 CONTEXT-FREE GRAMMARS 4.2

We have now proved the intermediate result that any context-flee
language can be generated by a grammar for which every production is
either of the form A --> a or A ~ BIB2 . . .B in , for m __> 2. Here A and B~,
B 2 , . . . , Bm are variables and a is a terminal.

Let us consider such a grammar G2 = (V~,, Vr, P' , S). We modify G2
by adding some additional symbols to V~, and replacing some productions
of P' . For each production A ~ B I B 2 . . . B m of P ' for m => 3 we create
new variables D1, D2 , . . . , Din_2 and replace A ~ B IB2 . . .B in by the set of
productions

{A --> B1D1, D1 --~ B2D2 , . . ., Dm-a ~ Bm-2Dm-2, Din-2 ~ Bin-iBm}.

Let V~ be the new nonterminal vocabulary and P" the new set of produc-

tions. Let Ga -- (V~,, Vr, P", S) . It is clear that if A *==~/3, then A *==>/3 so
G2 Ga

L(G2) _c L(Ga). But it is also true that L(Ga) ~ L(G2), as can be shown in
essentially the same manner as it was shown that L(G2) ~ L(G~). The proof
will be left to the reader.

Example 4.1. Let us consider the grammar ({S, A, B}, {a, b},P, S) which
has the productions"

S--+ bA S - + aB

A- -~ a B - + b

A---~ aS B--> b S

A --~ bAA B --~ aBB

and find an equivalent grammar in Chomsky normal form.
First, the only productions already in proper form are A ~ a and

B --~ b. There are no productions of the form C --~ D, where C and D are
variables, so we may begin by replacing terminals on the right by variables,
except in the case of the productions A ~ a and B -+ b. S ~ bA is replaced
by S -+ C1A and C1 -+ b. Similarly, A ~ aS is replaced by A -+ C2S and
C2 ~ a. A ~ bAA is replaced by A -+ C3AA and C3--~ b. S - + aB is
replaced by S --~ CAB and CA ~ a. B --~ bS is replaced by .B -~. CsS and
C5 ~ b. B ~ aBB is replaced by B ~ C6BB and C6 --~ a.

In the next stage, the production A --> C3AA is replaced by A ~ C3D~

and D~ ~ A A , and the production B ~ C6BB is replaced by B ~ C6D2

and D2 ~ BB. The productions for the grammar in Chomsky normal form
are shown below.

S --~ C1A S ~ CAB C1 --~ b CA -+ a

A ~ C2S B -+ C5S C2 --~ a C5 ~ b

A ~ C3D1 B -+ C6D2 C3 -+ b C6 --+ a
D1 ~ A A D2 ~ B B A ~ a B ~ b

4.3 GREIBACH NORMAL FORM 53

4.3 GREIBACH NORMAL FORM

We now develop a normal-form theorem which uses productions whose
right-hand sides each start with a terminal symbol, perhaps followed by
some variables. First we prove two lemmas which say we can modify the
productions of a cfg in certain ways without affecting the language generated.

Lemma 4.2. Define an A-production to be a production with a variable
A on the left. Let G = (VN, Vr, P, S) be a context-free grammar. Let
A ~ ~1Bc~2 be a production in P and {B ~ ~ , B -+ f12,.. . , B --> fir} be
the set of all B-productions. Let G~ = (VN, Vr, P1, S) be obtained
from G by deleting the production A ~ ~1B~2 from P and adding the
productions A ~ ~¢31~2, A ~ ~/32~2,... , A ~ ~/3r~ 2. Then L(G) =
L(C~).

Proof. Obviously L(G~) _~ L(G), since if A ~ c q ~ 2 is used in a derivation
of G~, then

A =+~ ~1B~9 ~ ~1/3i~2

can be used in G. To show that L(G) ~ L(G~), one simply notes that A -+
~ B ~ is the only production in G not in G~. Whenever A --> ~1B~2 is used
in a derivation by G, the variable B must be rewritten at some later step
using a production of the form B ~/3~. These two steps can be replaced by
the single step A =ff~ ~/3i~.

Lemma 4.3. Let G = (VN, Vr, P, S) be a context-free grammar. Let

{A ~ A~i, A ~ A~2, . . . , A ~ A~}

be the set of A-productions for which A is the leftmost symbol of the
right-hand side. Let

A ~ [31, A ~ ~ 2 , . . . , A ~ [3~

be the remaining productions with A on the left. Let G1 = (VN u {Z},
Vr, Pz, S) be the cfg formed by adding the variable Z to VN, and re-
placing all the A-productions by the productions"

Z - + ~ , } 1 < i < A ~ 3 ~ , 1 < i < s (2) Z ~ Z , _ - -
(~) A - + ~ , Z ,) - -

r.

Then L(G~) = L(G).

Proof Before proving the lemma, we point out that the A-productions
alone, by leftmost derivations, generate the regular set

{/3~,/3~,...,/L){~, ~ , • •., ~r)*,
and this is precisely the set generated by the productions in G1 with A or Z
on the left.

54 CONTEXT-FREE GRAMMARS 4.3

Let x be in L(G). From a leftmost derivation of x by G we can construct
a derivation of x by G~ as follows" Whenever there occurs in the leftmost
derivation a sequence of steps

t a r ~, . tA~j~7 ~ . tA~j~j~, =-~ " ~'c t A % . . . ~ j ~ j ~ ~ . t/3,%. . .~j~j~7,

replace the entire sequence by

tat, ==~ ti3~Z7 =->- t13~%Z7 =-~.. . =-~ tt3~c%...czj2ZT==-> - t/3~(%...~j2~j~7.
G1 G1 G1 G1 Gt

The resulting derivation is a derivation of x in Gz, although not a leftmost
derivation. Thus L(G) ~ L(G~).

Now consider a leftmost derivation of x in G~. Whenever a Z is intro-
duced into the sentential form, reorder the derivation by immediately applying
the productions that cause the Z to disappear. That is, for some instance of
Z, a production Z ~ ~Z may be used. Then, in the leftmost derivation, c~
will derive a terminal string, and another production involving Z will be
used. It should be clear that ~ could be left, temporarily, and the produc-
tions with Z on the left used immediately. Of course, the derivation will no
longer be leftmost. Finally, a production Z ~ / 3 will be used, where/3 has
no Z. Then, the ~'s generated, as well as ¢3, can be expanded normally. The
result of the revised order of derivation will be the same as the original left-
most derivation.

Replace the resulting sequence of steps involving Z, namely:

G1 G1 G1 G1 G1

by

tAy ~ - tAaj~ 7, ~-~ tAay2ay~y =->" ~c tAayv" "aJ2as~7 ~ tl3~ayp. . . aj2ay~y.

The result is a derivation of x in G. Thus L(G~) c L(G).

Theorem 4.6. (Greibach Normal Form.) Every context-free language L
can be generated by a grammar for which every production is of the
form A ~ ace, where A is a variable, a is a terminal, and ~ is a (possibly
empty) string of variables.

Proof. Let G = (VN, Vr, P , S) be a Chomsky normal-form grammar
generating the cfl L. Assume that Vn = {A,, A z , . . . , Am}. The first step in
the construction is to modify the productions so that if A, ---> Asy is a pro-
duction, then j > i. This will be done as follows, starting with A, and
proceeding to Am. Assume that the productions have been modified so that,
for 1 =< i =< k, A, ~ A W is a production only i f j > i. We now modify the
A~ + a-productions.

If A~+, --> A W is a production, with j < k + 1, we generate a new set
of productions by substituting for Ay the right-hand side of each As-produc-

4.3 GREIBACH NORMAL FORM 55

tion according to Lemma 4.2. By repeating the process k - 1 times at most,
we obtain productions of the form Ak + z --~ AzT', l ~ k + 1. The produc-
tions with l = k + 1 are then replaced according to Lemma 4.3, introducing
a new variable Zk + 1.

By repeating the above process for each original variable, we have only
productions of the forms"

1. Ak --+ Az~', l > k

2. A~---~ aT', a i n Vr

3. Zk ~ 7', 7' in (VN w {Z1, Z2 , Zm})*

Note that the leftmost symbol on the right-hand side of any production
for Am must be a terminal, since Am is the highest-numbered variable. The
leftmost symbol on the right-hand side of any production for A m_l must
be either Am or a terminal symbol. When it is Am, we can generate new produc-
tions by replacing Am by the right-hand side of the productions for Am
according to Lemma 4.2. These productions must have right-hand sides
that start with a terminal symbol. We then proceed to the productions for
Am-2,... , A2, Az until the right-hand side of each production for an A~
starts with a terminal symbol.

As the last step we examine the productions for the new variables,
Z1, Z 2 , . . . , Zm. These productions start with either a terminal symbol or
an original variable. Thus one more application of Lemma 4.2 for each
Z~ production completes the construction.

Example 4.2. Convert to Greibach normal form, the grammar

G = ({A~, A2, A3}, {a, b}, P, A~),

where P consists of the following.

A1 ~ A2Aa
A2 ~ AaA1
A2 ---~ b

Aa ~ A1A2
Aa --~. a

A1 -+ A2Aa
A2 ~ AaA1
A2 ---~ b

A3 ~ A2A3A2
Aa --+ a.

Since the right-hand side of the production A3 ~ A2AaA2 begins with a
lower-numbered variable, we substitute for the first occurrence of A2 either

Step 1. Since the right-hand side of the productions for A1 and A2 start
with terminals or higher-numbered variables, we begin with the production
Aa -+ AiA2 and substitute the string A2Aa for A1. Note that A~ --~ A2A3 is
the only production with Az on the left.

The resulting set of productions is"

56 CONTEXT-FREE GRAMMARS 4.3

A3A~ or b. Thus A3 --> A~A3A~ is replaced by A3 --> A3AIA~A~ and A~ -->
bA~A~. The new set is

A1 --> A~.As A3 --> A3A1A3A2
A2 --> AsA1 As -+ bA3A~.
A~--> b A3--> a

We now apply Lemma 4.3 to the productions

As ---> AsA1A3A~, As --> bA3A2, and A3 ---> a.

Symbol Zs is introduced, and the production A3 --> AsAIAsA~ is replaced by

As --+ bA3A~.Z3, A3 --> aZ3, Z3 --> A1A3Ag, and Z3 -+ A1A3A2Zs.

The resulting set is

A1 --> A~As As --> bAsA2Zs
A2 ---> AsA1 As ---> aZ3
A2 --> b Zs --> A1A3A2Z3
As --> bA3A2 Z3 -+ A1A3A2.
As --> a

Step 2. Now all the productions with A3 on the left have right-hand sides
that start with terminals. These are used to replace As in the production
A~ --> A3A~ and then the productions with A2 on the left are used to replace
A~ in the production Ai --> A~As. The result is the following.

A3 --> bA3A2 As ---> bA3A2Zs
A3 --> a As --> aZs

A2 --> bA3A2A1 A2 --> bAsA2ZsA1
A ~ ---> aA 1 A2 --> aZ3A 1
A2 ---> b

A1 --+ bAsAgA1As A1 --> bAsA2ZsA1As
A~ --> aA~As A~ ---> aZsAiAs

A1 --> bAs

Zs --> A1A3A2Zs Zs --> A1AsA~.

Step 3. The two Zs productions are converted to proper form resulting in
ten more productions. That is, the productions

Z3 --> A1A3A2 and Z3 --> A1A3A2Zs

are altered by substituting the right-hand side of each of the five produc-
tions with A1 on the left for the first occurrences of A1. Thus, Z3 --> A~A3A2
becomes

Z3 --> bAsA3A2, Z3 ---> bA3A2AiA3A3A2, Z3 ---> aAIA3A3A2,

Z3 ---> bA3A2Z3A1A3A3A2, and Z3 ---> aZ3A1A3A3A2.

4.4 SOLVABILITY OF FINITENESS; THE u v w x y THEOREM 57

The other production for Za is replaced similarly. The final set of produc-
tions is:

A3 ~ bAaA2
Aa -+ a

A2 --> bAaA2A1
A2 ~ aA1
A2 --> b

A1 --> bA3A2AiAa
A1 ~ aA1Aa
A1 ---> bAa

Z3 -->" bAaAaA2
Z3 ~ bAaA2A1AaAaA2
Za ~ aAiAaAaA2
Za ~ bAaA2ZaA1AaAaA2
Za ~ aZaA1AaAaA2

Aa -+ bAaA2Za
Az --+ aZa

Az --+ bAaA2Z3A1
A2 --> aZaA1

A1 --> bAaA2Z3A1Aa
A1 --~ aZaA1A a

Za ~ bAaAaAzZ3
Za --> bAaA2A1AzAzA2Za
Z3 -+ aA 1AaA aA 2Za
Za -->" bAaAg.ZaA1A3A3Ag.Z3
Zo -+ aZ3A 1A 3A aA ~.Za

4.4 SOLVABILITY OF FINITENESS AND THE "uvwxy THEOREM"

In Theorem 4.2 we showed that we could eliminate from a grammar those
variables generating no terminal strings. In fact, we can do more. We can
test if a language generated by a given symbol is finite or infinite and eliminate
those variables, other than the sentence symbol, from which only a finite
number of terminal strings can be derived. In proving this result, we shall
show two results (Theorems 4.7 and 4.8) quite interesting in their own right.

Theorem 4.7. Let L be any context-free language. There exist constants
p and q depending only on L, such that if there is a word z in L, with
Izl > P, then z may be written as z = uvwxy, where Ivwxl =< q and v
and x are not both e, such that for each integer i _>_ O, uv~wx~y is in L.

Proof Let G = (VN, Vr, P, S) be any Chomsky normal-form grammar for
L. If G has k variables, then let p = 2 k- 1 and let q = 2 k. It is easy to see
that, for a Chomsky normal-form grammar, if a derivation tree has no path
of length greater than j, then the terminal string derived is of length no
greater than 2 j- 1. The proof is left to the reader.

Hence, if z is in L and lz] > p, then the tree for any derivation of z by
the grammar G contains a path of length greater than k. We consider a
path P, of longest length, and observe that there must be two nodes, nl and
n2, satisfying the following conditions.

1. The nodes nl and n2 both have the same label, say A.
2. Node nl is closer to the root than node n2.
3. The portion of path P from nl to the leaf is of length at most k + 1.t

"I" Clearly, a path of longest length includes a leaf.

58 CONTEXT-FREE G R A M M A R S 4.4

A

B C

z 3 = bb z 2 = a z 4 = e

. .)

Z 1 = b b a

z = bbbaba

(a)

Z! = Z3Z2Z4, where z 3 = bb and z 4 = e.

G = ({ A , 8 , C } , { a , b } , { A --* BC, B ~ B A , C ~ BA, A ~ a,B ~ b } , A)

A®
B C

(b)

Ii °
(c)

Fig. 4.2. Illustration of subtrees T1 and Tz of Theorem 4.7. (a) Tree. (b) Sub-
tree T1. (c)Subtree T2.

A

b

b

\
\

\

Fig. 4.3. The derivation of u # w x ~ y ,

where u = b, v = bb, w = a, x = ~,

y = ba.

i t imes

\

a

4.4 SOLVABILITY OF FINITENESS; THE u v w x y THEOREM 59

To see that nl and n2can always be found, just proceed up path P from
the leaf, keeping track of the labels encountered. Of the first k + 2 nodes,
only the leaf has a terminal label. The remaining k + 1 nodes cannot have
distinct variable labels.

Now the subtree T1 with root nl represents the derivation of a subword
of length at most 2 ~ (and hence, of length less than or equal to q). This is
true because there can be no path in T1 of length greater than k + 1, since
P was a path of longest length in the entire tree. Let z~ be the result of the
subtree T~. If T2 is the subtree generated by node n2 and z2 is the result of
the subtree T2, then we canwri te z~ as zaz2z4. Furthermore, za and z4 cannot
both be ~, since the first production used in the derivation of z~ must be of
the form A ~ BC for some variables B and C. The subtree T2 must be com-
pletely within either the subtree generated by B or the subtree generated by C.
The above is illustrated in Fig. 4.2.

We now know that

¢t.
A *~ z3Az~ ~ zsz2z4, where lzsz2z41 <-_ q.

G

But it follows that A ~ - "~ -- z ~ for each i > 0. See Fig. 4.3. The string z ~ 3 ~ 2 4 =
G

can clearly be written as uzaz2z4y , for some u and y. We let za = v, z2 = w,
and z4 = x, to complete the proof.

Theorem 4.8. There is an algorithm to determine if a given context-flee
grammar G generates a finite or infinite number of words.

Proof Let p and q be the constants defined in Theorem 4.7. Thus, if z is
in L(G) and [z[> p, then z can be written as uvwxy where for each i => 0,
uv*wx*y is in L(G). Also Iv[+ lxl > 0 . . H e n c e if there is a word in L(G)
of length greater than or equal to p, then L(G) is infinite.

Suppose that L -- L(G) is infinite. Then there are arbitrarily long words
in L(G) and, in particular, a word of length greater than p ÷ q. This word
may be written as

uvwxy, where [vwx[=< q, Iv[+ Ix I > O,

and uv~wx~y is in L for all i >__ 0. In particular, uwy is in L, and [uwy[<
[uvwxy[. Also [uwy] > p. If [uwy[> p + q, we repeat the procedure until
we eventually find a word in L of length l, p < 1 __< p + q. Thus L is infinite
if and only if it contains a word of length l, p < l =< p + q.

Since we may test whether a given word is in a given context-free lan-
guage (Theorem 2.2), we have merely to test all words of length between
p and p + q for membership in L(G). If there is such a word, then L is
clearly infinite; if not, then there are no words of length greater than p in

L, so L is finite.

60 CONTEXT-FREE GRAMMARS 4.4

T h e o r e m 4.9. Given a context-flee grammar G1, we can find an equiva-
lent grammar G2 for which, if A is a variable of G2 other than the
sentence symbol, there are an infinity of terminal strings derivable
from A.

Proof. If L(G~) is finite, the theorem is trivial, so assume that L(G~) is
infinite. If G~ = (VN, VT, P~, S), then for each A in Vs, we know from
Theorem 4.8 that by considering the context-flee grammar GA = (VN, VT,
P~, A) we can determine whether there is an infinity of' terminal strings w,

such that A -G. w. Suppose that A~, A 2 , . . . , A k are exactly the variables
G1

generating an infinity of terminal strings, and that B~, -/ /2, . . . , B~ are exactly
those generating a finite number of terminal strings. We create a new set
of' productions, P2, from P1 as follows.

Suppose that Co ~ C~C~. . .C , is a production of P~; Co is among
A~, ,'12,.. , Au. Then every production of the form Co ~ u~u2...u~ is in
P2, where for 1 __< i =< r,

1. If C~ is terminal, u~ = C~.
2. If G is among d~, A 2 , . . . , Ak, then u~ = C~.
3. If" C~ is among B~, . / /2 , . . . , B~, u~ is one of' the finite number of terminal

words such that G =-~ u~.
G1

We know that P2 contains no productions with any of B~, B2, B~
on the left. We consider the new grammar G2 = (V~, VT, P2, S), where
V~ = {A~, A 2 , . . . , Ak}. Note that S must be in Vk, since L is assumed to

be infinite. Surely, if c~ =-~/3, then c~ ~ f3, so L(G2) _= L(GO.
G2 Gi

As usual, to show that L(G1) _c L(G2), we prove by induction on the
number of steps in the derivation that if

,
A~==~w, 1 _< i < k,

where w is a terminal string, then A, ==~ w. The result is trivial for one-step
G2

derivations, so assume that it is true for up to j steps. Now suppose that in
a derivation o f j + 1 steps, the first production used is A, -+ ClC2. . . C,..
We can write w as

w:twg.... Wr, where C, ==~ w,, 1 _< i < r.

There is a production A,---+ u~u~...u,, in P~, where u~ = wp if either C~ is
a terminal or if Cp is among B~, B~ , . . . , Bm and up = Cp if Cp is among
A~, A~, . . . , A~. The inductive step follows immediately.

Example 4.3. Consider the grammar G = ({S, A, B}, {a, b, e, d}, {S --+ ASB,
S --~ AB, A --+ a, A -+ b, B ~ c, B --+ d}, S). It is easy to see that A gener-
ates only the strings a and b and B generates only the strings c and d. How-

4.5 THE SELF-EMBEDDING PROPERTY 61

ever, S generates an infinity of strings. The only productions with S on the
left are S ~ A S B and S ~ AB. The production S --+ A S B is replaced by
S ~ aSc, S ~ aSd, S ~ bSc, and S ~ bSd. Likewise, the production
S --+ A B is replaced by S--> ac, S -+ ad, S ~ bc, and S --~ bd. The new
grammar is

G2 = ({S}, {a, b, c, d}, P, S)

where

P = {S -+ aSc, S --~ aSd, S -+ bSc, S -+ bSd, S ~ ac,

S -+ ad, S --~ be, S -+ bd}.

4.5 THE S E L F - E M B E D D I N G PROPERTY

A context-flee grammar G is said to be self-embedding if there is a variable

A with the property that A *~ ~1A~2 where ~1 and ~2 are nonempty strings. a
The variable A is also said to be self-embedding. Note that it is the self-
embedding property that gives rise to sentences of the form uv~wx~y. One
gets the feeling that it is the self-embedding property that distinguishes a
strictly context-free language from a regular set. One should note that
simply because a grammar is self-embedding does not mean that the language
generated is not regular. For example, the grammar

where

G = ({S}, {a, b}, P, S),

P = {S -+ aSa, S -+ aS, S --~ bS, S ~ a, S --+ b}

generates a regular set. In fact, L(G) = {a, b} +.

In this section we shall see that a context-free grammar that is not self-
embedding generates a regular set. Consequently, a context-free language
is nonregular if and only if all of its grammars are self-embedding.

Theorem 4.10. Let G be a non-self-embedding context-flee grammar.
Then L(G) is a regular set.

Proof. In examining the constructions for the normal forms developed in
this chapter, we note that each of the constructions has the property that if
the original grammar was non-self-embedding, then the normal-form gram-
mar was non-self-embedding. In particular this is true of the Greibach
normal form. Thus, if G is non-self-embedding, we can find a grammar
G1 = (VN, Vr, Pi , S~) in Greibach normal form, equivalent to G, which is
non-self-embedding.t Moreover, by Theorem 4.2 a terminal string can be
derived from each variable in VN.

t Although the statement is not obvious, it is easy to prove. Clearly the applica-
tion of Lemma 4.2 does not introduce self-embedding. In Lemma 4.3 one must
show that Z is self-embedding only if A is self-embedding.

62 CONTEXT-FREE GRAMMARS 4.6

Consider a leftmost derivation in G1. If G1 has m variables, and I is the
length of the longest right-hand side of any production, then no sentential
form can have more than ml variables appearing in it. To see this, assume
that more than ml variables appear in some sentential form ~ of a leftmost
derivation. In the derivation tree for c~, consider those nodes on the path
from the root to the leftmost variable of ~. In particular, consider those
nodes where variables are introduced to the right of the path. Since the
maximum number of variables coming directly from any node is l - 1, and
since a variable to the right of the above path has not been rewritten, there
must be at least m + 1 such nodes. Thus some variable A must appear
twice among the labels of these nodes. Since we are considering only nodes
where new variables are introduced to the right of the path, and since each
production introduces a terminal as the leftmost character, the variable A
must be self-embedding.

Now if there are at most ml variables in any sentential form, we can
design a type 3 grammar G2 = (V~,, Vr, P2, S), generating L(G) as follows.
The variables of G2 correspond to strings of variables of G1 of length less

than or equal to ml. That is, V~ = {[a]][a] =< ml and a in Vz¢}. S is [S~].

If A --~ ba is in Pz, then for all variables of V~, corresponding to strings
starting with A we have [Aft] ~ b[at3] in P2 provided that lafi[__< ml. It
should be obvious from the construction that G2 simulates all leftmost
derivations in Gz, so L(G2) = L(G~). Thus L(G) is regular.

4.6 ~-RULES IN CONTEXT-FREE G R A M M A R S

Earlier we showed that several restrictions can be placed on the productions
of context-free grammars without limiting the class of languages that can
be generated. Now we consider an extension of context-free grammars to
include productions of the form A ~ E for any variable A. Such a produc-
tion is called an E-rule. Many descriptions of context-free languages allow
these productions. We shall show that a language generated by a cfg with
c-rules is always a cfl.

The concepts concerning trees for context-free grammars carry over
directly to these augmented grammars. One simply allows e to be the label
of a node. Clearly, that node must be a leaf.

Theorem 4.11. If L is a language generated by a grammar G = (VN,
Vr, P, S) and every production in P is of the form A --~ ~, where A is a
variable and cz is a string (possibly E) in V*, then L can be generated by
a grammar in which every production is either of the form A ~ ~, with
A a variable and ~ in V +, or S ~ E, and further, S does not appear on
the right of any production.

Proof By a trivial extension of Lemma 2.1, we can assume that S does not
appear on the right-hand side of any production in P. For any variable A

4.7 SPECIAL CONTEXT-FREE LANGUAGES AND G R A M M A R S 63

of G we can decide whether A ~ e. For if so, then there is a derivation
c

whose tree has no path longer than the number of variables of G. (This
argument was used in Theorem 4.1.)

Let A~, A s , . . . , Ak be those variables of V from which e can be derived
and B~, B2 , . . . , Bm be those from which it cannot. We construct a new set
of productions P~ according to the following rules.

1. If S ~ - e, then S -+ e is in P1.
G

2. No other production of the form A --~ e appears in P~.
3. If

A --~ C1C~.... C~, r > 1,

is in P, then each production of the form A -+ a l a 2 . . , ar is in P1, where
if C, is in Vr u {B1, B~ , Bm}, then C, = a~, and if C, is in {A1, A2,
. . . , Ak}, then a~ may be C~ or e. However, not all cq's may be e.

As usual, it should be clear that if G~ = (VN, Vr, P~, S), then L(Gz)
L(G). We must show by induction on the number of steps in the derivation,

,
that if A ~ w, w # e, then A ~ w, for A in VN. For one step, the result

G G1

is obvious, so assume that it is true for up to k steps. Suppose that A =-~ w a

by a k + 1-step derivation and suppose that A ~ C~C2... Cr is the first
production used. We can write w as w~w2...wr where for 1 __< i _<_ r,

,
C, ~ . w,. If w, # e, then by induction we know that C, ~ w~. Now, there

G1

is a production of P1 of the form A ~ a~a2...a~, where a, = C, if w~ # e
anda~ = eifw~ = e. Hence

A ~ - w .
G1

It follows immediately from Theorem 4.11 that the only difference
between context-free grammars with productions of the form A - + E and
those with no such productions is that the former may include e as a word
in the language. From here on we call a context-flee grammar with c-rules
simply a context-flee grammar, knowing that an equivalent context-free
grammar without e productions (except for S ~ e, possibly) can be found.

4.7 SPECIAL TYPES OF CONTEXT-FREE LANGUAGES AND G R A M M A R S

At this point, we mention several restricted classes of context-flee languages.
If every production of a cfg is of the form A ~ uBv or A --~ u, A and B
variables, u and v terminal strings, then we say that the grammar is linear.
A language that can be generated by a linear grammar is called a linear
language. Not all context-flee languages are linear languages. Observe that
no string derivable in a linear grammar has more than one variable.

64 CONTEXT-FREE GRAMMARS 4.7

Example 4.4. The grammar

G = ({S}, {0, 1), {S -+ 0S1, S ~ e), S)

is a linear grammar which generates {0~l"[n _-> 0}.
A grammar G = (V u, VT, P, S) is said to be sequential if the variables

in Vu can be ordered A1, A 2 , . . . , Ak such that if A~ ~ tz is a production
in P, then ~ contains no Aj with j < i. A language generated by a sequential
grammar is called a sequential language.

Example 4.5. The grammar

G = ({A1, A2}, {0, I), {A1 --~ A2Az, A i -+ A2, A2 -+ OA21, A2 ~ E), A~)

is a sequential grammar which generates the language {0"l"ln > 0)*.
If a context-free language L over an alphabet VT is a subset of the lan-

guage w * w * . . . w * t for some k, where w~ is in V*, 1 < i < k, then we say
that L is a bounded language.

Example 4.6. The language

{(ab)gc'~(dd)*l n __> 1}

is a bounded language. Here k = 3 and wl = ab, w2 = c and w3 = d.
A context-free grammar G = (VN, Vr, P, S) is said to be ambiguous if

there is a word in L(G) with two or more distinct leftmost derivations. If
every grammar generating a context-free language is ambiguous, we say that
the language is inherently ambiguous.

There exist inherently ambiguous context-free languages. An example
is the language L = {#bJck[i = j or j = k}. Essentially the reason that L
is inherently ambiguous is that any context-free grammar generating L must
generate those words for which i = j by a process different from that used
to generate those words for which j = k. It is impossible not to generate
some of those words for which i = j - k by both processes.

Example 4.7. Consider the grammar G of Example 4.1, which had produc-
tions S--> bA, S--> aB, A --> a, B--> b, A - + a S , B--> bS, A -> bAA,
B ~ aBB. The word aabbab has the following two leftmost derivations:

S ~ aB =~. aaBB =-~ aabB =-~ aabbS ~ aabbaB =~- aabbab

S =-~ aB ~ aaBB ~ aabSB ~ aabbAB ~ aabbaB =~ aabbab.

Hence G is ambiguous. However, the language

L(G) = {w[w consists of an equal number of a's and b's)

t Strictly speaking w ' w * . . , w* should be written {wl}*{w2}*...{wk}*. No con-
fusion should result.

PROBLEMS 65

is no t inherent ly ambiguous . Fo r example, L (G) is generated by the unam-

biguous g r a m m a r

c~ = ((s, A, B), {a, b), P, S),

where P consists of:

S --> a B S , S --> aB, S --> b A S , S ---> bA, A --> b A A , A --> a, B --> aBB, B -->. b.

PROBLEMS

4.1 Given a context-free grammar with m variables, for which the right side of
no production is longer than l, provide an upper bound on the number of
trees with no path longer than m + 1 ?

4.2 Give a simple algorithm to determine if the language generated by a cfg is
empty. Note that if a grammar generates a nonempty language, at least
one variable must have a production whose right-hand side contains only
terminals.

4.3 Given two strings ~1 and a2 and a context-free grammar G, give an algorithm
.

to determine if ~1 ~ " ~2.

4.4 Complete the proof of Theorem 4.5.

4.5 Consider the grammar

G = ({S, T, L}, {a, b, + , - , x , / , [,], },P, S),

where P consists of the productions '

S- -~ T + S T - - + L x T L - - > [S]

S ---> T - S T --> L / T L ---~ a
S--> T T---> L L - + b.

Informally describe L(G). Find a grammar in Chomsky normal form
generating L(G).

4.6 Consider the grammar G = ((A, B, C), {0, 1}, P, A), where P consists of
the productions"

A ->0A1 B---~ 1C0
A ~ OAC B ~ A C
A -->0 C--> 1CB
A --> 1B0 C--> A B

Find an equivalent grammar G1, such that if D is a variable of G~, then
D ~ w for some terminal string w.

4.7 If G is a Chomsky normal-form grammar, where w is in L(G), and there is
a derivation of w using p steps, how long is w ? Prove your answer.

4.8 Show how to put the productions of a Chomsky normal-form grammar
into the form A --> BC, where B ¢- C, and if A -+ ¢xlBe2 and A --> 7'1By2
are productions then ~1 = ~'~. and ~2 = ~'2.

66 CONTEXT-FREE GRAMMARS

4.9 Several times we have modified the productions of a grammar and then
proved that the resulting grammar was equivalent to the original, one such
case being Lemma 4.3. Can you think of a general type of modification
that will include most of the special cases ? Prove that your modification
results in an equivalent grammar.

4.10 Consider the grammar G = ((S}, {p, [,], ~ , ~ }, P, S) where P is the set

of productions"

S ---> p S --> ~ S S -~ [S ~ S] .

Describe L (G) informally. Find a Chomsky normal-form grammar for
L(G) . Number the variables, giving S the highest number. Find a Greibach
normal-form grammar for L (G) from the Chomsky normal-form grammar
you have obtained. Can you find a simpler Greibach normal-form grammar
for L (G) ?

4.11 Show that every context-free language can be generated by a grammar in
which every production is of the form A --> a, A -> aB, or A ~ a B C ,

where a is terminal, and A, B, and C are variables.

4.12 Show that every context-free language can be generated by a grammar in
which every production is of the form A --+ a or A --> a~b, where a and b
are terminals and ~ is a string of variables.

4.13 Use Theorem 4.7 to show that {a~]i a prime} is not a context-free language.

4.14 Show that (a~]i is a perfect square) is not a context-free language.

4.15 Use Theorem 4.7 to show that {a*b~c*[i _>_ 1} is not a context-free language.

4.16 Consider the grammar G = ((S, A, B}, {0, 1},P, S), where P consists of
the following productions"

S ~ A B B -+ 0A1
A -+ B S B B -+

A --+ B B B--+O
A - - + I.

Find an equivalent grammar for which S does not appear on the right of
any production and S ~ e is the only production with e on the right.

4.17 Find a cfl that cannot be generated by a linear grammar.

4.18 Find a cfl that is not a bounded language.

4.19 Find a cfl that is not a sequential language.

4.20 Show that the grammar G1 of Example 4.7 is unambiguous.

4.21 Which of the following grammars are self-embedding? Find finite auto-
mata accepting those languages which have non-self-embedding grammars.

a) G = ({A, B, C), (a, b}, P, A), where P contains the productions

A - - > C B C--> A B

A--~- b C - + a

B --> C A

REFERENCES

b) G = ({A, B, C}, {a, b}, P, A), where P contains the productions

A ~ CB A ~ Ca
C--+ A B
B - + bC C--+ b

4.22 Show that every cfl over a one-symbol alphabet is regular.

67

R E F E R E N C E S

The original work on context-free languages appears in Chomsky [1956], Chom-
sky [1959], and Bar-Hillel, Perles, and Shamir [1961]. Theorems 4.1, 4.7 and 4.8
are from the latter paper. Theorem 4.5 appears in Chomsky [1959] and Theorem
4.6 in Greibach [1965]. A simple proof of the latter result can be found in
Rosenkrantz [1967]. Theorem 4.10 is from Chomsky [1959]. Ginsburg [1966] is
a good reference on the properties of context-free languages. For results on
linear languages, see Greibach [1963], Gross [1964], Haines [1964], and Greibach
[1966]. For sequential languages, see Ginsburg and Rice [1962], Ginsburg and
Rose [1963(a) and (b)], and Shamir [1965]. For bounded languages, see Ginsburg
and Spanier [1964]. Ambiguity and inherent ambiguity are treated more exten-
sively in Chapter 14. For the application of context-free languages to the area
of programming, see Samelson and Bauer [1960], Irons [1961], Floyd [1962(a)
and (b)], [1963], and [1964(a) and (c)], and Lewis and Stearns [1966].

There are two interesting theorems concerning context-free languages which
we have not covered. We have not, in fact, developed the notation even to state
them formally, but they deserve mention. The first is Parikh's Theorem (Parikh
[1961]) which essentially states that if L is a cfl contained in ~*, then for each
w in L, the numbers of instances of each symbol of Z found in w satisfy one of
a finite number of nontrivial sets of simultaneous linear equations. For example,
{a~b~2ln >_- 1} is not a context-free language, since the numbers of a's and b's in
each word satisfy only quadratic equations.

The second theorem is the characterization of cfl's in terms of "Dyck lan-
guages." A Dyck language is a cfl generated by a grammar

Gk = ({S}, {az, a 2 , . . . , au, b~, b2 b~}, P, S),

where P consists of the productions S--> SS, S - ~ e, and S---~ a~Sb~ for 1 _<_
i =< k. L(Ge) can be thought of as being composed of strings of balanced paren-
theses of k types. The corresponding left and right parentheses for each i are
a~ and b~. The theorem states that every cfl can be expressed as a homomorphism
(see Chapter 9) of the intersection of a Dyck language and a regular set. The
theorem was first proved in Chomsky [1962]. Alternative proofs appear in
Stanley [1965] and Ginsburg [1966].

CHAPTER 5

PUSHDOWN A U T O M A T A

5.1 I N F O R M A L DESCRIPTION

We shall now consider a device which is quite important in the study of
formal languages--the pushdown automaton. This device is essentially a
finite automaton with control of both an input tape and a pushdown store.
The pushdown store is a "first in-last out" list. That is, symbols may be
entered or removed only at the top of the list. When a symbol is entered at
the top, the symbol previously at the top becomes second from the top, the
symbol previously second from the top becomes third, etc. Similarly, when
a symbol is removed from the top of the list, the symbol previously second
from the top becomes the top symbol, the symbol previously third from the
top becomes second, and so on.

A familiar example of a pushdown store is the stack of plates on a
spring which we often see in cafeterias. There is a spring below the plates
with just enough strength so that only one plate appears above the level of the
counter. When that top plate is removed, the load on the spring is lightened,
and the plate directly below appears above the level of the counter. If a plate is
then put on top of the stack, the pile is pushed down, and that plate appears
above the counter. For our purposes, we make the assumption that the
spring is arbitrarily long so that we may add as many plates as we desire.

Let us see how we can use the stack of plates, coupled with a finite
control, to recognize a nonregular set. The set L = {wcwRlw in {0, 1}*}~f
is a context-free language, generated by the grammar

c = ({s}, {0, 1, 4 , {s ~ 0s0, s ~ l s l , s ~ 4 , s)

It is not hard to show that L cannot be accepted by any finite automaton.
To accept L, we shall make use of a finite control with two states, ql and q2,
and a pushdown store on which we place blue, green, and red plates. The
device will operate by the following rules.

1. The machine starts with one red plate on the stack and with the finite
control in state q~.

t w R denotes w reversed.

68

5.1 INFORMAL DESCRIPTION 69

2. If the input to the device is 0 and the device is in state ql, a blue plate is
placed on the stack. If the input to the device is 1 and the device is in
state ql, a green plate is placed on the stack. In both cases the finite
control remains in state q~.

3. If the input is c and the device is in state q~, it changes state to q2 without
adding or removing any plates.

4. If the input is 0 and the device is in state q2 with a blue plate on top of
the stack, the plate is removed. If the input is 1 and the device is in state
q2 with a green plate on top of the stack, the plate is removed. In both
cases the finite control remains in state q2.

5. If the device is in state q2 and a red plate is on top of the stack, the plate
is removed without waiting for the next input.

6. For all cases other than those described above, the device can make no
move.

The preceding moves are summarized in Fig. 5.1.
We say that the device described above accepts an input string if, on

processing the last symbol of the string, the stack of plates becomes com-
pletely empty. Note that, once the stack is completely empty, no further
moves are possible.

Essentially, the device operates in the following way. In state qz, the
device makes an image of its input by placing a blue plate on top of the stack
of plates each time a 0 appears in the input and a green plate each time a 1

INPUT

Top plate State 0 1 c

Blue

Green

Red

ql

q2

ql

q2

ql

q2

Add blue plate; stay
in state ql.

Remove top plate;
stay in state q2.

Add blue plate; stay
in state q~.

Add blue plate; stay
in state ql.

Without waiting for
next input, remove
top plate.

Add green plate;
stay in state ql.

Add green plate;
stay in state ql.

Remove top plate;
stay in state q2.

Add green plate;
stay in state ql.

Without waiting
for next input,
remove top plate.

Go to
state q2.

Go to
state q2.

Go to
state q2.

Without
waiting for
next input,
remove top
plate

Fig. 5.1. Finite control for pushdown machine accepting {wcw•lw in {0, 1}*}.

70 PUSHDOWN AUTOMATA 5.2

appears in the input. When c is the input, the device transfers to state q2.
Next, the remaining input is compared with the stack by removing a blue
plate from the top of stack each time the input symbol is a 0 and a green
plate each time the input symbol is a 1. Should the top plate be of the wrong
color, the device halts and no further processing of the input is possible.
If all plates match the inputs, eventually the red plate at the bottom of the
stack is exposed. The red plate is immediately removed and the device is
said to accept the input string. All plates can be removed only in the case
where the string that enters the device after the c is the reversal of what
entered before the c.

5.2 D E F I N I T I O N S

We shall now formalize the concept of a pushdown automaton (pda). The
pda will have an input tape, a finite control, and a pushdown store. The
pushdown store is a string of symbols in some alphabet. The leftmost
symbol will be considered to be at the "top" of the store. The device will be
nondeterministic, having some finite number of choices of moves in each
situation. The moves will be of two types. In the first type of move, an input
symbol is scanned. Depending on the input symbol, the top symbol on the
pushdown store, and the state of the finite control, a number of choices are
possible. Each choice consists of a next state for the finite control and a
(possibly empty) string of symbols to replace the top pushdown store symbol.
After selecting a choice, the input head is advanced one symbol.

The second type of move (called an e-move) is similar to the first, except
that the input symbol is not used, and the input head is not advanced after
the move. This type of move allows the pda to manipulate the pushdown
store without reading input symbols.

Finally, we must define the language accepted by a pushdown automaton.
There are two natural ways to do this. The first, which we have already seen,
is to define the language accepted to be the set of all inputs for which some
sequence of moves causes the pushdown automaton to empty its pushdown
store. This language is referred to as the language accepted by empty store.

The second way of defining the language accepted is similar to the way a
finite automaton accepts tapes. That is, we could designate some states as
final states and define the accepted language as the set of all inputs for which
some choice of moves causes the pushdown automaton to enter a final state.

As we shall see, the two definitions of acceptance are equivalent in the
sense that if a set can be accepted by empty store by some pda, it can be
accepted by final state by some other pda, and vice-versa.

Acceptance by final state is the more common notion, but it is easier
to prove the basic theorem of pushdown automata by using acceptance by
empty store. The basic theorem is that a language is accepted by a push-
down automaton if and only if it is a context-free language.

5.2 DEFINITIONS 71

A pushdown automaton M is a system (K, Z, F, 3, q0, Z0, F) where

1. K is a finite set of states.
2. Z is a finite alphabet called the input alphabet.
3. P is a finite alphabet, called the pushdown alphabet.
4. qo in K is the initial state.
5. Zo in F is a particular pushdown symbol called the start symbol. Zo

initially appears on the pushdown store.
6. F __% K is the set of final states.
7. 3 is a mapping from K × (Z u {e}) x P to finite subsets of K x F*.

We use lower-case letters near the front of the alphabet to denote input
symbols and lower-case letters near the end of the alphabet to denote strings
of input symbols. Capital letters usually denote pushdown symbols and
Greek letters indicate strings of pushdown symbols.

The interpretation of

8(q, a, Z) = ((Pl, 7~), (P2, 72), . . . , (Pro, 9/m))

where q and p~, 1 < i < m, are in K, a is in E, Z is in r , and 7'~ is in F*,
1 < i < m, is that the pda in state q, with input symbol a and Z the top
symbol on the pushdown store, can, for any i, enter state p~, replace Z by
7~, and advance the input head one symbol. We adopt the convention that
the leftmost symbol of 7'~ will be placed highest on the store and the right-
most symbol lowest on the store.t

The interpretation of

3(q, ,, Z) = ((p~, 7z), (P2, 72) , . . . , (Pro, 7m)}

is that the pda in state q, independent of the input symbol being scanned and
with Z the top symbol on the pushdown store, can enter state p~ and replace
Z by 7'~ for any i, 1 _<_ i =< m. In this case, the input head is not advanced.

Example 5.1. Figure 5.2 gives a formal pushdown automaton which accepts
{wcwRIw in {0, 1}*} by empty store. Note that for a move in which the pda
writes a symbol on the top of the store 3 has a value (q, 7) where 171 = 2.
For example, 3(q~, 0, R) = {(qz, BR)}. If 7' were of length one, the pda
would simply replace the top symbol by a new symbol and not increase the
length of the pushdown store. This allows us to let 7 equal E for the case in
which we wish to erase the top symbol, thereby shortening the pushdown

store.
Note that the rule 3(q2, E, R) = {(q2, E)) means that the pda, in state q2

with R the top pushdown symbol, can erase the R independent of the input
symbol. In this case the input head is not advanced.

1" This convention is opposite that used by some other writers. We prefer it since
it simplifies notation in what follows.

72 PUSHDOWN AUTOMATA 5.2

M = ((ql, q2}, {0, 1, c), {R, B, G), 8, qz, R, q')t

8(qz, 0, R) = {(qz, BR))
8(q~, 0, B) = {(ql, BB))
8(ql, 0, G) = {(q~, BG)}
8(q~, c, R) = ((q2, R))
8(qz, c, B) = {(q2, B)}
8(q~, c, G) = ((q2, G)}
8(q2, 0, B) = {(qz, ,))
8(qz, e, R) = {(q2, ,))

8(ql, 1, R) = {(ql, GR)}
8(ql, 1, B) = {(ql, GB)}
~(ql, 1, G) = {(ql, GG)}

8(q2, 1, G) = {(q2, e))

Fig. 5.2. Formal pushdown automaton accepting {wcwnlw in {0, 1}*} by empty
tape.

A configuration of a pda is a pair (q, 7) where q is a state in K and 7' is
a string of pushdown symbols. We say that a pda M is in configuration
(q, 7') if M is in state q with 7' on the pushdown store, the leftmost symbol of
7, being the top symbol on the pushdown store. If a is in Z w {e}, y and/3
are in P*, and Z is in F, and further, if the pair (p,/3) is in 3(q, a, Z) , then
we write

a" (q,

The above means that according to the rules of the pda the input a may
cause M to go from configuration (q, ZT') to configuration (p,/37').

If for az, a2,. •., a~, each in Z w {e}, states q~, q2,. •., q,~+ ~ and push-
down strings yx, 7'2 ,7'~ + ~ we have:

a~ "(q, 7'~) let (q~ + ~, 7'~ + ~)

for all i between 1 and n, then we write

ala2. . .a~'(ql, 7"1)!-~ (q~ + 1, 7"~ + 1).*

Recall that many of the a,'s may be E. The subscript M will be dropped from

m whenever the meaning remains clear.

For a pda M we define T(M), the language accepted by final state, to be

(w[w" (qo, Zo) [~ (q, 7") for any 7' in F* and q in F}.

Also, we define N(M), the language accepted by empty store, to be

{w]w'(qo, Zo) ~M (q, E) for any q in K}.

"[" q~ denotes the empty set.
By convention, we always have E" (q, 7') 1-~ (q' 7').

5.2 DEFINITIONS 73

When accepting by empty store, the set of final states is irrelevant. Thus
when accepting by empty store we usually let the set of final states be the
empty set.

The pda of Example 5.1 is deterministic in the sense that at most one
move is possible from any configuration. Formally, we say that a pda,
M = (K, 12, F, 8, qo, Z0, F), is deterministic if:

1. For each q in K and Z in P, whenever 3(q, e, Z) is nonempty, then
3(q, a, Z) is empty for all a in 12.

2. For no q in K, Z in P, and a in I2 w {E} does 3(q, a, Z) contain more than
one element.

Condition 1 prevents the possibility of a choice between a move
independent of the input symbol (c-move) and a move involving an input
symbol. Condition 2 prevents a choice of move for any (q, a, Z) or (q, ~, Z).

Example 5.2. Figure 5.3 gives a nondeterministic pda that accepts {wwn]w in
{0, 1}*}. Rules 1 through 6 allow M to store the input on the pushdown
store. In Rules 3 and 6 M has a choice of moves. If M decides that the
middle of the input string has been reached, then the second choice is selected.
M goes to state q2 and tries to match the remaining input symbols with the
contents of the pushdown store. If M guessed right, and if the input is of
the form ww ~, then the inputs will match, M will empty its pushdown store,
and thus accept the input string.

M = ((ql, q2}, (0, 1}, {R, B, G}, 8, q~, R, qg)

1. 8(q~, 0, R) = {(q~, BR)} 6. 3(q~, 1, G) = {(qz, GG), (q2, ,)}
2. 8(q~, 1, R) = {(ql, GR)} 7. 8(q2, 0, B) = {(q2, e)}
3. 8(ql, 0, B) = {(ql, BB), (q2, e)} 8. 8(q2, 1, G) = {(q2, ,)}
4. 3(ql, 0, 6) = {(ql, BG)} 9. 8(ql, e, n) = {(q2, ,)}
5. 3(ql, 1, B) = {(ql, GB)} 10. 8(q2, e, R) = {(q2, ,)}

Fig. 5.3. A nondeterministic pda that accepts {wwnlw in {0, 1)*} by empty store.

We cannot emphasize too strongly that M accepts an input if any se-
quence of choices causes M to empty its pushdown store. Thus M always
"guesses right," because wrong guesses, in themselves, do not cause an input
to be rejected. An input is only rejected if there is no "right guess." Figure
5.4 shows the accessible configurations of M when processing the string
O01100.

For finite automata, the deterministic and nondeterministic models were
equivalent with respect to the languages accepted. We shall see later that
the same is not true for pda. In fact ww R is accepted by a nondeterministic
pda, but not by any deterministic pda.

74 PUSHDOWN AUTOMATA 5.3

Input

O0

001

0011

00110

001100

Configurations

(ql, R) ~ (q2, ~)

(ql, BBR)(q2, R) -->. (q2, e)

(ql~GBiBR)

(ql, GGBBR) (q2, BBR)

(qz, BGGIBBR) (q2,~R)

(ql, BBGGBBR) (q2, GGBBR) (q2, R) -~- (q2, ~)

Fig. 5.4. Accessible configurations for the pda of Fig. 5.3 with input 001100.

5.3 NONDETERMINISTIC PUSHDOWN AUTOMATA AND CONTEXT-FREE
LANGUAGES

We shall now prove the fundamental result that the class of languages
accepted by nondeterministic pda is precisely the class of context-free lan-
guages. We first show that the languages accepted by nondeterministic
pushdown automata by final state are exactly the languages accepted by
nondeterministic pushdown automata by empty store. We then show that
the languages accepted by empty store are exactly the context-free languages.

Theorem 5.1. L is N(M1) for some pda M1, if and only if L is T(M2)
for some pda, M2.

Proof(if). Let
M2 = (K, 2, r, 3, qo, Zo, F)

be a pda such that L = T(M2). Let

g~ = (K w {q~, qo}, Z, P w {X}, 3', q;, X, 9)

where 3' is defined as follows.

1. 3'(q~, E, X) contains (q0, ZoX).
2. 3'(q, a, Z) includes the elements of 3(q, a, Z) for all q in K, a in Z or

a = E, a n d Z i n F .
3. For all q in F, and Z in P w {X}, 3'(q, E, Z) contains (qe, ~).
4. For all Z in P w {X}, 3'(qe, E, Z) contains (qe, ~).

Rule 1 causes M~ to enter the initial configuration of M2, except that M~
will have its own bottom of the stack marker, X, which is below the symbols
of M2's pushdown store. Rule 2 allows M~ to simulate M2. Should M2 ever
enter a final state, Rules 3 and 4 allow M~ the choice of entering state q~ and
erasing its store, thereby accepting the input, or continuing to simulate M2.

5.3 NONDETERMINISTIC PUSHDOWN AUTOMATA AND CFL'S 75

One should note that M2 may possibly erase its entire store for some input
x not in T(M2). This is the reason that M1 has its own special bottom of the
stack marker. Otherwise 3/1, in simulating 1142, would also erase its entire
store, thereby accepting x when it should not.

Now assume that x is in T(M2). Then x" (qo, Zo) ~ (q, 7) for some q

in F. Thus

e'(q'o, X)]~-; (qo, ZoX) by Rule 1,

x'(qo, ZoX) ~ (q, 7X) by Rule 2,

e'(q, 7X) ~ (q~, ~) by Rules 3 and 4,

and therefore x is in N(M~). By similar reasoning, if x is in N(M1), then x
is in T(M~).

Proof (only if). Let

Mz = (K, ~, r, 3, qo, Zo, ep)

be a pda such that L = N(M~). Let

2t,/2 = (K t_) {qo, qr}, Z, I' w {X}, 3', qo, X, {qr})

where 3' is defined as follows.

1. 3'(qo, ~, X) contains (qo, ZoX).
2. For all q in K, a in Z w {E}, and Z in P, 3'(q, a, Z) includes the elements

of 3(q, a, Z).
3. For all q in K, 3'(q, ~, X) contains (ql, ~).

Rule 1 causes M2 to enter the initial configuration of 3,/1, except that
M2 will have its own bottom of stack marker X which is below the symbols
of M~'s pushdown store. Rule 2 allows M2 to simulate M1. Should M~ ever
erase its entire pushdown store, then M2, in simulating Mz, will erase its
entire pushdown store except for the symbol X at the bottom. Rule 3 causes
M2, when the X appears, to enter a final state, thereby accepting the input x.
The proof that T(M2) = N(M~) is similar to the proof in t h e / f part of the
theorem and is left as an exercise.

Theorem 5.2. If L is a context-free language, then there exists a pda M,
such that L = N(M).

Proof Let G = (VN, Vr, P, S) be a context-free grammar in Greibach
normal form generating L. (We assume that ~ is not in L(G). The reader
may modify the construction for the case where ~ is in L(G).) Let

M = ({ql}, Vr, VN, 3, q~, S, cp),

where 8(q~, a, A) contains (q~, 7) whenever A ~ a7 is in P.

76 PUSHDOWN AUTOMATA 5.3

To show that L(G) = N(M), note that xA/3 ~ , xa~p if and only if

a'(ql, A~) ~M (ql, ~)" It follows immediately by induction on the number

of steps of the derivation that xA~ ~.. xya, for any x and y in Vr*, A in VN,

and a and ~ in VN* if and only if Y'(ql A~) ~ (ql, ~). Thus S *~ x if and

only if x'(el, s) ~M (ql, e).t

Theorem 5.3. If L is N(M) for some pda M, then L is a context-flee
language.

Proof Let M be the pda (K, Z, P, 3, q0, Z0, cp). Let G = (VN, ~, P, S) be
a context-free grammar. VN is the set of objects of the form [q, A, p], where
q a n d p are in K a n d A is in P, plus the new symbolS. P i s t h e s e t o f
productions:

1. S --~ [qo, Zo, q] for each q in K.
2. [q, A, p] ~ a[ql, B1, q2][q2, B2, q3] . . . [qm, Bm, qm÷ l] for each q, ql, q2,

• •., qm + 1 in K, where p = qm ÷ 1, each a in E w {e}, and A, B1, B2, . . . , Bm
in F, such that 8(q, a, A) contains (ql, BIB2...Bm). (If m = 0, then
ql = P, 8(q, a, A) contains (p, e), and the production is [q, A, p]--~ a.)

To understand the proof it helps to know that the variables and produc-
tions of G have been defined in such a way that a leftmost derivation in G of
a sentence x is a simulation of the pda M, when fed the input x. In particular,
the variables that appear in any step of a leftmost derivation in G correspond
to the symbols on the .pushdown store of the pda at a time when the pda
has seen as much of the input as the grammar has already generated.

To show that L(G) = N(M), we prove by induction on the number of
steps in a derivation of G or number of moves of M, that

~k

[q, A p] =~- x if and only if x" (q, A) ~ (p, E).
' G

Now if x is in L(G), then

S =-~ [qo, Zo, q] ~ x,
G

for some state q. Hence, x: (qo, Zo) ~ (q, e), and therefore, x is in N(M).

Similarly x in N(M) implies that x" (qo, Zo) ~ (q, e). Hence,

and therefore, x is in L(G).

S ~ [qo, Zo, q] ~ - x,
G

t Note that the pda M makes no t-moves.

5.3 NONDETERMINISTIC PUSHDOWN AUTOMATA AND CFL'S 77

First we shall undertake the " i f" part of the proof. Suppose that

x ' (q , A) I * (p' ~) by a process taking k steps. We wish to show that

[q, A, p] ~=~ x. For k = 1 x is either a single symbol or E. Thus 3(q, x, A)
G

must contain (p, ~) and hence [q, A, p] -+ x is a production in P. Therefore

[q ,A ,p] ==> x.
G

Now we assume that the hypothesis is true for any process of up to
k - 1 steps and show that it is true for processes of k steps. The first step
must be of the form

a'(q, A) ~ (ql, B1B2. . .B3, l >= 1,

where a is E or the first symbol of x. It must be that x can be written
x = a x l x 2 . . . x z , such that for each i between 1 and l,

x~'(qi, B0 ~ (q~ + 1, ,)

by a process of fewer than k steps, where q~, q 2 , . . . , qt+~ are in K, and

qz + 1 = p. Therefore, from the inductive hypothesis, [q,, B~, q~ + ~] *~ x~. But
G

[q, A, p] ~ a[ql, B1, q2][q2, B2, q3] . . . [qz, B~, qz + 1]

is a production of G, so

ak
[q, A, p] ~ - a x l x ~ . . . x z = x.

The "only if" part of the proof follows in a manner similar to the "if"
part, by induction on the length of a derivation, and will not be given.

Example 5.3. Let

M = ({qo, ql}, {0, 1}, {X, Zo}, 3, qo, Zo, q~)

where 3 is given by"

8(qo, 0, Zo) = {(qo, XZo)}
3(q0, 0, x) = {(qo, xx)}
8(qo, 1, x) = {(ql, e)}

3(ql, 1, X) = {(ql, ~)}
3(ql, e, X) = {(q~, e)}
3(q~, e, Zo) = {(ql, ~)}

To construct a cfg G = (VN, Vr, P, S) generating N (M) let

VN = {S, [qo, X, qo], [qo, X, q~], [q~, X, qo], [q~, X, q~],
[qo, Zo, qo], [qo, Zo, q~], [q~, Zo, qo], [q~, Zo, q~]}

and Vr - {0, 1}. To construct the set of productions easily, we must realize
that some variables may not appear in any derivation starting from the
symbol S. Thus, we can save some effort if we start with the productions
for S, then add productions only for those variables that appear on the right

78 PUSHDOWN AUTOMATA 5.3

of some production already in the set. The productions for S are

S --~ [qo, Zo, qo] S ~ [qo, Zo, q~].

Next we add productions for the variable [qo, Zo, qo]. These are

[qo, Zo, qo] --~ 0[qo, X, qo][qo, Zo, qo],

[qo, Zo, qo] ~ 0[qo, X, q~][q~, Zo, qo].

These productions are required by

3(qo, 0, Zo) = {(qo, XZo)).

Next, the productions for [qo, Zo, q~] are

[qo, Zo, ql] ---> 0[qo, X, qo][qo, Zo, ql],

[qo, Zo, ql] -+ 0[qo, X, ql][qz, Zo, qz].

These are also required by 3(qo, 0, Zo) = {(qo, XZo)}. The productions for
the remaining variables and the relevant moves of the pda are:

1. [qo, X, qo] --> 0[qo, X, qo][qo, X, qo]
[qo, X, qo] --+ 0[qo, X, ql][qz, X, qo]
[qo, X, qz] --> 0[qo, X, qo][qo, X, ql]
[qo, X, q~] --+ 0[qo, X, q~][q~, X, q~]
since 3(qo, 0, X) = {(qo, XX)}

2. [qo, X, ql] -+ 1 since 3(qo, 1, X) = {(qz, ~))
3. [ql, Zo, q~] ~ ~ since 3(q~, ~, Zo). = {(ql, ~)}
4. [q~, X, q~] -+ E since 3(q~, e, X) = {(q~, E)}
5. [qz, X, q~] --~ 1 since 3(q~, 1, X) = {(ql, e)}

It should be noted that there are no productions for the variables
[qz, X, qo] and [qz, Zo, qo]. Thus no terminal string can be derived from
either [qo, Zo, qo] or [qo, X, qo]. Deleting all productions involving one of
these four variables on either the right or left, we end up with the following
productions.

S -+ [qo, Zo, qz] [qo, X, q~] ~ 1
[qo, Zo, qz] --~ 0[qo, X, qz][qz, Zo, ql] [ql, X, q~] ~
[qo, X, qz] ~ 0[qo, X, qz][q~, X, q~] [qz, X, qz] --+ 1
[ql, Zo, ql] ~

We summarize Theorems 5.1, 5.2, and 5.3 as follows. The subsequent
three statements are equivalent:

1. L is a context-free language.
2. L = N(Mi) for some pda M~.
3. L = T(M2) for some pda M2.

REFERENCES 79

P R O B L E M S

5.1 Find pushdown au tomata accepting the following sets by final state.

a) {wlw in {0, 1}* and w consists of an equal number of O's and l's}.
b) {anbm[n <= m < 2n}.
c) The set generated by the grammar

G = ({S, A}, {a, b}, {S ~ aAA, A --.'- bS, A --+ aS, A --+ a}, S).

d) The set of well-formed F O R T R A N arithmetic expressions. Assume
that variable names may be of any length greater than or equal to
one.

5.2 Give a grammar for the language which is N(M) where

m = ({qo, ql), {0, 1}, {Zo, X), 8, qo, Zo, of)

and 3 is given by '

¢3(qo, 1, Zo) = {(qo, XZo)} 8(qo, ,, Zo) = {(qo, ,)}
8(qo, l, X) = ((qo, XX)} 3(ql, 1, X) = ((ql, ,)}
8(qo, 0, X) = {(ql, X)} 8(ql, 0, Zo) = {(qo, Zo)}

5.3 Prove the "only if" port ion of Theorem 5.3.

5.4 Let L = N(M) for some pda. Show that L = N(M1) for some one state
pda, M1.

5.5 Let L = T(M) for some pda. Show that L -- T(Mi) for some two-state
pda, M1. Under what conditions is L = T(M1) for some one-state pda, M~ ?

5.6 Let L = N (M) for some pda. Show that L = N(Mz) for some pda, M~ =
(K, E, F, 8, qo, Zo, F) where 8(q, E, Z) = q~ for all q in K and Z in F.

5.7 Is the pda of Example 5.1 deterministic ? Justify your answer.

5.8 In Example 5.3, why are there no productions for the variable [q~, X, qo] ?

REFERENCES

The pushdown au tomaton appears as a formal construction in Oettinger [1961]
and Schutzenberger [1963]. Its relation to context-free languages was shown
independently in Chomsky [1962] and Evey [1963].

Various generalizations of pushdown automata have appeared in the litera-
ture. Devices with two or more pushdown tapes are equivalent to Turing
machines. (See Chapter 6.) The pushdown transducer is a pushdown au tomaton
which may output symbols at each move. It has been studied in Evey [1963],
Fischer [1963], Ginsburg and Rose [1966], and Ginsburg and Greibach [1966b].
The two-way pushdown au tomaton is a device with a pushdown store, a finite
control, and an input tape on which a head can move in either direction. These
devices have been studied in Hartmanis , Lewis, and Stearns [1965], Aho, Hop-
croft, and Ullman [1968], and Gray, Harrison, and Ibarra [1967].

CHAPTER 6

TURING MACHINES

6.1 INTRODUCTION

In this chapter we investigate a third type of recognizing device, the Turing
machine. The Turing machine has been proposed as a mathematical model
for describing procedures. Since our intuitive notion of a procedure as a
finite sequence of instructions which can be mechanically carried out is not
mathematically precise, we can never hope to show formally that it is equiva-
lent to the precise notion of a Turing machine. However, from the definition
of a Turing machine, it will be readily apparent that any computation that
can be described by means of a Turing machine can be mechanically carried
out. Thus the definition is not too broad. It can also be shown that any
computation that can be performed on a modern-day digital computer can
be described by means of a Turing machine. Thus if one ever found a
procedure that fitted the intuitive notions, but could not be described by
means of a Turing machine, it would indeed be of an unusual nature since it
could not possibly be programmed for any existing computer. Many other
formalizations of a procedure have been proposed, and they have been shown
to be equivalent to the Turing machine formalization. This strengthens our
belief that the Turing machine is general enough to encompass the intuitive
notion of a procedure. It has been hypothesized by Church that any process
which could naturally be called a procedure can be realized by a Turing
machine. Subsequently, computability by a Turing machine has become the
accepted definition of a procedure. We shall accept Church's hypothesis and
simply substitute the formal definition of a Turing machine for the intuitive
notion of a procedure.

6.2 DEFINITIONS AND NOTATION

Specifications for the Turing machine have been given in various ways in the
literature. We begin with the discussion of a basic model, as shown in Fig.
6.1. Later we investigate other models of the Turing machine, and show that
all these models are equivalent. The basic model has a finite control, an
input tape which is divided into cells, and a tape head which scans one
cell of the tape at a time. The tape has a leftmost cell but is infinite to the
right. Each cell of the tape may hold exactly one of a finite number of tape

80

6.2 DEFINITIONS AND NOTATION 81

symbols. Initially, the n leftmost cells, for some finite n, hold the input, a
string of symbols chosen from a subset of the tape symbols called the input
symbols. The remaining infinity of cells hold the blank, a special tape symbol
which is not an input symbol.

at a:

I a l a2 B

Fig. 6.1. Basic Turing machine.
Finite

control

In a move of the Turing machine, depending upon the symbol scanned
by the tape head and the state of the finite control, the machine:

1. changes state.
2. prints a nonblank symbol on the tape cell scanned, replacing what was

written there.
3. moves its head left or right one cell.

Note that the difference between a Turing machine and a two-way finite
automaton lies in the former's ability to change symbols on its tape.

Formally, a Turing machine (Tm) is denoted T = (K, E, r', 8, qo, F),
where:

K is the finite set of states.

P is the finite set of allowable tape symbols. One of these, usually denoted
B, is the blank.

12, a subset of I' not including B, is the set of input symbols.

8 is the next move function, a mapping from K x I' to K x (P - {B}) x
{L, R}.t 3 may, however, be undefined for some arguments.

q0 in K is the start state.

F c K is the set of final states.

We denote a configuration of the Turing machine T by (q, ~, i). Here q,
the current state of T, is in K. ~ is a string in (P - {B})* and is the non-
blank portion of the tape. Note that if the tape head ever leaves a cell, it

"l" We have not allowed a Tm to print a blank for simplicity in defining the con-
figurations. However, a Tm could have another symbol which is treated exactly
as if it were the blank except for the fact that the Tm is allowed to print this
pseudo blank symbol. Thus, no extra power results if we allow blanks to be
printed. In informal discussion, we often allow the printing of a blank, knowing
that one could use a different, but equivalent, symbol instead.

82 TURING MACHINES 6.2

must print a nonblank symbol on the cell, so the tape of T will always con-
sist of a block of nonblank symbols (here ~ is that block), with an infinity
of blanks to the right. Finally, i is an integer, the distance of the tape head
of T from the left end of ~.

We define a move of T as follows. Let (q, A~A2 . . .An , i) be a configura-
tion ofT, where 1 __< i=< n + 1. If

1 < i < n and 8(q, A,) = (p, A, R),
then

(q, A1A2. . .An, i) ~ (p, A1A2. . .A, 1AA,+i. . .An, i + 1).

That is, T prints symbol A and moves right. If

8(q, A,) = (p, A, L) and 2 =< i =< n,

then

(q, A1A2. . .An, i) ~ (p, A1A2. . .A,_iAA~+ 1. . .A , , , i - 1).

Here T prints A and moves left, but not off the left end of the tape. If
i = n + 1, the tape head is scanning the blank, B. If 3(q, B) = (p, A, R),
then

(q, AzA2. . .An, n + I) ~ (p, AzA2. . .AnA, n + 2).

If, instead, 3(q, B) = (p, A, L), then

(q, AiA2. . .A,,, n + 1) ~ (p, A~A2. . .A,~A, n).

If two configurations are related by ~ , we say that the second results

from the first by one move. If one configuration results from another by
some finite number of moves, including zero moves, they are related by the

relation]~.

The language accepted by T is the set of those words in Z* which cause
T to enter a final state when placed, justified at the left, on the tape of T,
with T in state q0, and the tape head of T at the leftmost cell. Formally, the
language accepted by T = (K, Z, I", 8, q0, F) is

{wlw in E* and (qo, w, 1) ~T (q, ~, i) for some q in F, ~ in P* and integer i}.

Given a Tm recognizing a language L, we assume without loss of generality
that the Tm halts, i.e., has no next move whenever the input is accepted.
However, for words not accepted, it is possible that the Tm will not halt.

Example 6.1. Consider the following Tm that recognizes the context-flee
language L = {0'~l'~[n _>_ 1}. Let T = (K, Z, P, 3, qo, F). Here,

K = {qo, q l , . . . , q s } , Z = {0, 1}, P -- {0, 1, B, X, Y), F = {qs},

and 3 is defined as follows.

6.2 DEFINITIONS AND NOTATION 83

1. 3(qo, 0) = (ql, X, R). (T will alternately replace a 0 by X, then a 1 by Y.
In state qo, a 0 is replaced by an X, and T moves right in state ql looking
for a 1.)

2. a) 3(ql, 0) = (ql, 0, R)
b) 3(ql, Y) = (q~, Y, R)
c) 8(q~, l) = (q2, Y, L)
(T moves right in state q~ (Rules 2a and 2b). When a 1 is found, it is
changed to a Y, and the state becomes q2 (Rule 2c). In q2, we see that T
moves left, looking for a 0 to convert to an X. Moving left, T will en-
counter a block of Y's, then, perhaps, a block of O's, then an X.)

3. a) 3(q2, Y) = (qz, r , L)
b) 3(q2, X) = (qa, X, R)
c) 3(q2, O) = (q4, O, L)
(T moves left, through Y's (3a). If T encounters an X while still in state
q2, there are no more O's to convert. T goes to state qz to check that no

Configuration Rule used Configuration Rule used

(qo, 000111, 1) start (q4, XXOYY1, 2) 3c

(ql, XO0111, 2) 1 (qo, XXO YY1, 3) 4b

(ql, XO0111, 3) 2a (ql, X X X Y Y I , 4) 1

(ql, XO0111, 4) 2a (ql, XXXYY1 , 5) 2b

(q2, XO0 Y11, 3) 2c (ql, X X X Y Y 1 , 6) 2b

(q4, XO0 Y11, 2) 3c (q2, X X X Y Y Y , 5) 2c

(q4, XO0 Y11, 1) 4a (q2, X X X Y Y Y , 4) 3a

(qo, XO0 Y11, 2) 4b (q2, X X X Y Y Y , 3) 3a

(q~, XXO Y11, 3) 1 (qa, x x x r r r , 4) 3b

(q~, x x o Y11, 4) 2a (q3, X X X Y Y Y , 5) 5a

(ql, XXO Y11, 5) 2b (qa, X X X Y Y Y , 6) 5a

(q2, XXO YY1, 4) 2c (q3, X X X Y Y Y , 7) 5a

(q2, XXO YY1, 3) 3a (qs, X X X Y Y Y Y , 8) 5b

Fig. 6.2. Computation accepting 000111.

84 TURING MACHINES 6.3

more l's remain (3b). If a 0 is encountered, T goes to state q4 instead,
and moves left to convert the leftmost 0 (3c).)

4. a) 8(q4, 0) = (q4, 0, L)
b) 3(q4, X) = (q0, X, R)
(T moves through the O's (4a). If an X is encountered, T has passed the
leftmost 0 and so must move right, to convert that 0 to an X. State qo is
entered, and the process just described in Rules 1 through 4 repeats
(Rule 4b).)

5. a) 3(qa, Y) = (qa, Y, R)
b) 3(qa, B) = (qs, r , R)
(T enters state q3 when no O's remain (see 3b). T must move right (5a).
If a blank is encountered before a 1, then no l's remain (5b). The input
is in L, and T enters state qs, the lone accepting state.)

6. 3 is undefined, except as in Rules 1 through 5.

Let us see how T acts with input 000111. The successive configurations,
together with the rules used to get from one to the other are shown in Fig.
6.2. For ease of understanding, we have inserted an arrow into each con-
figuration above the symbol scanned by the tape head.

6.3 TECHNIQUES FOR TURING MACHINE CONSTRUCTION

A Turing machine can be "programmed," in much the same manner as a
computer is programmed. When one specifies the function which we usually
call 8 for a Tin, he is really writing a program for the Tm. In this section,
we present a collection of "tricks" which, hopefully, will lead the reader
to familiarity with the Turing machine.

I. STORAGE IN FINITE CONTROL. The finite control can be used to
hold a finite amount of information. To do so, the state is written as a pair of
elements, one exercising control and the other storing a symbol. It should
be emphasized that this arrangement is for conceptual purposes only. No
modification in the definition of the Turing machine has been made.

Example 6.2. Consider the Turing machine

T = (K, {0, 1), {0, 1, B), 3, [q0, B], F),

where K can be written as {qo, ql} x {0, 1, B}. That is, K consists of the
pairs [qo, 0], [q0, 1], [qo, B], [ql, 0], [q~, 1], and [ql, B]. The set F is {[q~, B]}.
T looks at the first input symbol, records it in its finite control, and checks
that the symbol does not appear elsewhere on its input. The second com-
ponent of the state records the first input symbol. Note that T accepts a
regular set, but T will serve for demonstration purposes. We define 3 as
follows.

6.3 TECHNIQUES FOR TURING MACHINE CONSTRUCTION 85

1. a) 8([q0, B], 0) = ([ql, 01, 0, R)
b) 8([qo, B l, 1) = ([ql, 1], 1, R)
(T stores the symbol scanned in second component of the state and moves
right. The first component of T's state becomes ql.)

2. a) 8([ql, 01, t) = ([qx, 01, 1, R)
b) 8([ql, 11, 0) = ([q~, 11, 0, R)
(If Thas a 0 stored and sees a l, or vice versa, then T continues to move
to the right.)

3. a) 8([ql, 0], B) = ([ql, B], 0, L)
b) 8([qz, 1], B) = ([q~, B], 0, L)
(T enters the final state [q~, B] if T reaches a blank symbol without
having first encountered a second copy of the leftmost symbol.)

If T reaches a blank in state [q~, 0] or [ql, 1], it accepts. For state [q~, 0]
and symbol 0 or for state [q~, 1] and symbol 1, 8 is not defined, so if T ever
sees the symbol stored, it halts without accepting.

In general, we can allow the finite control to have k components, all but
one of which store information.

II. MULTIPLE TRACKS. We can imagine that the tape of the Turing
machine is divided into k tracks, for any finite k. This arrangement is shown
in Fig. 6.3, with k = 3. What is actually done is that the symbols on the
tape are considered as k-tuplesmone component for each track.

¢ 1 0 1

B B B B

B 1 0 i 0
J

1 1 1 $ LB B

1 0 1 B B B .--
' , ,

I
1 0 1 B B B

/
Finite

control

Fig. 6.3. 3-Track Turing machine.

Example 6.3. The tape in Fig. 6.3 can be imagined to be that of a Turing
machine which takes a binary input greater than 2, written on the first track,
and determines if it is a prime. The input is surrounded by ¢ and $ on the
first track. Thus, the allowable input symbols are [¢, B, B], [0, B, B l,
[1, B, B], and [$, B, B]. These symbols can be identified with ¢, 0, 1, and $,
respectively, when viewed as input symbols. The blank symbol can be
represented by [B, B, B].

86 TURING MACHINES 6.3

To test if its input is a prime, the Tm first writes the number two in binary
on the second track and copies the first track onto the third track. Then, the
second track is subtracted, as many times as possible, from the third track,
effectively dividing the third track by the second and leaving the remainder.

If the remainder is zero, the number on the first track is not a prime. If
the remainder is nonzero, increase the number on the second track by one.
If now the second track equals the first, the number on the first track is a
prime, because it cannot be divided by any number between one and itself.
If the second is less than the first, the whole operation is repeated for the
new number on the second track.

In Fig. 6.3, the Tm is testing to determine if 47 is a prime. The Tm is
dividing by 5; already 5 has been subtracted twice, so 37 appears on the
third track.

III. CHECKING OFF SYMBOLS. Checking off symbols is a useful trick
for visualizing how a Tm recognizes languages defined by repeated strings,
such as

{ww[w in Z*}, {wcylw and y in Z*, w # y} or {wwRlw in Z*}.

It is also useful when lengths of substrings must be compared, such as in the
languages

{a~b~[i _>_ 1} or {a~bJc~]i # j or j -¢ k}.

We introduce an extra track on the tape that holds a blank or @. The x/'
appears when the symbol below it has been considered by the Tm in one of
its comparisons.

Example 6.4. Consider a Turing machine T = (K, Z, I', 3, q0, F), which
recognizes the language {wcw]w in {a, b}*}. Let

K = {[q, d]]q = q~,q2,. . . , q9 and d = a, b, or B}.

The second component of the state is used to store an input symbol.

X = {[B, d]ld = a, b, or c},

I' = {[X, d]lX = B or X/' and d = a, b, c, or B},

q0 = [q~, B], and F = {[qg,B]}.

The blank symbol is identified with [B, B], a is identified with [B, a], b is
identified with [B, b], and c is identified with [B,e]. We define 8 as follows.

1. 3([q~, S], [B, d]) = ([q2, d], [,v/, d], R)

for d = a or b. (T checks the symbol scanned on the tape, stores the
symbol in the finite control and moves right.)

6.3

10.

11.

12.

TECHNIQUES FOR TURING MACHINE CONSTRUCTION 87

2. ~([q2, d], [B, e]) = ([q2, d], [B, e], R)

for d = a or b, e -- a or b. (T continues to move right, over unchecked
symbols, looking for c.)

3. 8([q2, d], [B, c]) = ([q3, d], [B, c], R)

for d = a or b. (On finding c, T enters a state with first component q3.)

4. ~([q3, d], [V, e]) = ([q3, d], [V, el, R)

for d = a or b, and e = a or b. (T moves right over checked symbols.)

5. 8([q3, d], [B, d]) = ([q4, B], [V, d], L)

for d = a or b. (T encounters an unchecked symbol. If the unchecked
symbol matches the symbol stored in the finite control, T checks it and
begins moving left. If the symbols disagree, T has no next move, and so
halts without accepting.)

6. 3([q,, B], [V/, d]) = ([q,, B], [x/, d], L)

for d = a or b. (T moves left over checked symbols.)

7. 3([q,, B], [B, el) = ([qs, B], [B, c], L)

(T encounters the symbol c.)

8. 8([q5, B], [B, d]) = ([q6, B], [B, d], L)

for d = a or b. (If the symbol immediately to the left of the c is un-
checked, T proceeds left to find the leftmost unchecked symbol.)

9. 8([q6, B], [B, d]) = ([q6, B], [B, d], L)

for d = a or b. (T proceeds left.)

8([q6, B], [V, d]) = ([q~, B], [V, d], R)

for d = a or b. (T encounters a checked symbol and moves right, to
pick up another symbol for comparison. The first component of state
becomes q~ again.)

3([q5, B], [x/, d]) = ([qT, B], ['V', d], R)

for d = a or b. (T will be in state [qs, B] immediately after crossing c
moving left. (See Rule 7.) If a checked symbol appears immediately to
the left of c, all symbols to the left of c have been checked. T must test
if all symbols to the right have been checked. If so, they must have
compared properly with the symbol to the left of c, so T will accept.)

8([q7, B], [B, c]) = ([q,, B 1, [B, c], R).

(T moves right over c.)

88 TURING MACHINES 6.3

13. 8([qe, B], [V', d]) = ([qe, B], ['V', d], R)

for d = a or b. (T moves to the right over checked symbols.)

14. 3([qa, B 1, [B, B]) = ([qg, B], [x/, B 1, L).

(If T finds [B, B], the blank, it halts and accepts. If T found an un-
checked symbol when its first component of state was qa, it would have
halted without accepting.)

IV. SHIFTING OVER. A Turing machine can make space on its tape by
shifting all nonblank symbols a finite number of cells to the right. To do so,
the tape head must make an excursion to the right, repeatedly storing the
symbols read in its finite control and replacing them with symbols read from
cells to the left. The Tm can then return to the vacated cells, and print
symbols of its choosing. If space is available, it can push blocks of symbols
left in a similar manner.

Example 6.5. We construct part of a Turing machine, T = (K, Z, P, 5, qo, F)
which may occasionally have a need to shift symbols two ceils to the right.
Let K contain states of the form [q, A1, A2] for q = ql or q2, and A~ and A2
in F. Let B be the blank, and X be a special symbol not used by T except in
the Shifting process. We suppose that T starts the shifting process in state
[ql, B, B]. The relevant portions of the function 3 are as follows.

1. 8([q~, B, B], A1) = ([qz, B, A ~], X, R)

for A~ in F - {B, X}. (T stores the first symbol read in the third com-
ponent of its state. X is printed on the cell scanned and T moves to the
right.)

2. 3([ql, B, A~], A2) = ([qz, A~, A2], X, R)

for A~ and A2 in F - {B, X}. (T prints an X, stores the symbol being
read in the third component, shifts the symbol in the third component
to the second component, and moves right.)

3. 3([ql, A1, A2], A3) = ([q~, A2, A3], A1, R)

for A~, A2, and A3 in F - {B, X}. (T now repeatedly reads a symbol
A3, stores it in the third component of state, shifts the symbol previ-
ously in third component A2 to the second component, deposits the
previous second component A~ on the cell scanned, and moves right. It
should be clear that a symbol will be deposited two cells to the right of
its original position.)

4. 3([q~, A~, A2], B) = ([ql, A2, B], A1, R)

for A1 and A2 in 17 - {B, X). (When a blank is seen on the tape, the
stored symbols are deposited on the tape.)

6.3 TECHNIQUES FOR TURING MACHINE CONSTRUCTION 89

5. 3([q~, A 1, B], B) = ([qz, B, B], A~, L).

(After all symbols have been deposited, T sets the first component of
state to q2, and will move left to find an X, which marks the rightmost
vacated cell.)

6. 3([q2, B, B], A) = ([q2, B, B], A, L)

for A in P - {B, X}. (T moves left until an X is found. When X is
found, T will transfer to a state which we have assumed exists in K and
resume its other functions.)

V. SIMULATION. Let B be an automaton which, with input w, enters in
succession configurations C1, C2 , . . . , Cn. Informally, we say an automaton
A simulates the automaton B, if A, with input w, enters in succession con-
figurations representing C1, C2 , . . . , Cn. It is possible that A will enter other
configurations between the times it enters the configurations representing
those of B.

The concept of simulation is useful in showing that an automaton of one
type can recognize any language recognized by an automaton of some other
type. For an automaton A to simulate an automaton B, A must have two
capabilities.

First, if A has in storage a configuration representing configuration C~
of B, A must be able to calculate the representation for C~ + 1. In addition,
A must be able to determine if configuration C~ of B is a configuration which
implies that B accepts its input. Then A must also accept the input.

In passing, we point out that for simulation purposes it is often useful to
represent a configuration of a Turing machine as aqXfi, where a and fl are
tape strings, X is a tape symbol, and q is a state. In configuration aqXfi, the
state is q, aX~ is the nonblank portion of tape, and X is the symbol scanned
by the tape head. An example of the simulation of a nondeterministic Tm
by a deterministic one is given in Section 6.5.

VI. DIAGONALIZATION. Another useful concept is diagonalization. It
can be used to show that there is a language accepted by an automaton of
type 2 that is accepted by no automaton of type 1. The salient features of the
diagonalization are: There must be an encoding of all automata of type 1
whose input symbols are chosen from some alphabet Z. The encoding itself
uses only symbols from Z. An example of how this encoding can be done is
given in the next chapter.

Next, we construct an automaton A, of type 2, with inputs from ~*. The
input to A is treated both as the encoding of some automaton B, of type 1,
and as the input to B. A must have the ability to simulate B, that is, deter-
mine whether or not B accepts its own encoding. If B accepts, A does not
accept. If B fails to accept, A accepts.

It is always true that the language accepted by A is accepted by no
automaton of type 1. For suppose that B were such an automaton. B has

90 TURING MACHINES 6.3

an encoding w in Z*. Suppose that B accepts w. Then A simulates B with
input w, and finds that B accepts w. So A does not accept w. Likewise, if
B does not accept w, A does. In either case, A and B cannot accept the same
language.

Incidently, a word of explanation concerning the rationale of the term
"diagonalization" is in order. One can number the words in E* by the
scheme--take the shortest first, and among words of equal length, use some
lexicographical order (see Section 1.3). Then we can number automata of
type 1 according to the numbers assigned to their encodings. The automaton
A accepts the ith word if and only if the ith word is not accepted by the ith
automaton. Imagine an infinite matrix for which the entry in the ith column,
j th row, denoted (i, j), is 1 if the j th automaton accepts word i, and is 0
otherwise. A accepts word i if and only if the diagonal entry (i, i) is 0. Hence
the word diagonalization.

VII. SUBROUTINES. It is possible for one Turing machine to be a "sub-
routine" of another Tm under rather general conditions. If T~ is to be a
subroutine of T2, we require that the states of T~ be disjoint from the states
of T2 (excluding the states of T2's subroutine). To "call" T~, T2 enters the
start state of T~. The rules of T1 are part of the rules of T2. In addition,
from a halting state of T1, T2 enters a state of its own and proceeds.

Example 6.6. Let us informally describe a Turing machine, T3, which com-
putes n!. That is, if we start T3 with 01"0 as input, T3 will end with 0" + 21 "~
on the nonblank portion of its tape. T3 will make use of a subroutine T2,
which does multiplication. Specifically, T2, started with 01*0Jl k on its tape,
with its tape head at the leftmost 0 of the block o f j O's, will halt with 01'0 j 1 *~
on the tape.

From its initial configuration, Ta moves right, past the block of l's and the
last 0, prints a 1, and moves left. To now has 01"01 on its tape. T3 calls the
subroutine T2. When control returns to T3, the tape of T3 contains 01"01"0.
From its current state, Ta then tests to see that at least three l's remain in
the first block of l's. If so, it changes the rightmost 1 in that block to a 0,
and returns to the state from which it "calls" T2.

After the second "call" of T2, 01"-1001 ~<"-1~ will appear on the tape of
T3. After the third call, 01"-20001 '~<"-1>~"-2> will appear, and so on, until
after the n - 1st call, 0110"-11 "~"-~>...~2> will appear. At this time, the first
block of l's has fewer than three l's, so Ta changes them to O's and halts.
Note that n(n - 1). . . (2) = n!.

T2 can itself be thought of as using a subroutine T1 which, given
two blocks of l's, adds the first to the second, leaving the first intact. The
technique of "checking off symbols" is useful in constructing Ti. T2
"calls" T~ once for each 1 in the first block, then checks it off, thus effecting
a multiplication.

6.4 THE TURING MACHINE AS A PROCEDURE 91

6.4 THE TURING M A C H I N E AS A PROCEDURE

So far, we have defined the Tm as a recognizing device. As mentioned
earlier, we can consider the Tm as a procedure. For example, if we wish to
define a procedure for determining if a number is a prime, we could construct
a Tm which accepts precisely the set of all primes. Note that, in this case,
whether the Tm is thought of as a recognizer or a procedure is merely a
matter of preference.

In general, if one wishes to consider a procedure for manipulating
strings of symbols, one can convert the procedure to a recognition problem
by constructing a new Tm which accepts pairs of strings separated by a
special symbol. The new Tm accepts a given pair precisely when the pro-
cedure would convert the first string in the pair to the second string and then
halt. We shall leave the proof of the fact that, given a procedure, one can
find a corresponding recognizer and vice-versa, as an exercise for the reader.
Section 1.3 contains most of the relevant ideas.

The Tm of Example 6.1 is used as a recognizer. Note that, no matter
what the input, the Tm will eventually reach a condition in which for the
state of the finite control and symbol scanned by the tape head, 3 is undefined.
In such a condition, T is said to halt; no further moves are possible. If a
language is accepted by a Tm which halts on all inputs, then the language is
said to be recursive. It should be emphasized that there are languages which
are accepted by a Tm that does not halt for some inputs not in the language,
but by no Turing machine which halts on all inputs. This fact will be proved
in the next chapter. A language that can be recognized by some Tm is called
a recursively enumerable (r.e.) language. We shall see in the next chapter
that the r.e. languages are exactly the languages generated by type 0 grammars.

When we consider a Tm as a procedure, if the Tm halts for all inputs,
then we say that the procedure is an algorithm. There exist procedures for
which there is no corresponding algorithm. An example is a procedure for
determining if a csg generates at least one terminal string. One can construct
a Tm which, given the specification of a csg, will generate all possible terminal
strings in some lexicographical order. To each word, the Tm applies the
algorithm given in Chapter 2, to see if the word is generated by the grammar.
If the grammar generates at least one word, the Tm will find it and halt in a
final state. However, if the language generated by the grammar is empty, the
Tm will continue generating words and testing them forever. We show in
Chapter 14 that there is no Tm that halts for every input and determines for
each csg whether the language generated by the grammar is empty.

In addition to considering the Tm as a recognizing device or a procedure,
we can consider the Tm as defining a function. Let f(n) be a function map-
ping the positive integers into the positive integers. Let T = (K, ~, P, 3, q0, F)

be a Tm. If, for every integer n, (q0, l", 1)Iv (P, l S('~, 1) for some p in F,

then we say that T computes the function f(n). If some Tm T computes f(n)

92 TURING MACHINES 6.5

for each n, then f(n) is said to be recursive. If f (n) is not defined for all n,
then f(n) is said to be a partial function. If some Tm T computes f(n) wher-
ever f(n) is defined, but may not halt for those n for which f(n) is undefined,
then f(n) is a partial recursive function.

6.5 MODIF ICATIONS OF TURING MACHINES

One reason for the acceptance of the Turing machine as a general model of a
computation is that the model with which we have been dealing is invariant
to many modifications which would seem off-hand to increase the computing
power of the device. In this section we give informal proofs of some of these
equivalence theorems.

A Turing machine with a two-way infinite tape is denoted by T = (K, Z,
r', 3, qo, F), as in the original model. As its name implies, the tape is infinite
to the left as well as to the right. We denote a configuration of such a device
bY (q, ~, i), where q is the state, c~ is the nonblank string of symbols on the
tape, and i is the position of the tape head relative to the left end of c~. That
is, i = 1 if T is scanning the leftmost symbol of ~, i -- 2 if T is scanning the
second symbol, etc. We imagine, however, that there is an infinity of blank
cells both to the left and right of ~. Thus, it is possible that i = 0, in which
case T is scanning the blank immediately to the left of c~.

The relation 1~, which relates two configurations if the configuration on

the right is obtained from the one on the left by a single move, is defined
as for the original model with the following exceptions for i < 1. If

then

If

then

If

then

3(q, X) = (p, Y, L),

(q, Xo~, 1)[7 (P, Yo~, 0).

3(q, B) = (p, Y, R),

(q, a, 0)!? (P, Ya, 2).

3(q, B) = (p, Y, L),

(q, ~, 0)[~ (p, Y~, 0).

Here B is the blank. Of course, Y ¢ B. The initial configuration is (q0, w, 1).
Unlike the original model, there is no left end of the tape for the Turing
machine to "fall off," so it can proceed left as far as it wishes. The relation

1", as usual, relates two configurations if the one on the right can be obtained

from the one on the left by some number of moves.

6.5 MODIFICATIONS OF TURING MACHINES 93

Theorem 6.1. If L is recognized by a Turing machine with a two-way
infinite tape, it is recognized by a Tm with a one-way infinite tape.

Proof Let T2 = (K2, Z2, r2, 82, q2, F2) be a Tm with a two-way infinite
tape. We construct T~, a Turing machine simulating T2 and having a tape
that is infinite to the right only. T~ will have two tracks, one to represent
the cells of T2's tape to the right of, and including, the tape cell initially
scanned, the other to represent, in reverse order, the cells to the left of the
initial cell. If we number the initial cell of T2 0, those cells to the right
1, 2 , . . . , and those cells to the left - 1 , - 2 , . . . , then the relationship
between the tapes of T2 and T~ is shown in Fig. 6.4.

A-5 A_~ A-a A-2 A-1 Ao

(a)

A1 A2 Aa A~ [As

Fig. 6.4. Tapes of T1 and T2.
(a) Tape of T2. (b) Tape of T1.

I Ai A2 I Aa A4

A'

(b)

A5

A-5

The first cell of the tape of T1 will hold, in the lower track, a symbol ¢
indicating that it is the leftmost cell. The finite control of T1 will hold
information as to whether T2 would be scanning a symbol appearing on the
upper or on the lower track of T1.

It should be fairly evident to the reader that T~ can be constructed to
simulate T2 in the sense that while T2 is to the right of the initial position of
its input head, T~ is working on the upper track. While T2 is to the left of
its initial tape head position, T1 works on its lower track, moving in the
direction opposite to the direction in which T2 moves. The input symbols
of T~ are symbols with a blank on the lower track and an input symbol of
T2 on the upper track. Such a symbol can be identified with the corresponding
input symbol of T2.

We now give a formal construction of T1 = (K~, El, Pl, 31, ql, F~). The
states, K1, of T1 are all objects of the form [q, U] or [q, L], where q is in K2,
plus the symbol qz. Note that the second component will indicate whether
T1 is working on the upper or lower track.t The tape symbols in P~ are all
objects of the form [X, Y], where X and Y are in P2. In addition, Y may be

I" Here L means "lower" and should not be confused with L in the range of 3
where it means "left."

94 TURING MACHINES 6.5

¢, a symbol not in F2. If B is the blank of T2, [B, B] is the blank of T~. Z1
consists of all symbols [a, B], where a is in Z2. We identify a with [a, B].
F1 is {[q, D]]q in F2, D = U or L}. We define 31 as follows.

3z(q~, [a, B]) = ([q, U], [X, ¢], R), if 32(q2, a) = (q, X, R)

for each a in Y2. (If T2 moves right on its first move, T~ prints ¢ in the
lower track to mark the end of tape, sets its second component of state
to U, and moves right. The first component of Tl's state holds the state
of Tz. T~ prints the symbol X, printed by T2, on the upper track.)

5 3~(q~, [a, B]) = ([q, L], [X, ¢], R), if 32(qz, a) = (q, X, L)

for each a in Z2. (If T2 moves left on its first move, T1 records the next
state of T2, and the symbol printed by T2 as in (1), but sets the second
component of its state to L, and moves right. Again, ¢ is printed in the
lower track to mark the left end of the tape.)

3. For each [X, Y] in Pl, with Y # ¢, and D = L or R,

31([q, U], [X, Y]) = ([p, U], [Z, Y], D),

(T1 simulates T2 on the upper track.)
4. For each [X, Y] in F1, with Y # ¢,

3~([q, L], [X, Y]) = ([p, L], [X, Z], D),

if 32(q, X) = (p, Z, D).

m

if $z(q, Y) = (P, Z, D).
m

If D is L, D is R. If D is R, D is L. (T1 simulates T2 on the lower track
of T1. The direction of head motion of T~ is opposite to that of T2.)

5. 8z([q, U], [X, ¢]) = 8~([q, L], [X, ¢]) = ([p, E), [Y, ¢], R), if

~(q, x) = (p, r, D).

E = U i f D = R, a n d E = L i f D = L . (Tl simulates a move of T2 on
the cell initially scanned by T2. Ti next works on the upper or lower
track, depending on the direction in which T2 moves. Tz will always
move right in this situation.)
We leave it to the reader to show that T1 and T2 accept the same language.
A multitape Turing machine is shown in Fig. 6.5. It consists of a finite

control with k tape heads and k tapes; each tape is infinite in both directions.
On a single move, depending on the state of the finite control and the symbol
scanned by each of the tape heads, the machine can:

1. change state.
2. print a new symbol on each of the cells scanned by its tape heads.
3. move each of its tape heads, independently, one cell to the left or right,

or keep it stationary.

6.5 MODIFICATIONS OF TURING MACHINES 95

Initially, the input appears on the first tape and the other tapes are
blank. We shall not define the device more formally. We trust that the
reader can formalize the model if he desires.

Finite
control

Fig. 6.5. Multitape Turing machine.

Theorem 6.2. If a language L is accepted by a multitape Turing machine,
it is accepted by a single-tape Turing machine.

Proof Let L be accepted by T~, a Tm with k tapes. We can construct T2, a
one-tape Tm with 2k tracks, two tracks for each of T~'s tapes. One track
records the contents of the corresponding tape of T~ and the other is blank,
except for a marker in the cell which holds the symbol scanned by the corre-
sponding head of T~. The arrangement is illustrated in Fig. 6.6. The finite
control of T2 stores information as to which head markers are to the left,
and which are to the right of T2's tape head. The state of T1 is also stored in
the finite control of T2.

Fig. 6.6. Simulation of three tapes
by one.

Head 1

Tape 1

Head 2

Tape 2

Head 3

Tape 3

A1

B1

X

C1

X

t t 2 . . .

B 2 . . .

C 2 ° ° °

X

o ° ° A m

° , ° n m

• ° ° C m

To simulate a move of T1, T2 must visit each of the cells with head
markers, recording, in turn, the symbol scanned by each head of T1. When

96 TURIMG MACHINES 6.5

T2 passes across a head marker, it must update the direction in which to find
this marker. After gathering all the information necessary, T2 determines
the move of T~. T2 then visits, in turn, each of the head markers again,
changing the symbols scanned and moving the markers one cell if necessary.
Of course, if the new state of T1 is accepting, T2 accepts.

Example 6.7. Consider how much easier it is for a multitape Tm to recog-
nize the language L = {wwR[w in {0, 1}*} than for a single-tape Tm.

For L to be recognized on a single-tape Tm, the tape head must go back
and forth on the input, checking off symbols from both ends and comparing
them. The process is similar to that of Example 6.4.

To recognize L with a two-tape Tm, the input is copied onto the second
tape. The input on one tape is compared with the reversal on the other tape,
and the length of the input checked to make sure it is even.

Note that the number of moves needed to recognize L by a one-tape
machine is approximately the square of the input length, while with a two-
tape machine, time proportional to the input length is sufficient.

A nondeterministic Turing machine is a device with a finite control and
a single, two-way infinite tape. For a given state and tape symbol scanned
by the tape head, the machine has several choices for the next move. Each
choice consists of a new state, a tape symbol to print, and a direction of
head motion. The nondeterministic Tm accepts its input if any sequence of
choices of moves leads to an accepting state.

Theorem 6.3. If L is accepted by a nondeterministic Turing machine,
7'1, then L is accepted by some deterministic Turing machine, 7'2.

Proof. For any state and tape symbol of T1, there are a finite number of
choices for the next move. These can be numbered 1, 2 , Let r be the
maximum number of choices for any state-tape symbol pair. Then any
finite length sequence of choices of move can be represented by a sequence
of the digits 1 through r. Not all such sequences may represent choices of
moves, since there may be less than r choices in some configurations.

T2 will have three tapes. The first will hold the input. On the second, T2
will generate sequences of digits 1 through r in a systematic manner. Specifi-
cally, the sequences will be generated with the shortest appearing first.
Among sequences of equal length, they are generated in numerical order.

For each sequence generated on tape 2, T2 copies the input onto tape 3
and then simulates T1 on tape 3, using the sequence of tape 2 to dictate the
moves of T~. If T1 enters an accepting state, T2 also accepts. If there is a
sequence of choices leading to acceptance, it will eventually be generated on
tape 2. When simulated, T2 will accept. But if no sequence of choices of
moves of T~ leads to acceptance, T2 will not accept.

Note that this argument can be generalized to show how to simulate a
nondeterministic multitape Tm with the usual model of a Turing machine.

6.5 MODIFICATIONS OF TURING MACHINES 97

Let us consider another modification of the Turing machine that adds
no additional power--the t w o - d i m e n s i o n a l Turing machine. The device con-
sists of the usual finite control, but the tape consists of an infinity of cells in
two dimensions. Depending on the state and symbol scanned, the device
changes state, prints a new symbol, and moves its tape head in one of four
directions. Initially, the input is on one row, and the head is at the left end
of the input.

At any time, only a finite number of rows have any nonblank symbols
in them, and these rows each have only a finite number of nonblank symbols.
For example, consider the tape configuration shown in Fig. 6.7a. We can
draw a rectangle about the nonblank symbols, as also shown in Fig. 6.7a.
The rectangle can be written row by row on a single tape, as shown in Fig.
6.7b. The *'s separate the rows. One of the symbols is marked as scanned
by the head.

Fig. 6.7. Two-dimensional
Turing machine.

B

B

a6

B

B (a)

a7

a~

a2

a8

al B

a3 a4

a9 B

a12 a~3 B

a~6 a17 B

B

a5

alo

a14 a15

B

* B B Ba l B B B * BBa2aaa4asB* a6avasagBal oB* Ba ~ ~ a12az 3Ba ~ 4a ~ 5* BBa~ 6a ~ T B B B *

(b)

If, on a given move, the head remains within the rectangle represented,
it is easy to adjust the position of the head. We leave it to the reader to
provide details. If the head moves vertically outside the rectangle, one adds
another row of blanks to the left or right end of the linear representation.
If the head leaves the rectangle to the right or left, the length of each row
represented must be increased by one. Again we leave it to the reader to see
how this can be done. The technique of "shifting" is useful here. The result
is easily generalized to n-dimensional tapes.

We should also mention here the Turing machine with a read-only input
tape and one or more read-write storage tapes. The move of the Tm is
dependent on the input symbol scanned, but the Tm cannot print on the
input. The input tape is usually visualized as having end markers, so the
input tape head can always stay on the input, whose limits it cannot itself
mark. If the input head can move in two directions, the device is called an
of f - l ine Turing machine. If the input head never moves left, it is an on- l ine Tm.

Clearly the off-line and on-line Tm are just varieties of multitape Tm.
It should also be clear that they can simulate any multitape Tm.

98 TURING MACHINES 6.6

6.6 RESTRICTED TURING MACHINES EQUIVALENT TO THE BASIC
MODEL

So far we have considered generalizations on the basic Tm model. As we
have seen, these generalizations do not increase the computational power of
the model. We conclude this chapter by considering some models which at
first one might think were less powerful than the Tm but indeed are just as
powerful. For the most part, these models will be variations of the basic
pushdown automaton defined in Chapter 5.

In passing, we note that a pushdown automaton can be thought of as a
nondeterministic Tm with a read-only input on which the input head cannot
move left, plus a storage tape with a rather peculiar restriction on the tape
head. Whenever the storage tape head moves left, it must print a blank.
Thus the storage tape to the right of the head is always completely blank.
(Note that, strictly speaking, we did not allow a Tm to print a blank. We
could, instead, require that a symbol with the same rules as the blank be
printed.) We leave it to the reader to see that such a model is equivalent to
the pushdown automaton originally introduced. The top of the pushdown
store is to the right, not the left as in Chapter 5.

A deterministic two-pushdown tape machine is a deterministic Turing
machine with a read-only input and two storage tapes. If a head moves left
on either tape, a "blank" is printed on that tape.

Lemma 6.1. An arbitrary single-tape Turing machine can be simulated
by a deterministic two-pushdown tape machine.

Proof. We leave it to the reader to see that the symbols to the left of the
head of the Tm being simulated can be stored on one pushdown list, while
the symbols on the right of the head can be placed on the other pushdown list.

We can prove a result stronger than Lemma 6.1. It concerns counter
machines. A counter machine is a Tm whose storage tape alphabets contain
only two symbols, Z and B. Furthermore, the symbol Z appears initially on
the cell scanned by the tape head and may never appear on any other cell.
A number i can be stored by moving the tape head i cells to the right of Z.
(We again assume that this type of Tm can print a blank if it chooses.) A
stored number can be incremented or decremented by moving the tape head
right or left.

An example of a counter machine is shown in Fig. 6.8; ¢ and $ are
customarily used for end markers on the input. Here Z is the nonblank
symbol on each tape.

The configuration of the counter machine can be described by the state,
the position of the input head, and the distance of the storage heads from the
symbol Z (shown here as d~ and d2). We call these distances the counts on
the tapes. The counter machine then, can really only store a count on each
tape and tell if that count is zero.

6.6 RESTRICTED TURING MACHINES 99

Lemma6.2. A four-counter machine can simulate an arbitrary Turing
machine.

Proof. From Lemma 6.1, it suffices to show that two counter tapes can
simulate one pushdown tape. Let a pushdown tape have k - 1 nonblank
tape symbols, Z1, Z 2 , . . . , Zk_l. Then we can represent the pushdown
tape Z, iZ,2...Z, muniquely by the "count"

j = im + kim-z + k2im_2 + . . . + km-ziz.

Assume that j is stored on one counter. That is, the head of the tape is j cells
to the right of the nonblank symbol. Assume also that the head of the
second counter is at the nonblank symbol.

Fig. 6.8. Counter machine.

I " Z

=1 Input

T
Finite

control

dl

",,, d2

B B

Suppose that the symbol Zr is printed on the top (right end) of the push-
down tape Z~Z~2...Z~m. The count associated with Z~iZ~2...Z~,,Zr is kj + r.
To get this new count, the counter machine repeatedly moves the head of
the first counter one cell to the left and the head of the second, k cells to the
right. When the head of the first counter reaches the nonblank symbol,
the second counter will hold the count jk. It is a simple matter to add r to
the count.

If, instead, the top symbol, Z~ m, of the pushdown list were erased,j should
be replaced by the integer part ofj/k. The reader should be able to see how
to do this.

To complete the description of the simulation, we must show how the
four-counter machine can tell what symbol is at the top of each pushdown
list. If the count j is stored on one counter, the four-counter machine can
copy j to another counter, computing j modulo k in its finite control. Note
that j modulo k is ira.

100 TURING MACHINES 6.6

Theorem 6.4. A two-counter machine can simulate an arbitrary Turing
machine.

Proof By Lemma 6.2, it is sufficient to show how to simulate four counters
with two. Let four counters have counts i, j, k, and m. One counter can
represent these four by the number n = 2i3J5k7 m. Since 2, 3, 5, and 7 are
primes, i, j, k, and m can be uniquely recovered from n.

To increment i, j, k, or m by one, multiply n by 2, 3, 5, or 7, respectively.
If we have another counter, set to zero, we can move the head of this counter
2, 3, 5, or 7 cells to the right each time we move the head of the first counter
one cell to the left. When the first counter holds zero, the second will hold
2n, 3n, 5n, or 7n, respectively. To decrement i, j, k, or m by one, n is, by a
similar process, divided by 2, 3, 5, or 7, respectively.

We must also show how the two-counter machine can determine the next
move of the four-counter machine. The two-counter machine input head
will always be at the same point on its input tape as the input head of the
four-counter machine would be. The state of the four-counter machine can
be stored in the finite control of the two-counter machine. Thus, to deter-
mine the move of the four-counter machine, the two-counter machine has
only to determine which, if any, of i, j, k, and m are 0. By passing n from
one counter to the other, the finite control of the two-counter machine can
determine if n is divisible by 2, 3, 5, 7, or any product of these.

Theorem 6.5. Every Turing machine can be simulated by a Turing
machine with a read-only input and a storage tape with two storage tape
symbols (blank and another symbol), provided the machine can print
blanks.

Proof. Most of the proof will be left to the reader. The "trick" is to encode
each of the k storage symbols by r binary symbols, where 2 r >= k. The tape
head of the Tm can visit each of the r binary symbols, representing the
original symbol to determine what the original symbol was.

Remarkably, a theorem stronger than Theorem 6.5 can be proven.

Theorem 6.6. Every Turing machine can be simulated by a Turing
machine with a read-only input and a storage tape with two symbols, 0
(blank) and 1. The Turing machine can print 0 or 1 where a 0 was found,
but cannot print 0 where a 1 was.

Proof. We leave this to the reader. The "trick" is to create successive con-
figurations of the original Turing machine on the tape of the new one. Tape
symbols are, of course, encoded in binary. Each configuration is copied over,
making the changes necessary to simulate a move of the old machine.

In addition to the binary encoding of the original symbol, the Tm doing
the simulating needs cells to indicate the position of the head in the con-
figuration being copied, and cells to indicate that the binary representation
of a symbol has already been copied.

REFERENCES 101

P R O B L E M S

6.1 Give Turing machines of any variety accepting the following languages.
a) (0nln2~ln >= 1}.
b) The set of words in (0, 1 }* whose binary value is a perfect square.

c) L = (0*10Jl0~10mlm => 3 and i m + jm = kin}.

It is an unproved conjecture of number theory, known as Fermat 's
conjecture, that for m >_ 3, there are no integral solutions to the equation
i m -b jm = km. Thus L is empty if and only if Fermat 's conjecture is true.
Unfortunately, there is no algorithm to determine if an arbitrary Tm
accepts at least one input. If there were, it could be applied to the Tm
accepting L, and Fermat 's conjecture could be resolved.

d) The set of F O R T R A N arithmetic statements.
e) (a*li is a perfect number}. See Section 1.2 for the definition of perfect

number.

6.2 Give a complete proof of Theorem 6.6.

6.3 Show that a pushdown automaton is equivalent to a Turing machine with
a read-only input on which it can move to the right only or remain stationary.
The Tm is nondeterministic and has a single storage tape. Whenever the Tm
moves to the left, it must print a blank.

6.4 Show that if L is accepted by a one-counter machine with a one-way input
tape, L is a cfl.

6.5 Show that every Tm is equivalent to a single-tape Tm with one accepting
and two nonaccepting states.

6.6 Does there exist a Tm that can diagonalize over all Turing machines ? If
there were an algorithm to determine if an arbitrary Tm with arbitrary input
would halt, could a Tm diagonalize over all Turing machines ?

R E F E R E N C E S

The basic notion of computability by Turing machine is due to A. M. Turing
[1936]. Alternative formulations of the Turing machine can be found in Kleene
[1936], Church [1936], and Post [1936]. For a discussion of Church's hypothesis
see Kleene [1952] or Davis [1958]. The concept of Turing machines is part of t h ~
branch of mathematics called recursive function theory. See Davis [1958] and I
Rogers [1967].

Theorem 6.4 is found in Minsky [1961] and the proof given is taken from
Fischer [1966]. A proof of Theorem 6.6 is found in Wang [1957]. An interesting
theorem found in Shannon [1956] shows that every Turing machine in the formu-
lation of this book is equivalent to one with only two nonaccepting states and one
accepting state. A survey of restricted Turing machines can be found in Fischer
[1965].

CHAPTER 7

TURING MACHINES:
THE HALTING PROBLEM, TYPE 0 LANGUAGES

7.1 INFORMAL DISCUSSION

In this chapter we show that there exists a Turing machine which, when
presented with an encoding of an arbitrary Turing machine T and an encoding
of a sentence x, will simulate the behavior of T when T is presented with x.
We call such a Turing machine a universal Turing machine. One can think
of a universal Turing machine as a general purpose computer which is
powerful enough to simulate any computer, including itself.

Next we show that there is no algorithm (i.e., Turing machine that halts
for all input strings) to determine, for an arbitrary Turing machine T and
arbitrary input x, whether T with input x will ever halt. This result will be
used extensively in Chapter 14 to show that many problems which apply to
classes of languages are recursively unsolvable (i.e., no algorithm exists
which will solve the problem for every member in the class).

We also show that there are recursively enumerable sets that are not
recursive. In other words, there are sets that can be recognized by Turing
machines, but not Turing machines that halt for all input strings.

Finally, we show the equivalence of type 0 languages and sets recognized
by Turing machines.

7.2 A UNIVERSAL TURING MACHINE

We prove that a universal Turing machine exists by actual construction.
First we must decide on an encoding for Turing machines and an encoding
for inputs. Since a Tm T1 may have any number of tape symbols, we assume
that the tape symbols of T1 are given some encoding using only the symbols
0 and 1. The reader should see that, for each T1, there exists T2 with tape
symbols 0 and 1 and one additional tape symbol B (blank), which accepts
exactly those strings in {0, 1}* that are encodings of words accepted by T1.
With this encoding of inputs in mind, it is sufficient to design a universal
Turing machine for Tm's with a tape alphabet {0, 1, B}.

A Turing machine in the above class can be completely specified by a
table, as shown in Fig. 7.1. Since a Turing machine may have an arbitrarily
large number of states, and since we have only a fixed number of tape symbols,
we encode the states 1, 11, 111, etc.

102

7.2 A UNIVERSAL TURING MACHINE 103

State B 1

3, 1, L 3, 1, L

4 0, R 4, 0, R

2~ 0, R

2, 1, R

3, 1, L

Fig. 7.1. Example of a table specify-
ing a Turing machine T with three
tape symbols.

ccc O c O c l l R O cc

l l l L 1 c l l l L 1 c 11 R1 cc

1111 R 0 ¢ l l l l R 0 c l l l L 1 cc

0 c 0 c 0 ccc

Fig. 7.2. Encoding of Turing machine
T of Fig. 7.1.

One way to encode a state table is to mark off a number of blocks equal
to the number of states, and then divide each block into three subblocks.
The ith block will correspond to state i, and the three subblocks will corre-
spond to the input symbols B, 0, and 1, respectively.

The blocks will be separated by two c's and the subblocks by a single c.
Also, the beginning and end of the table will be marked by three c's. If, for
the Turing machine being encoded, 3(i, a) = (j, b, D), then the subblock
corresponding to state i and input symbol a will contain j l's, followed by the
symbol D = L or R, followed by the symbol b = 0 or 1. If 3(i, a) is not
defined, then the corresponding subblock will contain a single 0. Thus the
encoding of the Turing machine of Fig. 7.1 would appear as shown in Fig.
7.2. The interpretation of the string 11R0 in the subblock corresponding to
state 1 and input symbol 1 is that T in state 1 scanning a 1 will change the
1 to a 0, move right, and enter state 2.

Any state with no next state for all three of the tape symbols can be
interpreted as an accepting state. Such a state is 4 in Fig. 7.1. We can cer-
tainly assume (without changing the language accepted by the Tm) that a
Tm, after accepting, makes no more moves. In addition, we can assume
that the next state for any nonaecepting state is specified for at least one
value of the tape symbol. The reader can show this. State 1 will always be
taken as the start state.

Although we have used only five symbols to encode a Turing machine,
our universal Turing machine will use 12 tape symbols. The additional
symbols come from the fact that the universal Turing machine will have a
two-track tape. The lower track will use symbols c, 0, 1, L, R, and B, while
the upper track will use the symbols m and B. We now informally describe
the universal Turing machine.

The input to the universal Turing machine will be as follows. The lower
track will contain an encoding of some Turing machine, followed by a string
of O's and l 's which will be called the d a t a . The data will be separated from
the encoding by three consecutive o's. Initially, the upper track will be all

104 TM'S : THE HALTING PROBLEM, TYPE 0 LANGUAGES 7.2

B's, except for the cell containing the rightmost c at the left end of the block
corresponding to state 1 and the leftmost cell containing data. These two
cells will contain the symbol m. The first m is used to record the current state
of the Turing machine being simulated and the second m is used to record
the location of the tape head of the Turing machine being simulated. This
is illustrated in Fig. 7.3.

m

ccc block for state 1 c c block for state 2 c c . . .

m
ee block for last state eee O110... (data)

Fig. 7.3. Initial configuration of universal Turing machine.

Call the universal Turing machine U and the encoded Turing machine T.
Now U will simulate, in the following manner, the moves that T would make,
given the portion of U's input tape containing the data as input. First, U
moves its input head to the right until it locates the marker in the data region
over the input symbol scanned by T. This symbol, say A, is stored in U's
finite control, and U moves its input head to the left until it reaches the
marker recording the state of T. U erases that marker and moves its head to
the right to the subblock corresponding to the symbol A and places a marker
over the first symbol in that subblock, provided that it is a 1. (If the first
symbol is not a 1, U halts, since there is no next move for T.) In what follows,
we shall refer to this marker as m l.

We assume that the first symbol was a 1, and see that U now moves to
the left until it finds three consecutive o's. U then moves to the right, marking
the rightmost of the three e's. This marker will be referred to as m2. U
continues to move its input head to the right until it finds the marker ml.
U now enters a subroutine which alternately moves m~ one 1 to the right
and m 2 one block to the right. (To distinguish the markers, both of which are
m, U will record in its finite control which marker it has seen last.) When U
moves m~ to a symbol which is not 1, m 2 is located over the c just before the
block corresponding to the next state of T.

At this point, U erases ml and records in its finite control the symbol
that T will print and the direction in which T will move its input head. U
then moves its head to the right, into the data region, and finds the marker
which indicates the location of T's tape head. The symbol under the marker
is changed appropriately and the marker is moved to the left or right one
cell depending on whether T would move its head to the left or right.

U has simulated one move of T. U stores the new symbol scanned by
T in its finite control, starts moving its head to the left until it reaches
the marker recording the state of T, and repeats the process we have just
described.

7.2 A UNIVERSAL TURING MACHINE 105

o

~ . o
~.~

1

[

1

1

I

)

,,...,4 ~ ' 0 ° ~

o ~ ~ -

° o ~ ° ~

(

I I I l

I

I

I

I I I I I l

l

I

I

I

_ o ~ ~ °~
~ o " ~ ~

<~~.~
o~~ ~.~ ~ ~

°,..~ ~ ~ o
~ ' ~ ~

m ~

~ ' ~ o

e~s

0 , ~ ~

0

i ~ . ~ = ~

o = L ~ ' -

mN~ ~.ag

N ~ .,,...9 < N

106 T M ' S : THE HALTING PROBLEM, TYPE 0 LANGUAGES 7.2

c~

O

-v-W

O ~ ~ O ,,,C) ,-¢:1

~o_ ~ ~ ~o
t " - - - ' A - ~ r ' ' ~ ~ ' - - - - ' ~ " - " ~ - - " ~ r ~ - - - - - ' ~

m ~

l

i
i

I

l l

I

f

I I J

J

I

l J

(

]

i

l

J

I

I

7.2 A UNIVERSAL TURING MACHINE 107

° I.=.i
0

~_.~____._~___a~ ~ r._...,,s,..__~ • -~-

1
I
!

I I I I

108 TM'S : THE HALTING PROBLEM, TYPE 0 LANGUAGES 7.3

If T halts with this particular data, U will eventually halt, and the final
data portion of the tape will read exactly as T's tape. When T halts, U can
tell if T is in an accepting state. If T does not halt, U will not halt or accept.
Thus our universal Turing machine simulates T.

The detailed construction of the universal Turing machine which we
have informally described is given in Fig. 7.4. To help understand the
construction, a brief statement of the purposes of each group of states is
given in the figure.

We should point out that our universal Turing machine has 12 tape
symbols, but can only simulate a Turing machine with two tape symbols.
However, we can find an equivalent universal Turing machine which uses
only two tape symbols. To do this, we encode each tape symbol by a block of
four symbols. The data portion of the initial tape will use four cells for every
nonblank cell in T's original input tape.

7.3 THE UNSOLVABILITY OF THE HALTING PROBLEM

The halting problem for Turing machines is stated as follows: Given a Turing
machine in an arbitrary configuration with a finite length string of nonblank
tape symbols, will the Turing machine eventually halt ? This problem is said
to be recursively unsolvable in that there cannot exist an algorithm which, for
each Tm and each configuration, will determine whether the Tm in that
configuration will eventually halt. This does not mean that we cannot deter-
mine whether a specific Tm in a specific configuration will halt.

In describing the universal Turing machine, we had an encoding for each
Tm with tape symbols 0, 1, and B. The encoding was a string in {0, 1, c, L, R}*.
We can number all such strings by listing them in order of length. Among
strings of equal length, they are ordered according to the value of the string
in base 5. (The five symbols are assumed to play the roles of integers 0, 1, 2,
3, 4 in some order.) Likewise, the strings in {0, 1}* can be ordered. The first
few such strings are e, 0, 1, 00, 01, 10, 11,000, 001, It thus makes sense to
talk about the ith string in {0, 1}*.

If we assume that each string in {0, 1, c, L, R}* is a Tm (some strings will
be ill formed, and are regarded as representing the Tm with no moves), then
it also makes sense to talk about the j th Turing machine, i.e., the one repre-
sented by the j th string in {0, 1, c, L, .R}*.

Consider the language

L~ = {x~]x~ is not accepted by T~}.

Clearly, L~ could not be accepted by a Tm. If it were, let Tj be a Tm accepting
L~. Then xj is in L~ if and only if xj is not accepted by Tj. But since Tj
accepts L~, xj is in L~ if and only if it is accepted by Tj, a contradiction. Thus,
L~ is not an r.e. set.

7.4 THE CLASS OF RECURSlVE SETS 109

Suppose that we had an algorithm (i.e., a Turing machine which always
halts) for determining whether or not a Turing machine in a given configura-
tion would ever halt. Then we could construct a Turing machine T that
accepts L~. T would operate as follows.

1. Given a sentence x, the Turing machine T would enumerate sentences,
x~, x2 , . . . , until it enumerated the sentence x~ = x. In this way T
determines that x is the ith sentence in the enumeration.

2. Next, T generates an encoding of the Turing machine T~.
3. Control now transfers to the alleged Turing machine which can deter-

mine if T~ with input x~ halts.
4. If it is determined that T~ does not halt with input x~, then T halts and

accepts x~. (Recall that if T~ accepts, it must halt.)
5. If it is determined that T~ eventually halts with input x~, then control

transfers to a universal Turing machine that simulates T~ with input x~.
6. Since T~ will eventually halt, the universal Turing machine will eventually

halt and determine whether or not T~ accepts x~. In either case T halts,
accepting x~ in the case that T~ rejects x~, and rejecting x~ in the case that
T~ accepts x~.

Thus our assumption that there exists a Turing machine that can deter-
mine if an arbitrary Turing machine will halt leads us to the contradiction
that L1 is accepted by some Turing machine. This fact, in turn, leads us to
the following theorem.

Theorem 7.1. There is no algorithm (Turing machine guaranteed to halt)
to determine if an arbitrary Turing machine in an arbitrary configuration
will eventually halt.

Proof. The theorem follows by a suitable formalization of the above

discussion.
It can be shown for many other problems that no algorithm exists for

their solution. We shall see some of these which involve language theory in

Chapter 14.

7.4 THE CLASS OF RECURSIVrE SETS

We can now show that the class of recursive sets is a proper subclass of the
recursively enumerable sets. That is, there exists a set whose sentences can
be recognized by a Turing machine which does not halt for some sentences
not in the set, but cannot be recognized by any Tm which halts on all sen-
tences. An example of such a set is the complement of the set L1 used in the
proof of the unsolvability of the halting problem. Before proving that L1 is
such a set we give the following two lemmas.

110 TM'S : THE HALTING PROBLEM, TYPE 0 LANGUAGES 7.4

Lemma 7.1. If a set is recursive, its complement is recursive.

Proof. If L is a recursive set, L _~ ~*, then there is a Tm T, guaranteed to
halt, accepting L. We can assume that, after accepting, T makes no more
moves. Construct T1 from T by adding a state q, which is the only accepting
state of T1. The rules of T1 include all the rules of T, so T~ simulates T. In
addition, for each pair composed of a nonaccepting state and a tape symbol
of T for which the move of T is not specified, T~ transfers to state q and then
halts.

Thus T1 simulates T until T halts. If T halts in one of its accepting states,
T~ halts without accepting. If T halts in a nonaccepting state, it surely has
not accepted its input. Thus T~ makes one more move to state q and accepts.
T~ clearly accepts E* - L.

Lemma 7.2. Let xl, xz be an effective enumeration of all sentences
on some finite alphabet E with T~, T2,. . . representing an effective
enumeration of all Turing machines with tape symbols chosen from some
finite alphabet including Z. Let L2 be the set {x~lx~ is accepted by T~}.
Lz is a recursively enumerable set whose complement is not recursively
enumerable.

Proof. The sentences of L2 can be accepted by the Turing machine T which
operates as follows. Note that T does not necessarily halt on sentences not
in L2.

1. Given a sentence x, T enumerates sentences x~, x2 , . . , until it finds the
sentence x~ = x, thereby determining that x is the ith sentence in the
enumeration.

2. T generates ~ and transfers control to a universal Turing machine that
simulates T~ with input x~.

3. If T~ with input x~ halts and accepts, tfien T halts and accepts; if T~ halts
and rejects x~, then T halts and rejects x~. Finally, if 7] does not halt,
then T does not halt.

Thus Lz is recursively enumerable since Lz is the set accepted by T.
Now L2 cannot be recursively enumerable, since if Tj is the Turing machine
accepting/-,z, then xj is in E2 if and only if xj is not accepted by Tj. This

m

contradicts the claim that L2 is the language accepted by Tj.

Theorem 7.2. There exists a recursively enumerable set which is not
recursive.

Proof By Lemma 7.2, L2 is a recursively enumerable set whose complement
is not recursively enumerable. Now if L2 were recursive, then by Lemma 7.1,
Lz would be recursive, and hence recursively enumerable, thus contradicting
the second half of Lemma 7.2.

7.5 TURING MACHINES A N D TYPE 0 GRAMMARS 111

7.5 TURING MACHINES AND TYPE 0 G R A M M A R S

In this section we shall prove that a language is recognized by a Turing
machine if and only if it is generated by a type 0 grammar. To prove the
"if" part, we construct a nondeterministic Turing machine that will non-
deterministically choose a derivation in the grammar, and see whether or not
the result of that derivation is the input. If so, the Turing machine accepts.

To prove the "only if" part, we construct a grammar which will non-
deterministically generate the representation of a terminal string, and then
simulate the Tm on that string. If the string is accepted by the Tin, the string
is converted to the terminal symbols it represents.

Theorem 7.3. I fL is generated by a type 0 grammar, then L is recognized
by a Turing machine.

Proof Let G = (VN, Vr, P, S) be a type 0 grammar, with L = L(G). We
informally describe a Turing machine T accepting L. T will be nondeter-
ministic. Let

T = (K, Vr, P, 8, qo, F), where P = VN U VT W {B, #, X}.

The last three symbols are assumed not to be in VN or Vr. We do not enumer-
ate all the states in K, but designate some of them as it becomes necessary.
We allow T, informally, to print the blank B, if necessary.

To begin, T has an input w in Vr* on its tape. T inserts # before w,
shifting the symbols of w to the right one cell and following it by #S#. The
contents of the tape are now #w#S#.

Now T will nondeterministically simulate a derivation in G starting with
S. Each sentential form in the derivation will appear in turn between the
last two #'s. If some choice of moves leads to a string of terminals there,
that string is compared with w. If they are the same, T accepts.

Formally, let T have #w//A1A2...Ak# on its tape. T moves its head
through A1A2...Ak, nondeterministically choosing a position i and a con-
stant r between 1 and the maximum length of the left side of any production
in P. Then T examines the substring A~A~+i...A~+r-~. If A~A~+i...A~+r-~
is the left-hand side of some production in P, it may be replaced by the right-
hand side. T may have to shift A~+rA~+~+~...Ak# either to the left or right
to make room or fill up space, should the right side of the production used
have a length other than r.t

From this simple simulation of derivations in G, it should be clear that
T will print on its tape a string of the form #w//~//, ~ in V* exactly when

S ~ ~. Also, if ~ = w, T accepts.
G

t Symbol X is used in the shift right.

112 TM'S : THE HALTING PROBLEM, TYPE 0 LANGUAGES 7.5

Theorem 7.4. If L is recognized by a Turing machine, then L is generated
by a type 0 grammar.

Proof. Let L be accepted by T -- (K, E, 1~, 3, q0, F). We construct a gram-
mar G, which nondeterministically generates two copies of a representation
of some word in E* and then simulates the action of T on one copy. If T
accepts the word, then G converts the second copy to a terminal string. If T
does not accept, the derivation never results in a terminal string. Again we
assume without loss of generality that for each q in F and a in Z, ~(q, a) is
undefined.

Formally, let

6 = (VN, Z , e , AO, where VN = ([Z w {E}] × F) w K w {A1, A2, A3}

and the productions in P are:

1. A1 ~ qoA2.
2. A2 ~ [a, a]A2 for each a in Z.
3. A2 --~ A3.
4. A3 --+ [~, B]As.
5. A3 --~ ~.
6. q[a, C]--~ [a, D]p for each a in E w {~} and each q in K and C in F,

such that 3(q, C) = (p, D, R).
7. [b, E]q[a, C] - + p[b, E][a, D] for each C, D, and E in F, a and b in

Z w {~}, and q in K, such that 3(q, C) = (p, D, L).
8. [a, C]q --~ qaq, q[a, C] --~ qaq, and q ~ ~ for each a in Z w {~}, C in F,

and q in F.

Using Rules 1 and 2,

A1 Z~. qo[al, al][a2, a2]. . . [a,, an]A2,

where ai is in Z for each i. Suppose that T accepts the string a~a2...am.
Then for some m, T uses no more than m cells to the right of its input.
Using Rule 3, then Rule 4 m times, and finally Rule 5, we have

A1 *==~ qo[al, al][a2, a2]. . . [a,, a,][~, B] m.

From this point on, only Rules 6 and 7 can be used until an accepting
state is generated. Note that the first components of tape symbols in
(Z w {E}) x F never change. We can show by induction on the number of
moves made by T that if

(qo, a l a 2 . . , a,, 1) [~ (q, XzX2 .. X~, r),

then

qo[al, al][a2, a2]. . . [a,~, a,~][e, B]m ~ [al, X1][a2, X2]. . .
G

[a~_ ~, X~_ ~]q[a, X~]... [a~ + m, X~ + m],

PROBLEMS 113

where al, a2, • • . , a n are in E,

a n + l = a n + 2 = " ' ' = an+m = e,

and X1, X 2 , . . . , Xn+m are in P with

X~+1 = X~+2 X~+m = B .

The inductive hypothesis is trivially true for zero moves. Suppose that it is
true for k - 1 moves. Let

(qo, a~a2. . . an, 1> 1~ (qz, X z X 2 . . . X~, j~) ~T (q2, Iq Y2. . . Y~, j2)

by a total of k moves. By the inductive hypothesis,

qo[al, a l l . . . [a~, a~][,, B]m _ ~ [al, Xi] . . .ql[a h X hI [a~ + m, X'n + m] a ~ " " " "

L e t D = L i f j 2 = j x - 1 a n d D = R i f j 2 = j l + 1. It must be the case that

8(q~, Xj~) = (q2, YJl, D).
By (6) or (7),

q~[ajl, Xj~] ~ [aj~, Yh]q2
o r

[ah- 1, X h - 1]ql[ah, Xh] ~ q2[aj~_ 1, X h - 1][ah, yh],

depending on whether D is R or L. Now X, = Y, for all i # j~. Thus,

q0[a~, a l] . . . [a~, a~][E, B]m *~ [al, Yz]. . .q2[aj 2, YJ2]. . . [an Yn m], G + m , +

establishing the inductive hypothesis.
By (8), if q is in F, it is easy to show that

[al, X:t]. . .q[aj, X j] . . .Jan+m, Xn+m] =~" a la2 . . .an.

Thus G can generate a l a 2 . . . a n , provided that a l a 2 . . . a ~ is accepted by T.
That is, L(G) includes all words accepted by T.

To complete the proof of the theorem it is necessary to show that all
words in L(G) are accepted by T. We shall leave it to the reader to supply

the induction argument that A1 =-~ w only if w is accepted by T.
G

PROBLEMS

7.1 Describe the construction of a universal Turing machine U, which, when
fed a binary encoding of T, an arbitrary Turing machine with input set
{0, 1}, will simulate the behavior of T when T is fed an encoding of itself.
What happens if U is fed an encoding of itself?

'7.2 Give a formal proof of the unsolvability of the halting problem for Turing
machines.

114 TM'S : THE HALTING PROBLEM, TYPE 0 LANGUAGES

7.3 Give a set which is not recursively enumerable and whose complement is not
recursively enumerable.

7.4 Construct a universal Turing machine with two nonaccepting states.

7.5 Prove that there is no algorithm to determine if an arbitrary Turing machine,
starting with a blank tape, will ever halt.

7.6 Let T be the Turing machine:

((qo, ql, q2, q3}, {¢, [,]}, {¢, [,], X, B}, 3, qo, {q3}),

where 8 is given by

t~(qo, ¢) = (qo, ¢, R)
8(q0, X) = (qo, X, R)

3(qo, [) = (ql, X, R)
8(ql, D = (ql, [, R)

~(q~, x) = (q~, x, R)

What words of the form ¢w, where w is in {[,]}* are accepted ? Use the
algorithm of Theorem 7.4 to find a grammar generating the language recog-
nized by T. Can you find a simpler grammar for this language ?

7.7 Let G = ((A, B}, (a, b}, P, A), where P consists of:

8(ql,]) = (q2, X, L)
~(q2, a) = (q2, a, L) for all a ~: ¢
8(q2, ¢) = (qo, ¢, R)

~(q0, B) = (qs, X, R)

A --+ Ba B- -+ B B

A a -+ Bb B - + b

B - + bA A - + a

Ab --+ e

What is L (G) ? Find a Turing machine recognizing L(G). Is L(G) context
free ? Regular ?

R E F E R E N C E S

All of the concepts of this chapter, except for the equivalence of Turing machine
languages and type 0 languages, are from Turing's original paper (Turing [1936]).
The latter results are from Chomsky [1959].

CHAPTER 8

LINEAR BOUNDED AUTOMATA AND
CONTEXT-SENSITIVE LANGUAGES

8.1 INTRODUCTION

A linear bounded automaton (lba) is a nondeterministic single-tape Turing
machine which never leaves those cells on which the input was placed.
Formally, a linear bounded automaton is denoted by M = (K, E, F, 3, q0, F).
The symbols have essentially the same meaning as for the Turing machine
of Chapter 6. The set of states is K. The set of final states is F ~ K. The
set of tape symbols is F. The set of input symbols is Z ~ F. The start state
is q0, in K. 8 is a mapping from K × P to the subsets of K x I ~ x {L, R}.

Z contains two special symbols, usually denoted ¢ and $, which are the
left and right end markers, respectively. These symbols are initially at the
ends of the input, and their function is to prevent the tape head from leaving
the region of tape upon which the input appears.

A configuration of M and the relation ~ , which relates two configura-

tions if the second can be derived from the first by an application of a rule of
3, are defined essentially as they were defined for the Tm in Chapter 6. A
configuration of M is denoted (q, A1A2...An, i), where q is in K, A~, A2 , . . . ,
A, in P, and i is an integer between 1 and n. Suppose that 3(q, A~) contains
(p, A, L) and i > 1. Then we say that

(q, AiA2. . .A, , i) ~ (p, A1A2.. .A~_iAA,+i. . .A,, i - 1).

If 8(q, A0 contains (p, A, R) and i < n, we say that

(q, A1Az. . .A,, i) ~ (p, A1Az.. .A,_iAA,+ 1. . .A, , i + 1).

That is, M prints A over A,, changes its state to p, and moves its head to the
left or right, but not out of the region on which symbols appeared originally.

As usual, we define the relation ~ by (q, a, i) ~ (q, a, i) and if

then

(ql, az, iz) ~ (q2, a2, i2) and (q2, az, i2) ~7 (qa, aa, ia),

(ql, al, il) ~ (q3, aa, io).

115

116 LINEAR BOUNDED AUTOMATA AND CSL'S 8.2

The language accepted by M is

{wlw is in (2; - {¢, $})* and (qo, ¢w$, 1)let (q, a, i) for some q in F,

in F*, and integer i}.

We say that M is deterministic if 3(q, A) contains no more than one
element for any q in K, and A in P. It is not known whether the class of sets
accepted by nondeterministic lba's properly contains the class of sets accepted
by deterministic lba's. It is true, of course, that any set accepted by a non-
deterministic lba is accepted by a deterministic Turing machine. However,
the amount of tape required by that Tm may be an exponential function of
the length of the input rather than a linear function.

8.2 RELATION OF LINEAR BOUNDED A U T O M A T A
TO CONTEXT-SENSITIVE LANGUAGES

Our interest in nondeterministic lba's stems from the fact that the class of
sets accepted is precisely the class of context-sensitive languages. The proof
is similar to the proof in Chapter 7 that a language is accepted by a Tm if and
only if it is type 0.

Theorem 8.1. If L is a context-sensitive language, then L is accepted by
a linear bounded automaton.

Proof Let G = (VN, V~, P, S) be a context-sensitive grammar. We con-
struct an lba M such that the language accepted by M is L(G). We do not
go into a detailed description of M, since M is fairly complicated, but rather
give a macroscopic view of how M works. The input tape will contain two
tracks. Track 1 will contain the input string x with end markers. Track 2
will be used for computation. In the first step, M will place the symbol S
in the leftmost cell of track 2. Next, M will enter a generation subroutine
which performs the following steps.

1. The subroutine selects a consecutive substring of symbols ~ from track
2, such that a ~ fl is a production in P.

2. The substring a is replaced by ,8, shifting right the symbols which are to
the right of a if necessary. If this operation would cause a symbol to be
pushed as far as the right end marker, the lba halts.

3. T h e subroutine nondeterministically chooses either to go back to step
1 or to exit.

Upon M's exit from the subroutine, track 1 will still contain the string x,

and track 2 will contain some string 7' such that S ~ - ~. The lba compares
G

the symbols on track 1 with the corresponding symbols on track 2. If the

8.3 CSL'S AS A SUBCLASS OF THE RECURSlVE SETS 117

comparison fails, the strings of symbols on tracks 1 and 2 are not the same,
and the lba halts without accepting. If the strings are the same, the lba
halts and accepts.

If x is in L(G), then there exists some sequence of moves in which the lba
constructs x on track 2 and accepts the input. Likewise, for the lba to
accept x, there must exist a sequence of moves such that x can be constructed
on track 2. Thus there must be a derivation of x from S in G.

Note the similarity of this argument to the argument used in Theorem
7.3. In the case of Theorem 7.3, we were simulating a derivation in an
arbitrary grammar. In that case, intermediate sentential forms could be
arbitrarily long compared with the length of the input. Hence, the full power
of a Turing machine was needed. In the case of a context-sensitive grammar,
intermediate sentential forms are never longer than the input.

Theorem 8.2. If L is accepted by a linear bounded automaton, then L is
context-sensitive.

Proof The construction of a csg to simulate an lba is quite similar to the
construction of Theorem 7.4, in which a type 0 grammar was constructed to
simulate a Turing machine. The reader can fill in the detail that is necessary
because the variables of the csg must indicate not only the present and
original contents of some tape cell of the lba, but also whether that cell is
adjacent to an end marker on the right or left. Also, the state of the lba must
be combined with the symbol scanned by the tape head. (The csg can-
not have separate symbols for end markers and the state of the lba because
these symbols would have to be replaced by e when a string is converted
to terminals.)

8.3 THE CONTEXT-SENSITIVE LANGUAGES
ARE A SUBCLASS OF THE RECURSIVE SETS

In Chapter 2 we showed that every context-sensitive language is recursive.
We shall now show that the converse is not true.

Theorem 8.3. There exist recursive sets that are not context sensitive.

Proof We can number all strings in {0, 1}* as in Section 7.3. Let xi be the
ith word. Likewise, we can number all type 0 grammars whose terminal
symbols are 0 and 1.t Since the names of variables are irrelevant, and every
grammar has a finite number of them, we can assume that there is but a
countable number of variables.

'1" In fact, if the set of available terminals is assumed to be countable, we can
number all grammars, whatever the terminal set.

118 LINEAR BOUNDED AUTOMATA AND CSL'S

We represent the variables in a binary encoding by 01, 011, 0111, 01111,
etc. We assume that 01 is always the start symbol. In addition, in this
encoding, we represent the terminal 0 by 00 and the terminal 1 by 001. The
symbol "--~" is represented by 0011 and a "comma" by 00111. Any grammar
with terminals 0 and 1 can be represented by a string of productions, using
an arrow (0011) to separate left and right sides and a comma (00111) to
separate productions. The strings representing symbols involved in the
productions are 00, 001, and 01 ~ for i = 1, 2, The set of variables used
is defined implicitly by the productions.

Note that not all strings of O's and l's represent grammars, certainly not
context-sensitive grammars. However, given a string, one can easily tell if
it represents a csg. We can find the ith grammar by generating binary strings
in the order we have described, until the ith string which is a csg is generated.
Since there is an infinity of csg's, we can number the csg's G1, G2 , . . . in a
meaningful manner.

The proof of the theorem is now trivial. Define L to be {x~lx~ is not in
L(G~)};L is recursive. Given a string x~, one can easily determine i, and can
then determine G¢. By Theorem 2.2, there is an algorithm that determines if
x~ is in L(G~), since G~ is a csg. Thus, there is an algorithm to determine, for
any x, whether x is in L.

Now we show that L is not generated by any csg. Suppose that L were
generated by the csg Gj. First, assume that x~ is in L. Since L(Gj) = L,
xj is in L(Gj). But then by definition of L, xj is not in L, a contradiction.
Thus, assume that xj is not in L. Since L(Gj) = L, xj is not in L(G~). But
then, by definition of L, xj is in L, again a contradiction. Thus we conclude
that L is not generated by Gj. Since the above argument is valid for every
csg Gj in the enumeration, and since the enumeration contains every csg, we
conclude that L is not a csl. Therefore L is a recursive set that is not context
sensitive.

PROBLEMS

8.1 Let M be an lba. Show that there exists an lba M1, accepting the same lan-
guage as M, which always halts, whether its input is accepted or not.

8.2 Let C be a class of devices of some sort. Suppose that:
1. there is an enumeration, M1, M2, . . . of all the devices in C, and
2. there is an algorithm that, given a device M in C and an input x, will

determine if M accepts x.

Use the technique of Theorem 8.3 to show that not every recursive set is
accepted by some device in C.

8.3 Show that every context-free language is accepted by a deterministic lba.

8.4 Specify an lba which accepts L = {a'li is not a prime}. Hint. Make your lba
nondeterministic. How easy is it to write down a csg generating L 9.

REFERENCES 119

R E F E R E N C E S

Deterministic linear bounded automata were defined in Myhill [1960]. Land-
weber [1963] showed that the family of context-sensitive languages includes all
languages accepted by deterministic lba and that the family of csl's is closed
under intersection. Kuroda [1964] generalized the lba to a nondeterministic
model and showed the equivalence to context-sensitive grammars.

CHAPTER 9

OPERATIONS ON LANGUAGES

9.1 INTRODUCTION

In this chapter we apply operations such as union, concatenation, reversal,
closure, etc., to languages of various types. We shall be interested in deter-
mining which operations preserve which classes of languages (i.e., map
languages in a class to languages in the same class). There are a number
of reasons for interest in this matter. First, knowing whether or not an
operation preserves a given class of languages helps to characterize that class
of languages. Second, it is often easier to determine that a complicated
language is of a given class by showing that it is the result of various opera-
tions on other languages in the class, than by directly constructing a grammar
for the language. Third, the knowledge obtained from a study of operations
on languages can be used in proofs of theorems, as in Chapter 7, where we
proved that the class of recursively enumerable sets properly contains the
recursive sets by making use of the fact that the recursive sets are closed
under complementation.

9.2 CLOSURE UNDER ELEMENTARY OPERATIONS

We begin by considering the operations of union, concatenation, Kleene
closure, and reversal. We use the following "normal form" lemma on
context-sensitive and type 0 languages.

Lemma 9.1. Every context-sensitive language is generated by a context-
sensitive grammar in which all productions are either of the form ~ --~/3,
where ~ and fl are strings of variables only, or of the form A ~ b, where
A is a variable and b is a terminal. Every type 0 language is generated
by a type 0 grammar whose productions are of the above form.

Proof. Let G = (Vz~, V~, P, S) be a csg. For each a in Vr, let X~ be a new
symbol. Consider the grammar

6~ = (v;,, v~,P~, s) ,
where

V~ = VN w {X~]a is in Vr}.

120

9.2 CLOSURE UNDER ELEMENTARY OPERATIONS 121

P1 includes all productions of the form Xa -+ a. Also, if a ~ / 3 is in P, then
at --+ ~z is in P1, where al and/3~ are a and/3, respectively, with each a in Vr
replaced by Xa. The reader can easily show that L(G) = L(Gi). The proof
is similar if G is a type 0 grammar.

Theorem 9.1. The classes of regular, context-free, context-sensitive, and
recursively enumerable sets are closed under the operations of union,
concatenation, closure, and reversal.

Proof. The proof for the class of regular sets was given in Chapter 3. Con-
sider two grammars,

G~ = (V~ 1~, V~i~,PI, St) and G2 = (V~ 2~, V(r2~,P2, $2),

of the same type, either context free, context sensitive, or type 0. Without
loss of generality we can assume that V~ z~ n V} 2~ = 9. Furthermore, by
Lemma 9.1 and Theorem 4.5, we can assume that the productions of G~
and G2 are of the form a ~ ~ and A ~ a where a and B are strings of vari-
ables, A is a single variable, and a is a single terminal symbol. Furthermore,
if G~ and G2 are context free, then ~ = E implies that c~ is S~ or $2 and that
c~ never appears on the right-hand side of any production.

Let Ga be the grammar

(v ~ w v~ ~ u {s~}, v~ ~ w v~ ~, P~, &),

where Sa is a new symbol not in V~r ~) u V~r 2>, and Pa contains Sa--~ S~,
Sa ~ $2, and all productions in P~ and P2 except $1 --> ~ and $2 -+ e, if
Gz and G2 are context sensitive. In the case where G~ and G2 are context
sensitive, and S~ --> e or $2 --> e is in Pz or P2, add Sa --~ e to Pa. Now Ga
is the same type of grammar as Gz and G2 and L(Ga) = L(G~) u L(G2).

Let G~ be the grammar

(v~ ~> v v~ ~~ ~ {s~}, v~ ~> v v~ ~~, P~, s~),

where S~ is a new symbol not in V~ ~ w V~N 2~, and P~ contains S~ ~ SiS~
and all productions in P~ and P~ except Sz -+ e and S~ --> e if G~ and G~ are
context sensitive. In the case where G~ and G~ are context sensitive, if
S~ --> e is in P~, add S~ ---> S~ to P~. If S~ --> e is in P~, add S~ --~ $1 to P~.
If $1 --> e and S~. --> e are in P~ and P~., respectively, add S~ ---> e to P~. Now
G~ is the same type of grammar as G~ and G~ and L(G~) = L(G~)L(G~).
Note that since V~ 1> c~ V<fl > = q~ and all productions of P~ and P~ have non-
terminals, exclusively, on the left, it isn't possible that a string formed by the
right end of a sentential form of G~ followed by the left end of a sentential
form of G~ can be the left side of any production in P~. The proof that
L(G~) = L(G~)L(G~) is thus straightforward.

122 OPERATIONS ON LANGUAGES 9.2

Let Go be the grammar

(VN, V~, 1~, Po, So), where VN = V~P U {So, S;}

and Po = P1 w {Ss ~ S~ So, So ~ e} if Go is context free, otherwise

Po = P~ w {So --+ ,, So -+ St, So --+ S~S'5} w

{aS'5 --+ aS1, aS'5 -+ aSzS'5 for each a in V<rl)}.

However, in the case that G1 is context sensitive the production $1 --~ ~, if
present, is deleted. Go is the same type of grammar as G~ and L(Go) =

(L(G~))*.

Let

where P6 contains c~ R --~ fir whenever P1 contains a ~ ft. G6 is the same type
of grammar as G1 and L(G6) = (L(G1)) n.

We now consider the operations of intersection and complement.

Theorem 9.2. The class of context-free languages is not closed under

L1 = {a"b"c~ln > 1 a n d / > 0}
and

L2 = {db"e"[n > 1 a n d j > 0}

are context free, since they are generated by the grammars

G1 = ({S, T}, {a, b, e}, {S --> So, S ---> T, T ---> aTb, T --~ ab}, S)

and

G2 = ({S, T}, {a, b, c}, {S ---> aS, S --> T, T --> bTc, T --~ bc}, S),

respectively. Now L1 n L2 = {a"b~c"ln > 1}, which is not context free by

Theorem 4.7.

Theorem 9.3. The class of context-free languages is not closed under

complementation.

Proof. Since the class of context-free languages is closed under union but
not under intersection, it cannot be closed under complementation since

m

L1 n L 2 - - L 1 u L2.
Although the class of cfl's is not closed under intersection, it is closed

under intersection with a regular set.

Theorem 9.4. The class of cfl's is closed under intersection with a

regular set.

Proof. Let L be a cfl and R a regular set. Let

P1 = (Kp, Z, F, 3~, Po, Zo, Fp)

G~ = (VIv ~, V~ *~, e~, S,),

intersection.

Proof. The languages

9.2 CLOSURE UNDER ELEMENTARY OPERATIONS 123

be a nondeterministic pda accepting L and

A = (KA, Z, 3A, qo, FA)

a deterministic finite au tomaton accepting R. The nondeterministic pda

e~ = (K~ × K~, Z, r, 8, [po, q0], z0, F~ × FA,

where ~ is defined below, accepts L n R. For all p in Kp, q in KA, a in
Z W {E}, and Z in F, 8([p,q], a , Z) contains ([p', 8a(q, a)], 7') whenever
3p(p, a, Z) contains (p', 7'). (Recall that 8A(q, E) is q for all q in KA.) Infor-
mally, P2 keeps track of the states of P1 and A in its finite control.

Assume that x is in L n R. Then x can be written a l a 2 . . , ar, where a~ is
in Z w {~}, 1 __< i =< n, such that there exist states qo, q ~ , . . . , q, in Ka, states
Po, P l , . . . , P , in Kp, and strings 7'0, 7 '1 , . . . , 7', in F* for which

and
3A(qi, ai + 1) = q~ + 1

,
a, + 1" (P,, 7'0 71 (P, + 1, 7', + 1), f o r 0 < i < n,

~'o = Zo, q~ is in FA, and p , is in Fp. Thus

a, + 1" ([P4, q,], 7',) ~ ([P~ + 1, q, + 1], 7', + 1)
and

x" ([Po, qo], Zo) 1~ ([p,, q,], 7',).

Now, [Pn, qn] is in Fp × FA, SO X is in T(P2).
Now assume that x is in T(P2). Then there exist configurations

([P~, q~], 7'~), such that

a4 + 1" ([P~, qd, 7'4) 172 ([P, + 1, q, + 1], 7'4 + 1), O _ < i < n .
n

Also, 7'0 = Zo and [Pn, q,] is in Fp x Fa. Thus

8A(q4 , a~ + 1) = q4 + 1, 0 < i < n,

implying that 3A(qO , X) - - q , , for some q, in FA. Therefore x is in R.
Similarly

a4 + 1" (P,, 7'~) [~ (P~ + 1, 7'4 + 1), 0 =< i < n,

implying that x" (Po, Zo) ~ (Pn, 7n). Since pn is in Fp, x is in L. Thus

T(P2) = L n R1

We have already seen in Chapter 3 that the class of regular sets is closed
under both intersection and complement. In Chapter 7, it was shown that
the class of r.e. sets is not closed under complement. Thus we have"

Theorem 9.5. The class of type 0 languages is not closed under comple-
ment.

124 OPERATIONS ON LANGUAGES 9.3

At present it is not known whether the class of context-sensitive languages
is closed under complement. However, both the class of type 0 languages
and the class of context-sensitive languages are closed under intersection.
The proofs for both classes are similar, and although conceptually simple,
are tedious in detail. Thus only an outline of the proofs will be given.

Theorem 9.6. The class of type 0 languages and the class of context-
sensitive languages are closed under intersection.

Proof. Let L1 and L2 be type 0 languages (context-sensitive languages).
Consider two single-tape Turing machines (nondeterministic lba), M1 and
M2, accepting L~ and L2, respectively. It is easy to construct a Turing
machine (lba) M having one scratch tape with three tracks. The first track
holds the input. M simulates M1 using track 2. If M1 ever reaches an
accepting configuration, then M moves its tape head to the left end and
simulates M2 on track 3. If M2 reaches an accepting configuration, then M
accepts.

9.3 CLOSURE UNDER M A P P I N G S

Now we consider the results of various types of mappings on languages. The
first type we consider is substitution. A substitution f is a mapping of a
finite set Z onto subsets of A* for some finite set A. Thus f associates some
language with each symbol of E. The mapping f can be extended to strings
in Z* as follows:

1. f(a) = E
2. f (xa) = f(x)f(a).

We can further extend f to languages by defining f (L) to be the set

Ux tn L f (X).

Example 9.1. f(0) = {a}, f(1) = {wwRlw in {b, c}*}. The subst i tu t ionf
maps the set {0 ~1 ~ In >- 1} into the set

{a~wlwfw2w~...w,~w~ I w~ in {b, c}* for 1 _< i _< n}.

A class of languages is said to be closed under substitution if for any
language L c_ 21" in the class and for any substitution f such that f(a) is in
the class for all a in 2;, the language f (L) is in the class.

We shall show that the classes of regular sets, context-free languages,
and type 0 languages are closed under substitution. Thus in Example 9.1,
since f(O) and f(1) are both cfl's and since k = {0 ~1 =] n >_ 1} is a cfl, the set

f (L) = {anwlwfw2wg... w,~w~ [wi in {b, c}*, 1 _< i _< n}

is also a cfl.

9.3 CLOSURE UNDER MAPPINGS 125

Theorem 9.7. The classes of regular sets, context-free languages, and type
0 languages are closed under substitution.

Proof Consider a grammar G = (VN, {az, a2,. . ., a,}, P, S). Let G~ =
(VN,, VT,, P~, S~) be a grammar generating the set f(a~) for each i, 1 < i < n.
We assume without loss of generality that all nonterminal vocabularies are
pairwise disjoint.

We prove the theorem for the case in which G and G~, 1 < i < n are
context free. The reader can prove the other cases similarly, although in each
case additional details are necessary.

Construct a new grammar

6' = (v L vL P', s) ,

where V~. is the union of VN,, 1 _--< i =< n and VN. V~ is the union of Vz,,
1 =< i =< n. Let h be the substitution h(a~)= {S~} for 1 =< i =< n, and h(A) =
{A} for any A in VN. P ' contains P~, 1 =< i _<_ n. P ' also contains A -+ h(~)
for each A --~ ~ in P. Clearly, G' is context free, possibly with productions
of the form A --> E. The reader should easily see that

/ (L (6)) = L(6 ') .

Example 9.2. Let L = {0"ln]n => 1}. L is generated by the grammar

({S), {0, 1), {S -+ OS1, S ~ 01), S).

As in Example 9.1, let

f(O) = {a} and

f(0) is generated by

f(1) = {wwRlw in {b, c}*};

({$1}, {a}, {$1 ~ a}, $1)

({S, $1, $2}, {a, b, c}, P, S),

where P contains $1 ~ a, $2 ~ bS2b, $2 ~ cS2c, $2 ~ E, S ~ SiSS2, and
S ~ $1S2. The last two productions come from S ~ 0S1 and S ~ 01, with
$1 substituted for 0 and $2 for 1.

The csl are not closed under substitution. However, we can prove a weaker
result. First, a substitution f on Z is said to be E-free if for each a in Z, f (a)
does not contain E.

Theorem 9.8. The class of context-sensitive languages is closed under
e-free substitution.

f (L) is generated by

and f(1) is generated by

({S~}, {b, c}, ($2 --~ bS2b, $2 --+ cS2e, $2 -+ ,}, $2).

126 OPERATIONS ON LANGUAGES 9.3

Proof. Consider a context-sensitive grammar

G = (VN, {a~, a 2 , . . . , an}, P, S)

and an E-free substitution f For each i, 1 _<_ i =< n, let

G~ = (VN,, Vr,, P~, &)

be a context-sensitive grammar generating the set f(aO. We assume without
loss of generality that all nonterminal vocabularies are pairwise disjoint.
Furthermore, we assume that all productions, with the possible exception of
S ---> e, are of the form a ~ fl or A ---> a, where a, fi are nonempty strings
of variables, A is a single variable, and a is a single terminal symbol. We
construct a grammar G' = (V/v, V(r, P', SL) where"

1. V~ = VN W (U~=~ VN,) W {ALl A in VN}.
2. v~ = U~=I v~,.
3. P ' contains

a. Sz ---> e if S ~ E is in P.
b. AL~ ---> BLfl and A~ --> Bflif A~ ---> Bfl is in P. (Note that the subscript

L is used to mark the leftmost symbol in a derivation of G until this
symbol would be converted to a terminal symbol.)

c. AL ---> S~ if A ---> a~ is in P. aA ~ a& for all a in V~ if A ~ a~ is in P.
d. All productions in P~, P 2 , . . . , P, .

The grammar G' is context sensitive and L(G') = f (L(G)) .

Theorem 9.9. The class of context-sensitive languages is not closed
under substitution.

Proof Let G~ = (VN, VT, P~, S) be a type 0 grammar such that L(G~) is
not a context-sensitive language. Once again, we assume without loss of
generality that the productions are of the form a --->/3 or A ---> a, where a is
in Vy, /3 is i n V * , A is inVN, and a is inVT. Let e b e a n e w symbol.
Consider the grammar G2 = (Vu, VT U {C}, P2, S) where P2 contains"

1. a --~ fl if a -+/3 is in P~ and [a] =< [ill.
2. a ~ f l cc . . . c , where la[= l f icc. . .c[if a ~/-3 is in P~ and]a] > Ifl[.
3. cA ~ A c for all A in VN.

The grammar G2 is context sensitive, since we have forced the right-hand
side of every Production to be at least as long as the left-hand side. The
productions cA ~ A¢ were added to move the c's to the right end of
the words so that derivations in Gz can proceed as in G~. Now consider the

substitution
f (a) = {a} for a in VT and f (c) = {~}.

Then f(L(G~)) = L(G~) and hence substitution does not preserve the class

of csl.

9.3 CLOSURE UNDER MAPPINGS 127

Most often we are interested in special types of substitutions. A substi-
tution f is said to be finite i ff(a) is a finite set for all a in the domain off .
Iff(a) is a single string for all a, thenf is a homomorphism. Finite substitution
and homomorphism are special cases of a substitution. Thus we have the
following corollaries.

Corollary 9.1. The classes of regular, context-free, and type 0 languages
are closed under finite substitution and homomorphism.

Proof. Obvious from Theorem 9.7.

Corollary 9.2. The class of context-sensitive languages is closed under
~-free finite substitution and ~-free homomorphism.

Proof. Obvious from Theorem 9.8.

Corollary 9.3. The class of context-sensitive languages is not closed
under finite substitution or homomorphism.

Proof. The substitution used in the proof of Theorem 9.9 is a homo-
morphism.

We prove one more result concerning substitutions, since we need it for
a later theorem. A class of languages is said to be closed under k-limited
erasing if, for any language of the class L and any homomorphism h with
the property that h never maps more than k consecutive symbols of any
sentence x in L to e, h(L) is in the class. We show that the class of context-
sensitive languages is closed under k-limited erasing. Actually a more
general result is true. Let L _q E* be a context-sensitive language a n d let
f(a) be context sensitive for a in E. f(L) is context sensitive provided there
exists a k > 0, such that for x in L and y in f(x),]Yl => klxl.

Lemma 9.2. The class of context-sensitive languages is closed under
k-limited erasing.

Proof. Let G~ = (V~ ~), V(r ~), P~, S~) be a context-sensitive grammar. With-
out loss of generality, assume that the productions, with the possible excep-
tion of S~ --> E, are of the form a ~ / 3 or A ~ a, where a and fl are in V~, ~)+,
A is in V~, ~), and a is in V(r ~). Let h be a homomorphism with the property
that h never maps more than k consecutive symbols of any sentence x in L(G~)
to E. Let l be thegreater of k + 1 and the length of the longest left-hand
side of any production. Consider the grammar

6~ = (v~ ~, v~, ~, e~, s~),
where

V~r 2) = {[c~][a in (V~r ~) u V~,~)) *, [a t < 2l},

128 OPERATIONS ON LANGUAGES 9.3

V(r 2~ contains those symbols found in strings w such that h(a) = w for some
a in V(r ~, Sz = [$1], and Pz contains"

1. [$1] ~ e if S~ -+ E is in P1 or if there is an x in L(Gz), with h(x) = ~.
(Note that]x[< k, so we can test if any such x exists.)

2. [c~] -+ [/3] for all [a] and [/3] in VN ~2~ such that c~ ==~/3 and]/3] < 2l.
G1

3. [c~]--+ [/31][/32]... [/3ml for all [cq, [/31i, [/321 , [/3m] in V} 2~ such that

6/1

I ,1 = l, 1 =< i < m, a n a l =< I/3ml < 2l.
4. [c~1][c~2] ~ [¢3~][/32]... [/3m] for all [c~1], [c¢2], [/31], [/32],. . . , [/3m] in V} 2~ such

that

~ =-~ ~ . . - ~ m , G1

where l =<]¢z~] < 21, l =< < 2l,

[/3,1 = l, 1 =< i < m, l Z]tim] < 2l.

5. [x] -+ h(x) for all [x] in V} 2~, x in V¢r 1~*, h(x) ¢ ,.

The g rammar G2 is context sensitive and L(G2) = h(L(G~)). Note that
G2 is obtained by encoding blocks of at least k + 1 symbols of G~ into one
symbol. Since no more than k consecutive terminal symbols of G~ are mapped
to ¢, we need never have a product ion in Gz where a variable other than the
sentence symbol goes to ¢.

A generalized sequential machine (gsm) is a finite au tomaton which can
output a finite number of @mbols for each input symbol. Formally, a gsm
is a six-tuple S = (K, Z, A, 3, qo, F) where K, Z, and A are the states, input
alphabet, and output alphabet, respectively. 3 is a mapping from K x Z to
finite subsets of K x A*, qo is the initial state, and F is the set of final states.
The interpretat ion of (p, w) in 3(q, a) is that S in state q with input symbol a
may, as one possible choice of move, enter state p and output the string w.

We extend the domain of 3 to K x Z* as follows.

1. 3(q, ~) = {(q, E)}.
2. For x in Z* and a in Z,

3(q, xa) = {(p, w)lw = wlw2

and for some p' , (p', wl) is in 3(q, x) and (p, w2) is in 3(p', a)}.

Let S(x) denote the set

{y[(p, y) is in 3(qo, x) for some p in F}.

If L is a language over Z, let S(L) denote {y]y is in S(x) for some x in L}.

9.3 CLOSURE UNDER MAPPINGS 129

We say that S(L) is a gsm mapping. Also, let

S - l (x) = {y[S(y) contains x)

and
S- I (L) {y[x is in S(y) for some x in L}.

We say that S-~(L) is an inverse gsm mapping.
It is not necessarily true that S - z (S (L)) = S (S - ~ (L)) = L and thus

S - ~ is not a true inverse.

Example 9.3. Let

We define 3 by

S = ({qo, ql}, {0, 1}, {a, b}, 3, qo, {q~}).

3(qo, 0) = {(q0, aa), (ql, b)},
8(qo, 1) = {(qo, a)},
8(ql, 0) = %
8(q~, 1) = {(q~, e)}.

Intuitively, as O's are input to S, S has the choice of either outputting two
a's or one b. If S outputs the b, it goes to state ql. If 1 is input to S, and S
is in state q0, S can only output an a. In state ql, S can do nothing on a 0
input, but can remain in state ql with no output if a 1 is input.

L e t L = {0~l~]n >= 1}. Then

S(L) = {a2"b]n _-> 0}.

If we call S(L) by L~, then

S-I(L~) = {w01i[i >= 0 and w has an even number of l's}.

Note that S-~(S(L)) ~ L.

A feature of gsm and inverse gsm mappings is that they preserve various

classes of languages.

Lemma 9.3. Every class of languages closed under finite substitution
and intersection with a regular set is closed under gsm mappings.

Proof Let C be a class of languages closed under finite substitution (hence,
homomorphism) and intersection with a regular set. Let S = (K, Z, A, 3,
qo, F) be a gsm. We define a finite substitution

f (a) = {[q, a, x, p]]q and p in K, a in Z, x in A*, and (p, x) in 8(q, a)}.

Let R be the regular set containing all strings of the form

[q0, a~, xl, q~][q~, a2, x2, q2] . . . [qn- 1, an, xn, q~]

such that for 1 _<_ i __< n, ai is in Z, x~ is in A*, q~ is in K, and (q~, xO is in

130 OPERATIONS ON LANGUAGES 9.3

~(q~_l, a~). Also, qo is the start state of S and qn is in F. Let h be the
homomorphism

h([q, a, x, p]) = x for all [q, a, x, p].

Now for L in C, S(L) = h(f(L) ~ R). Since C is closed under finite
substitution and intersection with a regular set, S(L) is in C. Note that
closure under finite substitution is required rather than E-free finite substitu-
tion, since in [q, a, x, p], x may be E, in which case

h([q, a, x, p l) = E.

Theorem 9.10. The classes of regular, context-flee, and type 0 languages
are closed under gsm mappings.

Proof The theorem is an immediate consequence of Lemma 9.3 and
Theorems 9.4, 9.6, and 9.7.

Note that gsm mappings do not preserve context-sensitive languages,
since every homomorphism is a gsm mapping.

A gsm mapping is said to be E-free if (p, E) is not in 3(q, a) for any q and
p in K and a in E. Although context-sensitive languages are not closed under
arbitrary gsm mappings, they are closed under E-free gsm mappings.

Theorem 9.11. The class of context-sensitive languages is closed under
E-free gsm mappings.

Proof In Lemma 9.3, finite substitution can be replaced by E-free finite
substitution provided that the gsm mapping is E-free. Thus, since the class
of context-sensitive languages is closed under E-free finite substitution,
and intersection with a regular set, the class is closed under E-free gsm
mappings.

We now consider inverse gsm mappings. As we shall see, regular,
context-free, context-sensitive, and type 0 languages are all closed under
inverse gsm mappings.

Lemma 9.4. Let C be a class of languages closed under E-free substitu-
tion, k-limited erasing, and union and intersection with regular sets.
Then C is closed under inverse gsm mappings.

Proof Let L _~ A* be a language in C and S = (K, ~, A, 3, qo, F) be a gsm.
We assume without loss of generality tha t the sets E and A are disjoint.
Define a substitution f by f(b) = Z*b for each b in A (Note that closure
under union and intersection with regular sets guarantees that all regular sets
are in C and hence E*b is in C.) Let L1 = f(L) w X;* if E is in L, and L1 =
f(L) otherwise. Then L1 is the set of all strings of the form ylbly2b2...YTbr,
r > 1, where the b's are in A, bib2...br is in L, and the y's are in 5:*, plus
Y:* if E is in L. We now apply Lemma 9.3 to the classes of regular, context-
free, and type 0 languages.

9.3 CLOSURE UNDER MAPPINGS 131

Let R be the regular set consisting of all words of the form a~x~a2x2...
amXm, m >_ O, such that

1. The a's are in Z.
2. The x's are in A*.
3. There exists states qo, q~ , . . . , qm, such that qm is in F and, for 1 =< i =< m,

8(q~_ ~, a~) contains (q~, x~).

Note that x~ may be e. The reader may easily show R to be a regular set
by constructing a finite automaton accepting R.

Now L1 n R is the set of all words in R of the form alx~a2x2...amXm,
m >_ 0, where the a's are in E, the x's are in A*, x~x2.. .Xm is in
L, S(ala2. . .am) contains x~x2...Xm, and none of the x~'s is of length greater
than k, where k is the length of the longest x such that (p, x) is in 3(q, a) for
some p and q in K and a in Z.

Finally, let h be the homomorphism which maps a to a for each a in Z,
and b to ~ for each b in A. Then

S-~(L) = h(L~ c~ R)

is in C since h never causes more than k consecutive symbols to be mapped
to ~.

Theorem 9.12. The classes of regular, context-free, context-sensitive, and
type 0 languages are closed under inverse gsm mappings.

Proof. Follows immediately from Lemma 9.4 and the fact that the above
classes are closed under e-free substitution, k-limited erasing, and inter-
section and union with a regular set.

We now consider the quotient operator. Let L1 and Lz be any languages.
We define L1/L2, the quotient of L~ with respect to L2, to be

{xlfor some y in L2, xy is in L1}.

Example 9.4. Let L1 = {a~b'~ln => 1} and L2 = b*. Then

Li/Lz = {a*bJ[i >= j, i => 1} and L2/L1 = 9.

Lemma 9.5. Every class of languages closed under finite substitution and
intersection with a regular set is closed under quotient with a regular set.

Proof Let C be a class of languages closed under the above operations.
L e t L g Z ~ * be a language in C a n d R g E ~ * be aregular set. LetE2 =
{a'la in El) and let f be the finite substitution f (a) = {a, a'}. Consider
L2 = Z2*R n f (L) . Let h be the homomorphism defined by h(a) = e and
h(a') = a for all a in El. Now L/R = h(L2). Since the class C is closed under
finite substitution and intersection with a regular set, L/R is in C.

132 OPERATIONS ON LANGUAGES 9.3

Regular Context-free
Closed under sets languages

.

Union Yes Yes

Concatenation Yes Yes
, , ,

Closure Yes Yes

Reversal Yes Yes

Intersection Yes No

Complement Yes No

Intersection with regular
set Yes Yes

Substitution Yes Yes

E-free substitution Yes Yes

gsm mappings Yes Yes

E-free gsm mappings Yes Yes

Inverse gsm mappings Yes Yes

k-limited erasing Yes ! Yes

Quotient with regular set Yes Yes

Context-sensitive
languages

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

No

Yes

Yes

Yes

No

Type 0
languages

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Fig. 9.1. Closure properties of the classes of regular, context-free, context-
sensitive, and type 0 languages.

Theorem 9.13. The classes of regular, context-flee, and type 0 languages
are closed under quotient with a regular set.

Proof Follows immediately from Lemma 9.5.

Next we ask whether the class of context-sensitive languages is closed
under quotient with a regular set ? Once again the answer is no.

Theorem 9.14, If L1 is any type 0 language, then there is a context-
sensitive language, L2, and a regular set R, such that L1 = L2/R.

Proof The proof is almost identical to that of Theorem 9.9. Let

be a type 0 grammar generating L1. Let

6~ = (v~ u {s~, D}, v~ u {e, d}, P~, S~),

PROBLEMS 133

where P2 is defined as follows:

1. I f a --~ t3 is in P1 and I 1, then a --~/3 is in P2.
2. If ¢z -->/3 is in P1 and]c,[- I~l = i, i > o, then ~ ~ 13D ~ is in P2.
3. For all A in VN and a in Vr, D A --> A D and Da -~ aD are in P2.

4. Dc ---> cc and Dc --> dc are in P2.
5. $2 --~ S1Dc is in P2.

Note the similarity of L(G2) to the language defined in Theorem 9.9.
Here, however, we can only convert all of the D's to terminal symbols if
they first migrate to the right end of the sentential form. Also, once a D is
converted to d, no more D's may be converted to either d or c. The theorem

follows f rom the observat ion that

L(G) =

We summarize the closure properties for regular, context-free, context-

sensitive, and type 0 languages in Fig. 9.1.

PROBLEMS

9.1 In general, the intersection of two context-free languages is not context free.
However in some cases the intersection is context free. Let G be the cfg
({S, R, T}, {a, b, 0, 1 }, P, S) where P contains S --> RT, R --> aRlO, R --->
bRO, R --> al0, R --> bO, T---> OTa, T --> lOTb, T ----> Oa, T ~ 10b. Is
L(G) n {wwr~lw in {0, 1, a, b}*} context free?

9.2 Show that the Boolean closure of the class of context-free languages is
properly contained in the class of context-sensitive languages. (Hint. For
containment consider the relation of the Boolean closure of the cfl's to the
class of languages accepted by deterministic lba's. For proper containment
consider the set of all cfl's over a one-symbol alphabet.)

9.3 Show that any class of languages closed under
a) concatenation, homomorphism, inverse homomorphism, and inter-

section with regular set is closed under union.
b) closure, homomorphism, inverse homomorphism, union, and intersec-

tion with regular set is closed under concatenation.
c) homomorphism, inverse homomorphism, concatenation, and union is

closed under intersection with regular set.

9.4 Let L ~ I3" be a csl and let f (a) be a csl for each a in X such that for some
fixed k > 0, If(x)l >= klxl for a l l x i n L . Show thatf (L) iscontextsensi t ive .

9.5 Let L be an arbitrary set, not necessarily recursively enumerable. Let R
be regular. Show that R/L is regular. Can one always find a particular
finite automaton accepting R/L ?

9.6 Let L be a cfl. Show that {xl there exists some y, such that l yl = Ixl and
xy in L} is not necessarily context free.

134 OPERATIONS ON LANGUAGES

9.7 Show that there is no gsm which maps {O~lJli, j ~ O} to {O~l~li ~_ 0}.

9.8 Let L1 be a cfl. Show that

L2 = {ala3as . . .a2~÷ l[ala2a3a4. . .a2~+ 1 is in L1}

is context free.

9.9 Find a gsm that maps the word a ~ to the set {aJb~li =< j + k < 2i}.

9.10 Which of the various classes of languages are closed under inverse sub-
stitution ?

9.11 Let Init (L) = {x[there exists y such that x y is in L}. Which classes of lan-
guages are closed under Init ?

9.12 We say that y is a p r o p e r p r e f i x of x if y ¢ x and for some z ¢ ~, x = yz .

Let Min (L) = { x l x is in L and no proper prefix of x is in L}. Which classes
of languages are closed under Min ?

REFERENCES

Theorems 9.2 and 9.3 are from Scheinberg [1960] and Theorem 9.4 is from
Bar-Hillel, Perles, and Shamir [1961]. Theorem 9.6 for context-sensitive lan-
guages is from Landweber [1963] and Theorem 9.7 for regular and context-free
languages is from Bar-Hillel, Perles, and Shamir [1961]. Theorems 9.10 and 9.12
for the latter two cases are from Ginsburg and Rose [1963b] and Theorem 9.13
for those cases is from Ginsburg and Spanier [1963]. Theorem 9.11 is from Gins-
burg and Greibach [1967]. The ideas connected with Lemmas 9.3, 9.4, and 9.5
were shown in Ginsburg and Greibach [1967], but their statement in this form is
from Greibach and Hopcroft [1967].

There have been several recent attempts to codify the properties of classes of
languages. Ginsburg and Greibach [1967] is a study of the properties of classes
of languages that are closed under union, concatenation, Kleene closure, inter-
section with a regular set, homomorphism, and inverse homomorphism. It is
shown that each such class can be defined as the languages recognized by some
class of automata with a one-way input, and that, under very broad conditions,
the class of languages defined by a class of one-way automata is closed under
these operations. The latter result was shown independently in Hopcroft and
Ullman [1967b], and the class of languages defined by a general class of two-way
automata was shown to possess certain properties such as closure under inverse
gsm mappings. Extensions of these theories have appeared in Ginsburg, Grei-
bach, and Hopcroft [1967], Ginsburg and Spanier [1967], Greibach and Hopcroft
[1967], Ginsburg and Hopcroft [1968], and Hopcroft and Ullman [1968a].

CHAPTER 10

TIME- AND TAPE-BOUNDED
TURING MACHINES

10.1 I N T R O D U C T I O N

As we have seen, every recursively enumerable language is accepted by some
Turing machine. However, it is reasonable to suppose that some r.e. lan-
guages can be recognized by rather "simple" Turing machines, while others
cannot be recognized by any Turing machine below a certain complexity.
In this section we wish to consider two formal definitions of the complexity
of Turing machines. Since a Turing machine is a reasonable, although surely
not perfect, model of computation, the theory of Turing machine complexity
classes should shed some light on the properties of languages that are suitable
as programming languages (i.e., languages that can be simply recognized).

The t.wo measures of complexity we shall consider are bounds on the
amount of tape used and bounds on the number of moves made by the Tm
with a given input. Both of these bounds are functions of n, the input length.

10.2 DEFINITIONS

Consider the multitape Turing machine T of Fig. 10.1. T has a read-only
input tape with end markers and k semi-infinite storage tapes. Suppose that
for no input word of length n does T scan more than L(n) cells on any storage
tape. Then T is said to be an L(n) tape-bounded Turing machine, or of tape
complexity L(n). The language recognized by T is likewise said to be of tape
complexity L(n).

Note that the Tm cannot rewrite on the input and that only the length
of the storage tape used counts in computing the tape bound. This is done
to include tape bounds of less than linear growth. If the Tm could rewrite
on the input tape, then the length of the input tape would have to be included
in calculating the tape bound. Thus no bound could be less than linear.

Now consider the multitape Tm T of Fig. 10.2. The Tm has k semi-
infinite tapes, one of which contains the input. All tapes, including the
input tape, are rewriting. Suppose that for no input word of length n does T
make more than T(n) moves before halting. Then T is said to be a T(n) time-
bounded Turing machine, or of time complexity T(n). The language recog-
nized by T is said to be of time complexity T(n).

135

10.2

Input

Y
F inite

control

Input region

Storage tapes Storage tapes

Finite
control

136 TIME- AND TAPE-BOUNDED TURING MACHINES

Fig. 10.1. Multitape Turing machine
with read-only input.

Fig. 10.2. Multitape Turing machine.

The concepts of time- and tape-bounded Turing machines apply equally
well to nondeterministic machines. A nondeterministic Tm is of time com-
plexity T(n) if no sequence of choices of moves causes the machine to make
more than T(n) moves. It is of tape complexity L(n) if no sequence of choices
enables it to scan more than L(n) cells on any storage tape. Here we deal
exclusively with the deterministic case. Results are analogous for the non-
deterministic case. We always assume L(n) and T(n) to be recursive functions.

Example 10.1. Consider the language

L = {wcwRIw in {0, 1}*}.

In this case L is of time complexity n + 1, since there is a Turing machine T1,
with two tapes, which copies its input to the left of the c onto the second tape,
Then, when a c is found, T1 moves its second tape head to the left, through
what it has just copied, and simultaneously continues to move its input tape
head to the right. The symbols under the two heads are compared as the
heads move and, if all pairs of symbols match and if, in addition, the number
of symbols to the right and left of the lone c are equal, then T~ accepts. It is
easy to see that T1 makes at most n + 1 moves if the input is of length n.

There is another Turing machine, T~, of tape complexity logan accepting
L. T2 uses one storage tape as two binary counters. First, the input is checked

10.3 "SPEED UP" AND "TAPE REDUCTION" THEOREMS 137

to see that only one c appears. Next, the symbols on the left of the c are
counted, and compared with the number on the right. If these numbers are
equal, then the words on the right and the left are compared symbol by
symbol.

In considering this process, we may think of the storage as having two
tracks. On the upper track a binary number, i, will be written. Initially
i = 1 and, at the last step, i = (n - 1)/2. For each i, the ith symbols from
the right and left ends of the input are compared. These symbols can each
be found by copying i from the upper track to the lower, then counting down
to zero on the lower track. If all comparisons are true, the input is accepted.
Since T2 never deals with numbers greater than n, the numbers can be
represented on log2n cells.

10.3 "SPEED UP" AND "TAPE REDUCTION" THEOREMS

In this section we show that constant factors affect nothing as far as the
recognizing power of time and tape complexity classes are concerned. Thus
complexity classes are defined by functional variation (logarithmic, quadratic,
etc.) rather than by particular functions. We also consider the effect on time
and tape bounds of reducing the number of tapes of a Tm, and see that tape
bounds are independent of the number of tapes. Reducing the number of
tapes of a k-tape T(n) time-bounded Tm to two tapes does not increase the
time to more than T(n) log T(n). Reducing the number of tapes to one does
not increase the time to more than T2(n).

Theorem 10.1. If L is accepted by an L(n) tape-bounded Turing machine
with k storage tapes, then L is accepted by a cL(n)'~ tape-bounded Turing
machine with k storage tapes, for any c > 0.

Proof. Let T be an L(n) tape-bounded Turing machine accepting L. The
proof turns on constructing a new Turing machine T1 which simulates T,
but, for some constant r, each storage tape cell of T1 holds a symbol repre-
senting the contents of r adjacent cells of the corresponding tape of T. The
finite control of T1 can keep track of which of the cells of T, among those
represented, is actually scanned by T.

Detailed construction of the rules of T1 from the rules of T are left to
the reader. Let r be such that rc >= 2. Then if L(n) _>_ r, TI can simulate T
using no more than cL(n) cells on any tape. T1 can store in its finite control
the contents of each tape if no more than r - 1 cells are used on any tape.
Thus, if L(n) is small enough for a particular n, so that cL(n) < 2, then T~
need not use its tapes at all.

1" We must, however, consider the tape bound to be 1 if cL(n) < 1. Of course, at
least one cell of tape is used on each tape in any case.

138 TIME- AND TAPE-BOUNDED TURING MACHINES 10.3

Theorem 10.2. If a language L is accepted by an L(n) tape-bounded Tm
with k storage tapes, it is accepted by an L(n) tape-bounded Tm with a
single storage tape.

Proof Let T be an L(n) tape-bounded Tm with k storage tapes, accepting L.
We may construct a new Tm/ ' 1 with one storage tape which simulates the
storage tapes of T on k tracks. The technique was used in Theorem 6.2. /'1
uses no more than L(n) cells.

From now on we assume that any L(n) tape-bounded Tm has but one
storage tape. Next we turn to time bounds. First we introduce the following
notation.

Let f(n) be a function of n. The expression sup f(n) is taken to be the
n-- -~ O0

limit as n - ~ ~ of the least upper bound of f (n) , f (n + 1),f(n + 2),
Likewise, inf f(n) is the limit as n ~ ~ of the greatest lower bound of

TI,-+ o0

f(n), f (n + 1), f (n + 2),

Example 10.2. Letf(n) = 1/n for n even, and f(n) = n for n odd. The least
upper bound o f f (n) , f (n + 1) , . . . is clearly oo for any n, because of the
terms with odd arguments. Hence, sup f (n) = oo. But, because of the

?1,-'~ 00

terms with n even, it is also true that inf f(n) = O.
I'1,---~ oo

Theorem 10.3. If L is accepted by a k-tape T(n) time-bounded Turing
machine T, then L is accepted by a k-tape cT(n)t time-bounded Tm Tx
for any c > 0, provided that k > 1 and inf T(n)/n = ~ .

Proof. A Tm T~ can be constructed which simulates T in the following
manner. First T1 copies the input Onto a storage tape, encoding m symbols
into one. (The value of m will be determined later.) From this point on, T~
uses this storage tape as the input tape and uses the old input tape as a
storage tape. T, will encode the contents of T's storage tapes by combining
m symbols into one. The left end of each tape is marked. During the course
of the simulation, T1 will simulate a large number of moves of T in one
basic step, which: consists of eight moves of T~. Call the cells currently
scanned by each of Tl's heads the home cells. The finite control of T1 records,
for each tape, which of the m symbols of T, represented by each home cell,
is scanned by the corresponding head of T,.

To begin a basic step, T~ moves each head to the left once, to the right
twice, and to the left once, recording the symbols to the left and right of the
home cells in its finite control. Four moves of T~ are required.

f Here we must understand that cT(n) is taken as n + 1 if its actual value is less.
No word can be recognized in less time than it takes to read it, except in trivial
cases.

10.3 "SPEED UP" AND "TAPE REDUCTION" THEOREMS 139

Next, T~ determines what will be the contents of all of T's tape cells
represented by the home cells and their left and right neighbors at the time
when some tape head of T first leaves the region represented by the home
cell and its left and right neighbors. (Note that this calculation by T1 takes
no time. It is built into the rules of T~.) If T accepts before some tape head
leaves the represented region, Tx accepts. If T halts, T~ halts. Otherwise Tx
then visits, on each tape, the two neighbors of the home cell, changing these
symbols and that of the home cell if necessary. T~ positions each head at the
cell which represents the symbol that T's corresponding head is scanning at
the end of the moves simulated. At most four moves of T1 are needed. If
T1 was originally at the left end it only moves right then left.

It takes at least m moves for T to move a head out of the region repre-
sented by a home cell and its neighbors. Thus, in eight moves, T~ has simu-
lated at least m moves of T. Choose m such that cm >_ 16.

If T makes T(n) moves, then T~ simulates these in at most 8[T(n)/m] +
moves, where [x] + denotes the smallest integer greater than or equal to x.
Also, T~ must copy and encode its input (m cells to one) then return the head
of the simulated input tape to the left end of the tape. This takes n + [n/m] +
moves, for a total of n + [n/m] + + 8[T(n)/m] + moves. If inf T(n)/n = ~ ,

it should be clear, for some constant nl and all n >__ n~, that

n + [n/m] + + 8[T(n)/m] + <-_ cT(n).

Words of length n < n~ can be accepted using only the finite control of T~
in real time (i.e., T(n) = n + 1).

Theorem 10.4. If a language L is accepted by a k storage tape Turing
machine in time T(n), and inf T(n)/n = oo, then L is accepted by a

n- -~ O0

one-tape Turing machine in time T2(n).

Proof. Let T be a k-tape ½T(n) time-bounded Tm accepting L. By Theorem
10.3, T exists. We can simulate T by a one-tape Tm T1 with k tracks on its
tape, one for each tape of T.

Each track will have one cell containing, in addition to the storage tape
symbol of T, a marker which denotes the fact that the head of T for the
corresponding tape is scanning that cell. (Head markers are shown as x in
Fig. 10.3 on the next page.)

To simulate a move of T, T1 must visit each of the cells containing a head
marker to see what storage symbol is scanned. This provides T1 with the
information necessary to determine the next move of T. The head of T1 will
always be at the extreme left or extreme right head marker. T~ crosses its
tape in one direction (a sweep), making those changes at each head marker
that have been necessitated by the previous move of T. Also, T1 records the
new symbols scanned by each of the heads of T. After completing the sweep

140 T IME- AND TAPE-BOUNDED TURING MACHINES 10.3

Finite
control

l
k

×/
/

× = head marker

/

Fig. 10.3. Single-tape Turing machine simulating k tapes.

of its tape, T~ can decide what move T makes next. Tz makes these changes
on its next sweep. Note that no two head markers can move apart by more
than ½T(n) cells if T is ½T(n) time bounded. Thus a sweep requires no more
than ½T(n)+ 2k moves. Hence, T~ is of time complexity at most T2(n).

Theorem 10.5. If L is accepted by a k-tape T(n) time-bounded Turing
machine T, then L is accepted by a two storage tape Tm T~ in time
T(n) log T(n).t

Proof. The proof is complicated, and only an indication of how T1 could
simulate T in time proportional to T(n) log T(n) will be given. The Tm T1
that we shall describe has storage tapes infinite in both directions. The con-
struction used in Theorem 6.1 shows that T1 could be converted to a Tm
making the same number of moves as T1, but with semi-infinite tapes. The
first storage tape of T1 will have two tracks for each storage tape of T. For
convenience, we focus on two tracks corresponding to a particular tape
of T. The other tapes of T are handled in exactly the same way. The second
tape of T~ is used only for scratch, to transport blocks of data on tape 1.

One particular cell of tape 1, known as Bo, will hold the storage symbols
scanned by each of the heads of T. That is, rather than moving head markers,
T1 will transport data across B0 in the direction opposite that of the motion
of the head of T being simulated. To the right of cell Bo will be blocks
B~, B2,. . . of exponentially increasing length; that is, B, is of length 2 *-1.
Likewise, to the left of Bo are blocks B_~, B_2 , . . . , with the length of B_,
the same as the length of B,. The markers between blocks are assumed to
exist, although they will not actually appear until the block is scanned.

t By Theorems 10.1 and 10.3, constant factors are irrelevant, so we do not need to
specify logarithmic bases.

10.3 "SPEED UP" AND "TAPE REDUCTION" THEOREMS 141

Let us denote the contents of the cell initially scanned by this tape head
of T by ao. The contents of the cells to the right of this cell are al, a2 , . . . ,
and those to the left, a_ 1, a_2, Initially these are all blank, however it
is not their value, but their position on the tracks of tape 1 of 7"1, that is
important. Initially the upper track of 7'1 for the tape of Z in question is
assumed to be empty, while the lower track is assumed to hold . . . , a_ 2, a_ 1,
ao, a l , az, These are placed in blocks . . . , B_2, B_ 1, B0, B1, B2, . . . as
shown in Fig. 10.4.

I
a_ 7 a_ 6 a_ 5 a_ 4 a-3 8-2 a-1 ao i al a 2 a 3 a 4 a 5 [06 a7

i

B_3 B_ 2 B_ 1 B 0 B1 B 2 B 3

Fig. 10.4. Blocks on Tape 1.

As we mentioned previously, data will be shifted across Bo and perhaps
changed as it passes through. The method of shifting data will obey the
following rules.

1. For any i > 0, either B~ is full (both tracks) and B_~ is empty, or B~ is
empty and B_~ is full, or the bottom tracks of both B~ and B_~ are full,
while the upper tracks are empty.

2. The contents of any B~ or B_~ always represents consecutive ceils on the
tape of T represented. For i > 0, the upper track represents cells to the
left of those of the lower track; for i < 0, the upper track represents
cells to the right of those of the lower track.

3. B~ represents cells to the left of those of Bj, for -oo < i < j < ~ .
4. B0 always has only its lower track filled.

To see how data is transferred, let us imagine that on successive moves
the tape head of T in question moves to the left. Then T1 must shift the
corresponding data right. To do so, T1 moves the head of tape 1 from Bo,
where it rests, and goes to the right until it finds the first block, say B~, which
is not full. Then T1 copies all the data of Bo, B1 , . . . , .B~_ 1 onto tape 2 and
stores it in the lower track of B1, .B2,..., B~_ 1 and, if.Be is completely empty,
the lower track of.B~. If the lower track of B~ is already filled, then the upper
track of B~, as well as the lower track of B1, B 2 , . . . , B~_ 1 receives all the data
of Bo, B1, • •., B~_ 1.

Note that, in either case, there is just enough room to distribute the data.
Also, the data can be picked up and stored in its new location in time propor-
tional to the length of B~. Finally, note that the data can be easily stored in
a manner that satisfies Rules 1, 2, and 3, above.

142 T I M E - A N D T A P E - B O U N D E D T U R I N G M A C H I N E S 10.3

8_3 8_2 8_1 80 81 82 83

a_ 7 a_6 a_ 5 a_ 4 a_3 a _ 2 [a_ l a 0 a l a2 a 3 a 4 a 5 a 6

80

8_ 7 8_ 6 8_ 5 a_ 4 8_ 3 a_ 2 a_ 1 a I a 2 84 a 6

a 7

a 7

8_ 7 a_ 6 8_ 5 a_ 4

a 0

8__ 3 a_ 2 a_ 1 8 2 a 3 a 4 a 5 a 6

a_ 2 a 0 a l

8_ 7 8_ 6 8_ 5 8_ 4 8_ 3 8_ 1 8 2 ! . a 4 8 5 8 6 a 7

a 0 a 1 8 2 a 3

a_ 7 a_ 6 a_ 5 a_4 a_ 3 a_ 2 a_ 1 a4 a 5 a6 a7

a_4 a 0 a I 8 2 a 3

a_ 7 a_ 6 a_ 5 a_ 3 a_ 2 8_ 1 a 4 a 5 a 6 8 7

Contents of blocks of T1. Fig. 10.5

Next, in time proportional to the length of B~, T1 can find B_~ (using
tape 2 to measure the distance from B~ to Bo makes this easy). If B_~ is
completely full, T1 picks up the upper track of B_~ and stores it on tape 2
If B_~ is half full, the lower track is put on tape 2. In either case, what has
been copied to tape 2 is next copied to the lower tracks of B_(~_ ~), B_(~_ 2),
. . . , B0. (By Rule ! , these tracks have to be empty, since B~, B 2 , . . . , B~_
were full.) Again, note that there is just enough room to store the data,
and all the above operations can be carried out in time proportional to the
length of B~.

We call all that we have described above a B~ operation. The case in
which the head of T moves to the right is analogous. The successive contents
of the blocks as T moves its tape head in question five cells to the right is
shown in Fig. 10.5.

10.4 SINGLE-TAPE TM'S AND CROSSING SEQUENCES 143

We note that on any pair of tracks T~ can perform a B, operation at
most once per 2 *- 1 moves of T, since it takes this long for B1, B2,. •., B~_ 1,
which are half empty after a B, operation, to fill. Also, a B, operation cannot
be performed for the first time until the 2 *- ~th move of T. Hence, if T oper-
ates in time T(n), T~ will perform only B, operations, for those i such that
i =< log2 T(n) + 1.

We have seen that there is a constant m, such that T1 uses at most m2 ~
moves to perform a B~ operation. If T makes T(n) moves, T1 makes at most

log2 ro~+ 1 -,~,JTtna
T~(n) = ~ m2' ~7: r (10.1)

moves.
From (10.1), we obtain

and from (10.2),

T~(n) = 2mT(n)[log2 T(n) + 11 (~o.2)

T~(n) <__ 4mT(n) log2 T(n).

The reader should be able to see that T1 operates in time T~(n)even
when T makes moves using different storage tapes rather than only the one
upon which we have concentrated.

10.4 SINGLE-TAPE TURING MACHINES AND CROSSING SEQUENCES

For single-tape Turing machines we can prove some results of the form that
"such and such a language requires T(n) time to be recognized by a single-
tape Tm." In such a case, it is possible that the language could be recognized
in less than T(n) steps by a Tm with more than one tape.

First, let us give a speed up theorem for single-tape Tm's.

Theorem 10.6. If L is accepted by a single-tape Tm T of time complexity
T(n) and inf T(n)/n 2 = oo, then, for any c > 0, L is accepted by a

R--* O0

single-tape Tm of time complexity cT(n).t

Proof. In n z steps, a single-tape Tm T1 can condense its input by encoding
m symbols into 1. The proof then proceeds as in Theorem 10.3.

For these simple machines, a useful tool has been developed known as
the crossing sequence. We imagine that when the Tm makes its move it first
overprints the symbol scanned and changes state, then moves its head. Thus,
for any pair of adjacent cells on the input tape, we may list the sequence of
states in which the Tm crosses from one to the other. Note that the first

]" Again, we replace cT(n) by n + 1 if cT(n) < n + 1.

144 TIME- AND TAPE-BOUNDED TURING MACHINES 10.4

Original input cells

Start . _)

I P2

P4

P5

Crossing
sequence

Input
tape

)
Path of tape head

= Finish

Fig. 10.6 Crossing sequence.

crossing must be left to right; subsequent crossings alternate in direction.
See Fig. 10.6.

Here we assume that a word is accepted only at the right end of the cells
which originally held the input. The Tm can always move to the right or
left in an accepting state until that cell is reached. The number of moves
necessary may almost double, but in the subsequent applications, this is of
no consequence.

Lemma 10.1. If w = a~a2. . .a , is accepted by some one-tape Turing
machine T, and the crossing sequence between a~ and a~+ 1 is the same
as that between aj and aj÷l, where i < j, then ala2 . . .a~aj+la j÷2. . .a ,
is also accepted by T.

Proof Let the crossing sequence in question be Pl, P 2 , . . . , Pk. Let tl be the
portion of the tape containing ala2...a~, t2 be the portion containing
a~ ÷ la~ + 2 . . . a j, and t3 be the portion containing aj + laj÷ 2 . . . a , .

The computation of T on tit3 is exactly the same as the computation of
T on tlt2t3 until the time that T first leaves tl. In both cases, T leaves tl in
state Pl. Furthermore, the contents of tl are the same in both cases. With
input tit3, T enters t3 in state Pl which is the same state as T With input tltzt3
enters t3 for the first time. This is so since the crossing sequence between tl
and t2 is identical to the crossing sequence between tz and t3. Thus, in both
cases, T performs the same computation on t3, leaving ta in the same state
(namely P2) and with the same contents. When T with input tit3 reenters tl,
T will be in state Pz, which is the same state as when T with input tlt2t3 re-
enters tl for the first time.

10.4 SINGLE-TAPE TM'S AND CROSSING SEQUENCES 145

By continued reasoning of this kind, eventually we see that T, with input
tlta, enters ta in state Pk, with ta having the same contents as when T with
input tlt2ta enters ta in state p~. But ta with its current content is such that
T entering in state Pk will enter an accepting state.

Lemma 10.2. If a la2 . . . a~ and blb2 . . .bm are accepted by a single-tape
Tm, and the crossing sequence between a, and a~+ 1 is the same as the
crossing sequence between bj and bj+ 1, then ala2.. .a~bj+ lbj+2. . .bin and
bib2. •. bja~ + ~a, + 2. • • a~ are also accepted.

Proof. Similar to Lemma 10.1.

Lemma 10.3. If T is T(n) time bounded, then the sum of the lengths of
all crossing sequences (including those outside the region of original
input) is at most T(n).

Proo f Each time a boundary is crossed, at least one move is made.

As an example of the use of crossing sequences, we show that the
language

L = {wcwn[w in {0, 1}*}

is not accepted by any single-tape Tm of time complexity T(n) unless

T(n)
sup ~ > 0.

Note that we cannot prove T(n) >= kn 2 since all words in L are of odd length.
If a Tm first checks to see if the input is of even length, the Tm could be time
bounded by a function 7'1 (n) which is equal to n for n even and equal to n 2
for n odd.

Theorem 10.7. The language

L = {wcwRI w in {0, 1}*}

is not accepted by any single-tape Turing machine of time complexity
T(n) unless

T(n)
sup ~ > 0.t

~--~ oo

Proo f Suppose that L is accepted by T, and T is of time comPlexity T(n).
R R Suppose also that there are two words wlw2cw2wl and waw4cw~wg such that

t As throughout this section, we are assuming that a single-tape Tm goes to the
right end of its input upon accepting. In this theorem, the assumption is without
loss of generality, since the modification may only introduce a factor of two in
time required for recognition, and

sup T(n) ½T(n)
,~,~ ---7 > 0 if and only if ,~osup ~ > O.

146 TIME- AND TAPE-BOUNDED TURING MACHINES 10.4

the crossing sequences at the boundary between wl and w2 and the boundary
between w3 and w4 are the same. Moreover,

jw j-Iw l and
Under these circumstances, we would have wlw4ew~wg accepted by M,
according to Lemma 10.2. Since wl ¢: w3, that situation is impossible.

Consider all words in L of length n. By the argument above, if
WlW2CW~Wf and waw~cw~w~ are two such words, with wl -¢ w3, but [wl[=
Iw l = i, then the crossing sequences between w~ and w2 and between w3 and
w~ must be different.

Now, let T have s states. Suppose that the average over all words in L,
of the length of the crossing sequence between the ith and i + 1st symbols is
p(i) . Then, for odd n, there must be ½2 ½(~-1~ words for which the crossing
sequences between the ith and i + 1st symbol are of length equal to or less
than 2p(i). (Note that there are 2½ (~- 1~ words of length n in L. At least one
half of the words must have crossing sequences of length less than twice the
average.) The number of distinct crossing sequences of length less than or
equal to 2p(i) is less than s 2p"~+ 1. Thus, there must be more than 2½ ~- 1~-1/
s2p,~+l words with the same crossing sequence between positions i and
i + 1. Unless 2 ½(n-l~-l/s2p"~+l _< 2½~n-1~-~, there will be two words having
not only the same crossing sequence between positions i and i + 1, but also
having the same string in positions i + 1 through ½(n - 1). These words
must have different strings in positions 1 through i. But we have already
argued that there cannot be two words of the same length which differ in the
first i positions, but have identical crossing sequences between the ith and
i + 1 st symbols.

Thus, for each i between 1 and ½(n - 1),

i - 1
p(i) > 3 logs. s

If we sum (i - 1)/3 log2 s from i = 1 to i = l(n - 1), we get a lower
bound on the average sum of crossing sequences over all positions in the
words. This sum is (n ~ - 4n + 3)/24 log2 s. There must be at least one
word, the sum of the lengths of whose crossing sequences is average or more.
Thus by Lemma 10.3, we have T(n) > (n ~ - 4n + 3)/24 log~ s for odd n.
It follows that

T(n) > 1
sup n2 = 24 log2-""'"'--s'

and the theorem is proven.
Note that

L = {wcwr~lw in {0, 1)*)

is accepted in time Tin) = n by a two-tape Tm (Example 10.1). Thus Theorem
10.4, which states that if L can be accepted by a multitape Tm in time T(n),
L can be accepted by a single-tape Tm in time T2(n), cannot be improved.

10.5 LOWER BOUNDS ON TAPE COMPLEXITY 147

10.5 LOWER B O U N D S ON TAPE COMPLEXITY

It should be clear that no Tm can operate in any meaningful sense in less
than T(n) = n, since, otherwise, the Tm could not even examine the input.
However, the lower bound on L(n) is certainly 1, since the regular sets can be
recognized without printing on any storage tape. We might ask the question"
How much tape must be used if the set accepted is not regular ? The inter-
esting fact is that a nontrivial lower bound for such sets exists and is log log n.

We define the storage state of a Turing machine with one semi-infinite
storage tape and a read-only input to be a combination of the

1. contents of the storage tape,
2. position of storage head within the nonblank portion of storage tape, and
3. state of the finite control.

If a Tm T is L(n) tape bounded, with s states and t storage tape symbols,
the number of storage states possible is sL(n)t u"~. That is, the factor s
represents the number of possible states of finite control, L(n) represents the
number of possible positions of the storage head, and t u"~ represents the
number of possible contents of the nonblank portion of storage tape. (Note
that the blank is counted among the t storage symbols, so this bound is valid
even though not all L(n) tape cells may be nonblank at a given time.)

Let r be the number of storage states for T with input of length n. Num-
ber these from 1 to r. A transition matrix for T (T may be nondeterministic)
is an r-by-r matrix, denoted 9 -'~"~ - [hi]. Each t,j can take the value 00, 01,
10, or 11. The significance of the transition matrix is as follows. Let w be an
input to T, where I w] = n, and u be a terminal suffix of w (i.e., w = vu for
some v). We associate a transition matrix with u as follows. If T, started in
storage state i, with its input head at the leftmost symbol of u, can enter storage
state j without leaving u, then the first half of t~j is 1. Otherwise, the first half
of hj is 0. If T, when started in storage state i at the leftmost symbol of u,
can eventually move left from u, and is in storage state j the first time it
reaches the rightmost symbol of v, then the second half of t,j is 1. Otherwise

it is 0.
Under the conditions above, we say that the matrix ~--~"~ = [hi] describes

u. Note that each t,j is uniquely determined, since f romstorage state i at the
left end of u, either T can or cannot enter storage state j without leaving u,
and either can or cannot enter j immediately upon leaving u. However, each
u has matrices with different superscripts describing it, since the superscript
determines how many storage states are considered in specifying the matrix.

Lemma 10.4. Let T be an L(n) tape-bounded Tm with one storage tape
and a read-only input. Suppose that wl and w2 are two inputs of length
n accepted by T, where wl = vlu~, w2 = v2u2, and some transition
matrix J - (~ describes both u~ and u2. Then vlu2 is also accepted by T.

148 TIME- AND TAPE-BOUNDED TURING MACHINES 10.5

Proof. Without loss of generality, we may assume that T makes no further
moves after it accepts. Consider the sequence of configurations of T leading
to acceptance of vlul. If the boundary between vl and ul is never crossed,
surely vlu2 is accepted. Suppose that, at successive times when the boundary
between v~ and u~is crossed, the storage states of T are Q1, Q2, • •., Qk.

Now consider what happens with v~u2 as input to T. T will cross to u2
in storage state Q~. Since J("~ describes ul and u2, T must eventually move
left from u2 in storage state Q2. Then T moves to the right to u2 again, this
time in storage state Qa, etc.

If k is even, T will cross the boundary between v~ and u2 for the kth time
moving left. If vlu~ were input, T would also cross the boundary between
v~ and u~ for the kth and last time, then enter an accepting state while scanning
vl. With vlu2 as input, T will do the same, so vlu2 is accepted.

If k is odd, T will cross the boundary between vl and ul or u2 for the kth
and last time moving right. But T, with v~ul as input, will reach u~ in storage
state Q~ and then reach an accepting state without again leaving u~. Since
J (~ describes u2 as well as u~, T will reach u2 in storage state Qk and enter
the same accepting configuration as it would if v~u~ were the input.

Theorem 10.8. Let T be an L(n) tape-bounded Tm, possibly nondeter-
ministic, where L(n) is not bounded above by any constant. Then

L(n)
sup > O.
~-. oo log log n

Proof. For each integer k, let nk be the smallest n such that L(n) => k. Such
an nk must exist, since arbitrarily large values of L(n) exist. Let r be the
number of storage states with no more than L(nk) nonblank storage tape cells.
Further, let w be an input to T, I w[= nk, using at least k storage cells.

Suppose w can be written as w = v~v2v3, with v2 # E, and some transi-
tion matrix J (, k) describes both V2Va and va. Then we claim that vlva is an
input causing T to use k storage cells. For, consider the sequence of moves
of T with input w causing it to enter a storage state using k storage cells.
Suppose that before entering this storage state T's input head crosses the
boundary between v~ and vsv3 m times, m > 0. Since the same transition
matrix describes va and v2va, if T is started with input v~v3, it can cross the
boundary between v~ and va in the same sequence of storage states as it did
when w was input. If rn is even, T enters a storage state using k cells while
scanning v~ on its input. It can clearly do so if viva is the input instead of w.
If m is odd and viva is input, T is moving right when it crosses the boundary
between vl and va for the ruth time. Suppose T is in storage state Q at that
time. J,'~-(n~ must indicate that if T moves its input head to v2va or any other
string described by J (" ~ when in storage state Q, T can enter a configuration
using k cells. Hence T can do the same if va replaces v2va on the input.

10.6 TAPE AND TIME HIERARCHIES 149

We may conclude by contradiction that w does not have two distinct
proper suffixes described by the same transition matrix. Hence there must
be at least n~ - 1 distinct r-by-r transition matrices. The number of such
transition matrices is 4 r2. If T has s states and t storage tape symbols, then
r <- sL(n~)tr~(n~ ~. Thus"

n k - 1 =< 4tsC(nk>tc("k >12.

Take logarithms twice"

log2 log2 (nk - 1) =< 2[log2 s + log2 L(nk) + L(nk)log2 t] + 1.

For n~ >__ 5, the left-hand side is bounded below by ½ log2 log2 nk. For
any nj~, the right-hand side is bounded above by 3L(nk)log2 2st. Thus, for
the infinity of n which are nk for some k, we have

L(n) > 1 .
log2 log2 n = 6 log2 2st

It is not possible that

L(n) = O, sup
n~ ~ log log n

since the above holds for an infinity of n. Thus the theorem is proved.
Note that we have not said that L(n) must be at least proportional to

log log n for all n, but just for an infinite set of n.

10,6 TAPE AND T IME HIERARCHIES

Every set accepted by a time- or tape-bounded Tm is a recursive set. Further-
more, every recursive set is accepted by some tape-bounded Tm and also by
some time-bounded Tm. Since no complexity class can contain all recursive
sets,? there must be an infinite hierarchy of complexity classes. In this
section we show that, for small increases in the functional rate of growth of
a tape or time bound, new sets can be recognized that could not be recognized
before.

First we introduce the concept of constructability. A function L(n) is
said to be constructable if there is some Tm T which is L(n) tape bounded,
but not bounded by any smaller tape growth. The Tm T is said to construct
L(n). The set of constructable functions includes log n, n k, 2 ", n !, and so on.
If Ll(n) and L2(n) are monotonic and constructable, then so are L~(n).L2(n),
2L1 (n~, and (Li(n))L2 (n~. Thus the hierarchy of constructable functions is very
rich.

t Assume that some complexity class C contained all recursive sets. Then we
could construct a Tm T which diagonalizes over the Tm's of that complexity
class and which halts for all inputs. (One can tell if a Tm of given time or tape
complexity class will ever halt.) This leads to a contradiction, since T accepts a
recursive set which could not be in complexity class C.

150 TIME- AND TAPE-BOUNDED TURING MACHINES 10.6

Theorem 10.9. If Ll(n) and L2(n) are constructable tape functions with

inf Ll(n)_ -- 0 and Lz(n) = > log n,

then there exists a set accepted by an Lz(n) tape-bounded Tm, but not
accepted by any L~(n) tape-bounded Tm.

Proof We can construct an L2(n) tape-bounded Tm T which, operating as
follows, accepts a set not accepted by any L~(n) tape-bounded Tin. Let T'
be a Tm with input alphabet X' which constructs L2(n). Consider a new
alphabet X formed from Z' in the following manner. For each symbol a in
~' there are two subscripted symbols a0 and a~ in X~. With input x of length
n, T (ignoring the subscripts) first simulates T' until T' halts. This allows T
to mark off exactly L2(n) cells on its scratch tape when the proper input x is
chosen. (Recall that not all inputs may cause T' to use exactly L2(n) cells.)
From now on, if T ever moves to a blank cell, T halts. This ensures that
T will be L2(n) tape bounded.

In what follows, T looks only at the subscripts of x. T treats x as a
binary number i and generates an encoding of the ith Tm, T,, on its scratch
tape. If, in the process of generating the encoding, T attempts to use more
than L2(n)cells, then T halts without accepting. We require that the method
of generating the encoding of T, be such that there always exists an input
with a sufficient number of leading zeros followed by the integer i so that an
encoding of T, will be generated by T.

If T successfully generates an encoding of T~, then T starts to simulate
~. Since T has a fixed number of storage tape symbols and T, may have an
arbitrarily large number of storage tape symbols, T will encode T,'s symbols
in binary. Thus, if T, uses I cells, T will require c,l cells for the simulation,
where c, is a constant which depends on the number of symbols of T,. Now
T has L2(n) cells available for the simulation of ~. If T, happens to be L~(n)
tape bounded, then the simulation requires at most c,L~(n) cells. Since

inf Ll(n) = O,
,-.oo Lz(n)

there are an infinity of n such that L2(n) > ceLl(n). Thus, for any L~(n) tape-
bounded Tm T~, there is some input with a sufficient number of leading zeros
followed by the integer i so that the simulation can be carried out.

An Ll(n) tape-bounded Tm T~ on input x must either loop, halt in an
accepting state, or halt in a nonaccepting state. If T~ has s states and t storage
tape symbols and is Ll(n) tape bounded, the number of possible configura-
tions of T~ with input of length n is snL~(n)tLt °~. The factors s, n, L~(n), and
tL1 ("~ represent the state, input head position, storage head position, and

10.6 TAPE AND TIME HIERARCHIES 151

storage tape contents, respectively.~ Note that since

inf Ll(n) = O,
,~oo L2(n)

if L2(n) > log n,

then there are an infinity of n such that not only is L2(n) > c~Lz(n), but also
2 L~.(n~ > snL~(n)tL~ (n~. Therefore, for the infinity of n having the above
properties, T can detect the condition in which T~ loops by counting in base 2,
on a separate track, the number of moves made by T~.

Should T detect that T~ is in a loop, T halts and accepts. If T~ halts
without accepting, T again halts and accepts. If T~ accepts, T halts without
accepting.

The claim is made that the set accepted by T is not accepted by an Ll(n)
tape-bounded Tm. For assume that some L~(n) tape-bounded Tm T~ accepts
the set. Then, for some n, there is an input of length n, whose subscripts
(recall that input symbols of T represent two alphabets) consist of O's fol-
lowed by the binary integer i, such that:

1. T lays off L2(n) cells of tape.
2. T can construct an encoding of T~.
3. T can simulate T~; i.e., L2(n) > ceLl(n).
4. T can detect if T~ loops; i.e.,

2L2(n) > snLl(n)tLl('~.

5. T accepts x if T~ does not, and T does not accept x if T~ does, thereby
contradicting the claim that T~ accepts the set accepted by T.

The above proof shows that the slightest functional increase in the tape
bound yields a new complexity class. However, the proof requires that L2(n)
be greater than log n.

It can also be shown, by another method, that between log log n and
log n, a slight increase in tape yields a new complexity class.

Theorem 10.10. For each constructable function L2(n), between log log n
and log n,~ there exists a set L such that L is accepted by an L2(n) tape-
bounded Tin, but not accepted by any Ll(n) tape-bounded Tm, if

inf Ll(n) = O.
,~-~ o~ L2(n)

t Do not confuse configurations with storage states, as used in Section 10.5. The
latter do not include input head position.

By this we mean

inf log log n
,~oo L2(n) = 0 and L2(n) _< ½log2 n.

152 TIME- AND TAPE-BOUNDED TURING MACHINES 10.6

Proof. Let T be a Tm that constructs L2(n). Denote the input alphabet of
T by Z'. For each a in Z', let ao, al, and a2 be in Z. Let hi and h2 be the
homomorphisms defined by

h~(aO = a and h2(aO = i

for each a~ in 2;. Define L, a language over alphabet 2;, as follows. Let w be
of length n and suppose that hz(w) would cause T to use k storage cells and
then halt. Then w is in L if h2(w) is of the form x2 ~-2~÷ ix, where x is com-
posed of" 0's and l's and is of length 2 k.

It is easy to see that L is accepted by an L2(n) tape-bounded Tm. The
Tm first lays off k cells of memory by treating w as a word in 2;'. Next the
Tm checks the format and compares the initial and terminal strings of 0's
and l's, bit by bit, using its storage tape to measure position within the
initial and terminal subwords of 0's and l's.

Suppose that L were accepted by an L~(n) tape-bounded Tm with s states
and t storage tape symbols. Suppose also that

Ll(n)
inf L2(n) = O.

~ - - * O0

There are at most 4(~L~ ("~t~l("~ transition matrices for words in Z* of
length less than or equal to n. Let y be a word of length n over alphabet Z'
such that T' uses exactly L2(n) tape cells when processing y. Consider all
w in L such that ha(w) = y. There are clearly 22~~("' such w. For each of
these words, the terminal string of O's and l 's must have a unique transition
matrix; otherwise, a word not in L would be accepted, by Lemma 10.4.
Hence,

22L2 (.~ < 4(sL1(n)tLl(n))2.

Taking logarithms twice, we have

L2(n) =< 1 + 2(log2 s + log2 Lz(n) + Ll(n) log2 t).

But this contradicts the fact that

inf Ll(n) = O.
~ ~ L2(n)

In fact, it is easy to see that

inf Ll(n) > 1
~ ® L2(n) = log2 t

There is a similar hierarchy result for time complexity. However, the
result is not quite as strong.

A function T(n) is said to be countable if there is some single-tape Tm
T that is T(n) time bounded and marks off a block of length log T(n) on its

10.6 TAPE AND TIME HIERARCHIES 153

tape. Just as for constructable functions there is a rich hierarchy of countable
functions.

Theorem 10.11. For any countable function T2(n) and any k, there
exists a set that can be accepted by a T2(n) log (T2(n)) time-bounded Tm
with k tapes but not by any k-tape Tl(n) time-bounded Tm where

inf Tl(n) = O.
,~-.~o T2(n)

Proof The proof is similar to that of Theorem 10.9, and only a brief sketch
of the necessary construction is given. A Tz(n)log T2(n) time-bounded Tm
T is constructed to operate as follows. T treats an input x as a binary number
i and generates an encoding of a Tm T~. T simulates T~ on input x. During
the simulation, T shifts a copy of the encoding of T~ along an extra track of
the first storage tape in such a way that the leftmost symbol of the encoding
is always immediately below the symbol scanned by T~ on that tape. Thus
each time T~ moves the head on this tape to the left or right, T must move
the entire encoding of T~ one space to the left or right. The reason for doing
this is to keep the encoding of T~ close to a tape head of T. Otherwise, T
might have to make an unbounded number of moves to access the encoding
to simulate one move of T~. The maximum number of moves T needs to
simulate a move of T~ is equal to the number of moves necessary to shift the
encoding plus a number of moves to access the encoding to determine the
next move. Let this number be k~.

During the simulation, T keeps a counter of length log T2(n) on one
track of the first storage tape. The leftmost symbol of this counter is always
kept under the symbol scanned by the first tape head of T~. The entire
counter is shifted each time the head moves. To shift the counter and add
one requires 2 log T2(n) steps. Should the contents of the counter reach
T2(n), T halts. This forces the number of moves of T to be bounded by
a constant times T2(n) log T2(n).

If, during the simulation, the TmT~ halts without accepting, or if the
counter overflows, T accepts a sentence. If, during the simulation, T~
accepts, T does not accept a sentence. Now the set accepted by T cannot be
accepted by any T~(n) time-bounded Tm T~ where

inf Tl(n) = O,
T2(n)

since there is an n and a binary string x representing the binary integer i,
with [x[= n, such that T2(n) > k~Tx(n). Since T simulates approximately
T2(n)/k~ moves of T~, and T~ makes at most T~(n) moves, T will complete
the simulation of T~ and accept only if T~ does not accept. Thus T~ cannot
accept the same set as T.,

154 TIME- AND TAPE-BOUNDED TURING MACHINES

PROBLEMS

10.1 Describe, informally, a Tm with rewriting input, but no other storage
tapes, that accepts L = {omlmlm ~ 1} with time bound T(n) = n 2. There
is a Tm of the same type accepting L in time T(n) = n log n. Can you
find this machine ?

10.2 Any string, w, in {0, 1}* beginning with 1 can be interpreted as a binary
integer. Let N(w) be that integer. Let L = {wlew2e. . . cw~JN(wO = i}.
(Example of a word in L: 1 cl0e 11 c 100e 101 c 110c 111 c 1000c 1001.) Show that
L belongs to tape complexity class log log n. Hint. It is not necessary to
store all of w~ on storage tape at once to compare it with w~ + 1.

10.3 Show that L = {wewnlw in {a, b}*} belongs to tape complexity class log n
and no smaller class, by showing that if T is a Tm with nonrewrit ing input
and one storage tape accepting L, then no two words ul and u2 in {a, b)*
of length m can be described by the same transition matrix.

10.4 Let T be a Tm with rewriting input and no other storage tape. Suppose
that for any integer k > 0, there is some input w to T, of length nk, for
which the crossing sequence between some two adjacent cells is at least
of length k. Show that there is a constant c associated with T, such that
for each.k, the smallest ne is less than c e.

10.5 Let T be a Tm as described in Problem 10.4. Suppose that T never leaves
the cells originally containing the input. Further , suppose that there is
some constant k such that no matter what word is input to T, no crossing
sequence ever gets longer than k. Show that T accepts a regular set.

10.6 Let T be a Tm as described in Problem 10.4. Suppose that T is of time
complexity T(n) = kn for some integer k. Show that T accepts a regular
set. Hint. Use the results of Problems 10.4 and 10.5.

10.7 Let T be an L(n) tape-bounded Tm with one storage tape and an input
tape upon which the input head cannot move to the left (i.e., may remain
stat ionary or move to the right). Show that if there is no constant upper
bound on the amount of storage tape used by T, then

inf L(n)
n--, oo log n > 0.

10.8 Prove that the class of all languages in a given tape complexity class with
a constructable tape bound is recursively enumerable (i.e., one can
enumerate a class of Tm's accepting exactly these languages).

10.9 Show that for

Tl(n)
inf T2(n) = O,

? l .--+ o o

there exists a set accepted by a k + 1 tape T2(n) t ime-bounded Tm not
accepted by any k-tape Tl(n) t ime-bounded Tm. Use this result to give
an alternative proof of Theorem I0.11 for the case k > 1.

REFERENCES 155

10.10 Show that Theorem 10.10 holds, even if the Tm's are allowed to be non-
deterministic. Why does Theorem 10.9 not generalize to the nondeter-
ministic case ?

R E F E R E N C E S

Hierarchies Of recursive sets have been studied by Grzegorczyk [1953], Axt
[1959], and Ritchie [1963]. The classification by time-bounded Turing machines
is due to Hartmanis and Stearns [1964, 1965]. Classification by tape complexity
is from Hartmanis, Lewis, and Stearns [1965] andLewis, Stearns, and Hartmanis
[1965]. Theorems 10.1 and 10.9 are from Hartmanis, Lewis, and Stearns [1965].
Theorems 10.3, 10.4, and 10.11 are from Hartmanis and Stearns [1965]. Theorem
10.10 is from Hopcroft and Ullman [1968d]. The notion of crossing sequences
is found in Hennie [1965] and the notion of transition matrices in Hopcroft and
Ullman [1968d]. A machine-independent theory of recursive functions can be
found in Blum [1964]. Interesting results on real-time computation (time com-
plexity T(n) = n) can be found in Yamada [1962], Rabin [1963], and Cole [1964].

CHAPTER 11

TIME AND SPACE BOUNDS FOR
RECOGNIZING CONTEXT-FREE LANGUAGES

11.1 INTRODUCTION

Two important properties of a language are the amount of time and the
amount of space necessary to recognize a sentence of the language. In this
chapter we consider algorithms for recognizing sentences of a language
which will be applicable to any context-free language. In particular we
show that, for any cfl, we can construct a Turing machine which recognizes
the sentences of the language in time n a, and that we can construct another
Turing machine which recognizes the sentences of the language using only
log2n space. It is not known whether or not these are tight bounds, since
we cannot prove that there exist cfl's requiring that much time or space.

11.2 TIME REQUIREMENTS FOR
RECOGNITION OF CONTEXT-FREE LANGUAGES

In determining the time required to recognize an arbitrary context-flee lan-
guage, we consider recognition by a multitape Turing machine. Our reason
for doing this is that using the multitape Turing machine as a model gives
answers which correspond to the number of discrete steps in the algorithm
and hence, reflects the time one would need if the algorithm were run on a
random access computer. Had we selected a single-tape Turing machine,
we would get a different answer. With this in mind, we proceed to describe
the algorithm and then its implementation on a multitape Turing machine.
For simplicity, we assume that the grammar of the language to be recognized
is in Chomsky normal form.

The key to the.algorithm lies in an n-by-n array called the recognition

matrix. Let a ~ a 2 . . . a , be the sentence which we are attempting to recognize.
The element in row i and column j of the recognition matrix will contain the
set of all variables from which the substring ajaj+ ~ . . . a j +~_ ~ can be derived.
Note that this substring is of length i and begins at position j.

As an example, consider the grammar

G = ({S, A, B, C, D, E, F}, {a, b}, P, S)

156

11.2 TIME REQUIREMENTS FOR RECOGNIZING CFL'S 157

with the following productions:

S ---~ CB

D ---~ A A

E - + BB

C--+ a

F- ->b.

S --+ FA S --~ FB

A -+ C S B - + F S

A --+ F D B --+ CE

A -+ a B---~ b

The recognition matrix for the sentence aababb is shown below in Fig. 11.1.
The j th entry in row 1 contains some symbol H (possibly along with other
symbols) if the terminal substring of length 1 starting with the j th input
symbol can be derived from H. Since the grammar is in Chomsky normal
form, we need only check to see if there is a rule H --~ aj, where aj is the j th
input symbol. The first input symbol is a, and there are productions A -+ a
and C -+ a in the grammar. Thus A and C are entered in the cell (1, 1).
Likewise A and C are entered in the cell (1, 2). The third input symbol is a
b, and the grammar contains productions B --~ b and F - + b. Thus B and F
are entered into the cell (1, 3). The remainder of the first row is filled in
similarly.

The j th entry in row 2 will contain symbol H (possibly along with some
other symbols) if the substring of length 2 starting with the j th input symbol
can be derived from H. The only way in which this can happen is if: H - + IJ

is a production of the grammar, the terminal string of length one starting
in position j can be derived from /, and the terminal string of length one
starting in position j + 1 can be derived from J. If the above conditions are
fulfilled, then I will be in cell (1, j) and J will be in cell (1, j + 1). It is for
this reason that D is entered in cell (2, 1) since D -+ A A is a production of
the grammar and A is in cell (1, 1) and cell (1, 2). Similarly, S is entered in
cell (2, 2), since S--~ CB is a production of the grammar and C is in cell
(1, 2) and B is in cell (1, 3).

Position

1 2 3 4 5 6

Length

A, C

D

A

D

A

D, S

A , C

S

A

S

A,B

B, F

S

B

S, E

A , C

S

A , B

B, F

E , S

B, F

Fig. 11.1. Recognition matrix for the sentence aababb.

158 TIME AND SPACE BOUNDS FOR RECOGNIZING CFL'S 11.2

The j th cell of the third row will contain the symbol H if the substring
of length three starting with the.Rh input symbol is derivable from H. There
are two ways in which this can happen. Namely, if H ~ IJ is a production
of the grammar, and either the substring of length one starting in pos-
ition j is derivable from I and the substring of length two starting in
position j + 1 is derivable from J, or the substring of length two starting
in posi t ionj is derivable from I and the substring of length one starting in
position j + 2 is derivable from J. Thus, to determine if H should go into
cell (3,j) , we examine the pair of cells (l, j) and (2 , j + 1) and also the
pair of cells (2, j) and (1, j + 2).

In general, to determine the entry (i, j) , i > 1, for each production
H ~ IJ, we examine the pairs of cells (1, j) and (i - 1, j + 1), (2 , j) and
(i - 2 , j + 2) , . . . , (i - l , j) and (1, j + i - 1) to see if the first cell in the
pair contains I and the second cell J.

Once the recognition matrix has been constructed, we need only look
to see if cell (n, 1) contains the symbol S to determine if the sentence is in the
language. Thus the time necessary to determine if a sentence is in the lan-
guage is equal to the time necessary to construct the recognition matrix.

There are n entries in the first row of the recognition matrix. Each entry
takes one step to compute. There are n - 1 entries in the second row each
requiring one step to compute. There are n - 2 entries in the third row
each requiring two steps to compute. The ith row has n - i + 1 entries
each requiring i - 1 steps to compute. Thus the total computation time is

-

n + (n - i + 1) (i - 1) = na + 5n which grows a s n a.
~ = 2 6 '

Having exhibited an algorithm for recognizing the sentences of a cfl, we
implement the algorithm on a multitape Turing machine to show that we
can indeed execute the algorithm in time n 8.

The real question is whether or not we can arrange the recognition
matrix on the storage tapes in such a manner so as not to waste too much
time moving the tape heads around. Our multitape Turing machine will have
an input tape and two scratch tapes. The recognition matrix will be stored
on both scratch tapes, but the elements of the matrix will be arranged in
different orders on the two tapes. On tape 1, the elements of the recognition
matrix will be arranged by columns. That is, (1, 1), (2, 1) , . . . , (n, 1), (1,2),
(2, 2), On tape 2, the elements of the recognition matrix will be arranged
by diagonals, i.e., (1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), (4, 1), The
elements of the recognition matrix will be computed by rows; that is, (1, 1),
(1, 2) , . . . , (1, n), (2, 1), (2, 2),

The actual motion of the Turing machine is quite straightforward. First,
the Tm fills in the (1, 1), (1, 2) , . . . , and (1, n) entries on the appropriate cells
of both tapes. This process requires the Tm to use the length of its input to

(a)

TIME REQUIREMENTS FOR RECOGNIZING CFL'S 159

A
Tape 1

C

11.2

A
Tape 2

C

a

F

1,1 2,1 3,1 6,1 1,2 2,2

A A
Tape 1 D S

C C

t
1,1 2,11,2 3,1 2,21,3 4,1 a,2 2,a 1,4
A A a l A

Tape 2 D S ! S
C C F C

Ib)

S " ° "

F

1,1 2,1 3,1 6,1 1,2 2,2

Tape 1 A A D A S
C C

1,1 2,1 1,2 3,1 2,2 1,3 4,1 3,2 2,3 1,4
A A B A

Tape 2 D A S S
c c F C

(c)

l
Fig. 11.2. Format of scratch tapes for n 3 recognition. (a) Contents of tapes
after initialization. (b) Contents of tapes just before computation of element (3, 1).
(c) Contents of tapes just after computation of element (3,1).

mark off n blocks of length n on tape 1 and blocks of lengths 1, 2, 3 , . . . , n
on tape 2. It should be clear that this initialization phase requires a number
of steps proportional to n 2. For the recognition matrix of Fig. 11.1, the
initial portions of the two scratch tapes would now appear as in Fig. 11.2(a).

The Tm must now compute the remaining entries. Since there are
roughly n 2 elements of the recognition matrix to be computed, we must limit
ourselves to n steps per entry. Assume that we are computing element (i, j) ,
and head 1 is at element (1, j) and head 2 at element (i - 1 , j + 1). Head 1
moves right, scanning the elements (1, j) , (2, j) , . . . , (i - 1, j) , until it reaches
the first blank cell, which corresponds to the element (i, j) being computed.

160 TIME AND SPACE BOUNDS FOR RECOGNIZING CFL'S 11.3

Meanwhile, head 2 moves right scanning the elements (i - 1,j + 1),
(i - 2 , j + 2) , . . . , (1 , j + i - 1). As the corresponding pairs of elements
are scanned, the Turing machine computes the value of element (i, j) . Since
head 1 is now scanning the cell (i, j) on tape 1, this cell on tape 1 is filled in
and head 1 continues to move to the right to the first nonblank cell, which
will correspond to the element (i, j + 1). Head 2 must move to the left to
cell (i, j) , which will be the first blank cell encountered, to record the answer.
Head 2 then moves to the right to cell (i - 1, j + 2), which is the first cell
to the right of the first block of blank cells encountered. We are now ready
to compute the element (i, j + 1).

Figure 11.2(b) illustrates the configuration of the two scratch tapes just
before the computation of the element (3, 1). Head 1 is scanning element
(1, 1) and head 2 is scanning element (2, 2). Both heads move to the right,
scanning elements (2, 1) and (1, 3), respectively. Since element (1, 1) contains
C and (2, 2) contains S, element (3, 1) should contain A. Head 1 writes A in
the cell corresponding to element (3, 1) when that cell is reached, and con-
tinues to the right to the first nonblank cell which corresponds to element
(1, 2). Meanwhile, head 2 moves left to cell (3, 1) to store the symbol A,
reverses direction, and moves to the right to cell (2, 3). Figure 11.2(c) illus-
trates the contents of the tapes at this point.

It is easily seen that at most 3n moves are needed to compute any element.
However, when an element of the form (i, n - i + 1) has been computed,
both heads must be moved left approximately n 2 spaces. This will only
occur n times, and-thus, will only add something proportional to n a to the
total number of steps required. Thus, the number of steps is proportional to
n a. The constant is not important since, by Theorem 10.3, we can speed up
the recognition by any constant factor we desire.

Theorem 11.1. Every context-flee language can be recognized by a
multitape Turing machine of time complexity n 3.

Proof. The result follows from a formalization of the above discussion.

As mentioned earlier, no one has found a cfl for which there is no
recognition algorithm using less than n a time. In fact, we do not know of any
cfl that cannot be recognized in time kn (i.e., a number of steps that grows
linearly with the length of the input).

11.3 SPACE REQUIREMENTS FOR RECOGNITION OF CONTEXT-FREE
LANGUAGES

In this section we consider both off-line (two-way, read only input) and on-
line (one-way, read only input) Turing machine models. Ideally, we would
like to consider more realistic models for a computer. However, for the
recognition alg6rithms which will be described, we see that the amount of

11.3 SPACE REQUIREMENTS FOR RECOGNIZING CFL'S 161

storage required is more a function of the algorithm than of the model,
except for the question of whether the model is on-line or off-line. In other
words, the results are the same whether we use a single-tape Turing machine,
a multitape Turing machine, or some better model of a random access com-
puter. Specifically the results are:

1. For off-line recognition, there are context-free languages that cannot be
recognized in less than log n space.

2. Log2n space is sufficient for off-line recognition of any context-free
language.

3. For on-line recognition, there are context-free languages that cannot be
recognized in less than linear space.

4. Linear space is sufficient for on-line recognition of any context-free
language.

There are cfl's that cannot be recognized by an off-line Turing machine
in less than log n space. See Problem 10.3. Thus we can state the following
theorem.

Theorem 11.2. There are context-free languages that cannot be recog-
nized by an off-line Turing machine in less than log n space.

Proof. The cfl {wcwnlw is in {0, 1}*} cannot be recognized in less than log n
space by an off-line Turing machine (Problem 10.3).

Before showing that log2n space is sufficient for off-line recognition of
any cfl, we prove the following lemma.

Lemma 11.1. Let a be a sentential form of length four or greater gener-
ated by a cfg in Chomsky normal form. Let n = [a]. Then, a can be
written a~a2a3, with a~ or ~3 possibly e, such that there exists a derivation
of a,

S ~ alAaa =-~ ala2aa, A ~ a2 and ½n < [a21 =< ~n.

Proof The first step in the derivation of a must be of the form S ~ BC.
If either B or C generates a substring of a with length l, where ½n < l =< In,
then the conditions of the lemma are easily satisfied. If neither B nor C
generates a substring with length l, where ½n < l =< ~n, then either B or C
must generate a string of length greater than ~-n. In this case, assume (without
loss of generality) that B generates a string of length greater than 32-n. The first
step in the derivation of a string from B must be of the form B =~- DE. Now
D and E cannot both generate strings of length less than ~n. Thus if
neither D nor E generates a substring of a with length l, where ½n < l =< ~n,
then either D or E must generate a string of length greater than ~n. By repeat-
ing the argument, we eventually must reach a variable from which an
appropriate length terminal string is derived.

162 TIME AND SPACE BOUNDS FOR RECOGNIZING CFL'S 11.3

Theorem 11.3. Every context-free language L can be accepted by some
off-line, log 2 n tape-bounded Turing machine.

Proof . The argument is quite complex, and only the essential construction will
be given. We shall construct a Turing machine T that accepts L and uses at
most c log 2 n cells of memory, where c is a constant to be determined by the
construction. By recoding c symbols into one symbol, we can obtain a new
Turing machine using only log s n cells. The c log s n cells of memory will be
divided into c log n blocks. Each block will have room to contain two num-
bers (in binary) between 1 and n and a variable which may be either "primed"
or "unprimed."

Let G be a grammar in Chomsky normal form such that L(G) = L. If
a sentence a l a 2 . . . a , , n >_- 4, can be derived by G from S, then by Lemma
11.1 there exists a sequence of sentential forms ~k, 8k_~, . . . , ~z such that

1. 81 = ala2. • .an.
2. [3kl -<- 3, but [8~_11 >--4.

3. S ==>- 8~.
4. For 2 =< i_< k, we can wri te 8{ = ~A~yi and 8~_1 = ~[3~yi, where

A(=+/3{. Also, ½13{_~1 < I~,1 =< {Is,-~l.

Now 18,1 < 32-18,_1[+ 1 for all i, with 2 _< i =< k, and 3; hence,
15,1 =< -~[8,_1[. Thus, k <= c logz n, where c = 1/log2 ¼.

,
The Turing machine T will determine if S ~ a l a 2 . . . a n by locating the o

strings, 13, 2 =< i _<_ k , and replacing them by A~. Note that/32 is a string of
terminal symbols, but that in general the strings/3, are composed of terminals
and variables. When the input is reduced to a string of length 3, T's finite
control can determine if S derives that string.

To determine the string/32, T will cycle through all substrings of the
input xl and variables of G, until a substring f12 and variable A2 are found,

such that A2 % f12 and also that [/321 is between 31 and } of Ix1[. During
the cycling process, the string f12 and variable A2 are recorded in the first
block of memory by storing the position of the first and last symbol of f12
on the input along with the variable A2. As soon as a suitable A2 and f12

are found, A2 is primed to indicate both that A2 ~ f12 and that the length
of/32 is satisfactory. In general, a variable is primed in any block exactly
when a substring which it derives has been found. For the time being, we

will postpone the explanation as to how T determines if A2 ~ f12.
Let the string 31 = a la2 . . . a ,~ with f12 replaced by A2 be 52. T now goes

on to find a substring, fla of 52 and a variable Aa such that Aa ~ / 3 a and
lfla[is between ½ and ~- the length of 32.

11.3 SPACE REQUIREMENTS FOR RECOGNIZING CFL'S 163

To determine the string/33, T cycles through all substrings of 32 and
variables of G until a substring /33 and variable A3 are found, such that

A3 ~ / 3 3 and also that 1/331 is of suitable length. At that time, A~ is primed. 6
During the cycling process, the string/33 and variable A3 are recorded in the
second block of memory. The only difference this time is that 133 is not
necessarily a string of terminal symbols since it may contain the variable A2.
Thus, to store/33, T stores the location in the input string of the first and last
symbols of the substring of the input derivable from f13. Also, in cycling
through substrings of 32, M must remember that 32 is the input with the
substring f12 replaced by A2. Once again we postpone the explanation as to

how T determines if A8 ~ / 3 3 .
After finding f13, T goes on to determine/34,/35, etc. If, at some point, T

determines that no suitable/3, exists, then T backs up to fl,-1, removes the
prime from A,_i, and starts cycling to find a different/3,_ 1 or A,_I. Of
course, T starts the cycling from the point at which it left off. If all possible
/3,_ 1 and A~_ 1 are exhausted, T backs up to/3,_ 2 and A,_ 2, and so on. Should
T exhaust all possible /3~ and A~, then T concludes that the input is not
derivable from S. On the other hand, if 31 is derivable from S, T will even-
tually find suitable/32,/33,...,/3k, at which point 3k will consist of at most three

symbols. If S =~- 3k, then T accepts. Otherwise the search continues for a
different flk and Ak. Note that since k < c log n and since T has c log n
blocks of memory, T will not run out of space to store the fl,.

It remains to explain how, at each step, T determines if A, =~ fi,. Note

that this is really the same problem as determining if S ~ 31. If Ifl~[=< 3,

the finite control can determine if A~ ~/3~. Otherwise, by Lemma 11.1
again, there are strings ~ol, ~o2 , OJr, such that

1. O')1 ~- /~i"

2. _-< 3, but Iw - l => 4.

3. Ai -~- o~r.

4. For 2 =< j =< r, we can write oJj = ~jCjCj and oJj_l = ~j0j~bj, where

Cj ~ 0,, and ½[oJj_l] < I0,1 =< ~-Io~-~1.

Note that all blocks of memory to the right of block i are not in use at

this time and can be used to determine if A~ ~/3~. To determine if A~ ~ fl~,
T cycles through all substrings of/3~ and variables of G until it finds a sub-

string 02, of suitable length, and a variable C2 such that C2 *~ 02. 02 and
C2 are recorded in the i + 1st block of memory by placing the location of
the first and last symbol of the substring of the input derivable from 0z,
along with the symbol C2, into the block i + 1.

164 TIME AND SPACE BOUNDS FOR RECOGNIZING CFL'S

T determines if C2 ~ 02 in a similar manner, by using blocks of memory

from i + 2 on. Once C2 ~ 02 has been determined, the blocks from i + 2
on are erased so that M can use these blocks for 03, 04 , Or. Since
I ,1 =< (4/5) ~n, we need at most c log [(4/5)~n] blocks which is exactly equal
to the (c log n) - i blocks that are not in use. Once T has determined if

Ai *~/3~, all blocks from i on are erased so that T can use these blocks for
/~,+~,/3,+~,...,/3~.

For on-line recognition, linear space is necessary and sufficient to recog-
nize all cfl's.

Theorem 11.4. The context-free language,

L~ = {wew"lw in {0, 1}*},

requires inf L(n) /n > 0 for recognition by an on-line L(n) tape-bounded
~1, ---~ oO

Turing machine.

P r o o f Let M be an on-line L(n) tape-bounded Turing machine that recog-
nizes L~. There are 2 m words w of length m, such that wcw R is in L~. The
memory configuration of M must be different for each of these words when
the input head scans the c. Thus sL(n) t L~"~ > 2 ", where s and t are the number
of states and tape symbols of M. This implies that

inf L(n) > O.
n ~ n

Theorem 11.5. Every context-free language can be recognized by an
on-line L(n) = n tape-bounded Turing machine.

P r o o f First note that, for L(n) = n, the on-line and off-line Turing machine
models are equivalent since the storage tape is long enough to store the
entire input. Thus the theorem follows immediately from Theorem 11.3.

PROBLEMS

11.1 Construct the recognition matrix for the sentence baabaabb if the produc-
tions of the grammar are as follows.

S--~ CB S - + FB
D - + A A B--> FS
E ~ B B B ~ CE

11.2 Prove that the language

S--+ FA A - + a
A--+ FD B--+ b
A--+ CS C--+ a

F--+ b

L = (wlcw2c...CWmCCW~ll ~ i =< m, and for 1 =< j =< m, wj is in {0, 1}*}

REFERENCES 165

is context free. Show that L cannot be recognized in real t imer by any
multitape Turing machine.

11.3 Prove that

L = {xwwRlx and w are in {0, 1}* with w ¢ ~}

is not accepted by a real-time multitape Tm. Is L context free ?

11.4 Write an ALGOL program for the algorithm sketched in Theorem 11.3.

11.5 Consider the grammar of Problem 11.1 and the sentence abaabbabaaababbb.

Show the contents of the memory of the Turing machine of Theorem 11.3
at the first time a variable is primed in the fourth block of memory.

REFERENCES

All the results in this chapter are from Lewis, Stearns, and Hartmanis [1965],
except Theorem 11.1, which is from Younger [1967].

t i.e., by a Tm of time complexity n. Note that the speed-up theorem (Theorem
10.3) does not apply, so that time complexity n is different than time kn, k > 1.

CHAPTER 12

DETERMINISTIC P U S H D O W N A U T O M A T A

12.1 INTRODUCTION

We have seen that the nondeterministic pushdown automata accept exactly
the context-free languages. We might ask whether every context-free lan-
guage can be accepted by a deterministic pushdown automaton. The answer
is no. However, the subset of cfl's that can be accepted by deterministic pda
(abbreviated dpda) is important, since these languages are very rapidly
recognized in comparison with the time of n 3 given by Theorem 11.1.

Let us recall our definition of a deterministic pda. A deterministic pda
is a pda for which there is only one choice of move for any triple of state,
input symbol (or E input), and pushdown symbol. Furthermore, there must
never be a choice of using an input symbol or of using E input. Formally,
let

M = (K, Z;, r , 8, qo, Zo, F)

be a pda. We say that M is deterministic if, for all q in K, a in E, and Z in F:

1. 8(q, a, Z) contains at most one element.
2. 8(q, e, Z) contains at most one element.
3. If 8(q, e, Z) is not empty, then 8(q, a, Z) is empty for all a in ~.

Rules 1 and 2 prevent the existence of a choice of move for the same
triple of state, input, and pushdown symbol. Rule 3 prevents a choice as to
whether e or a true input symbol is used.t

For the deterministic pushdown automaton, we define acceptance to be
by final state. Thus

T(M) = {xlx" (qo, Zo) ~ (ql, Y), for some qr in F and y in F*}.

A language accepted by a dpda is called a deterministic language.
An example of a deterministic pda is given below.

"1" A "true" input symbol will be synonomous with a non-~ input symbol.

166

12.2 COMPLEMENTS OF DETERMINISTIC LANGUAGES 167

Example 12.1. Let M = ({qo, ql), {a, b), {Zo, A, B), 3, qo, Zo, {qo)). The rules
of 3 are :'~

3(qo, a, Zo) = (ql, AZo) 8(qo, b, Zo) = (ql, BZo)
3(q~, a, B) = (q~, E) ~(qz, b, A) = (q~, E)

8(ql, a, A) = (q~, AA) 3(q~, b, B) = (q~, BB)

~(q~, ,, Zo) = (qo, Zo)

T(M) is the set of strings consisting of an equal number of a's and b's.
Observe that each time M uses an input symbol a, it either erases a B or prints
an A on its pushdown store. Each time M uses an input symbol b, it either
erases an A or prints a B. Z0 is the top (and only) symbol on the pushdown
store, if and only if P has used an equal number of a's and b's as input. In
that case, M transfers to state qo with e input.

We show several important properties of deterministic languages. First,
the complement of a deterministic language is also a deterministic language.
Second, the deterministic languages are preserved under the operations of
intersection with a regular set, inverse deterministic gsm mapping, and
quotient with a regular set. Finally, we shall define a class of unambiguous
grammars, called LR(k) grammars which generate exactly the deterministic
languages.

12.2 C O M P L E M E N T S OF DETERMINISTIC LANGUAGES

To show that the complement of a deterministic language is also a deter-
ministic language, we would like to show that interchanging the final and
nonfinal states of a deterministic pda which accepts a language L results in
a dpda that accepts the complement of L. There are two difficulties that
complicate the above approach. The first difficulty is that the original dpda
might never move beyond some point on an input string, either because it
reaches a configuration in which no move is possible or it makes an infinity
of moves on E input and never uses another true input symbol. In either
case the dpda does not accept any input with this string as a prefix and thus,
a dpda accepting the complement must accept every string with this prefix.

The second difficulty is due to the fact that after seeing a sentence x, the
dpda may make several moves on ~ input. The dpda may be in final states
after some of these moves and in nonfinal states after others. In this case,
interchanging the final and nonfinal states results in the dpda still accepting x.

To remove the first difficulty, we prove a lemma that states that, given
a dpda M, we can always find an equivalent dpda M ' that will never enter a
configuration from which it will not eventually use another true input symbol.

t Since the value of 8(q, a, Z) is either a set containing a single element or the
empty set, we shall write (p, 7') for {(p, v)}.

168 DETERMINISTIC PUSHDOWN AUTOMATA 12.2

Lemma 12.1. Let M be a dpda. There exists an equivalent dpda M' ,
such that for each input x to M ' there is some configuration M ' can
enter, starting in its initial configuration and using the entire input x.

Proof We can assume without loss of generality that for every configuration
and input symbol, M has a next move. One can always add an end marker
on the pushdown list to prevent M from erasing its pushdown store entirely
and add a "dead state," q. If, for some combination of state, input symbol,
and pushdown symbol, M has no next move, either using the input symbol
or an E input, then a transfer to state q would occur. On any true input
symbol, a transfer from state q to state q is the only move possible, and no
change of the pushdown store occurs. Of course, q is not an accepting state.

Now, if for every configuration and input symbol M has a next move,
then the only way in which M might never reach the end of its input is if in
some configuration M makes an infinity of moves on E input. Two cases
arise here. First, the pushdown store may grow indefinitely. Second, there
may be a bound on the length of the pushdown store, but some configuration
repeats.

Suppose that M = (K, Z, F, 8, q0, Z0, F). Let r be the maximum number
of pushdown symbols written in one move of M, s the number of states, and
t the number of pushdown symbols of M. Now, if

E'(ql, Yl) ~M (q2, 7'2), where 17'21 - 171] > rst,

then it should be clear that there are two intermediate configurations with
the same state and the same top (leftmost) symbol on the pushdown store.
Moreover, these configurations are never followed by a configuration with
a shorter pushdown store. That is to say, we can find q in K and Z in F
such that

'" (q~, Y~) ~M (q, Zy3) and ," (q, Zy3) ~ (q, Zy,y3)

by a sequence of moves in which no portion of ya is erased. Finally,

"'(q, Z7',7'o) ~M (q2, 7'~7',7'3), where 7'~7',7'3 = 7'2,

in a manner such that no portion of 7'3 or 7'4 is ever erased.
To prove the above, it is sufficient to note that in a sequence of moves

and configurations which increase the length of the pushdown store by more
than rst symbols, there must be more than st configurations which have a
pushdown store shorter than that of any subsequent configuration. Two of
these configurations must have the same state and same top symbol on the
pushdown store.

We observe that if

E :(q, Z7'8) ~ (q, Z~,ys)

t2.2 COMPLEMENTS OF DETERMINISTIC LANGUAGES 169

by a sequence of moves in which no portion of 7'3 is scanned, then the action
of M is independent of what appears below the top symbol Z on the push-
down store. Thus we have

," (q, ZT'a) ~ (q, Z7',7'3)

"(q, Z7'~7'3) ~ (q, Z7',7'47'3)

and the pushdown store grows indefinitely. We conclude that for a fixed in-
put word the pushdown store grows indefinitely if and only if, on E input, the
pushdown store grows by more than rst symbols.

Let us now consider what happens if the length of the pushdown store
does not grow indefinitely. If there is a bound on the length of the pushdown
store and an infinity of E moves, some configuration must repeat. By the
above argument, the smallest tape in the repeating loop of sequences cannot
be more than rst symbols shorter than the longest tape. Hence, the loop
may comprise at most s(t + 1) rst configurations.

We are now ready to describe a dpda M' , equivalent to M, which always
scans its entire input tape. Let

¢

M ' = (K', E, F, 8', q0, Z0, F ') ,

whereK' = { [q , i , j] l q i n K , O < i < rst, O < j < s(t + 1) rst} w {d},qo = [qo,
0, 0], F ' = {[q, i, j] lq in F}, and 3' is as defined subsequently.

The function of the i in state [q, i, j] is to record the difference of the
length of the current pushdown store and the length of the shortest pushdown
store occurring since the last true input was used. The function of j is to
count the number of moves that have been made since either a true input
symbol was used or M ' entered a configuration whose pushdown store was
shorter than any occurring since M ' last used a true input symbol, The state
d is simply a dead state which will cause the input head to move to the end
of the input.

For each i and j, where 0 < i < rst and 0 < j < s(t + 1) TM, q in K, a
in E, and Z in F, we define 3' as follows"

1. If 3(q, a, Z) = (p, 7'), then 3'([q, i, j] , a, Z) = ([p, 0, 0], 7').
2. If 3(q, c, Z) = (p, 7'), then 3'([q, i, j] , e, Z) = ([p, i + m - 1, j + 1], 7')

whe rem = 17'1, u n l e s s i + m - 1 < 0, i + m - 1 > rst, o r j + 1 >
s(t + 1) rSt.

Except ion 1. If i + m - 1 < 0, then 8'([q, i, j] , e, Z) = ([p, 0, 0], 7').

Except ion 2. If i + m - 1 > rst or j + 1 > s(t + 1) rSt, then 3'([q, i, j] ,
~, z) = (d, z) .

3. 3'(d, a, Z) = (d, Z).

170 DETERMINISTIC PUSHDOWN AUTOMATA 12.2

Rules 1 and 2 insure that M ' will keep track of the quantities i and j
properly. Exception 1 to Rule 2 causes i and j to be reset to zero each time
the pushdown store becomes shorter than it has been since the last true input
symbol was used. Exception 2 causes M ' to detect a situation in which M
will make an infinity of ~ moves. Rule 3 causes M ' to move its input head to
the right end of the input whenever M reaches a point on the input from
which it will never move to the right.

It is easy to check that M ' is a dpda and satisfies the conditions of the
lemma.

Theorem 12.1. The complement of a deterministic language is a deter-
ministic language.

Proof. Let

M = (K,Z, P, 3, qo, Zo, F)

be a dpda satisfying Lemma 12.1. Let

M ' = (K', Z, P, 3', q;, Zo, F ')

be a dpda simulating M, where K ' = {[q, k]Jq in K, k = l, 2, or 3}. Let

F' = {[q, 31[q in K}
and let

, = f[q0, 1], if qo is in F.

qo {.[qo, 2], if qo is not in F.

The purpose of k in [q, k] is to record, between true inputs, whether or
not M has entered an accepting state. If M has entered an accepting state
since the last true input, then k = 1. If M has not entered an accepting
state since the last true input, then k = 2. If k = 1 when M reads a true
input symbol, then M ' uses the input symbol and changes k to 1 or 2, de-
pending on whether the new state of M is or is not in F. If k = 2, M '
changes k to 3 and then employs the input symbol M uses, changing k back
to 1 or 2, depending on whether the new state of M is or is not in F. Thus,
8' is defined as follows, for q and p in K, and a in E.

1. If 8(q, ~, Z) = (p, 7), then, for k = 1 or 2,

3'([q, k], ~, Z) = ([p, k'], 7),

where k' = 1 if k = 1 or p is in F; otherwise k' = 2.
2. If $(q, a, Z) = (p, 7), then

8'([q, 2], ,, Z) = ([q, 31, Z)

and

3'([q, 1], a, Z) = 3'([q, 3], a, Z) = ([p, k], 7),

where k = 1 or 2 for p in F and p not in F, respectively.

12.3 PROPERTIES OF DETERMINISTIC LANGUAGES 171

We claim that T(M') is the complement of T(M). Suppose that ala2.., an
is in T(M). Then M enters an accepting state after or upon using a~ as a true
input. In that case, the second component of the state of M ' will be 1 before
it is possible for M ' to use a true input after a~. Therefore, M' does not
accept (enter a state whose second component is 3) while a~ was the last true
input used.

If ala2...a~ is not in T(M), by Lemma 12.1, M ' will some time after-
wards have no E-moves to make and will have to use a true input symbol.
But, at this time, the second component of M"s state is 2, since ala2...a,~
is not in T(M). By Rule 2, M ' will accept before using a true input symbol.

Before concluding this section we state the following corollary.

C o r o l l a r y 12.1. Every deterministic language is accepted by some dpda
which, in an accepting state, may make no move on E input.

Proof. Implicit in the proof of Theorem 12.1. Note that in a final state
(one in which k = 3) no E-move is possible.

12.3 PROPERTIES OF D E T E R M I N I S T I C L A N G U A G E S

In addition to complement, the deterministic languages are closed under
many of the operations under which cfl's are closed. One such simple
operation is"

Theorem 12.2. If L is a deterministic language and R a regular set, then
L n R is a deterministic language.

Proof. From a dpda M and finite automaton A, we can create a new dpda
M ' whose finite control consists of the controls of M and A. M ' accepts
whenever both M and A accept. A schematic representation of M ' is given
in Fig. 12.1. The details of the proof are left to the reader.

1
! _ I

1 A I
, I

l ,,,[

F i n i t e
c o n t r o l

o f M

F i n i t e c o n t r o l
o f M'

I
I
I
I
I

1
I
I
I
I
I
I

. J

r !

! 1
I I

Fig. 12.1. Construction
of dpda, M', from M
and A.

172 DETERMINISTIC PUSHDOWN AUTOMATA 12.3

,

. . . . t]

Finite control
of M'

j
"1

Finite
control

of M

Fig. 12.2. Construction of dpda M', for the inverse gsm theorem.

We say that a gsm A = (KA, Z, A, 3A, q0, F.4) is deterministic if, for each
q in KA and a in Z, 3A(q, a) contains at most one element. If (p, w) is in
8A(q, a), we shall write 3a(q, a) = (p, w), instead of 8A(q, a) = {(p, w)}.

Theorem 12.3. If L is a deterministic language and A a deterministic gsm
mapping, then A-~(L) is a deterministic language.

Proof A schematic construction Of a dpda M ' accepting A - ~(L) from A, and
a dpda M accepting L, is shown in Fig. 12.2. Essentially, M ' passes its input
through A and uses the resulting output of A as input to M. Outputs of A
are stored in a buffer until they are used by M.

Formally, let
A = (K~, ~, zX, ~ ,Po, F~),

and let
M = (KM, A, F, ~M, qo, Zo, FM).

Assume, by Corollary 12.1, that M makes no E input moves when in a final
state, i.e., 8M(q, E, Z) = 9~ for q in F~ and for Z in F. Let r be the maximum
length of w in A* such that 8A(p, a) = (p~, w) for some p and p~ in KA and
a in Z. Define

M ' = (K, Z, F, 8, q~, Zo, F),

where K consists of all [q, p, w] such that q is in K~, p is in KA, and w is in
A*, with [w I < r. Also q~ = [qo, P0, ~], and

F = {[q, p, e][q is in Fu and p in Fa}.

For all q and ql in KM, p and pl in KA, a in A w in A*, b in Z, 7' in F*, and
Z in F, 3 is defined by the following conditions.

12.3 PROPERTIES OF DETERMINISTIC LANGUAGES 173

1. If 3M(q, E, Z) = q~ and 3A(p, b) = (Pl, w), then

3([q, p, el, b, Z) = ([q, pz, w], Z).

(If M cannot move on e input and the buffer is empty, M ' simulates A.)
2. If 3M(q, E, Z) = (q~, ~,), then

3([q, p, w], e, Z) = ([ql, P, w], ~,).

(M' simulates an e-input move of M whenever possible. Note that q is
not in FM in this case.)

3. If 3M(q, a, Z) = (ql, 7'), then

8([q, p, aw], e, Z) = ([ql, P, w], ~,).

(M' simulates a move of M using the leftmost buffer symbol as input.
That symbol is removed from the buffer.)

It is easy to check that M ' is a dpda. The reader can show by induction
on the number of moves made by M or M ' that x is in T(M') if and only if
A(x) = y and y is in T(M). The fact that M makes no e-input moves in a
final state is needed to handle the case in which some proper suffix of x, when
used as input to A, yields e output.

To prove that deterministic languages are closed under some other
operations, we shall introduce what we call a predicting machine. If A is a
finite automaton and M is a dpda, then a predicting machine for M and A,
denoted by ~ra(M), is obtained from M by adding a second " t rack" to the
pushdown store of M. The predicting machine 7rA(M) operates exactly as
M, except whenever M writes a symbol Z on its pushdown store, 7rA(M), in
addition to writing the symbol Z on its first track, writes a symbol on its
second track whose use we explain below. Whenever M erases a symbol,
~ra(M) must erase the corresponding symbols on both tracks.

Let A = (KA, Z, 8a, Po, FA) and M = (K, Z, F, 8, qo, Zo, F). Define C
as the set of maps from K x Ka to the set {0, 1}. The symbols that ~ra(M)
writes on its second track correspond to maps in the set C.

If the pushdown store of M is Z~Z~_~...Z~, then the corresponding
pushdown store of 7rA(M) will be [Z~, ~][Z~_i, ~ _ ~] . . . [Z1, a~]. Here ~j is
the map which, for q in K and p in KA, has aj(q, p) - 1 if and only if there
exists a w in Z* such that

w" (q, Zj_ ~Zj -2 . . .Z~)1~ (q,, 7')

for some qr in F, and
8a(p, w) = Pl

for some Ps in FA. Otherwise, ~j(q, p) = 0. In other words, ~j(q, p) = 1
means that there exists an input sequence w, such that if M erases the j th
symbol on its pushdown store and enters state q, then w will take M to an

174 DETERMINISTIC PUSHDOWN AUTOMATA 12.3

accepting configuration. Also, w takes the finite automaton from the state p
to a final state.

Note that ~j depends only on the lowest j - 1st symbols on the push-
down store of M and not on the j th symbol. Our reason for defining % in
this manner is to avoid having to change ~j in the case in which M changes
only the top symbol on its pushdown store.

It is not obvious that rrA(M) exists, that there is an effective procedure
for constructing 7rA(M) from A and M, or that 7"rA(M) is deterministic. This
will be the essence of our next lemma. Since the construction of rrA(M) is
somewhat complicated, a detailed example is given in Example 12.2.

Lemma 12.2. For a finite automaton, A = (KA, Z, 3A, Po, FA), and a
dpda, M = (K , E, P, 3, qo, Z0, F), there is an effective procedure for
constructing a predicting machine, ,ra(M). Furthermore, 7rA(M) is a
deterministic pda.

Proof. Let M ' = (K, E, I ~ × C, 3', qo, Z~, F). C is the set of maps from
K x KA to the set {O, 1}. F o r q i n K , a i n E u { ~ } , Z i n F, a n d a in C, we
define 3' as follows.

1. If 8(q, a, Z) = (q', e), then 8'(q, a, [Z, ~]) = (q', e).
2. If 3(q, a, Z) = (q', Z~Z2. . .Zr), then

3'(q, a, [Z, a]) = (q', [Zl, al][Z2, a2] . . . [Zr, at]),

where a~, a2 , ar are appropriate tables.

The key to the proof is to show that, for i _< r, a,_ ~ can be computed
from Z, and a,. Of course, a~ = a. Suppose that we wish to compute
a~_~(ql, pz) for some q~ in K and p~ in KA. There are two reasons why
a,_~(ql,pz) could be 1. Either M could reach an accepting state without ever
erasing Z, or its successors, or M will reach an accepting state after erasing
Z, or one of its successors.'l"

In the first case, consider

Mqlz , = (K, E, F, 3, ql, Z~, F).

That is, M with ql as start state and Z¢ as Start symbol. Also, consider

Apl = (KA, Z,, 3A, p~, FA).

There will exist w in E* with 3A(pl, W) in FA and w'(ql, ZO I-~ (q" 7) for

some q' in F and 7 in F*, if and only if T(Ap~) n T(Mq~z,) -¢ ~. But, by

t By "successor," we refer to a symbol which is printed by M in the position on
the pushdown s.tore which Z~ held, without prior erasure of the symbol in that
position. For example, in Rule 2 above, Zr is the successor of Z.

12.3 PROPERTIES OF DETERMINISTIC LANGUAGES 175

Theorem 9.4, T(Apl) ~ T(Mqlz,) is certainly a cfl, and there is an algorithm
to decide if a cfl is empty.

In the second case, s~_ 1(ql, Pl) = 1 if there exist wl and wz in E* with

1. 8A(P~, w~) = Pz for some P2 in KA,
2. 8A(P2, W2) in FA,
3. wl"(ql, Z~) ~ (q2, E) for some q2 in K, and

4. w2"(q2, 7q) ~M (qa, 7") for some qa in F and 7' in F*, where V~ is the contents

of the pushdown tape after Z~ is erased.

For P2 and q2, s~ tells us of the existence of wz satisfying (2) and (4).
Thus the actual value of V~ is irrelevant, since cq contains the necessary
information about 7~. To test for the existence of wl satisfying (1) and (3),
it is sufficient to note that, for fixed P2 and qz, the set of wl satisfying (1) is
regular, and that the set of wl satisfying (3) is context free, so those w~ satis-
fying both (1) and (3) form a context-free language. Thus there are algorithms
to determine, for any q2 and Pz, whether w~ and w2 satisfying (1) through (4)
exist. If any such w~ and w2 exist for any q2 and P2, then s~_ ~(q~, p~) -- 1.

We must choose Z; properly to initialize the induction. From what has
gone before, it is clear that Z; = [Zo, s0], where s0(q, p) = 1 if q is in F and
p is in FA. For all other q and p, s0(q, p) = 0.

Note that the addition of the mapping (element of C) on the second
track does not affect the computation of M. That is, if we ignore the table,
the configurations of ~'A(M) are exactly the configurations of M.

Example 12.2

M = ({qo, q~, q2, qa}, {0, 1}, {X, Zo}, 8, qo, Zo, {qa}),

where

8(qo, O, Zo) = (qo, XZo) 8(q~, O, X) = (q2, ~)
8(qo, O, X) = (qo, X X) 8(q2, O, X) = (q2, E)

8(qo, 1, X) = (ql, X X) ~(q2, ,, Zo) = (q,, ,)

8(qx, 1, X) = (ql, X X)

T(M) = {O'lJOkli, j > o, i + j = k}

A = ({po, P~}, {0, I}, ~A, PO, {P0})

~A(P0, 0) = p~ 8A(P0, 1) = P0

8A(P~, 0) = P0 8A(px, 1) = p~
T(A) = { 1, 01 *0}*

Figure 12.3 shows the pushdown store of zrA(M) after the input 00011.
Each pushdown symbol of zrA(M) can be thought of as a pushdown symbol
of M (the leftmost column in Fig. 12.3) plus an array of eight O's and l 's

176 DETERMINISTIC PUSHDOWN AUTOMATA

q = qo
•

P = P o P l

M(q, p)

qz q2

Po Pl Po Pl
c

Po

q3
pl

X

X

X

X

X

Zo

1

1

1

1 1

0

1

0

i 0 F

0

0

0

1 0

Track 1 Track 2

Fig. 12.3. Pushdown store of 7ra(M) after input 00011.

12.3

representing s(q, p) for the four possible values of q (qo, ql, q2, or q3) and two
values ofp (Po or Pl). The bottom symbol on the pushdown store is [Zo, So],
where %(q3, Po) = 1, since q3 and Po are accepting states of M and A, respec-
tively, and so(q, p) = 0 for all other pairs of q and p. The symbol second
from the bottom is [X, sl] where sl is computed as follows. First, if X were
erased, the contents of the pushdown store would be Zo. The first reason
why sl(q, p) might be 1 is if some w takes the configuration (q, Zo) to a final
configuration without erasing Zo and takes state p of A to the final state Po.
A careful inspection of M shows that M can enter a final configuration only
by erasing Zo. Thus, s(q, p) would never be 1 for this first reason, except
for the degenerate case where q and p are accepting states.

The second reason why sl(q, p) might be 1 is if, for some w,

w'(q, Zo) ~M (q', ~) and ~A(P, w) = p',

where so(q ' ,p ')= 1. Thus, s~(qo, Po)= 1, since any string in {0~lS0kli,
j > 0, i + j = k} takes configuration (qo, Zo) to (q3, E) and any string in
{1, 01"0}* takes state Po of A to the final state Po. The intersection of
{0 *lj0k[i, j > 0, i + j = k} and {1, 01"0}* contains the sentence 011000.
Similar reasoning implies that sl(qo, pz) = 1 and sl(q2, Po) - 1.

The maps s2 and % can be calculated in exactly the same manner using
the information summarized below.

x'(qo, X) ~M (q2, ~), for x in {0 ~13'0 ~ +j + 1[i, j > 0}.

x ' (q l , X) ~ (q2, E), for x in {1'0' + l li > 0}.

x: (q2, X) ~ (q2, ~), if and only if x = 0.

12.3 PROPERTIES OF DETERMINISTIC LANGUAGES 177

Before proceeding, we wish to present one more lemma. The lemma
asserts that we can define acceptance for a dpda by a combination of state
and the top pushdown symbol; the language so defined is still a deterministic
language.

Lemma 12.3. Let M = (K, Z, P, 3, q0, Zo, F) be a dpda. Let B be any
subset of K x I', i.e., pairs of state and tape symbol. Define L =

{w]w'(qo, Zo) I-~ (q' ZT) for some (q, Z) in B}. Then Z is a deterministic

language.

Proof We define a dpda M' , accepting L, as follows.

M ' = (K', Z, r , 8', qo, Zo, F') ,
where

K' = {q, q', q"]q in K} and r ' = {q"[q in K}.

M ' makes the same moves as M, except that M ' moves from an unprimed
state to a singly-primed state and then, on ~ input, moves back to the corre-
sponding unprimed state, either directly or through a doubly-primed version.
The latter case applies only if the pair of state and top symbol of the push-
down store is in B.

Formally, if 3(q, a, Z) = (p, 7), then 3'(q, a, Z) = (p', 7').

For all q and Z such that (q, Z) is not in B, 3'(q', ~, Z) = (q, Z).

For all (q, Z) in B, 3'(q', ~, Z) = (q", Z) and 3'(q", E, Z) = (q, Z).

The reason for having three versions of each state is to ensure that M ' is
deterministic.

• In Chapter 9 we defined the quotient of L~ with respect to L2, denoted
L1/L2, as

{x~ I There exists x2 in L2 such that xzx2 is in Lz}.

In Theorem 9.13 we proved that the cfl were closed under quotient with a
regular set. We shall now prove a similar result for deterministic languages.

Theorem 12.4. Let L be a deterministic language and R a regular set.
The L/R is a deterministic language.

Proof Let M = (K, Z, F, 8, qo, Zo, F) be a dpda which never empties its
pushdown~ store, with T(M) = L and let A = (KA, Y, 3A, PO, FA) be an fa
with T(A) = R. Let M ' = rrA(M) be a predicting machine for M and A
as in Lemma 12.2.

Using the same notation as in Lemma 12.2,

M ' = (K, Z, P', 3', qo, Z6, F).

In addition, F' = P × C, where C is the set of maps from K x KA to {0, 1}.
We also use the notation Mqz for the dpda obtained from M by using q for
the initial state and Z for start symbol. That is, Mqz = (K, Z, r, 3, q, Z, F).

178 DETERMINISTIC PUSHDOWN AUTOMATA 12.3

Suppose that

wl "(qo, Z;) ~ , (q, [Z, ~]y).

Now w~ is in L/R if and only if there is a w2 in R such that w2 takes M ' from
configuration (q, [Z, a]~,) to an accepting configuration. This can happen in
one of two ways:

.

There is a w2 in R such that w2"(q, [Z, a]) l~ ' (q~' ~1) for some ql in F.

This situation corresponds to the case where M' , from configuration
(q, [Z, a]?,), accepts without ever having a pushdown tape shorter than
[~,] + 1, except perhaps on the last move, in which case 7'1 = e. Since
M ' makes exactly the moves of M, if we ignore the tables on the push-
down store, such a w2 will exist if R ~ T(Mqz) # ~, a condition that
can be decided for any q and Z.
a) There is a w2 in Z* such that

3A(Po, W2) = Pl

for some Pl in KA and

w2"(q, [Z, c~])]--~ (ql, ,)

for some ql in K. (The set of all such w2 is a context-free language, as
was mentioned in the proof of Lemma 12.2. Hence, for any p~ and q~,
the existence of w2 can be decided.) Also,
b) There is a wa in E* such that 3A(pl, Wa) is in FA and

w z "(q l, 7')]M*~ (q2, 7")

for some q2 in F. (The existence of such a wa is equivalent to ~(q~, Pl) = 1 .)
Let us, therefore, define the set B c K x P' by (q, [Z, ~]) is in B if

either:

i. R n T(Mqz) :/: q~ (Condition 1 above)or ,

ii. For some Pz in KA and ql in K, a(ql, p~) = 1, and there exists w2 such
that

3A(po, w2) = Pl and w2"(q, [Z, a]) ~ , (ql, e).

(Condition 2 above.)

But we have seen that, under this definition of B, the set

{w]w" (qo, Z'o) ~M' (q, [Z, ~]7') for (q, [Z, ~]) in B}

is exactly L/R. Hence, L/R is a deterministic language by Lemma 12.3.

So far we have noted that the operations of intersection with regular set,
inverse deterministic gsm mapping, and quotient with a regular set preserve
deterministic languages as well as context-free languages. It is trivial to show

12.3 PROPERTIES OF DETERMINISTIC LANGUAGES 179

that deterministic languages are not closed under deterministic gsm map-
pings. The proof is left as an exercise.

We now introduce two operations which preserve deterministic languages
but not arbitrary cfl's.

Let L be a language. Then

Min (L) = {x]x is in L and no w in L is a proper prefix of x}.

Also,

Max (L) = {xlx is in L and x is not a proper prefix of any word in L}.

As an example, let

L = {0~lJ0Uli, j > 0, i + j >= k}.

Then Min (L) = 00" 1 and Max (L) = {0~lJ0 ~ ÷j[i, j > 0}.

Theorem 12.5. If L is a deterministic language, then Min (L) and
Max (L) are deterministic languages.

Proof Let M = (K , E , r ' , 8 , qo, Zo, F) be a dpda with T(M) = L . To
accept Min (L), one simply introduces a new "dead state" p, which is non-
accepting. The dpda M", accepting Min (L), simulates M until M enters an
accepting state. Then M" transfers to state p and can accept no subsequent
input.

Max (L) is more difficult. Let A be the finite automaton ({Po}, E, 8A, P0,
{Po}) accepting E*. That is, 8A(P0, a) = Po for all a in E. Let

M' = ZrA(M) = (K, E, F', 8', qo, Z~, F),

where M' , I", Z~, and 8' are as in Lemma 12.2.
Define the set B ~ K × 1I" as follows. (q, [Z, c~]) is in B if all three of the

conditions below hold.

1. q is in F.
2. T(Mqz) = ~. (Mqz is as defined in Lemma 12.2.)
3. For no ql in K is there a w l in E* such that

w~ "(q, [Z, c~]) M~' (q~' ") and ~(q~, Po) = 1.

By Lemma 12.3, there is a dpda accepting

L' = {wtw" (qo, Z~) M~" (q' [Z, c~]7') for (q, [Z, ~]) in B}.

Condition 1 ensures that w is in L' only if w is in L. Conditions 2 and 3
together ensure that there is no w2 in E* such that ww2 is in L. That is,
L' = Max (L).

180 DETERMINISTIC PUSHDOWN AUTOMATA 12.5

12.4 CONTEXT-FREE LANGUAGES THAT ARE NOT DETERMINISTIC

It should be evident that not every cfl is a deterministic language. There are
several operations which preserve deterministic languages, but which trans-
form an arbitrary cfl into a non-context-free language. The most obvious
example is complementation. If a language L has a non-context-free com-
plement, then L cannot be a deterministic language. We know of several
languages that are context free, but whose complements are not. These
languages are surely not deterministic. Several examples are given in the
exercises.

Also, the operations Min and Max preserve deterministic languages, but
not arbitrary context-free languages. Hence, if L is context free with either
Min (L) or Max (L) not context free, then L is not deterministic. An example
of this situation is given in the exercises.

Certain context-free languages such as {a*bJckli = j or j = k} have been
shown to be inherently ambiguous. As we shall see shortly, these languages
cannot be deterministic.

Finally, we might add that certain ad-hoc methods appear in the litera-
ture for showing given cfl's not to be deterministic.

12.5 tR(k) G R A M M A R S

Often one wishes to find a parse or derivation tree for a given sentence in a
given grammar. One way to do this is to start with the terminal string and
replace a substring of symbols by a variable from which the substring can be
derived by one application of a production of the grammar. Then, using the
resulting string, one repeats the process of replacing a substring of symbols
by a variable until finally the sentence symbol S is obtained. Since, at each
step, there are usually many substrings that can be replaced by a variable,
one must often try a large number of possible choices. For certain classes of
grammars this process can be carried out in a simple, deterministic manner.
One such class of grammars is called LR(k), which stands for left to right
parsing with k symbol look-ahead.

Intuitively, we say a cfg G = (V N, VT, P, S) is LR(k) if for any sentential
form c~ the following holds: There is a unique way to write ~ = 378 such

that there is a rightmost derivation,t S -*~/3A~ ~ fl78, A having been re-
placed by ~, at the last step. Moreover, A and 7 can be determined uniquely
by scanning e from left to right up to a point at most k symbols beyond 7.
To handle the situation where the k look-ahead symbols extend beyond the
end of the sentence, we look at strings derivable from the string S$ ~ rather
than S. Here, $ is a new symbol which is assumed not to be in V~v or Vr.

t A rightmost derivation is one in which at each step the rightmost variable is
replaced.

12.5 tR(k) GRAMMARS 181

Thus, at the right end, a string of $'s will serve to fill out the k look-ahead
symbols and will help simplify notation.

Let us give a formal definition of an L R (k) grammar. (In the definition
,

and what follows, we shall use =-~ and ~ to mean "derives by a rightmost
r t r t

derivation.") Let G = (VN, Vr, P, S), and let $ not be in VN or Vr. We
say that G is L R (k) if the following condition holds for every string ~w~ w2,t

with Iw~[= k, such that S$ k ~ . c#3w~w2. If the next to the last step of the
r t

above derivation is ~Awlw2, so that

S$ k ~ - ~Aw~w~ =~ ~w~w~,
r t r t

and there is some other word ~/3wlw3 such that

S$ ~ ~ 7Bw =~ ~[3w~w3,
r t r t

then 7 ' = a ,A = B, a n d w = wlw3.
In other words, in the rightmost derivation of two strings which agree

up to k symbols beyond the point of the last replacement, the strings at the
next to last step in the derivations must also agree up to k symbols beyond
the point of the last replacement.

Example 12.3. Consider the language L = {aibJ[j > i}. L is generated by
the grammar

6~ = ({s}, {a, b}, P~, s) ,

where P1 consists of S -+ aSb, S --> Sb, S -+ b. G, is not LR(1). (In fact,
G, is not LR(k) for any k.) For example, let ~ = aa, 7" = aaa, A = B = S,
13 = aSb, w, = b, w2 = bb$, w = bbbb$, and.wa = bbb$.

Then

S $ =~ ~Awl w2 ==~ ~flwl w2 = aaaSbbbb$.
r t r t

But it is also true that

S $ =~ 7Bw ==~ ~flwl w3 = aaaSbbbbb$.
r t rg

Since 7 # c~, G1 is not LR(1).

Now consider grammar G2 = ({S, C, D}, {a, b}, P2, S), where P2 consists
o f S - - ~ C D , C--~ aCb, C--+E, D - + Db, D - + b . L(G2) = L, and G2 is
LR(1). It is seemingly difficult to prove that G2 is LR(1). However, we shall
give a method for the proof later on.

"[" Recall our convention" Greek letters are strings in V*, lower case letters, in
V:~, and upper case letters, in VN.

182 DETERMINISTIC PUSHDOWN AUTOMATA 12.5

Note that the essential difference between G~ and G2 is that, in G~,
productions that generate an a and a b or a b alone can be used alternately,
while, in G2, all uses of the production generating an a and a b must precede
the uses of a production generating only a b. It is this "determinism," in
an informal sense, that makes G2 LR(1) while G~ is not LR(k) for any k.

In the remainder of this section we show that"

1. Every LR(k) grammar is unambiguous.
2. There is an algorithm to determine if a cfg is LR(k) for a given k.
3. Every LR(k) grammar generates a deterministic language.
4. Every deterministic language is generated by some LR(1) grammar.

(Thus a language is LR(1) if and only if it is LR(k) for some k.)

Theorem 12.6. If G is an LR(k) grammar, then G is unambiguous.

Proof. The theorem follows immediately from the following two observa-
tions. First, if every sentence generated has a unique rightmost derivation,
then it has a unique derivation tree; hence, a unique leftmost derivation, and
so the grammar is unambiguous. Second, if in the definition of LR(k) we
consider the situation where w3 = w2, we see that, for a rightmost derivation
of a given sentential form, the next to last line is unique. Hence, by induction
on the number of steps in a derivation, the rightmost derivation is unique.

We now develop a procedure for determining if a cfg is LR(k) for some
fixed k. First we need the following technical result. Let G = (VN, VT, P, S)
be a cfg [not necessarily LR(k)] with productions in P numbered from 1 to r.
Let $ not be in VN or Vr. For 1 < i < r, w~ in V*$*, and [w~[= k, let the
set Rk(i, w~) be defined as follows. Assume that A --+/3 is the ith production
in P. Then Rk(i, wl) consists of all strings 7 such that 7 is of the form ~/3w~
and there exists w2 in V*$* for which

S$~ L~ ~Aw~w~ =~ ~w~w~.
rt r t

Lemma 12.4. The set R~(i, y) defined above is regular for any cfg G.

Proof. Surely one can assume that every variable of G derives some terminal
string. Define a grammar

a' = (v;,, v~,P' ,S') ,

where V~ = VN W VT, S' = [S, $e], and V~ consists of all objects of the
form [A, w], where A is in VN, w is in V~$*, and [w[= k. We define P ' as
follows. Suppose that A --+ B1B2...Bin is in P, with each B,, 1 -< i _-< m, in
VN w Vr. Suppose that for some particular j, 1 < j =< m, Bj is in VN. Then

1. [A, w] ~ B1B2...Bj_i[Bj, w'] is in P ' for each w' of length k such that

for some w", Bj + 1Bj + 2.. • Brow =~" w'w".
G

2. If C ~ 3 is the ith production of P, then [C, y] ~ 8y is in P' .

12.5 LR(k) GRAMMARS 183

Note that every production of G' is of the form C-+ xD or C--+ x,
where C and D are variables and x is a terminal string (possibly E). While
strictly speaking, G' is not a type 3 grammar, it is easy to show, using tech-
niques similar to Theorems 4.4 and 4.5, that L(G') is a regular set. We must
show that L(G') = Rk(i, Yl). It suffices to show that:

[S, $~] ~ ~[A wl] if and only if for some w2, S$ k ==~ aAwlw2. (*)
G" ' r t

We prove (*) by induction on the number of steps in a derivation. For
derivations of one step, (*) is certainly trivial in both directions.

if: Assume that (*) is true for derivations of up to r steps. Let

S$ ~ *==~ ~Awlw~ by a derivation of r + 1 steps. Let the next to last step be
r t

7Bwaw4 ~ 7~waw4 where]wa] = k and B is replaced by/3. There are two
cases to consider, one in which/3 is not V*; the other in which/3 is in V*.

In the first case, we can write/~ as ~zAws, where ~ - 7'/~1 and wlw2 =
wswaw4. A straightforward application of the definition of P ' tells us that
[B, wa]-+/31[A, wl] is a production of P ' . By the inductive hypothesis,

[S, Ski =_~ 7[B, w3]. Thus, [S, Ski ~ ~[A, wl].
Gt G'

In the second case, let 7 be of the form 7~Ay~. At some step in the
derivation of aAwlw2, A must have been generated by some production

D --> 72A73. Then, by the inductive hypothesis, IS, $k] *~ 74[D, Y2], where
G'

Y2 is an appropriate string of terminals and 71 = 7472. There exists a string

y3 in Vv* such that 7'8 ~ " Y3 and Y3Y2 is a prefix of wzw2. But then, by the

rules of construction of P ' , [D, Y2]--> 72[A, wl] is in P ' . Note also that

71 = ~. Therefore, [S, $k] =*~ ~[A wl].

only if." The inductive step in this direction is straightforward, and is
left to the reader.

Lelnma 12.5. Let G be a context-free grammar. Then G is LR(k) if and
only if, for any ~b, 0, y, and z; ~b in Rk(i, y) and ~b0 in Rk(j, z) imply that
0 = e a n d i = j .

Proof (if): Assume that ~ in Rk(i, y) and ~b0 inRk(j, z) imply that i = j and
0 = ¢. Let A-->/!l and B--> 3 be the ith and j th productions, respectively.
Suppose that

S$ k ~ - aAwlw~. ==~ aflwl w~ and S$ k *==~ 7Bw ~ 73w,
r t r t r t r t

where [w~[= k and Taw can be written in the form aflw~w3. To show that
G is LR(k), we must show that 7 = a, A = B, and w = wlw3.

184 DETERMINISTIC PUSHDOWN AUTOMATA 12.5

Let w4 be the first k symbols of w. Then aflwl is in Rk(i, wl) and 73w4
is in Rk(j, w4). Moreover, since ~,3w = a~w~wa, either 78w4 is a prefix of
afiwl, or vice versa. In either case, we may conclude by hypothesis that
7~w4 = ~fiwl and i = j . Therefore, A = B and ~ = /3. It then follows
that 7' = ~ and w~ = w~, proving that G is LR(k).

Proof (only if): Assume that G is LR(k) and that, for some ¢, 0, i, and j, ¢
is in Rk(i, y) and ¢0 is in Rk(j, z). (The case 0 = e and i = j is not ruled
out. We show, in fact, that these relations must hold.) Let A --> fi and B --> 3
be the ith and j th productions, respectively. Since ¢ is in Rk(i, y), we can
write ¢ as afiy, where

]y[= k and S$ ~ ~ ~Aywl ==~ ~yw~,
r t r t

for some w~. Also, we can write ¢0 as 7"~z, where

]z I = k and S $ ~ *==>- 7"Bzw2 ~ 73zw2
rt r t

for some w2. But ~fly is a prefix of 7"3z, and therefore, of 73zw~. Since G is
LR(k), we have a = 7, A = B, 3 = /3, and y = z . . It immediately follows
t h a t i = j a n d 0 = e.

Theorem 12.7. There is an algorithm to determine whether a context-
free grammar G is LR(k) for a given k.

Proof. By Lemmas 12.4 and 12.5, it is sufficient to give an algorithm to test
whether one of two regular sets Rz and R~ over the alphabet A contains the
prefix of a string in the other. The above is true if and only if

R = ((R~/AA*) n R2) w ((R2/AA*) c~ R~)

is nonempty. By Theorems 3.6 and 9.13, R is regular. There is an algorithm
to test if R is empty by Theorem 3.11.

Theorem 12.8. If G = (VN, VT, P, S) is an LR(k) grammar, then L(G)
is a deterministic language.

Proof We construct a dpda M that accepts the language L = {x$k[x in
L(G)}, where $ is a special end marker symbol not in V.t Then, by Theorem
12.4, L(G) is deterministic, since L(G) = L/$ k.

Let l be the length of the longest right-hand side of a production of G.
We allow the pda M to look at the top k + l symbols on the pushdown store.
Clearly, we could accomplish this by storing the top k + l symbols in the
finite control. However, for the sake of exposition, it is more convenient
simply to think of M as having this added capability.

t Recall our convention that V = VN w Vr.

12.5 tR(k) G R A M M A R S 185

The pda M will have two tracks. On track 1, M will write symbols from
V. On track 2, M will store certain mappings. Let the productions of G be
numbered 1 to r. Let A~.w be a finite automaton accepting Rk(i, w). Let N,
be the mapping from {1, 2 , . . . , r} x {w]w in V*$*, Iwl = k} to states of the
A~,w'S such that N,(i, w) is the state of A~,w after seeing the string c~.

If track 1 of the pushdown list holds string)(1)(2... X~ in V*, then track
2 will hold NxlNxlx2... Nxlx~...x,. If P then writes the symbol Z on track 1,
it will also write the symbol N,z on track 2. Surely N,z depends only on Z
and N,. In other words, the top symbol of track 2 will always contain the
states that the finite automata A~,~, for each i and w, would be in, if given
the contents of track 1 as input.

In the following discussion, we describe how M manipulates the symbols
on track 1 and implicitly assume that the symbols on track 2 are appropriately
manipulated. To start, M reads k input symbols and places them on the
pushdown store. Next M performs the following steps.

Step 1. If the top m symbols on track 1, for some m < k + 1, are B1B2...
Bm-~ala2...a~, if A -+ BIB2...Bm-~ is the ith production in P, and if the
map N on track 2 with symbol ak is such that N(i, a~a2...ak) is a final state
of At.alas...a~, then the top m symbols are erased and replaced by Aala2...a~.
Since G is LR(k), Step 1 can be done in at most one way. Step 1 is repeated
until no longer applicable.

Step 2. If Step 1 is not applicable, then another input symbol is read and
placed on the top of the stack. Step 1 is then repeated.

If the stack of M ever reaches the configuration S$ k, then M accepts.
Now M is a dpda, and is easily shown to accept L(G). Thus L(G) is a deter-
ministic language.

Finally, we show that every deterministic language has an LR(k) gram-
mar. In fact, we show that every deterministic language has an LR(1)
grammar. Moreover, it has an LR(O) grammar, provided that we adopt the
convention that we can recognize the end of the sentence by noting when the
look-ahead symbol is blank. To be more precise, if L is a deterministic
language, we consider the language L$, where $ is a special end marker
symbol, and show that L$ has an LR(O) grammar.

Theorem 12.9. If L is a deterministic language, then there exists an
LR(O) grammar G such that L(G) = L$.

Proof. Since L$ is obviously deterministic, there is a deterministic pda M
that accepts L$. By Corollary 12.1, we may assume that M makes no ~ move
while in a final state. Moreover, since no initial portion of a sentence of L$
is in L$, we can assume that M accepts with an empty stack,

Construct the grammar G from M according to the method used in the
proof of Theorem 5.3, throwing away all useless nonterminals. The claim is
made that G is an LR(O) grammar for L$.

186 DETERMINISTIC PUSHDOWN AUTOMATA 12.5

To see this, assume that

S =~=>- aAw~ ==>- a~w~ (12.1)
rt rt

and

S =*=>- 7Bw.) ==>- 73w2 = ~flwa. (12.2)
rt rt

To show that G is LR(O), we must show that ~ = 7, w2 = wa, and A - B.
There are two cases to consider

i. [7,8[=< [~t3l. Then for some t, 7,8t = c~t3 and w2 = tw3.

ii. 17,31 >= I~,t3[. Then for some t', a/3t' = 7,3 and wa = t'w2.

The cases are symmetric, and we treat only case (i). We rewrite (12.2) as

S ~ 7,Btw3 ~ 73twa. (12.3)
r t r t

Let x~ and xe be terminal strings derivable from ~ and/3, respectively.

Then from (12.1):

S *==>- aAw~ ==> aflw~ ==>* x,xBw~. (12.4)
r t r t

There is a leftmost derivation whose derivation tree is the same as that

of (12.4), namely:
, *

S ~ x,ACw~ ~ xJ3¢w~ ~ x,xBCw~ x,xewl (12.5)

Here Cw~is a string of variables such that Cw~ ~ w~ by a leftmost derivation.

From (12.3),

• (12.6) S *~ 7Btwa ~ 7~twa ~ x~xotw3 = x~x~w2,
r t r t

where xy and x~ are strings derivable from 7' and 3 such that x~xot = x,xB.
Since 7,3t = ~/3, we can surely find such strings xr and xo.

Now, consider the leftmost derivation whose derivation tree is the same
as that of (12.6), namely (with some obvious stages omitted)

• ==>-* (12.7) S ==>" x~x6t~bw a x~x~twa,

where Cw~ is some string such that Cw~ ==> wa by a leftmost derivation.
The derivations (12.5) and (12.7) are leftmost, and the grammar G was

obtained from a dpda. Thus we know that Cw~ -- ¢w~ since Cw~ and ¢w~ both
represent the contents of the pushdown store immediately after the dpda has
seen the input x,xe and before the dpda has made any move on e-input.

From (12.7) and the fact that ¢w~ = Cw~ we know that there is a leftmost

derivation
• (12.8) S ~ x.~BO ~ x~30 ~ x~x~twl = x~xBw~.

PROBLEMS 187

Fur thermore , the derivation trees corresponding to (12.5) and (12.8) must

be the same, since each step in the derivations corresponds to a move of a

dpda. Thus, the r ightmost derivation'~

S ==~ 7Btw~ ~ 78tw~ = ~/3w2 (12.9)
rt rt

must be the same derivation as (12.1). Hence A = B, ~ = 7, 3 =/3, t =

and w2 = w3. Therefore G is LR(O).

PROBLEMS

12.1 Give an example of a deterministic language L which is not N (M) for any
dpda M. Under what conditions is a language N (M) for some dpda M?

12.2 Can every deterministic language be accepted by some dpda which makes
no moves on e input ? Prove your answer.

12.3 In Fig. 12.3, what would be the contents of the pushdown tape if the
input sequence were 01110?

12.4 For Example 12.2, write out the complete specification of 7 r A (M) .

12.5 Use the concept of a predictor machine to show that every deterministic
language L is accepted by a dpda M, such that if w = ala2...a,~ is in L,
then upon using a, as input after using ala2...a,~_ 1, M immediately enters
an accepting state.

12.6 Show the following not to be deterministic languages.
a) {a~bJckleither i ~ j or j ¢ k}. Hint. Use Theorem 12.1.
b) {wwn[w in 2;*}. Hint. Use Theorem 12.5.
c) {wlaw2bw3la, b in E, a ¢ b, w~, w2, w3 in Z*, lw~l = Iw~l + Iw~l}.

Hint. Use Theorem 12.1.

12.7 Show that the following languages are deterministic.
a) {wcwR[w in {a, b)*}
b) {c0~lnln _-> 1} w {0~12n]n _>_ 1}
c) {w[w in {a, b}*, w consists of an equal number of a's and b's}

12.8 Prove that deterministic languages are not closed under gsm mappings.
12.9 Give LR(i) grammars for the following languages.

a) {wlw consists of an equal number of a's and b's)
b) {0'lJ[i > j}
c) {wcxcwRlw and x in (a, b}*} w {wcxdxRlw and x in {a, b}*}

:¢

t The existence of a rightmost derivation S =~- 7Btwl follows from the fact that
rt

there is a derivation S ~ 7Btwl. Now, if there is no rightmost derivation of

7Btwl, then there must exist ~,' such that S =~- 7"Btwl and 7' ~ 7. From this
re

we can deduce that there is a derivation S ~ 7'Btwa and thus, (12.6) is not right-
r t

most.

188 DETERMINISTIC PUSHDOWN AUTOMATA

12.10 Show that the grammar G = ((A, B}, (a, b, c}, P, A) is not LR(k) for any
k, where P consists of A--+ aAb, A - + ab, A-~. Be, B -+ aBbb, and
B -+ abb.

12.11 Prove that the grammar G2 of Example 12.3 is LR(1).

REFERENCES

The deterministic variety of pushdown automata were first studied by Fischer
[1963], Schutzenberger [1963], Haines [1965], and Ginsburg and Greibach
[1966a]. Lemma 12.1 was first proven in Schutzenberger [1963]. Its consequence
-- that deterministic languages are closed under complement--was observed
independently by various authors. The closure of deterministic languages under
the various operations of Section 12.3 appears in Ginsburg and Greibach [1966a].
LR(k) grammars and their equivalence to deterministic languages is from Knuth
[1965]. Theorem 12.6, which concerns the unambiguity of deterministic languages,
was shown independently in Haines [1965] and Ginsburg and Greibach [1966a].

An interesting theorem--that there is an algorithm to determine if the lan-
guage accepted by a dpda is regular--appears in Stearns [1967]. Various sub-
families of the deterministic languages have received consideration. Among these
are the precedence languages (Floyd [1963]), bounded context languages (Floyd
[1964a]), and simple deterministic languages (Korenjak and Hopcroft [1966]).

CHAPTER 13

STACK AUTOMATA

13.1 DEFIN IT IONS

The stack automaton and its various restricted forms constitute a rich class
of devices. The fundamental model is shown in Fig. 13.1. It consists of:

1. A finite control. [
2. An input tape with end markers [¢

and a.two-way input head. The
input tape is read only.

3. A storage tape, or stack, which
can be used like a pushdown
store. The storage head cannot
print or erase (print a blank) un-
less all the cells to its right are
blank. However, the storage
head may move anywhere on l]
the nonblank portion of its tape z0
in a read-only mode.

The most general stack automation is

Finite
control

! nput tape

Stack B B

Fig. 13.1. Stack automaton.

nondeterministic, so in any situation it may have several choices of next move.
The stack automaton (referred to as an sa) can be thought of as a

restricted type of nondeterministic Turing machine. One can also think of
the sa as an extension of the pushdown automaton. The features which are
added to the pda to get an sa are the ability of the input head to move both
ways on the input and the ability to scan the pushdown list in a read-only
mode. Note that while we have customarily considered the top of a push-
down list to be the left end, the top of the stack is at the right end. The
formal notation for a stack automaton will resemble that for a Turing
machine more than that for a pushdown automaton.

We give a formal notation for a stack automaton as an 8-tuple S =
(K, Z, P, 3, 3b, qo, Zo, F). The symbols have the following meanings.

K is the finite set of states.

Z is the finite set of input symbols. Z includes the left and right endmarkers,
¢ and $, respectively, which are assumed to be the first and last symbols
of any input.

189

190 STACK AUTOMATA 13.1

I' is the finite set of nonblank stack symbols.

Z0 is the start symbol and acts as a marker of left end of the stack.

F is the set of final states. F _c K.

q0 is the start state.

8 is a mapping from K x Z x I ~ into subsets of K x {L, R, S} x
{L, R, s}.

~b is a mapping from K x E x P into subsets of K x {L, R, S} x
({L, S, E} u r).

3 is the next move mapping for the condition when the storage head
(which we call from now on the stack head) is not scanning a blank. Under
this condition, the stack automaton may change state and move its two
heads, so 3 maps K x Z x P to the subsets o f K x {L, R, S} x {L, R, S}.

The significance of (p, Dz, D2) in 3(q, a, Z) is that, if S is in state q
scanning a on its input tape and Z on its stack, it may go to state p and
move its input and stack heads in directions Dz and D2, respectively. That
is, if D~ or D2 has value L, R, or S, the relevant head will move to the left,
to the right, or remain stationary, respectively.

8b is the next move mapping for the condition when the storage head is
scanning a blank. It will always be the case that this blank is the leftmost
blank on the stack. The leftmost blank will be called the top of stack. S has
the choice of:

1. Printing a nonblank symbol and moving the stack head to the right, to
the new top of stack.

2. Erasing the rightmost nonblank and moving the stack head to the left,
to the new top of stack.

3. Moving its stack head to the left, into the nonblank portion of the stack.
4. Not moving the stack head.

While performing one of these four operations, S can change state and
move its input head. We suppose that the next move can depend upon the
rightmost nonblank symbol even though the stack head is not scanning it
currently.

Thus we say that 8b maps K x E x P to the subsets of K x {L, R, S} x
({L, S, E} u P). The significance of (p, D, X) in 3b(q, a, Z) is that if S is in
state q scanning a on its input tape and a blank on its stack, with the non-
blank symbol Z immediately to the left, then S may enter state p, move its
input head in direction D, and make the following motion of its stack head.

If X = S, no move of the stack head.

If X = L, the stack head moves to the left.

/

13.1 DEFINITIONS 191

If X = E, the stack head moves to the left and prints a blank on the
new cell scanned (i.e., the rightmost nonblank is erased). The cell now
scanned becomes the new top of stack.

If X is a symbol of I', the stack head prints X over the blank and then
moves to the right, to the new top of stack. We assume that X is not Z0.

Note that the stack contents are always Zo, followed by a nonblank
string to the right and an infinite sequence of blanks to the right of that.
We do not prevent S from completely erasing its tape, although it cannot
make any further moves in that situation.

We define a configuration of a stack automaton, S = (K,]2, P, 3, 3~, qo,
Zo, F) with input w in ¢(Z - {¢, $})*$, whose length is n, to be a combination
of state of finite control, nonblank portion of the stack, and position of the
stack and input heads. The configuration is denoted by (q, y, i, j) , where q is
in K, y is in P*, i is an integer between 0 and [y l, and j is an integer between
1 and n. The position of the stack head is i cells to the left of the top of
stack. That is, i = 0 if the head is at the top of stack, i = 1 if the head is at
the rightmost nonblank, etc. The input head is scanning the j th symbol of w.

We say that

(q~, yl, i~, j~) ~ (q2, Y2, i2, j2)

if, with w as input, configuration (qz, y~, il,j~) can become configuration
(q2, Y2, i2, j2) by a single move of S. Also, if (ql, yl, i~, j~) can go to (q2, Y2,
i2, j2) by some number of moves (including zero moves), we write

(q~, y~, i~, j~) ~ (q2, Y2, i2, j2).

S accepts an input w if the initial configuration, (qo, Zo, O, 1), is such that

(q0, Zo, 0, 1)[s,~ (q, Y, i, j)

for some q in F and any y, i, and j. We denote by T(S) the set of inputs
accepted by S.

Example 13.1. Let us construct a stack automaton to accept {¢wcw$]w in
{a, b}*}. Let S = ({q~, q2, q3}, {a, b, c, ¢, $}, {Zo, A, B}, 3, 3b, q~, Zo, {qa}). Our
approach will be to store on the stack everything found on the input tape to
the left of c. The stack head then moves to the bottom of the stack (Zo) and
moves up the stack, comparing the subsequent input with the stack contents.
If the $ on the input is reached when the stack head reaches the top of stack,
and all inputs have properly compared, S accepts. Formally, 3 and 3~ are
specified as follows'

1. 3b(ql, ¢, Z0) = {(ql, R, S)}. (Skip over ¢.)
2. 3b(ql, a, Zo) = 3b(ql, a, A) = 3b(q~, a, B) = {(qz, R, A)}. (Store A on the

stack if a is input.)

192 STACK AUTOMATA 13.3

3. 3b(ql, b, Zo) = 8b(ql, b, A) = ~b(ql, b, B) = {(ql, R, B)}. (Store B on the
stack if b is input.)

4. 3b(q~, c, Zo) = 3b(q~, c, A) = ~b(q~, c, B) = {(q~, S, L)}. (The stack head
moves into the stack. The input head remains at e. It happens that no
change of state is necessary, since only rules of 8, not 8b, will apply while
the stack head is in the stack.)

5. 3(ql, c, A) = 3(ql, c, B) = {(ql, S, L)}. (The stack head continues to
move down the stack, the input head remaining stationary.)

6. 3(q~, c, Zo) = {(q2, R, R)}. (S changes to state q2 on reaching the bottom
of the stack. Also, S moves up the stack to the symbol above Z0 and
moves its input head right.)

7. 3(q2, a, A) = {(q2, R, R)}. 3(q2, b, B) = {(q2, R, R)}. (S compares the
input with the stack contents.)

8. ~b(q2, $, Zo) = 6b(q2, $, A) = ~(q2, $, B) = {(qa, S, S)}. (S accepts if all
symbols match and the top of stack is reached.)

13.2 RESTRICTED TYPES OF STACK AUTOMATA

There are many interesting modifications which can be made upon stack
automata. First, we can make the sa deterministic. The deterministic sa (dsa)
has at most one choice of move in any situation.

If S - (K, Z, F, 3, 8b, qo, Zo, F) is an sa such that, for no q, a, and Z,
does 3~(q, a, Z) contain a move of the form (p, D, E) for any D, then the sa
is said to be nonerasing. Obviously, since no stack symbol is ever erased, a
symbol once printed remains on the stack forever.

If, for no q, a, and Z, does bb(q, a, Z) contain a move of the form
(p, L, X), nor does 3(q, a, Z) contain a move of the form (p, L, D) for any
X or D, then the input head can never move to the left. We say that S is
one way.

Note that the sa of Example 13.1 is deterministic, nonerasing, and one
way. Unless otherwise stated, an sa (dsa) will be assumed to be a two-way,
erasing sa (dsa).

13.3 THE POWER OF TWO-WAY STACK AUTOMATA

We would like to give informal proofs of a series of theorems to the effect
that a dsa can recognize any context-sensitive language. We first show that
a nonerasing dsa can simulate a deterministic lba, and, in fact, is equivalent
to a Turing machine of tape complexity n log n.

Next, we show that a deterministic, but erasing, sa can simulate a non-
deterministic Tm of tape complexity class n log n, and thus can certainly
simulate any lba. Hence any context-sensitive language is accepted by a
deterministic sa.

13.3 THE POWER OF TWO-WAY STACK A U T O M A T A 193

Theorem 13.1. If a language L is accepted by T, a deterministic single-
tape Turing machine of tape complexity n,t then L is accepted by some
nonerasing stack automaton.

Proof. We can denote a configuration of Tby A1A2...At_lqA~...A~. Here,
A1A2...A,~ is the contents of the tape cells upon which the input was origin-
ally placed, including T's end markers. The tape head is presumed to be
scanning A~, and the finite control is in state q. Suppose that such a con-
figuration were written on the rightmost nonblank cells of the stack of S.
We endeavor to show how S could construct, above this configuration of T
on the stack, the configuration resulting from one move of T.

Essential to the construction of the new configuration is the ability of
the stack head to find its way exactly n cells below the top of stack. Starting
at the top, with the input head at the left end marker, S alternately moves its
stack head one cell down the stack and its input head one cell to the right.
When the right end marker of the input is reached, the stack head has reached
the nth cell from the top of stack.

The new configuration is constructed by copying the old configuration
symbol by symbol to the top of stack, modifying those symbols which are
changed in the move of T.

Copying over tape symbols not involved in the move of T presents no
problem. S moves n symbols down the stack, and one.symbol more to find
A1. (Note that a configuration uses n + 1 cells because one is used for the
state of T.) S stores A1 in its finite control and moves to the top of stack,
printing A1. S again moves n + 1 cells down the stack. This time the stack
head will be scanning A2, which can be copied to the top of the stack. In
succession then, by repeatedly moving n + 1 cells down the stack, each tape
symbol of T can be copied to the top of stack.

However, we must not only copy the configuration, but also modify the
configuration to simulate a move of T. After finding a tape symbol A of T,
S must look at the cell to the right. If that cell holds a state of T, S must look
another cell to the right to determine if T's head will move to the left. If so,
the new state must be written at the top of stack before printing A. Then,
above these, the symbol which T printed must be written; this makes a total
of three symbols. Otherwise, the tape symbol is brought to the top of the
stack in the normal way.

Also, upon moving n ÷ 1 cells from the top of the stack, S may find
itself scanning the state of T. S must record the state in the finite control and
move one cell to the right to determine what symbol is scanned by T.

t For tape complexity equal to or greater than n, it should be clear that the
restriction of a read-only input is unimportant. The model discussed in Chapter
10 can easily be simulated by a single tape Tm using the same number of cells.

This theorem is for instruction only. We prove a more powerful result later.

194 STACK AUTOMATA 13.3

It is not possible that T's head moves to the left, since, in this case, when
copying the symbol to the left of the head, the new state and the symbol
printed by T were also written on the top of stack.

To complete the proof, it is only necessary to state that S creates the
initial configuration of T by printing the start state of T on the stack, and
then copying the inPut onto the stack. Also, if during simulation, T enters
one of its accepting states, S terminates simulation and accepts.

Before proving further results, it would be wise to develop a tool with
which to describe the stack contents. We can think of the operation of the sa
as a succession of moves at the top of stack (although printing and erasing
may change the location of the top of stack) interspaced with sequences of
moves in which the stack head remains below the top of stack. The sequence
of moves whereby an sa raises its stack head from the rightmost nonblank
to the top of stack will be called a "stack scan." Note that, before reaching
the top of stack, the stack head may make an excursion deep into the stack.

Formally, a stack scan is a sequence of configurations (qk, Yk, ik, jk),
0 =< k =< m s u c h t h a t

(qk, Yk, ik, j,~)]s---~ (q,~ + z, Yk + z, ik + ~, jk + ~)

for each k between 0 and m - 1. Also, io - - 1 , im--0 and ik > 0 if
0 < k < m. We should add that S may also enter its stack and never
return to the top. Perhaps S accepts within the stack, or halts without
accepting, or enters an infinite loop.

For a given sa,

S = (K, E, F, 3, 3~, qo, Z0, F)

and w in ¢(2] - {¢, $})*$, with Iw] = n, define the transition table describing
stack string y to be a map from K x { 1 , . . . , n} to subsets of {A, R} u
(K x {1 , n}), with the following meaning"

1. If c~ is the transition table, and c~(q, j) contains A, then from configuration
(q, y, 1, j) , S may accept without ever reaching the top of stack.

2. If c~(q, j) contains R, then from configuration (q, y, 1, j) , S may enter an
infinite loop or halt without reaching the top of stack.

3. If c~(q, j) contains (p, k), then starting in configuration (q, y, 1, j) , S may
make a stack scan, ending in configuration (p, y, 0, k).

Informally, the transition table c~ tells us whether, given the configuration
of S immediately after the stack head moves to the left from the top of stack,
S will complete a stack scan, and if so, in what configurations S can be when
first arriving at the top of stack. The transition table c~ also tells us if S can
accept while below the top of stack.

In addition, if c~ is the transition table describing y, and yx is the stack
of S, then ~ can be used to find what happens from the point at which S is

13.3 THE POWER OF TWO-WAY STACK AUTOMATA 195

started with its stack head at the rightmost symbol of y until the stack head
reaches the leftmost symbol of x. The reason for this is that, while S 's stack
head is scanning the symbols of y, the operation of S does not depend on
whether the top of stack or another stack symbol is to the right of y.

Suppose that, for input w, I w[--n, a describes stack y. Can we, for any Z
in F, compute/3, the transition table describing yZ, without knowing y, but
knowing c~, Z, and 3 ? The answer is yes, as we shall see.

Suppose that we wish to compute ~(q,j). S starts in configuration
(q, yZ, 1, j) ; that is, scanning the Z. Let S have s states. Suppose that

(q, yZ, 1, j) Is.~ (P, yZ, O, k) by a sequence of moves in which the rightmost

nonblank Z is scanned more than sn times before the top of stack is reached.
Then there is a shorter sequence of moves making the same transition, for
Z must have been twice scanned in the same state with the input head at the
same position.

Therefore we compute a sequence of sets, T~, T2, T a , . . . , each contained

in K x { 1 , . . . , n}. T~ will contain a pair (q~, j~) if and only if (q, yZ, 1, j)
(q~, yZ, 1, jz) by a sequence of moves for which the stack head never reaches
the top of stack, and scans Z at most i times. From what has been said, a
pair will not be in any T~ unless it is in T~,.

Surely T~ = {(q, j)}. We construct T~+ ~ from T~, using ~, 8, and Z to
guide us. A pair (qz, j~) is in T~ + ~ if one of the three following conditions hold.

1. (q~,j~) is in T,.

2. There is a (q2,j2) in T, such that (q2, yZ, 1, j 2) ~ (q~, yZ, 1,jz). (3

informs us of this condition.)

3. There is a (q2,j2) in T~ and some (qa, ja) such that (q2, yZ, l, j2)

(q3, yZ, 2, j3) (again, ~ informs us of this possibility) and a(q3, j3) contains
(q~,j~). (That is, the stack head will leave y, moving up the stack, in
state qz, with the input head at position jz. Note that the fact that the
top of stack is no longer immediately adjacent to y is irrelevant.)

Finally, for each (qz, j~) in T~,, ~ tells us in what pairs of state and input
position S can reach the current top of stack on a single move.

In a similar manner, one can determine if A or R is in ~(q, j) for any j.
Observe that, if we know the rightmost nonblank and the transition table

associated with the entire stack, we can, in a sense, simulate S, if S is non-
erasing. The 3b function tells us what moves can be made at the top of stack.
If a move to the left from the top of stack is made, the transition table tells
us in what combination of state and input head position S may return to the
top of stack. If a new stack symbol is printed, we may construct the new
transition table from 8, the symbol printed, and the old transition table.
The reason we cannot so simulate an erasing sa is that when a symbol is
erased, we are not necessarily able to construct the old transition table.

196 STACK AUTOMATA 13.3

Suppose that we were to attempt to simulate a nonerasing stack auto-
maton S by a Turing machine. We might ask how much space would be
necessary to store the transition table associated with the stack contents.
To completely specify the transition table, we must specify it for sn argu-
ments, where s is the number of states and n the length of the input. When
we specify the transition table for a given argument, we must tell whether
A, R, and each of the sn pairs of state and input position are or are not in the
set which is the value of the transition table for the argument in question.
The information can be given by a binary array of length 2 + sn. That is,
each cell represents either A, R, or a state-position pair. It holds 1 if what it
represents is in the set; 0, otherwise.

Therefore we can represent an entire transition table by sn arrays each
of length 2 + sn. The total number of cells is thus s2n 2 + 2sn. This number
is surely bounded above by 3s2n 2.

In addition, suppose that S is a deterministic nonerasing sa. Then if
is a transition table, ~ (q , j) can have only one element, either A, R, or a
state-position pair. By encoding these in binary, the value of 3(q, j) can be
represented in log2 (2 + sn) cells. Since ~ must be specified for sn arguments,
it takes a total of sn log2 (2 + sn) cells. We can show this figure to be
bounded above by 3s2n log2 n. We thus point out two simulation theorems.

Theorem 13.2. If a language L is accepted by a deterministic nonerasing
stack automaton S, it is accepted by a deterministic Turing machine of
tape complexity class n log n.

Proof . We can specify a multitape Tm T, which keeps track of the transition
table for the stack contents, beginning with the transition table for the initial
stack, Z0. As we mentioned, for a dsa, the transition table can be stored in a
number of cells proportional to n log n. (Recall from Theorem 10.1 that
constants of proportionality are irrelevant as far as tape complexity classes
are concerned.)

When S makes a stationary move at the top of stack, T simply changes
state. If S moves to the left from the top of stack, T references the current
transition table to see if S accepts, rejects, or completes a stack scan. If S
accepts or rejects, T does likewise. If S completes a stack scan, T knows in
what state-input head position pair S will be when it completes the stack
scan. Lastly, if S prints a symbol at the top of stack, T must update the
transition table to include the new stack symbol, using the algorithm described
in this section. At all times when the stack head of S is at the top of stack,
T stores the top stack symbol and state of S in T's finite control for reference.
Also, the input head of T will be positioned at the cell scanned by the input
head of S.

We have not yet shown that T can reference and update the transition
table in the n log n storage cells allotted. However, such is the case, and a

13.3 THE POWER OF TWO-WAY STACK AUTOMATA 197

proof appears in the literature. As an exercise, the reader might choose a
representation for a transition table, and then show how referencing and
updating might be performed.

Theorem 13.3. If L is accepted by a nondeterministic, nonerasing sa S,
then it is accepted by a nondeterministic Tm T of tape complexity class n 2.

Proof Again we give only an indication of how the theorem is proved.
T will use a length of tape proportional to n 2 to store a transition table. The
state and top stack symbol of S will be stored in the finite control of T. For
each configuration (q, yZ, O, j) which S can enter, T can enter a configuration
with q and Z stored in its finite control, its input head at position j, and the
transition table for yZ stored on one of T's storage tapes.

Suppose that the above is true for some configuration of S. S may make
various moves from this configuration, nondeterministically. For each choice
of S for which the stack head remains stationary, T has a choice which
changes its input head position and the state of S recorded in T's finite
control, in conformity with the move of S.

If S chooses to move into the stack, T has a choice of referencing the
transition table and returning to the top of stack, nondeterministically, in
those pairs of state of S and input position which the transition table says is
possible. If, according to the transition table, S may enter the stack and
accept without completing a stack scan, T accepts.

Finally, if S chooses to print another stack symbol, then T updates the
transition table in accordance with the symbol S chose to print.

Initially, T is in a configuration representing the initial configuration of
S. We may show by induction on the sum of the number of moves made at
the top of stack plus the number of stack scans that, if S enters a configuration
with the stack head at the top of stack, T will enter a configuration repre-
senting that of S. (i.e., T will have the proper state of S, top stack symbol,
input position, and transition table.) If this configuration has an accepting
state, T accepts. Also, if S can, from this configuration, enter an accepting
state somewhere within the stack, the transition table will so indicate, and
T will accept.

Again the hardest part of the proof, the updating of the transition table,
has not been explained. It is also found in the literature.

We would like to show the converses of Theorems 13.2 and 13.3. The
result of these two theorems and the next two theorems will be to show the
equivalence of:

1. The nonerasing dsa and the Tm of tape complexity class n log n.
2. The nonerasing sa and the nondeterministic Tm of tape complexity class

/2 2 .

198 STACK AUTOMATA 13.3

We prove the easier result first.

Theorem 13.4. If a language L is accepted by T, a nondeterministic
Turing machine of tape complexity n 2, it is accepted by S, a nonerasing sa.

Proof We may assume without loss of generality that T is a single-tape Tm.
That is, given an off-line Tm of tape complexity n 2, one can find an equivalent
single-tape Tm using no more than n 2 cells of tape when the input is of length
n. We represent a configuration of Tin Fig. 13.2. If T's input is of length n,
the n 2 cells of tape used by T are divided into n blocks of n cells, separated by
the symbol ,. The entire configuration is surrounded by **. The state of T
and the position of its tape head are indicated by a state symbol to the left of
the symbol scanned. In Fig. 13.2, the symbol scanned is A~j.

* A~i A,2 q A~j * A l l A12 " " A 1 . * " ' " * An1

f
State of T

and position
of tape head

Fig. 13.2. Representation of the configuration of T on the stack of S.

The proof is similar to that of Theorem 13.1. S starts with the initial
configuration of T on the stack of S. Here the initial configuration consists
of the initial state of T followed by the input to T and a sufficient number of
blanks to make up n blocks. The reader can verify that this configuration
can be printed by S. S will copy each configuration to the top of stack,
nondeterministically making those changes which could be brought about
by one move of T. The procedure of alteration is the same as in Theorem
13.1, except that T may have a choice of next moves. When copying the
symbols involved in the move, S will nondeterministically change them to
reflect one of these moves.

The method of making changes having been previously discussed, we
explain here only how to copy one entire configuration. Suppose that S has
copied i entire blocks, and j tape symbols of the next block. First, S may
test if j = n by comparing the number of tape symbols written above the
last • with the length of the input. That is, starting with the input head at ¢,
S moves its stack head down the stack. Each time a tape symbol of T is
found, S's input head moves one cell to the right. If a • is found on the stack
before the right end marker of the input is reached, then j < n. If j = n,
S must print • on the top of stack.

Similarly, S can test if i = n by comparing the number of single . 's
written on its stack above the top ** with the length of its input. If i = n,
S prints ** and proceeds to create a new configuration.

13.3 THE POWER OF TWO-WAY STACK AUTOMATA 199

Let us suppose that i < n and j < n. S uses the length of the input to
count blocks down the stack until the nth complete block (i.e., not counting
the block being formed) from the top of stack is reached. S nondeterminis-
tically selects a tape symbol in this block in such a manner that S has the
option of choosing any symbol. This symbol is stored in the finite control of
S, and it is noted if this symbol could be involved in the move of T.

Then S moves its input head to the left end, and simultaneously moves
its stack head down the stack and its input head to the right, until • is en-
countered on the stack. At this point, the number of cells between the input
head and left end marker of the input will be equal to the number of symbols
between the stack symbol selected by S and the • that marks the left end of
that symbol's block.

S raises its stack head to the top of stack without moving the input head
and compares the number of cells to the left of the input head with j, the
number of T's tape symbols above the topmost • on the stack. If they agree,
S has chosen the correct symbol to copy, and this symbol (or symbols if the
move of T is involved) is printed on the top of stack. If they disagree, an
erroneous choice was made. There is no next move of S in this situation.
Of course, since S is nondeterministic, it always chooses correctly, so not all
sequences of moves terminate.

If the new state of T is accepting, S accepts. Otherwise, S simulates the
next move of T. The remaining details are left to the reader.

Theorem 13.5. If a language L is accepted by a deterministic Tm T of
tape complexity class n log n, then it is accepted by S, a deterministic
nonerasing stack automaton.

Proof. The proof is similar to that of Theorems 13.1 and 13.4. We do not
give the complete argument, but only briefly sketch the encoding of a con-
figuration of T. A tape string of T and a state of T marking the position of
T's tape head can be represented by a binary string of length at most cn[log2 n]
for some constant c. Divide the configuration into cn blocks each of length
[log2 n]. The configuration is represented on the stack of S by cn blocks of
l's separated by . 's. The number of l 's in each block is equal to the value of
the binary number in the corresponding block in the configuration of T. S
can copy a configuration to the top of the stack by using the input to count
cn blocks down the stack and then recording the number of l's in the block
on the input. S raises its stack head to the top of the stack without moving
the input head, then copies the block on top of the stack. When S copies
the block containing the state, S converts the string of l's to binary by a
process of repeated division, simulates the move of T, and then converts the
new string back to a block of l's.

The above explanation has ignored many details. Outstanding among
these is the conversion from block length encoding to binary encoding and

200 STACK AUTOMATA 13.3

back, and the method of handling the situation in which the storage head of
Tmoves out of the block it was in. All these details are found in the literature.

So far, we have been considering only nonerasing stack automata. We
should now add that deterministic erasing stack automata can accept what-
ever is accepted by a nondeterministic Tm of tape complexity class n log n.
We first need the following lemma.

Lemma 13.1. Let L(n) be a tape bound such that there is a deterministic
single-tape Tm which, given an input of length n, will use exactly L(n)
cells of tape, then halt. If a language L is accepted by a single-tape
nondeterministic Tm of tape complexity L(n), then L is accepted by a
similar Tm which always halts, no matter what sequence of moves is
chosen.

Proof. Let T be such a Tm accepting L. Let T have s states and t tape
symbols. If the input is of length n, the number of configurations of T
accessible from the initial configuration is at most sL(n)t un~. The factors s,
L(n), and t un~ represent the state, position of head, and tape contents, respec-
tively. It is easy to show that there is an integer, b, such that for all L(n),
b L('~ >= sL(n)t L(~. (Note that L(n) is at least as great as n for a single-tape Tm.)

If T, with some input of length n, accepts after making a sequence of
more than sL(n)t L('~ moves, some configuration must have repeated. Hence,
there is a shorter sequence of moves leading to acceptance. We conclude
that if T accepts a given input of length n, then it is accepted by a sequence
of no more than sL(n)t u"~ moves.

We construct a new Tm T1, which on one track of its tape simulates T.
On the other track of its tape T~ counts in base b the number of moves of T
that have been simulated, up to b u"~. Clearly, T~ must mark off a block of
length L(n) on the second track. The statement of the theorem assumes that
L(n) is of a nature such that this can be done. (Surely L(n) -- n[log2 n]
satisfies this assumption.)

Each time T~ simulates a move of T, it adds one to the counter. If the
counter "overflows," that is, exceeds b u"~, then Tz halts without accepting
in this sequence of moves. Of course, T~ simulates T nondeterministically,
so if any choice of less than sL(n)t u"~ moves of T leads to acceptance, T1
will make this choice and accept.

Theorem 13.6. If L is accepted by a nondeterministic Tm of tape com-
plexity class n log n, then it is accepted by a deterministic sa.

Proof. Let T1 be a single-tape Tm accepting L. By Lemma 13.1, there is a
Tm T2, equivalent to T1, which always halts. If T1 is of tape complexity
class n log n, then Tz will be also. Specifically, T2 will never use more than
cn[log2 n] storage cells, for some integer c.

13.4 THE POWER OF ONE-WAY STACK AUTOMATA 201

We represent configurations of T2 on the stack of S as in Theorem 13.5.
Suppose that the maximum number of choices available to T2 in any situation
is r. In any situation, these choices may each be assigned a number between
1 and m, where m =< r. We introduce a new track on the stack of S which,
above each configuration, holds an integer between 1 and r. This number
indicates which choice of move is made by T2 in going from one configuration
to the next configuration.

S places the initial configuration of T2 on the stack followed by the
number 1. Then S enters a routine which examines the number on the top
of the stack. If this number is j, S examines the current top configuration
to see if there are j different moves. If there are, a new configuration is
created from the old, using the j th move. The method of adding this new
configuration to the top of the stack is that described in Theorem 13.5. If
there are not j distinct moves that can be made from the top configuration,
the number j and the top configuration are erased and the new top number is
incremented by one. Then S repeats the steps of the routine. Of course, if
S creates on its stack a configuration with an accepting state, S halts and
accepts. Until S creates an accepting configuration, it will systematically
simulate all possible sequences of moves of T2. (Note that there are no
infinite sequences of moves of T2.) If no sequence of moves of T2 leads to
an accepting state, then S will eventually empty its stack and halt without
accepting.

13.4 THE POWER OF O N E - W A Y STACK A U T O M A T A

We have considered two-way stack automata and shown various relations
between their power and the power of various tape-bounded Turing
machines. Specifically:

1. A nonerasing sa is equivalent to a nondeterministic n 2 tape-bounded Tm.
2. A deterministic nonerasing sa is equivalent to a deterministic n log n

tape-bounded Tm.
3. A deterministic sa can simulate a nondeterministic n log n tape-bounded

Tm. Hence, among other languages, a deterministic sa can recognize all
the context-sensitive languages.

We show, very briefly, that a one-way nondeterministic sa can be simu-
lated by a deterministic n tape-bounded Turing machine (deterministic lba).
Thus every one-way sa language is context sensitive.

We need to introduce a few lemmas. The first states that a one-way sa
can accept by "empty store," like the pda can.

Lemma 13.2. If L is T(S) for some one-way sa S, then L = N(S1) for
another one-way sa $1, where

N(S~) = {wl(qo, Zo, O, 1) ~ (q, e, O, n)}.

202 STACK AUTOMATA 13.4

Here q0 and Z0 are the start state and start symbol of $1, respectively,
and n is the length of w.

Proof As in Theorem 5.1, S~ simulates S. If S enters an accepting state, Sz
then moves its stack head to the top of stack, the input head to the right end
marker, and erases the stack.

From here on we think of sa's as accepting by empty store.

Lemma 13.3. If L = N(S) for some one-way sa S, then L = N(S~) for
some one-way sa S~ such that: If w is accepted by S~, then there is a
sequence of moves leading to acceptance, such that if the stack head
leaves the top of stack, it does not return until it has moved its input
head. This sequence of moves is said to have property A.

Proof For every stack string y of S, we can find a rebound table which
indicates, for each input symbol a, what state transitions S can make without
moving its input head, starting at the rightmost symbol of y and ending with
a move to the right from y, never having previously left y. There are only a
finite number of rebound tables for S, since there are a finite number of
input symbols and states.t

$1 will simulate S, but on each stack cell $1 will print, in addition to the
symbol S prints, the rebound table for that symbol and the string below it
on the stack. The technique of carrying a table on each cell of the stack is
similar to that used in the "predicting machine" of Section 12.3.

To print the correct rebound table on each cell, $1 must compute the
rebound table for yZ from Z and the rebound table for y, where Z is any
stack symbol of S. It is, in fact, true that the rebound table for yZ depends
not upon all of y, but only upon the rebound table for y, which $1 has
available to it on the rightmost symbol of y. The details are left to the reader.

It should be clear that if $1 has the correct rebound table incorporated
into its rightmost nonblank stack symbol, it need not leave the top of stack
to know what stack scans it can make without moving its input head. A
stack scan in which the input head never moves results only in a change of
state. This state transition can be accomplished by S~ at the top of stack.

Lemma 13.4. If L = N(S), for some one-way sa S, then L = N(S2) for
some one-way sa $2 for which: If w is accepted by $2, then w is accepted
by a sequence of moves such that, between two moves of the input head,
all erasing moves precede all writing moves (hereafter called property B),
and in addition, that the sequence has property A.

t Note that the rebound table is similar to the transition table used for the two-
way sa. However, the input head position is not part of the information provided
by the rebound table.

l
Stack
length

THE POWER OF ONE-WAY STACK AUTOMATA 203

Proof Let $1 be the sa constructed in Lemma 13.3. Consider a sequence of
moves of St having property A and leading to acceptance of w. Between
moves of the input head, $1 can, since it has property A, only"

1. Raise the stack head to the top of stack.
2. Make erasing, writing, and stationary moves at the top of stack.
3. Move the stack head into the stack.

Of course, $1 need not do all three, but what is done must be in that order.
For any states p and q, stack symbol Z, and input symbol a, either it is

true that (q,Z, O, 1)Is~,~$ (P, Z, 0, 2) (although many symbols may be

written and erased on the stack) or it is false.t If true, we can allow $2, when
scanning a on the input with Z as the rightmost nonblank on the stack, to
go directly from state q to p. In addition, $2 can do whatever S~ can do.

Surely $2 accepts only words accepted by $1. Suppose that, between
two moves of S~'s input head, the length of stack as a function of the number
of moves is the solid line of Fig. 13.3. $2 can imitate this motion, but can
also use its additional rules to make the "jumps" indicated by the dashed
lines. Note that $2 first erases only, then prints only.

Figure 13.3

Time

We have now introduced two properties of sequences of moves, A and B,
which we can assume without loss of generality. We must further modify the
sa such that, if it accepts its input, it does so by a sequence of moves in which
the stack length is at most a constant multiple of the input length. Then, we
at least have simulation of a one-way sa by a nondeterministic lba. With a
more sophisticated argument, we can show simulation by a deterministic lba.

t It may be comforting to know that there is an algorithm to decide whether this
is true or false, but the existence of such an algorithm is not important to the
argument. If the algorithm did not exist, some sa would still be $2. We could
not, however, tell which sa this was.

13.4

204 STACK AUTOMATA 13.4

Observe that in any sequence of moves, of all the symbols ever written
on the stack with an input of length n, at most n - 1 of them ever influence
the sa's choice when the input head moves. We attempt to shorten stacks by
combining long strings of symbols that in some particular sequence of moves
are only scanned when moves keeping the input head in a fixed position are
made. These strings can be replaced by a single symbol that will supply all
the information needed to simulate the action of the stack head on the string.

Specifically, let y = X1X2... Xk be a stack string of some one-way sa, S.
A transmission table(tt) for y is a symbol which gives the following informa-
tion about y.

1. What is Xk ?
2. For each input symbol a, and states q and p, can S erase y from its stack,

while continuously scanning a, starting in state q and ending in state p ?
3. While continuously scanning a on its input, starting in state q and scan-

ning Z~ on the stack, can S be in state p when it first leaves y if it moves
off y to the left ? To the right ? If S is started at Xk in state q, continuously
scanning a, can it be in state p when it first leaves y going left ? going right ?

Note that, for a given S, there are a finite number of input symbols,
stack symbols, and states, so there are only a finite number of tt's.

Let us consider a one-way sa S such that every word accepted is accepted
by a sequence having properties A and B. We construct from S a summary
machine, denoted by o(S). or(S) will simulate S, but has the privilege of
combining any string of adjacent stack symbols into a tt or not combining
them. Of course, or(S), being nondeterministic, always does both.

Specifically, let S = (K, Z,, F, 3, 3b, qo, Zo, .99). a(S) has as stack symbols
the elements of F plus all possible tt's for S. a(S) keeps track of the state of
S in cr(S)'s finite control. Suppose that o(S) has its stack head at the top of
stack, and a symbol of F is the rightmost blank. Then or(S) can do whatever
S could do. In addition, if S could print a Z, a(S) may either do that or print
a tt for the string consisting of Z alone.

If a tt is the rightmost nonblank, it tells what the rightmost symbol is in
the string it represents. So or(S) knows what symbol is the rightmost non-
blank of the stack of S represented. If S can make a move which leaves the
stack head fixed, or(S) can do the same. If S can print a symbol, or(S) can:

1. Print that symbol.
2. Print a tt representing that symbol.
3. Change the tt at the top of cr(S)'s stack to include the symbol printed.

The reader can show that if a is a tt for string y and Z is a stack symbol, then
the tt for yZ is a function of a and Z only. The exact value of the string y is
not needed.

13.4 THE POWER OF ONE-WAY STACK AUTOMATA 205

Finally, or(S) may erase the tt, without moving its input head, executing
a state transition of S that the tt says is possible.

Within the stack, scanning a symbol in F, or(S) can do exactly what S
can do. If scanning a tt, or(S) must remember from which direction it moved
to the tt. or(S) must then leave the tt without moving its input head. It may
simulate any state transition S could make had S moved into and out of the
string represented by tt. There is, of course, the requirement that S be able
to make that same transition entering and leaving the string in the same
directions as o(S) enters and leaves the tt.

It should be clear that anything or(S) does is, in a sense, a representation
of what S does. Therefore, N(cr(S)) _~ N(S). However, we must show that
whatever S accepts is accepted by or(S), and that or(S) accepts it by a sequence
of configurations in which the stack length is linearly bounded. We show
this in the proof of the next theorem.

Theorem 13.7. If L is accepted by a one-way, nondeterministic stack
automaton, then L is context sensitive.

Proof Let L = N(S). By Lemmas 13.3 and 13.4, we can construct $2
with L = N(S2), where, if w is in L, then w is accepted by $2 by a sequence
of moves having properties A and B.

Let us consider what can happen between input head moves in a sequence
of moves having properties A and B. First, it is possible that the stack head
will never reach the top of stack. If it does reach the top of stack, it may erase
some symbols, then print some symbols (property B). It may then leave the
top of stack, but if it does it may not return until the input head has moved
(property A).

Let P be such a sequence of moves of $2 leading to acceptance of input
w. P is modeled by many sequences of moves of or(S2), as described in the
previous discussion. We are interested in a particular sequence of moves of
or(S2), P1, which has the following properties:

1. If in sequence P a stack symbol is printed, in sequence P1, that symbol is
printed only if $2 either prints, erases, or scans it on a move which causes
the input head to move. Otherwise, in sequence P1, that symbol is
incorporated into a tt. (Thus the tt may represent that symbol alone or
that symbol in addition to others.)

2. If in sequence P1 two tt's areever adjacent on the stack of or(S2), then,
between two input head moves, $2 erases all the symbols represented by
the upper tt, but none of those represented by the lower tt.

We leave it to the reader to assure himself that such a sequence P1 exists.
The argument is essentially that o(Sz) always has the option of printing sym-
bols or tt's and of starting new tt's or changing the one at the top of stack.
The only time a(Sz) must print a stack symbol of $2 is when that symbol will

206 STACK AUTOMATA 13.4

be involved in a move with input head motion, as required by Condition 1
above. The only time a string of symbols not involved in a motion of the
input head needs to form two or more tt's is when, between two input moves,
some symbols of the string are erased and others are not.

How long can the sequence P1 cause the stack to grow ? Any stack of
o(S2) can hold at most n - 1 stack symbols of $2 (not counting the end of
stack marker), since $2 can make only n - 1 input head moves if [w[= n.
Also, there can be at most n - 1 tt's that are immediately to the right of
other tt's. This condition is due to property B. Between two input moves,
some symbols may be erased, but once $2 starts to print, no more symbols
are erased. Two adjacent tt's on the stack of o(S2) thus mark the boundary
between the erased symbols and remaining symbols for some subsequent
moves in sequence P1.

Thus, no stack of a(S2) in sequence P1 can have more than 3n symbols
of all types. We can easily construct a nondeterministic on-line Tm T, which
simulates cr(Sz). If, for some choices, T finds that cr(S2)'s stack has grown
longer than 3n symbols, T discontinues computation. We have already
argued that if w, of length n, is in N(cr(S2)), then there will be some sequence
of moves P1 which T can simulate without using more than 3n storage tape
cells. The reader can easily show that or(S2) can be simulated by an lba. Thus,
we conclude that L is a csl.

We can prove more than Theorem 13.7, namely that a deterministic lba
can simulate a one-way nondeterministic sa. We do not give even an informal
proof of the latter result, but merely provide some hints as to how it is proved.
We need to present one more lemma.

Lemma 13.5. Given a one-way nondeterministic sa S, we can find an
sa $3, with N(Sa) = N(S), such that if Sa accepts an input w, it does so
by a sequence of moves having properties A and B and property C.
Property C being that, on every move, Sa moves either its input head or
its stack head, but not both.

Proof. Consider $2 constructed from S as in Lemma 13.4. $2 introduces
properties A and B. One can easily modify $2 so that it moves at most one
of its heads at a time. Suppose that $2 makes a sequence of moves in which
the two heads remain stationary. The net effect is a change of state. This
change can be incorporated into the next move of $2 which does not leave
the heads fixed. Note that since'S2 accepts by empty stack, the last move
cannot be one which leaves both heads fixed.

Define a composite move to be either a move to the left from the top of
stack followed by a stack scan (sequence of moves returning the stack head
to the top of stack) or a single move at the top of stack (print, erase, or
stationary). The former type of composite move will informally be referred
to as a "stack scan."

13.5 RECURSlVENESS OF STACK AUTOMATA 207

Theorem 13.8. If L = N(S) for some one-way nondeterministic sa S,
then L is recognized by a deterministic lba.

Proof Consider a(S2), constructed from S as in the proof of Theorem 13.7.
Apply the constructions of Lemmas 13.4 and 13.5 to ~($2) to get a new sa,
Sa. We claim that, if w is in N(S3), then w is accepted by a sequence of moves
P, which has properties A, B, and C and for which the length of the stack is
bounded by 31w[. Moreover, P has the two properties of P1 in Theorem 13.7.

Using the above properties, one can show that in sequence P the number
of moves at the top of stack is at most 91w I for any w. There is some constant
r such that Sa has no more than r choices in any configuration. We represent
each of the moves in P at the top of stack by an integer between 1 and r
according to some encoding.

The stack scans in sequence P number at most I w[. A particular stack
scan can be represented by a pair of states, the states at the beginning and
end of the scan, followed by as many O's as there are input moves during
the stack scan. All the stack scans can thus be represented by at most 21w [
states of Sa, and]w I O's. The entire sequence P may be represented by at
most 121w [symbols chosen from 0 through r and the states of Sa.

A deterministic lba T can generate all such sequences in a systematic
manner and test each in turn to see if it represents a sequence which leads to
acceptance of w and for which the stack is bounded in length by 31w I. Surely
w is in N(Sa) if and only if a sequence of this nature exists. We leave it to
the reader to show the hard par t - - that T can determine if, for a given
stack of length at most 31w I, a stack scan starting in state q, ending in state p,
and moving the input head from position i to j on w is possible.

13.5 RECURSIVENESS OF STACK A U T O M A T A

We have shown that two-way stack automata can recognize all the csl's.
A diagonalization argument can be constructed (using the techniques of
Section 13.3) to show that the deterministic sa can accept non-context-
sensitive languages. One might ask if a two-way sa can recognize all type 0
languages. Such is not the case, as we shall immediately show.

Lemma 13.6. If L is accepted by a one-way nondeterministic sa, then
L is recursive.

Proof. L is context sensitive by Theorem 13.7. Moreover, we can effectively
find a csg generating L by Theorem 8.2. Thus, L is recursive by Theorem 2.2.

Theorem 13.9. If L is accepted by a two-way nondeterministic sa, then
L is recursive.

Proof. Let L = N(S), and let w be a particular input to S. We can con-
struct a one-way nondeterministic sa Sw, with w and the position of S's input

208 STACK AUTOMATA 13.5

!

I
I

Input to S !
I

Dummy input to S w I ¢ $

\

F in i te
control
of S w

T
Finite

control
of S

Stack of S and S w

Fig. 13.4. Simulation of S by Sw.

Two-way stack automata One-way stack automata

Closed under

Union

Concatenation

Closure

Reversal

Intersection

Complement

Non-
deterministic Deterministic

Intersection with
regular set

Substitution

c-free substitution

gsm mappings

c-free gsm

Inverse deterministic
gsm mappings

k-limited erasing

Quotient with
regular set

Yes

Yes

Yes

Yes

Yes

?

Yes

No

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

No

Yes

Yes

Yes

No No

Non-
deterministic

Yes

Yes

Yes

Yes

No

No

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Deterministic

No

No

No

No

No

Yes

Yes

No

No

No

No

Yes

No

Yes

Fig. 13.5. Closure properties of stack automata.

REFERENCES 209

head incorporated into the finite control of Sw. Sw has "dummy" input ¢$.
See Fig. 13.4. Sw simulates S with input w, first moving to $ on its dummy
input. It is straightforward to show that Sw can be constructed so that Sw
accepts if and only if S accepts w.

13.6 CLOSURE PROPERTIES

Many closure properties for stack automata can be established by methods
similar to those used in Chapter 9. Some other closure results appear in the
literature. For completeness, we summarize the results in Fig. 13.5.

PROBLEMS

13.1 Give two-way stack automata accepting the following"
a) {wlcw2c...cw~lk arbitrary, w~ in {0, 1}* for each i, and for no m and n is

Wm = Wn}.

b) The set of words consisting of an equal number of a's, b's, and c's.
c) (wwlw in {a, b}*}.
d) {0~1i is prime}.

13.2 Give one-way nondeterministic stack automata accepting"
a) {0~[i is a perfect square}.
b) The complement of the set given in Problem 13.1(a).
c) (0~l"0~ln => 0).

13.3 The language L = (0eli is a perfect cube) is not accepted by any one-way
nondeterministic sa. Can you prove this ? If not, can you prove a simpler
result such as:
a) L is accepted by no one-way deterministic sa ?
b) L is accepted by no one-way nondeterministic nonerasing sa ?

13.4 In Section 6.6, a pushdown automaton was defined as a Turing machine
of a restricted type. Can you do the same for stack automata ?

13.5 Show some of the closure properties indicated in Fig. 13.5.

REFERENCES

The notion of a stack automaton is from Ginsburg, Greibach, and Harrison
[1967(a) and (b)]. Theorems 13.1, 13.9, and a weaker version of Theorem 13.6
were proved in the above references. Theorems 13.2, 13.3, 13.4, and 13.5 are
from Hopcroft and Ullman [1967a]. Theorem 13.7 was first noted by Ginsburg,
Greibach, and Harrison, although a proof has not appeared in print. Theorem
13.8 is from Hopcroft and Ullman [1968c]. Most of the closure properties of
one-way stack automata were shown in Ginsburg, Greibach, and Harrison
[1967b]. Some of those for two-way stack automata follow directly from results in
Hopcroft and Ullman [1967b], Ullman [1968], and Ginsburg and Hopcroft [1968].

210 STACK AUTOMATA

Theorems on stack automata which we have not covered in this chapter
appear in the literature. In Hopcroft and Ullman [1968b] the closure of one-way
deterministic sa under quotient with a regular set is shown. In Knuth and
Bigelow [1967] it is shown that two-way deterministic sa can recognize languages
which are not context sensitive. Ullman [1968] contains a proof that every two-
way sa can be modified so that it halts in any sequence of moves (i.e., there are
no infinite valid sequences of moves), without changing the language recognized,
and keeping the sa deterministic if it was originally so.

CHAPTER 14

DECIDABILITY

14.1 SOLVABLE AND UNSOLVABLE QUESTIONS

In this book we have exhibited algorithms to answer various "questions"
about languages and grammars. An example of such a question is Q l:
Given a cfg G, is L(G) empty? In Theorem 4.1, we gave an algorithm to
answer Q1. Consider also Q2: Given a type 0 grammar G and string w, is
w in L(G)? One can easily show that Q2 is essentially the halting problem
for Turing machines. Thus, by Theorem 7.1, there is no algorithm to solve
Q2.

We attempt to give a reasonably precise indication of what a question is.
We do not, however, define the term formally. Actually, we do not prove
any results about solvability of questions in general, so no definition of the
term is necessary. We try to provide a good understanding of what it means
to say that a question is unsolvable, and to show certain questions to be
solvable or unsolvable.

The questions Q1 and Q2 have two common characteristics, both of
which we require of questions generally.

1. A question consists of an infinity of instances.
2. In each instance, the answer to the question is either yes or no.

In Q1, the instances correspond to the individual cfg's. There is an
infinity of cfg's, of course. In Q2, each grammar-string pair is an instance
of the question. Note that we are not attempting to define an instance,
except to say that it must have a yes or no answer.

We say that a question is solvable if there is an algorithm which, given a
"suitable" encoding of any instance of the question, will return the answer
for that instance. If no such algorithm exists, the question is unsolvable.

We must be careful to say what a "suitable" encoding is. Suppose that
we wished to "solve" the halting problem for Turing machines.t We could
encode Turing machines and input strings as binary numbers, one number
for each pair of Tm and string. So far so good. But suppose that we added
the proviso that, if the Tm T halted on input w, then (T, w) was to receive an
even number, and (T, w) was to receive an odd number otherwise. Then we
could "solve" the halting problem by looking at the last bit of the encoding
of the instance.

I" This problem is, of course, unsolvable.

211

212 DECIDABILITY 14.2

Something is wrong. The problem clearly lies with the hypothetical
encoding. A concept such as a Turing machine has a "standard" definition.
In Chapter 6, it was defined as a "6-tuple" (K, Z, P, 8, q0, F), where K is a
set of states, etc. It is not surprising that we get strange results if we allow
encodings of Turing machines that bear no relation to the "standard"
definition. We therefore define an encoding as suitable if there are algorithms
to translate from the encoding to the "standard" definition and back again.
This is clearly not the case for the Turing machine encoding mentioned in
the paragraph above.

Of course, one is free to make "nonstandard" definitions of models. But
then any theorem he gets will be for his models, not the ones found in this
book.

14.2 POST'S CORRESPONDENCE PROBLEM

We know of one unsolvable question--the halting problem for Turing
machines. To show that other problems are unsolvable, one shows that, if
they were solvable, then the halting problem for Tm's would be solvable also.
One can do this directly, but it is easier to show first the unsolvability of
Post's Correspondence Problem (PCP). Post 's Correspondence Problem is the
following"

Let Z be a finite alphabet, and let A and B be two lists of strings in Z +,
with the same number of strings in each list. Say

A = wl, w 2 , . . . , w~ and B = x l , x 2 , . . . , xk.

We say this instance of PCP has a solution'~ if there is any sequence of
integers i,, i 2 , . . . , ira, with m _>- 1 such that

W~lWi2" " " W~m = X~zX~2" " "JQm"

We say that i~, i2, • •., im is a solution to this instance of PCP.

Example 14.1. Let E = {0, 1}. Let A and B be lists of three strings each,
defined as follows.

List A

WL

1
10111

10

List B

X~

l l l
10
0

not confuse the unsolvability of PCP with the fact that a given instance
"have a solution."

14,2 POST'S CORRESPONDENCE PROBLEM 213

PCP has a solution in this case. Let m = 4, i~ = 2, i2 - 1, ia = 1, and
i~ = 3. Then w 2 w l w l w a = x 2 x l x l x a = 101111110.

Example 14.2. Let Z = {0, 1}. Let A and B be lists of three strings"

List A

W~

10
011
101

List B

X~

101
11

011

Suppose that this instance of PCP has a solution iz, i2, im. Clearly,
i~ = 1, since no string beginning with w2 = 011 can equal a string beginning
with x2 = 11; no string beginning with wa = 101 can equal a string begin-

ning with xa = 011.
We write the string from list A above the corresponding string from B.

So far we have
10
101.

The next selection from A must begin with a 1. Thus i2 = 1 or i2 = 3.
But i2 = 1 will not do, since no string beginning with wlw~ = 1010 can
equal a string beginning with x z x l -- 101101. With i2 = 3, we have

10101
101011.

A similar a rgument shows that ia = 3, leaving

10101101
101011011.

It is clear that this a rgument can go on forever. There is no choice of
indices that will allow the length of the string from A to "catch up" with the
string from B, making both strings identical.

We show that PCP is unsolvable by showing that, if it were solvable, we
could solve the halting problem for Turing machines. First, we show that, if
PCP were solvable, a modified version of PCP would also be solvable.

The m o d i f i e d P o s t ' s co r re spondence p r o b l e m (MPCP) is the following:
Given lists A and B, of k strings each in 2; +, say

A = wl, w 2 , . . . , wk and B --- x l , x 2 , . • . , xk,

does there exist a sequence of integers, i l , i2, • . . , ir, such that

WiWiiW~2... Wir = X I X i l X i 2 . • .X~ r.

214 DECIDABILITY 14.2

The difference between the MPCP and PCP is that, in the MPCP, a solution
is required to start with the first string on each list.

Lemma 14.1. If PCP were solvable, then MPCP would be solvable.

Proof. Let

A = wl, w 2 , . . . , w~ and B = xl, x 2 , . . . , xk

be an instance of the MPCP. We convert this instance of MPCP to an
instance of PCP which has a solution if and only if our MPCP instance has
a solution. If PCP were solvable, we would then be able to solve the MPCP,
hence proving the lemma.

Let Z be the smallest alphabet containing all the symbols in lists A and
B, and let ¢ and $ not be in Z. Define two homomorphisms, hL and hR, on
Z* by hL(a) = ¢a and hR(a) = a¢ for all a in X~. That is, hL inserts ¢ to the
left of each symbol and hR inserts ¢ to the right. Define

y~ = ¢hR(w~) and y,+ z = hR(w,)

f o r l < i N k . Let

zi = hL(Xi) and Z~+i = hL(x,)

f o r l < i < k. Let

Yk+2 = $ and zk+2 = ¢$.

Define

C = Yl, Y2, • •., Yk + 2 and D = zz, z 2 , . . . , zk + 2.

The lists C and D constructed from the lists A and B of Example 14.1 are"

List A

w~

1
10111

10

List B

xt

111
10
0

List C

Y~

¢1¢
1¢

1¢0¢1¢1¢1¢
1¢0¢

$

MPCP PCP

List D

¢1¢1¢1
¢1¢1¢1
¢1¢0
¢0
¢$

The lists C and D represent an instance of PCP. The claim is made that
this instance of PCP has a solution if and only if the instance of MPCP
represented by lists A and B has a solution. To see this, note that if

14.2 POST'S CORRESPONDENCE PROBLEM 215

1, il, i 2 , . . . , ir is a solution to MPCP with lists A and B, then

1, il + 1, i~. + 1 , . . . , i t + 1, k + 2

is a solution to PCP with lists C and D. Likewise, if il, i 2 , . . . , ir is a solution
to PCP with lists C and D, then il = 1 and ir = k + 2 since yl and z~ are

t h e only words with the same index that begin with the same symbol and
Y~ + 2 and z~ + 2 are the only words with the same index that end with the same
symbol. Le t j be the smallest integer such that ij = k + 2. Then i~, i 2 , . . . , ij
is also a solution (since the symbol $ occurs only as the last symbol of Yk + 2
andzk+2) and, for no /, where 1 =< l < j , isis = k + 2. C lea r ly l , i 2 - 1,
i3 - 1, ij_ z - 1 is a solution to MPCP for lists A and B.

If there is an algorithm to solve PCP, we can construct an algorithm to
solve MPCP by converting any instance of MPCP to PCP as above.

Theorem 14.1. PCP is unsolvable.

Proof With Lemma 14.1, it is sufficient to show that, if MPCP were solvable,
then the halting problem for Turing machines would be solvable. Given a
Tm M and input w to M, we construct an instance of MPCP that has a
solution if and only if M halts and accepts input w.

Let M = (K, r , z , 3, qo, F) and let B be the blank symbol. Without loss
of generality, we assume that for each q in F and a in Z, 3(q, a) is undefined.
We can represent the configuration (q, ~, i) of M by the string ~1q~2, where
a1~2 = a and]~1[= i - 1. That is, q appears immediately to the left of
the symbol scanned by M' s tape head. If qow, ~q~t, ~2q2~2,..., ~kqk~k are
the representations of a possible sequence of configurations of M, and qk is
in F, then there will be a solution to the MPCP where the strings of the
solution each begin with #qow//~q~#... #~kqk~k//. H e r e / / i s a new symbol
not in K or P.

Formally, the pairs of strings forming lists A and B of the instance ot
MPCP are given below. Since, except for the first pair, which must be used
first, the numbers of the pairs are irrelevant to the existence of a solution,
the pairs will be given without indexing numbers.

The first pair is"

List A List B

#qow#
The remaining pair are grouped as follows"

Group I
List A List B

X X for each X i n P - {B}.

216 DECIDABILITY 14.2

Group 11. For each q in K - F, p in K, and X, Y, and Z in F - {B}.

List A List B

q X Yp if 3(q,X) = (p, Y,R)
ZqX p Z Y if 8(q,X) = (p, Y,L)
q# Yp# if 3(q,B) = (p, Y,R)

Zq# pZ Y# if 8(q, B) = (p, Y, L)

Group IlL For each q in F, and X and Y in F - {B}.

Group IV

List A List B

XqY q
Xq# q#
#qY #q

List A List B

q## # for each q in F.

Let us say that (x, y) is a partial solution to MPCP with lists A and B
if x is a prefix of y, and x and y are the concatenation of corresponding
strings of lists A and B respectively. If xz = y, then call z the remainder of

(x, y).
Suppose, from configuration qow, that there is a valid sequence of con-

figurations (zlqlt31, c~2q2t32,..., czkqkl3k, where none of ql, q2,. •., qk-1 are in
F. We claim that there is a partial solution

(x, y) = (#qow#alq~fi~#. . . #a~_ ~qk- ~flk- ~#, #qow#a~q~13~#. . . #akqkl3k#).

Moreover, this is the only partial solution whose larger string is as long as l y[.
The above statement is easy to prove by induction on k. It is trivial for

k = 0, since the pair (#, #qow#) must be chosen first.
Suppose that the statement is true for some k and that qk is not in F.

We can easily show that it is true for k + 1. The remainder of the pair
(x, y) is z = a~qkflk#. The next pairs must be chosen so that their strings
from list A form z. No matter what symbols appear to the right and left of
qk, there is at most one pair in Group II that will enable the partial solution
to be continued past qk. This pair represents, in a natural way, the move of
M from configuration (zkqkflk. The other symbols of z force choices from
Group I. No other choices will enable z to be composed of elements in

list A.
We can thus obtain a new partial solution, (y, y(zk +lqk + 1ilk + 1#) . It is

straightforward to see that ak + lqk + zfik + ~ is the one configuration which M
can reach on one move from ~kqk/3k. Also, there is no other partial solution
whose length of the second string equals lY~k + tqk + 1/3k + 11.

14.2 POST'S CORRESPONDENCE PROBLEM 217

In addition, if qk is in F, it is easy to find pairs from Groups I and III
which, when preceded by the partial solution (x, y) and followed by the pair
in Group IV, provide a solution to MPCP with lists A and B.

Thus if M, started in configuration qow, reaches an accepting state, the
instance of MPCP with lists A and B has a solution. If M does not reach an
accepting state, there may be partial solutions, but the string from B must
exceed the string from A in length, so no solution is possible.

We conclude that the instance of MPCP has a solution if and only if M
with input w halts in an accepting state. Since the above construction can be
carried out for arbitrary M and w, it follows that if there were an algorithm
to solve MPCP, then there would be an algorithm to solve the halting problem
for Turing machines. But the halting problem for Turing machines is un-
solvable. Therefore MPCP is unsolvable and by Lemma 14.1, PCP is
unsolvable.

Example 14.3. Let

M = ({ql, qz, q3}, {0, 1, B), {0, 1}, 3, q~, {qa}).

3 is defined by:

ql
qa
qa

3(q,, O)

(q2, 1, R)
(q3, 0, L)

3(q,, 1) i
- ,

(q2, O, L)
(q~, O, R)

3(q,, B)

(q2, 1, L)
(q2, 0, R)

Let w = 01. We construct an instance of MPCP, having lists A and B.
The first pair is # for list A and #q~01# for list B. The remaining pairs are:

Group I
List A List B

Group H
List A

0 0
1 1

List B

ql0
0ql 1
lqll
0q~#
lq~#
0qa0
lq20
qzl
qz#

l q2 from 3(q~, 0) = (q2, 1, R)

q200q210) f r o m 3(ql, 1) = (q2, 0, L)

q201 #
} from 8(ql, B) = (q2,1 L)

q211# _

q300qal0) from 3(q2, O) = (q3, O, L)

0ql from 3(q2, 1) = (q~, 0, R)
0q2# from 3(q2, B) = (qz, O, R)

218 DECIDABILITY 14.2

Group III

Group IV

List A List B

Oq30 qa
Oqal qa
lqaO qa
lqal qa
Oqa# qo#
lqa# qa#
#qaO #qs
#q31 #qa

List A List B

qs## #

Note that M accepts input w = 01 by the sequence of configurations"
qz01, lq21, 10q~, lq201, qal01. Let us see if there is a solution to the MPCP
we have constructed. The first pair gives a partial solution (#, #q101#).
Inspection of the pairs indicates that the only way to get a longer partial
solution is to use the pair (ql0, lq2) next. The resulting partial solution is
(#qz0, #q~01#1q2). The remainder is now 1//lq2. The next three pairs
chosen must be (l, 1), (//, #), and (1, 1). The partial solution becomes
(//ql01#1, #q~Ol#1q21#1). The remainder is now q21#1. Continuing the
argument, we see that the only partial solution, the length of whose second
string is 14, is (x, x0ql#1), where x = #ql01#1q21#1.

Here, we seemingly have a choice, because the next pair used could be
(0, 0) or (0q~//, q201//). In the former case, we have (x0, xOq~#10) as a partial
solution. But this partial solution is a "dead end." No pair can be added to
it to make another partial solution, so, surely, it cannot lead to a solution.

In a similar manner, we continue to be forced by our desire to reach a
solution to choose one particular pair to continue each partial solution.
Finally, we reach the partial solution (y, y l#q310), where

y = #q~Ol#1q21#lOq~#1q20.

Since q3 is a final state, we can now use pairs in Groups I, III, and IV to find
a solution to the instance of MPCP. The choice of pairs is

(1, 1), (//qa 1, #qa), (0, 0), (1, 1), (#qo0, #qa), (1, 1), (#qal, #qa), (#, #), (qa##, #).

Thus, the shortest word which can be composed of corresponding strings
from lists A and B, starting with pair 1, is"

//ql 01//1 q21 # 10qz # 1 q 201 #qa 101 #q a01 #qa 1 #q a##.

14.4 UNSOLVABLE QUESTIONS FOR CFL'S 219

14.3 A Q U E S T I O N C O N C E R N I N G C O N T E X T - S E N S I T I V E L A N G U A G E S

By Theorem 2.2, it is a solvable problem to determine if a string w is in the
language generated by the csg G. This question is called the membership
problem. A more difficult question is: Given a grammar G, is L(G) = ~o ?
This question is called the emptiness problem.

Theorem 14.2. The emptiness problem for context-sensitive grammars
is unsolvable.

Proof Let

A = wl, w2, . . . , wk and B -~ Xl~ x 2 ~ . . . ~ X/c

be the lists in an instance of PCP. We can easily construct an lba M which,
when given a string y, generates sequences of integers i~, i 2 , . . . , ira, with
1 =< m =< F yl and 1 =< ij =< k for allj. Then M tests each sequence of inte-
gers in turn to see if w~lw,~... Wtm = X~lX~2...X~m = y. If SO, M accepts y.
It is straightforward to see that there is a solution to PCP with lists A and B
if and only if M accepts some input y. Now, by Theorem 8.2, we can con-
struct a csg G such that L(G) is the language accepted by M. Thus, if we
could solve the emptiness problem for csg's, we could solve PCP.

There are a number of other questions concerning context-sensitive
languages whose unsolvability follows immediately from the unsolvability of
the emptiness problem. Many of these questions are also unsolvable for
context-free languages. Thus we defer these questions to the next section.

14.4 U N S O L V A B L E Q U E S T I O N S FOR C O N T E X T - F R E E L A N G U A G E S

From Theorem 4.1, we see that the emptiness problem is solvable for context-
free languages. However, there are other questions for cfl's that are unsolv-
able. Our plan is to give a method for constructing certain cfg's for each
instance of PCP. The cfg's will form an instance of a question Q about cfg's
which we wish to show is unsolvable. The answer to this instance of Q will
be yes if and only if the given instance of PCP has a solution. Now, if Q
were solvable, then we could solve PCP by converting each instance of PCP
to an instance of Q. Thus we may conclude that Q is unsolvable.

Let

A = wl, w2, . . . , wk and B = xl, x2 , . . . , xk

be two lists of strings in Z +. Let K -- {a~, a2 , . . . , ak} be a set of k distinct
symbols not in E. Define

Ga = ({Sa}, V~, Pa, Sa) and GB = ({SB}, Vr, P~, SB),

where VT = Z W K, and Pa and PB are defined as follows. For each i

220 DECIDABILITY 14.4

between 1 and k, P.4 contains productions of the form

S,~ -+ w~Saa~ and S,, ---> w~a~,

and P~ contains productions of the form

S~ -+ xiSBa~ and SB -+ xiai.

Let LA = L(GA) and LB = L(GB). It is straightforward to show that

La = {w~w~ . . . wi~at~ai~_~...ai~lm > 1)

and

LB = {x~x~2 . . . x t~a~a~_~ . . . a~ lm > 1}.

The cfl's, La and LB, shall be used extensively in what follows.

Theorem 14.3. It is unsolvable whether the intersection of the languages
generated by two arbitrary cfg's is empty.

Proof La c3 L~ = 99 if and only if PCP with lists A and B has no solution.
Thus if there were an algorithm to determine if the intersection of the lan-
guages generated by two cfg's was empty, then there would be an algorithm
to solve PCP. Therefore, the emptiness of intersection problem for cfg's
must be unsolvable.

Next we will prove a lemma from which many of the unsolvability results
for cfg's follow immediately. Let A and B be lists of words over ~ and
K = {a~, a2,. •., ak} as before. Let e be a symbol not in K or E. Let RaB be
the language {ycyR[y is in Z'K*}. Let

SaB = {yczR] y is in La, z is in LB}.

Ra~ and SaB are deterministic cfl's. Thus there is an algorithm (Theorems
5.3, 9.1, and 12.1) to find a cfg generating the language LaB = /TaB u SAB.

Lemma 14.2. LaB = (g V0 K v0 {c})* if and only if PCP with lists A and
B has no solution.

Proof. Lap = (Z, w K vo {e})* if and only if Ra~ n SaB = q~. NOW, sup-
pose that PCP with lists A and B has a solution. Then there exists a string y
in both La and LB and thus ycy R is in San. Now ycy R is also in RaB and thus
in SaB c~ Ran. Conversely, suppose that x is in SAB C3 Rap. Then x must
be of the form ycy R where y is in both La and LB. Thus PCP with lists A
and B has a solution.

Theorem 14.4. It is unsolvable whether a cfg generates the set of all
strings over its terminal vocabulary.

Proof Let GaB be a cfg generating LaB. If it were solvable whether GAB
generated (E va K vo {c})*, we could solve PCP for lists A and B.

14.4 UNSOLVABLE QUESTIONS FOR CFL'S 221

Theorem 14.5. It is unsolvable whether for a cfg G and regular set R"

1. L(G) = R
2. L(G) ~_ R

3. L(G) = 9.

Proof Let G be the cfg GAB generating LAB, which is constructed from lists
A and B. Let R = (Z u K u {c})*. Then (1), (2), and (3) are true exactly
when PCP with lists A and B has no solution.

Corollary 14.1. It is unsolvable whether two cfg's generate the same
language, or whether the language generated by one cfg is contained in
the language generated by another cfg.

Proof These questions are unsolvable for a cfg and a regular grammar by
Theorem 14.5.

We now examine the cfl LAB = RAB U SAB more closely. In particular,
consider the complement LAB = RAB r~ SAB. Now

• a x R .~.R
L A B = (W J l W J 2 " " " W j m a j m a j m - 1 " " " a j l c a j l a J 2 " • Jm J r a " ~ ' J m - 1" " "

X ~ z l [W j t W j 2 . . . W j m = X j l X y 2 . . . X j m } .

The claim is made that LAB is a cfl if and only if it is empty. Assume that
f, AB is not empty. Let UvcvRu ~ be a shortest sentence in LAB, where u is in
Z* and v in K*. Note that, given a solution to an instance of PCP, we can
repeat that solution to get additional solutions. Therefore, consider the
intersection of LAB with the regular set U*V*C(VR)*(UR) *. This intersection is

n n R n R n = {u v c(v) (u) In > 1}. It is easily seen that there exists a gsm which maps
the intersection onto the language {0"l"0"]n => 1}. Now, if LAB were a cfl,
then, since the class of cfl's is closed under intersection with a regular set
and under gsm mappings (Theorems 9.4 and 9.10), {0"l"0n]n >- l} must be
a cfl. But {0"ln0"]n => 1} is not a cfl. (See Exercise 4.15.) Thus we conclude
that LAB is not a cfl unless it is empty. We are led to the following theorem.

Theorem 14.6. It is unsolvable whether for arbitrary cfg's G~ and G2'

1. L(G~) n L(G2) is a cfl.
• , ,

2. L(G1) is a cfl.

3. L(Gi) is a regular set.

Proof

1. Let G~ and G2 be cfg's generating RAn and SAn, respectively. Now,
LAB = RAB n San is empty if and only if the instance of PCP with lists
A and B has no solution. Since Ran N SAB is a cfl if and only if it is
empty, we conclude that it is unsolvable to determine if RAn n SAB is a
cfl for arbitrary lists A and B.

222 DECIDABILITY 14.5

2. Let G~ be a cfg generating LAB. LAB is a cfl if and only if LAB = Z*, i.e.,
the instance of PCP with lists A and B has no solution.

3. Let G~ be a cfg generating LaB. LaB is regular if and only if LAB = Z*.

14.5 A M B I G U I T Y IN CONTEXT-FREE LANGUAGES

Recall from Chapter 4 that a cfg is said to be ambiguous if there are two
distinct leftmost derivations for some word. A pda is said to be ambiguous
if some word is accepted by two distinct sequences of moves. One sees from
the constructions of Chapter 5 that, from an unambiguous cfg G, one can
construct an unambiguous pda M, such that T(M) = L(G). Similarly, one
sees that, from an unambiguous pda M, one can construct an unambiguous
cfg G, such that L(G) = T(M). We state without proof the following lemma.

Lemma 14.3. L is generated by an unambiguous context-free grammar
if and only if L is accepted by an unambiguous pushdown automaton.

Thus, ambiguity in cfl's can be approached from either the grammar or
the machine point of view. We use the machine approach to show that, if
L is a cfl generated by an unambiguous cfg G, and A is a deterministic gsm,
then there exists an unambiguous cfg generating A-~(L).

A cfl L is said to be inherently ambiguous if every cfg generating L is
ambiguous. Otherwise L is said to be unambiguous. Inherent ambiguity is a
property of a language, whereas ambiguity is a property of a grammar. We
show that there exist inherently ambiguous cfl's and that it is recursively
unsolvable to determine if an arbitrary cfg is ambiguous or if it generates an
inherently ambiguous cfl.

Theorem 14.7. It is unsolvable whether an arbitrary cfg is ambiguous.

Proof. Let

A = w 1 , w 2 , . . . , w n and B = X l ~ x 2 , . . . , X n

be two lists of words over a finite alphabet Z. Assume that E n {a~, a2, . . . ,
a,} = ~0. Let G be the cfg

({S, $1, $2}, Z u {al, a 2 , . . . , a,}, P, S),

where P contains the productions S ~ $1, S ~ $2, and, for 1 =< i =< n,
$1 ~ w~Sla~, $1-+ w~a~, $2--~ xiS2ai, and $2 ~ x~a~. The grammar G
generates the language La u LB. It is easily shown that G is ambiguous if
and only if LA n LB ~ % Since it is recursively unsolvable to determine if
La ~ LB ¢ % for La and LB constructed from arbitrary lists of words, it is
recursively unsolvable to determine if an arbitrary cfg is ambiguous.

We now establish a result which is useful in the study of inherent
ambiguity.

14.5 AMBIGUITY IN CONTEXT-FREE LANGUAGES 223

We shall prove that the inverse of a deterministic gsm mapping preserves
unambiguity. First, we need to introduce the following lemma.

Lemma 14.4. Every unambiguous language L is accepted by an unam-
biguous pushdown automaton which makes no move in a final state.

Proof Let L be accepted by unambiguous pda P = (K, Z, P, 8, q0, Zo, F).
We create a new pda P~, which will have extra copies of P's final states.
These will be P~'s final states, and P1 will have no allowable moves in those
states.

Formally, let
P1 = (K1, Z, P, 3t, qo, Zo, Fx),

where K~ = K w {q'lq is in F} and Fx = {q']q is in F}. We define 3t for all
a in Z w {~} and Z in P, by:

1. If q is in K - F, then 3l(q, a, Z) = 3(q, a, Z).
2. If q is in F, then 8~(q, a, Z) = 8(q, a, Z) u {(q', Z)}.
3. For all q' in F~, 8~(q', a, Z) = cp.

It is easy to see that T(P~) = T(P) and that, if P is unambiguous, P1 is
also unambiguous.

Theorem 14.8. Let A = (KA, E, A, 3A, q0, FA) be a deterministic gsm.
Let L be unambiguous. Then A-I(L) is unambiguous.

Proof. Let P = (Kp, A, F, 8e, po, Zo, Fp) be an unambiguous pda with
T(P) = L. We may assume, by Lemma 14.4, that P makes no moves when
in a final state. For each x in L, P accepts x by a unique sequence of moves.
We now construct Pt from P such that T(Px) = A- I (T(P)) , and for x in
T(P1), Pt accepts x by a unique sequence of moves. Observe Fig. 14.1. The
finite control of P1 consists of the gsm A, the finite control of P, and a
"storage buffer" of sufficient length to hold any w such that (p, w) = 8A(q, a)

Input to P1 and A

T Finite

" Finite control of P1

Pushdown store
of P and P t

Fig. 14.1. Construction of P1 from P and A.

224 DECIDABILITY 14.5

for some q in Ka and a in Z. P1 operates by passing the input through A and
simulating P on the output of A. Since x is accepted by P~ if and only if
A(x) is accepted by P, P1 accepts A- ~(L). By being careful not to introduce
unnecessary nondeterminism into P1, P~ will accept x by a unique sequence
of moves if P accepts x by a unique sequence of moves.

Formally let

r = max {]w[[8(q, a) = (p, w) for some q and p in KA and a in E}.

Then
P~ = (K, Z, F, 8, [qo, e, Po], Zo, F1),

where K consists of all objects of the form [q, x, p] and [q, x, fi] such that
q is in KA, p is in Kp, x is in z~* with Ixi _-< r, contains [q, E, p] and [q, ~, p]
for all q in Fa and p in Fp, and3 is defined as follows:

1. For a in E, 8([q, e, p], a, Z) and 8([q, e, ~], a, Z) each contain ([ql, x, l~],Z)
if 3z(q, a) = (ql, x).

2. For a in Z, 3([q, aw, 1~], E, Z) and 8([q, aw, p], e, Z) contain ([q, w, p~], 7')
when 3p(p, a, Z) contains (pz, 7').

3. 3([q, w, p], ~, Z) contains ([q, w, p~], 7') when 8p(p, ~, Z) contains (pl, 7').

Rule 1 allows P~ to pass an input symbol through the gsm. The reason for
the bar above p in the third component of the next state is to prevent Pz from
next simulating an ~ move of P. Had we allowed P1 the possibility of simu-
lating an E move of P immediately after passing a symbol through the gsm,
P1 might be ambiguous, since it could also simulate the ~ move of P before
passing the symbol through the gsm. Rule 2 allows P1 to take the leftmost
symbol from the storage buffer and use it as an input to P. Rule 3 allows P~
to simulate an E move of P.

It is easily shown that

x'([qo, ~, Po], Zo) ~ ([q, ~, p'], 7),

where p' = p or if, if and only if

3a(qo, x) = (q, y)

for some y in A* such that

Y'(Po, Zo) ~ (p, 7').

Furthermore, if the sequence of moves by which y takes configuration
(Po, Zo) to (p, 7') is unique, then the sequence of moves by which x takes
configuration ([qo, e, po],Z0) to ([q, E,p], 7') is unique. Thus T(P1)--
A-i(T(P)), and P1 is an unambiguous pda for A- ~(T(P)).

Before showing that there exist inherently ambiguous cfl's, we prove the
following technical lemmas.

14.5 AMBIGUITY IN CONTEXT-FREE LANGUAGES 225

Lemma 14.5. Let (N~, M~), 1 =< i =< r, be pairs of sets of integers. (The
sets may be infinite or finite.) Let

S~ = {(n, m)[n in Nt, m in M~}

and let

S = S 1 u S 2 u " ' U S r .

If each pair of integers (n, m) is in S for all n and m, where n ¢ m, then
{(n, n)l(n, n) is not in S} is finite.

Proof. Assume that for all n and m, where n ¢ m, each (n, m) is in S, and
that {(n, n)l(n, n) not in S} is infinite. Let J be the set of all n such that (n, n)
is not in S. We construct a sequence of sets Jr, J r - t , . . . , Jt such that
J ~ Jr ~ Jr-1 ~ "'" ~- J1, Jt will be infinite, and for each n and m in Jt,
(n, m) will not be in Si u S~ + t u . . . u Sr.

For n in J, either n is not in Nr or n is not in Mr; otherwise (n, n) would
be in Sr. Thus there is an infinite subset of J, call it Jr, such that either, for
all n in Jr, n is not in Nr or, for all n in Jr, n is not in Mr. Now for n and
m in .L, (n, m) is not in St.

Assume that Jr, J r - ~ , . . . , J~+ 1 have been constructed. Then J~ is con-
structed as follows. For each n in J~ + t, either n is not in N~ or not in M~;
otherwise (n, n) would be in S~. Thus, either an infinite subset of J~ + t is not
in N~ or an infinite subset of J~ + t is not in M~. In either case, let the infinite
subset be J~. Now for all n and m in J~, (n, m) is not in Sf and hence not in
S~ w S~+~ u . . . u S~.

Since J~ contains at least two elements, there exist n and m in J~, n -~ m.
Now (n, m) is not in St u S~. w . . . u Sr = S, contradicting the assumption
that all (n, m), where n ¢ m, are in S. Thus {(n, n)](n, n) not in S} is finite.

Lemma 14.6. If G is an unambiguous cfg, then we can effectively find
an equivalent unambiguous cfg, G1 = (VN, Vr, P, S) such that

1. Each variable and each production is used in the derivation of some
terminal string.

2. For each A in VN - {S}, A ~ z for infinitely many terminal strings z.

3. No production A ~ B is in P, for A and B in VN.

4. For each A in VN -- {S}, A ~ ~1A~2 for some ~1 and cz2, not both ~.

Proof The constructions of Theorems 4.3, 4.4, and 4.9 all produce unam-
biguous grammars, provided that the original grammars are unambiguous.
To obtain a grammar satisfying Condition 4, proceed as follows. If A is in

VN -- {S} and there is no derivation A *~ ~tA~2 for any st and ~2, then
remove all productions of the form A - + ~ and replace those productions
with A on the right by all possible productions that can be obtained by
substituting, for each occurrence of A in an arbitrary production, any/3 such

226 DECIDABILITY 14.5

that A --~/3 was a production. A is then deleted from the variables. It is
easily shown that this procedure preserves unambiguity in the grammar.

Theorem 14.9. The cfl,

L = {anb'~cmdmln > 1, m > 1} t_){a'~bmcmdn[n > 1, m > 1},

is inherently ambiguous.

Proof Assume that there is an unambiguous grammar generating L. By
Lemma 14.6 we can construct an unambiguous grammar G = (VN, Vr, P, S)
generating L, which has the property that every variable is used in the deriva-

tion of some terminal string, and where, for each A in VN -- {S}, A *~ x~Ax2
where x~ and x2 are in Vr*, and either x~ or x2 is not E.

We note that the grammar G has the following properties:

1. If A ~ x~Ax2, then x~ and x2 each consist of only one type of symbol
(a, b, c, or d); otherwise

~g

S ~,. qAt3 =-~ qx~x~Ax2x2ta ~ t~x~x~t2x2x2ta,

for some q, t2, and ta. This last terminal string is not in L.

2. If A ~ - x~Ax2, then x~ and x2 consist of different symbols. Otherwise,
in a derivation involving A, we could increase the number of one type of
symbol in a sentence of L without increasing the number of any other
type of symbol, thereby generating a sentence not in L.

3. If A *~ x~Ax2, then]x~i = Ix2]. Otherwise we could find words in L
having more of one symbol than any other.

4. If A ~ - x~Ax2 and A *~ x3Ax4, then x~ and x3 consist of the same type
of symbol. Likewise x2 and x4. Otherwise Property 1 above would be
violated.

5. If A *~ x~Ax2, then either"

a) x~ consists solely of a's and x2 solely of b's or of d's,
b) x~ consists solely of b's and x2 solely of c's, or
c) x~ consists solely of c's and x2 solely of d's.

Thus, the variables other than S can be divided into four classes, C~b,

Caa, Cbc, and Cca. Cab is the set of all A in Vu such that A *~ xlAx2,
with xl in a* and x2 in b*, Caa, Cb~, and Con are defined analogously.

6. A derivation containing a symbol in Cab or C~a cannot contain a symbol
in Caa or Cbc, or vice versa. Otherwise, we could increase the number of
three types of symbols of a sentence in L without increasing the number
of the fourth type of symbol. In that case, there would be a sentence in
L for which the number of occurrences of one type of symbol is smaller
than that of any other.

14.5 AMBIGUITY IN CONTEXT-FREE LANGUAGES 227

We now note that if a derivation contains a variable in Cab or Cca, then
the terminal string generated must be in {anb"cmdmln _>_ 1, m >= 1). For
assume that A in Cab appears in a derivation of a sentence x not in
{anbncmdmln => 1, m => 1). Then x must be of the form anbmcmd ~, m v~ n.
Since A is in Cab, a sentence a" +~'b m ÷ Pcmd ~, m ~ n for some p > 0, could be
generated. Such a sentence is not in L. A similar argument holds for A in
Con. We also note that similar reasoning implies that, if a derivation contains
a variable in Cad or Cbc, then the sentence generated must be in {a"bmcmdr~[n =>
1, m_>_ 1).

We divide G into two grammars"

Gi = ({S} u Cab u Cod, Vr, P~, S) and G2 = ({S} u C~a u Cbc, Vr, P2, S),

where P~ contains all productions of P with a variable from Cab or Cca on
either the right or left and Pz contains all productions of P with a variable
from Caa or Cbc on either the right or left. In addition, P~ contains all pro-
ductions from P of the form S - + a'W~emd m, n V: m, and P2 contains all
productions from P of the form S --> a'~bmemd '~, n :/: m. Productions of P
of the form S ~ a'~b~er~d '~ are not in either Pl or P2.

Since G generates

{anb"cmdmln ~ 1, m => 1} u {a"bmcmdr~[n => 1, m => 1},

Gi must generate all sentences in

{a"b"cmdmln => 1, m -> 1, n ~ m}

plus possibly some sentences in {a"b"c"d'~tn => 1}, and G2 must generate all
sentences in

{a'~bmcmd~ln ~ 1, m => 1, n ~ m)

plus possibly some sentences in {a"b"c"d"[n. >= 1}. We now show that this
cannot be the case unless G1 and G2 both generate all but a finite number of
sentences in {a"b"c"d"[n => 1}. Thus all but a finite number of sentences in
{a"b"cnd"ln __> 1} are generated by both G1 and G2 and hence by two distinct
derivations in G. This contradicts the assumption that G was unambiguous.

To see that G1 a n d G2 generate all but a finite number of sentences in
{a"bnc"d"[n >= 0}, number the productions in P1 of the form S ~ ~ from
I to r. For 1 =< i =< r, if S ~ ~ is the ith production, let N~ be the set of all n
such that

S ~ tz ~ a n b n c m d m
Gi Gi

for some m, and let M~ be the set of all m such that

S ~ tz ~ anbncmd m
Gt Gt

for some n.

228 DECIDABILITY 14.5

We leave it to the reader to show that, for any n in N~ and any m in M~,

S ~ a =-~ anbncmd m.
Gi Gi

(Hint . Recall that the variables of a are in Cab or Cca.) It follows immediately
from Lemma 14.5 that G1 must generate all but a finite number of sentences
in {a~b~c~d"ln >_- 1}.

A similar argument applies to G2. The reader can easily show that G2

is a linear grammar. We number certain productions and pairs of produc-
tions in a single ordering. Productions of the form S --> ~1B~2, where B is
in Cb~, will receive a number, and, if this number is i, let N~ be the set of all
n such that, for some m,

S ~ alB~2 =-~ a'~bmcmd'L

Also let M~ be the set of m such that, for some n,

S =-~ alBa2 ~ anbmcmd n.

The pair of productions S ~ ~ and A --~ ~ B ~ z will receive a number if
contains a variable in Caa, A is in Caa, and B is in Cbc. If this pair is assigned
the number i, then define N~ to be the set of n such that, for some m,

S ==~ a ~ x l A x 2 ~ x l a l B a 2 x 2 ~ anbmcmd n.

Also define M~ to be the set of m such that for some n,

S ==~ a ==~ xlAxg. ==~ x la: tBazxz ==~ a'~bmcmdL

Once again, for any n in N~ and m in M~,

S ~ a"bmemd '~,
Gg.

and thus it follows from Lemma 14.5 that Gz generates all but a finite number
of sentences in {a'~b'~c'~dn[n > 1}. We conclude that, for some n, a"b"cnd '~ is
in both L (G i) and L(Gz) . This sentence has two leftmost derivations in G.

Combining Theorems 14.8 and 14.9, we now show that it is recursively
unsolvable to determine if an arbitrary cfg generates an inherently ambiguous
cfl.

Theorem 14.10. It is unsolvable whether a cfg G generates an inherently
ambiguous context-free language.

Proof . Let wl, w2 , . . . , w~ and xl, x 2 , . . . , xk be two lists of words over
some alphabet Z. Let al , a a , . . . , ak and c be new symbols. Let

. NAB = {Wj~Wj2. •. wj,,at,,aj,,_ ~ . . . at~ca~a~ 2 •. • a~,,x~,,x~,,_ ~. .

14.6 UNSOLVABLE QUESTIONS ABOUT DETERMINISTIC CFL'S 229

and let
RAB = {WCWRIW is in Z*{al, a~ , . . . , a~}*},

as before. SAn and RAB c a n be generated by unambiguous cfg's and thus,
SAn U RAn can be generated by an unambiguous cfg, provided that SA~ n RAn
is empty. We show that San w RAn in an inherently ambiguous cfl whenever
SAn t~ RAn is not empty. Since it is unsolvable (for San and RAB obtained
from arbitrary lists) whether SAB ~ RAB is empty, it is unsolvable whether
SAB k.) RAB iS inherently ambiguous.

Assume that SAB c~ R A n is nonempty. Let

R R . . X f 1 Wh W]2" " " WjmajmaYm- z" " • ahcahaj2" • • ajmXjmXjm - Z"

be in SAB n RAN. Let

and

U = W h W j 2 . . . W j m = X j 1 X j 2 . . . X j m

V = a l m @ m _ t . . . a h .

N o w

(SAn k.) RAn) ~ U*V*C(Ul~)*(VI~) * = {unvmc(vI~)m(un)nln, m > 1} W

{u'~v"c(vR)m(un)mln, m >_ 1}.

Let this language be L1. It is easy to construct a deterministic gsm A map-
ping a to u, b to v, c to v R, d to u R, and inserting one c before the first v R. Then

A-i(SAB W RAB) = A - i (L O = {a"b"c~dm]n, m => 1} w {a"bmcmd"ln, m >= 1}.

If SAN w RAB were generated by an unambiguous cfg, then (by Theorem i4.8)

{anb"cmdmln, m >= 1} u {ar~bmcmd"ln, m => 1}

could be generated by an unambiguous cfg, contradicting Theorem 14.9.
Thus, SAB U RAN must be inherently ambiguous whenever SAN n .RAB -~ 99.

Since it is unsolvable whether SAN n RA9 = 99, it is unsolvable whether an
arbitrary cfg generates an inherently ambiguous language.

14.6 U N S O L V A B L E QUESTIONS CONCERNING DETERMINISTIC
CONTEXT-FREE LANGUAGES

Several questions that are unsolvable for context-free languages in general
are solvable for deterministic languages. Among them are: (where L is a
deterministic language and R is a regular set.)

1. Is L inherently ambiguous? (By Theorems 12.6 and 12.9, L is not
inherently ambiguous.)

2. I s L = R? (L = R if and only if L1 = (L n / ~) ~ 3 (L c ~ R) i s empty.
L1 is context free by Theorems 9.1, 12.1, and 12.2.)

230 DECIDABILITY 14.6

3. Is L regular? (This is a difficult theorem. A proof can be found in the
literature.)

4. I s L = ,p?
5. Is L context free ? (It always is, by Theorem 12.1.)
6. Is L ..p_ R ? (L _p_ R if and only if R n L = ~. R n L is a deterministic

cfl.)

In addition, it is an unresolved question whether it is solvable to deter-
mine if two deterministic pda accept the same language.

Note that, for lists A and B, the languages LA, LB, RAN, and SAN are
deterministic cfl's. Thus, we immediately have the following"

Theorem 14.11. It is unsolvable to determine, for languages L1 and L2
accepted by dpda, whether:

1. L1 n L2 = 99. 2. L1 n L2 is context free.
3. L1 u L2 is deterministic. 4. Lz ~ L2.

Question

Is L(G) empty? finite ? infinite ?

Does L(G) = Z* ?

Is L(G1) = L(G2) ?

Is L(G~) ~_ L(G2) ?

Is L(G1) n L(G2) empty ? finite ? infinite ?

Does L(G) = R, R a specific regular set ?

Is L(G) a regular set ?

Is the intersection of two languages a language of the
same type ?

Is the complement of a language a language of the
same type ?

Is the concatenation of two languages a language of
the same type ?

Is the union of two languages a language of the same
type ?

S

U

T

u

u

o
o

s s

s u

? u

U U

u u

S U

U

o

u

u

u

U

U

u

U

¢

u

u

u

U

u

U

U

Fig. 14.2. Summary of decision problems for regular, LR(k), context-free,
context-sensitive, and type 0 grammars. S means solvable, U means unsolvable,
T means that the question is trivial, and ? means that the answer is unknown.

PROBLEMS 231

Proof (1) and (2) follow as Theorems 14.3 and 14.6.

3. Let L1 = RAn and L2 = SAB. Then L1 u L2 = LAB. NOW LAB is deter-
ministic if and only if it consists of all strings in its terminal vocabulary.
Thus LAB is deterministic if and only if PCP with lists A and B has no

solution.
4. Let L1 = SAB and L2 = /TAB- L ~ _ L 2 if and only i f L ~ n L 2 = %

But L~ n L2 = SAB C~ RAB and SAn n RAB = ~O if and only if PCP with

lists A and B has no solution.

14.7 S U M M A R Y OF UNSOLVABILITY RESULTS FOR REGULAR, LR(k),
CONTEXT-FREE, CONTEXT-SENSITIVE, AND TYPE 0 G R A M M A R S

We summarize the unsolvability results for the different classes of grammars

in Fig. 14.2.

PROBLEMS

14.1 Does PCP with lists"

A B

10 101
10 010

011 11
101 011

have a solution ?

14.2 Is PCP solvable if the strings of each list are over a one-symbol alphabet ?

14.3 Show that it is solvable whether an instance of PCP with lists of exactly k
strings has a solution for"

a) k = l
b) k = 2
c) k = 3

14.4 Show that, for some ko, it is unsolvable whether an instance of PCP with
exactly k0 strings in each list has a solution.

14.5 Show that it is unsolvable whether a given context-sensitive language is
context free.

14.6 Show that it is unsolvable whether L1L2 is a deterministic cfl for deter-
ministic cfrs L1 and L2.

14.7 A pda is simple if it is deterministic, has one state, and never makes a
move on e input. Show that it is solvable whether N(P1) = N(P2), for
simple pda's, P1 and P2.

14.8 Show that the emptiness problem is solvable for one-way nondeterministic
stack automata.

232 DECIDABILITY

14.9 Show that the emptiness problem is unsolvable for:

a) Deterministic Turing machines of tape complexity log log n.
b) Deterministic Turing machines of time complexity n.

14.10 For arbitrary cfg G and regular set R, show that it is solvable whether
L(G) ~ R.

14.11 For arbitrary csg G, show that the following questions are unsolvable:

a) Is a given production of G ever used in the derivation of a terminal
string?

b) Given strings fll and /32, do there exist strings ~1 and ~2 such that

~ ~ ~ ~ .
G

14.12 Show that it is unsolvable whether a given cfg generates a deterministic
language.

REFERENCES

The unsolvability of Post's correspondence problem was shown in Post [1946].
For an easy, alternative proof of PCP see Floyd [1964b]. Most of the unsolvability
results can also be obtained from the fact that calculations of a given Turing
machine can be identified with the intersection of two context-free languages
(Hartmanis [1967a]). The elementary unsolvable questions for context-free
languages appeared in Bar-Hillel, Perles, and Shamir [1961]. Additional results
concerning context-free languages appear in Ginsburg and Rose [1963a]. Theorem
14.7; which concerns the unsolvability of ambiguity of a cfg, was shown inde-
pendently in Cantor [1962], Floyd [1962a], and Chomsky and Schutzenberger
[1963]. Theorem 14.10, dealing with the unsolvability of inherent ambiguity, was
shown in Ginsburg and Ullian [1966]. Theorem 14.11 is from Ginsburg and
Greibach [1966a].

Many of the fundamental works on particular classes of languages include
information as to whether certain common questions are solvable or unsolvable.
Material on solvability for subfamilies of the context-free languages is abundant.
For unsolvability of questions concerning linear languages, see Greibach [1963],
Gross [1964], and Greibach [1966]. For sequential languages, see Ginsburg and
Rose [1963a]. Many questions that are unsolvable for cfl's are solvable for
bounded languages (Ginsburg and Spanier [1964]). In particular, it is solvable
if L(G1) = L(G2) if L(Gi) is bounded and G2 is an arbitrary cfg. The equivalence
question has also been shown to be solvable for the simple deterministic languages
by Korenjak and Hopcroft [1966], and, for parenthesis languages, by McNaugh-
ton [1967], Knuth [1967], and Paull and Unger [1967].

Recently, some results have appeared, relating the solvability and unsolv-
ability of questions concerning any given class of languages. See Greibach [1967],
Hartmanis [1967b], and Hopcroft and Ullman [1968a].

BIBLIOGRAPHY

AHO, A. V., J. E. HOPCROFT, and J. D. ULLMAN, [1968]. "On the computational
power of pushdown store systems," Inf and Control, to appear.

AXT, P., [1959]. "On a subrecursive hierarchy and primitive recursive degrees,"
Transactions of American Mathematical Society, 92, 85-105.

BAR-HILLEL, Y., Y. GAIFMAN, and E. SHAMIR, [1960]. "On categorical and
phrase structure grammars," Bull. Res. Council Israel, 9F, 1-16.

BAR-HILLEL, Y., M. PERLES, and E. SHAMIR, [1961]. "On formal properties of
simple phrase structure grammars," Z. Phonetik, Sprachwiss. Kornmunika-
tionsforsch., 14, 143-172.

BLUM, M., [1964]. A machine-independent theory of recursive functions, Doctoral
Thesis, MIT, Cambridge, Mass. Also see JACM, 14: 2, 322-336.

BOOTH, T. L., [1967]. Sequential Machines and Automata Theory, Wiley, New
York.

BRZOZOWSKI, J., [1962]. "A survey of regular expressions and their applica-
tions," PGEC, 11:3, 324-335.

CANTOR, D. C., [1962]. "On the ambiguity problem of Backus systems," JACM,
9: 4, 477-479.

CHOMSKY, N., [1956]. "Three models for the description of language," PGIT,
2:3, 113-124.

~ ~ , [1959]. "On certain formal properties of grammars," Inf. and Control,
2:2, 137-167.

, [1962]. "Context-free grammars and pushdown storage," Quart. Prog.
Dept. No. 65, MITRes. Lab. Elect., 187-194.

~ ~ , [1963]. "Formal properties of grammars," Handbook of Math. Psych.,
2, Wiley, New York, pp. 323-418.

CHOMSKY, N., andG. A. MILLER, [1958]. "Finite state languages," Inf. and
Control, 1:2, 91-112.

CHOMSKY, N., and M. P. SCHUTZENBERGER, [1963]. "The algebraic theory of
context-free languages," Computer Programming and Formal Systems, North
Holland, Amsterdam, pp. 118-161.

COLE, S. N., [1964]. Real-time computation by iterative arrays of finite-state
machines, Doctoral Thesis, Harvard University, Cambridge, Mass. Also see
IEEE Conference Record of Seventh Annual Symposium on Switching and
Automata Theory, Berkeley, Calif., pp. 53-77.

233

234 BIBLIOGRAPHY

CHURCH, A., [1936]. "An unsolvable problem of elementary number theory,"
Amer. J. Math., 58, 345-363.

DAVIS, M., [1958]. Computability and Unsolvability, McGraw-Hill, New York.

EVEY, J., [1963]. The theory and application of pushdown store machines, Doctoral
Thesis, Harvard University, Cambridge, Mass.

FISCHER, P. C., [1963]. "On computability by certain classes of restricted Turing
machines," Proceedings Fourth Annual Symposium on Switching Circuit
Theory and Logical Design, Chicago, Ill. 23-32.

, [1965]. "Multitape and infinite state automata~a survey," CACM,
8:12, 799-805.

~ , [1966]. "Turing machines with restricted memory access," Inf. and
Control, 9:4, 364-379.

FLOYD, R. W., [1962a]. "On ambiguity in phrase structure languages," CACM,
5:10, 526-534.

~ , [1962b]. "On the nonexistence of a phrase structure grammar for
ALGOL 60," CACM, 5:9, 483-484.

~ , [1963]. "Syntactic analysis and operator precedence," JACM, 10:3,
316-333.

~ , [1964a]. "Bounded context syntactic analysis," CACM, 7:2, 62-67.

~ , [1964b]. "New proofs and old theorems in logic and formal linguistics,"
Computer Associates Inc., Wakefield, Mass.

~ , [1964c]. "The syntax of programming languages~a survey," PGEC,
13:4, 346-353.

GILL, A., [1962]. Introduction to the Theory of Finite-state Machines, McGraw-
Hill, New York.

GINSaURG, S., [1962]. An Introduction to Mathematical Machine Theory, Addison-
Wesley, Reading, Mass.

~ , [1966]. The Mathematical Theory of Context-Free Languages, McGraw-
Hill, New York.

GINSBURG, S., and S. A. GREIBACH, [1966a]. "Deterministic context-free lan-
guages," Inf. and Control, 9:6, 620--648.

, [1966b]. "Mappings which preserve context-sensitive languages," Inf.
and Control, 9:6, 563-582.

, [1967]. "Abstract families of languages," IEEE Conference Record of
Eighth Annual Symposium on Switching and Automata Theory, Austin, Texas.

GINSBURG, S., S. A. GREIBACH, and M. A. HARRISON, [1967a]. "Stack automata
and compiling," JACM, 14: l, 172-201.

, [1967b]. "One-way stack automata," JACM, 14:2, 389-418.

GXNSBUR6, S., S. A. GREIBACH, and J. E. HOPCROFT, [1967]. Pre-AFL, SDC Docu-
ment TM 738/037/00.

GINSBURG, S., and J. E. HOPCROFT, [1968]. Two-way balloon automata and AFL's,
SDC Document TM 738/042/00.

BIBLIOGRAPHY 235

GINSBURG, S., and H. G. RICE, [1962]. "Two families of languages related to
ALGOL," JACM, 9:3, 350-371.

GINSBURG, S., and G. F. ROSE, [1963a]. "Some recursively unsolvable problems
in ALGOL-like languages," JACM, 10:1, 29-47.

~ - - , [1963b]. "Operations which preserve definability in languages," JACM,
10:2, 175-195.

, [1966]. "Preservation of languages by transducers, Inf. and Control, 9,
153-176.

GINSBURG, S., and E. H. SPANIER, [1963]. "Quotients of context-free languages,"
JACM, 10:4, 487-492.

, [1964]. "Bounded ALGOL-like languages," Trans. Amer. Math. Soc.,
113, 333-368.

, [1967]. Control sets on grammars, SDC Document 738/036/00.

GINSBURG, S., and J. ULLIAN, [1966]. "Ambiguity in context-free languages,"
JACM, 13:1, 62-88.

GRAY, J. N., M. A. HARRISON, and O. IBARRA, [1967]. "Two-way pushdown
automata," Inf. and Control, 11:1-2, 30--70.

GREIBACH, S. A., [1963]. "The undecidability of the ambiguity problem for
minimal linear grammars," Inf. and Control, 6:2, 117-125.

, [1965]. "A new normal form theorem for context-free phrase structure
grammars," JA CM, 12:1, 42-52.

, [1966]. "The unsolvability of the recognition of linear context-free
languages," JA CM, 13: 4, 582-587.

, [1967]. A note on undecidable properties of formal languages, SDC
Document TM 738/038/00.

, [1968]. Checking Automata and One-Way Stack Languages, SDC
Document TM 738/045/00.

GREIBACH, S. A., and J. E. HOPCROFT, [1967]. Independence of AFL operations,
SDC Document TM 738/034/00.

GROSS, M., [1964]. "Inherent ambiguity of minimal linear grammars," Inf. and
Control, 7: 3, 366-368.

GRZEGORCZYK, A., [1953]. "Some classes of recursive functions," Rosprawy
matematyczne, 4, Instytut Mathematyczne Polskiej Akademie Nauk, Warsaw.

HAINES, L. H., [1964]. "Note on the complement of a (minimal) linear language,"
Inf. and Control, 7: 3, 307-314.

~ , [1965]. Generation and recognition of formal languages, Doctoral Thesis,
MIT, Cambridge, Massachusetts.

HARRISON, M. A., [1965]. Introduction to Switching and Automata Theory,
McGraw-Hill, New York.

HARTMANIS, J., [1967a]. "Context-free languages and Turing machine com-
putations," Proceedings of Symposia in Applied Mathematics, 19, American
Mathematical Society, Providence, Rhode Island.

236 BIBLIOGRAPHY

, [1967b]. "On the complexity of undecidable problems in automata
theory," IEEE Conference Record of Eighth Annual Symposium on Switching
and Automata Theory, Austin, Texas, 112-116.

HARTMANIS, J., P. M. LEWIS II, and R. E. STEARNS, [1965]. "Hierarchies of
memory limited computations," IEEE Conference Record on Switching
Circuit Theory and Logical Design, Ann Arbor, Michigan, 179-190.

HARTMANIS, J., and R. E. STEARNS, [1964]. "Computational complexity of
recursive sequences," Proceedings of the Fifth Annbtal Symposium on Switching
Circuit Theory and Logical Design, Princeton, New Jersey, 82-90.

~ , [1965]. "On the computational complexity of algorithms," Trans. Amer.
Math. Soc., 117, 285-306.

HENNIE, F. C., [I965]. "One-tape, off-line Turing machine computations," Inf.
and Control 8:6, 553-578.

HENNIE, F. C., and R. E. STEARNS, [1966]. "Two-tape simulation of multitape
Turing machines," JA CM, 13: 4, 533-546.

HOPCROrT, J. E., and J. D. ULLMAN, [1967a]. "Nonerasing stack automata,"
JCSS, 1: 2, 166-186.

, [1967b]. "An approach to a unified theory of automata," Bell System
Technical Journal 46:8, 1763-1829.

~ , [1968a]. "Decidable and undecidable questions about automata,"
JA CM, 15: 2, 317-324.

~ , [1968b]. "Deterministic stack automata and the quotient operator,"
JCSS, 2:1, 1-12.

, [1968c]. "Sets accepted by one-way stack automata are context sensitive,"
Inf. and Control, to appear. Also, "Two results on one-way stack automata,"
IEEE Conference Record of Eighth Annual Symposium on Switching and
Automata Theory, Austin, Texas.

~ , [1968d]. "Some results on tape bounded Turing machines," JACM, to
appear.

HUFFMAN, D. A., [1954]. "The synthesis of sequential switching circuits,"
Journal of the Franklin Institute, 257:3-4, 161-190 and 275-303.

IRONS, E. T., [1961]. "A syntax directed compiler for ALGOL 60," CACM, 4:1,
51-55.

KLEENE, S. C., [1936]. "General recursive functions of natural numbers,"
Mathematische Annalen, 112, 727-742.

, [1952]. Introduction to Metamathematics, D. Van Nostrand, Princeton,
New Jersey.

, [1956]. "Representation of events in nerve nets and finite automata,"
Automata Studies, Princeton Univ. Press, Princeton, New Jersey, pp. 3-42.

KNUTH, D. E., [1965]. "On the translation of languages from left to right,"
Inf. and Control, 8:6, 607-639.

, [1967]. "A characterization of parenthesis languages," lnf. and Control,
11: 3, 269-289.

BIBLIOGRAPHY 237

KNUTH, D. E., and R. BIGELOW, [1967]. "Programming languages for auto-
mata," JACM, 14:4, 615-635.

KORENJAK, A. J., and J. E. HOPCROFT, [1966]. "Simple deterministic languages,"
IEEE Conference Record of Seventh Annual Symposium on Switching and
Automata Theory, Berkeley, California, 36-46.

KURODA, S. Y., [1964]. "Classes of languages and linear-bounded automata,"
Inf. and Control, 7: 2, 207-223.

LANDWEBER, P. S., [1963]. "Three theorems on phrase structure grammars of
type 1," Inf. and Control, 6:2, 131-136.

~ , [1964]. "Decision problems of phrase structure grammars," PGEC,
13:4, 354-362.

LEWIS, P. M., and R. E. STEARNS, [1966]. "Syntax directed transduction,"
IEEE Conference Record of Seventh Annual Symposium on Switching and
Automata Theory, Berkeley,California, 21-35.

LEWIS, P. M., R. E. STEARNS, and J. HARTMANIS, [1965]. "Memory bounds for
recognition of context-free and context-sensitive languages," IEEE Con-
ference Record on Switching Circuit Theory and Logical Design, Ann Arbor,
Michigan, 191-202.

MCCULLOCH, W. S., and W. PITTS, [1943]. "A logical calculus of the ideas
immanent in nervous activity," Bull. Math. Biophysics, 5, 115-133.

MCNAUGHTON, R., [1967]. "Parenthesis grammars," JACM, 14:3, 490-500.

MCNAUGHTON, R., and H. YAMADA, [1960]. "Regular expressions and state
graphs for automata," PGEC, 9:1, 39-47.

MINSKY, M. L., [1961]. "Recursive unsolvability of Post's problem of 'Tag' and
other topics in the theory of Turing machines," Annals of Math., 74:3,
437-455.

, [1967]. Computation: Finite and Infinite Machines, Prentice-Hall, Engle-
wood Cliffs, New Jersey.

MOORE, E. F., [1956]. "Gedanken experiments on sequential machines," Auto-
mata Studies, Princeton Univ. Press, Princeton, New Jersey, pp. 129-153.

MYHILL, J., [1960]. "Linear bounded automata," WADD Tech. Note, 60-165,
Wright Patterson Air Force Base, Ohio.

NERODE, A., [1958]. "Linear automaton transformations," Proc. Amer. Math.
Soc., 9, 541-544.

OETTINGER, A. G., [1961]. "Automatic syntactic analysis and the pushdown
store," Proc. Syrnp. Applied Math., 12, American Mathematical Society,
Providence, Rhode Island.

PARIKH, R. J., [1961]. "Language generating devices," Quart. Prog. Rept., 60,
MITRes. Lab. Elect., 199-212. Reprinted as "On context-free languages,"
JACM, 13:4, 570-581.

PAULL, M., and S. H. UNGER, [1967]. "Structural equivalence of context.free
grammars," IEEE Conference Record of Eighth Annual Symposium on
Switching and Automata Theory, Austin, Texas, 7-13.

238 BIBLIOGRAPHY

POST, E., [1936]. "Finite combinatory processes--formulation, I," The Journal
of Symbolic Logic, 1, 103-105.

~ , [1946]. A variant of a recursively unsolvable problem, Bull. Am. Math.
Soc., 52, 264-268.

RABIN, M. O., [1963]. "Real-time computation," Israel J. Math., 1:4, 203-211.

RABIN, M. O., and D. SCOTT, [1959]. "Finite automata and their decision
problems," 1BM. J. Res., 3:2, 115-125. Also in Sequential Machines:
Selected Papers, E. F. Moore, ed., Addison-Wesley, Reading, Mass., 1964,
pp. 63-91.

RITCHIE, R. W., [1963]. "Classes of predictably computable functions," Trans-
actions of the American Mathematical Society, 106, 139-173.

ROGERS, H., [1967]. The Theory of Recursive Functions and Effective Comput-
ability, McGraw-Hill, New York.

ROSEr~KRANTZ, D. J., [1967]. "Matrix equations and normal forms for context-
free grammars," JA CM, 14: 3, 501-507.

SAMELSON, K., and F. L. BAUER, [1960]. "Sequential formula translation,"
CACM, 3:2, 76-82.

SCHEINBERG, S., [1960]. "Note on the Boolean properties of context-free lan-
guages," Inf. and Control, 3:4, 372-375.

SCHOTZENaERGER, M. P., [1963]. "On context-free languages and pushdown
automata," Inf. and Control, 6: 3, 246-264.

SHArvnR, E., [1965]. "On sequential languages," Z. Phonetik, Sprachwiss. Kom-
munikationsforsch., 18, 61-69.

SHANNON, C. E., [1956]. "A universal Turing machine with two internal states,"
Automata Studies, Princeton Univ. Press, Princeton, N.J., pp. 129-153.

SnEPHERDSON, J. C., [1959]. "The reduction of two-way automata to one-way
automata," 1BM. J. Res., 3, 198-200.

STANLEY, R. J., [1965]. "Finite staterepresentations of context-free languages,"
Quart. Prog. Rept., 76, MIT Res. Lab. Elect., 276-279.

STEARNS, R. E., [1967]. "A regularity test for pushdown machines," lnf. and
Control, 11: 3, 323-340.

TURING, A. M., [1936]. "On computable numbers with an application to the
Entscheidungsproblem," Proc. London Math. Soc., 2-42, 230-265. A cor-
rection, ibid., 43, 544-546.

ULLMAN, J. D., [1968]. Halting stack automata, unpublished manuscript.

WANG, H., [1957]. "A variant to Turing's theory of computing machines,"
JA CM, 4:1, 63-92.

YAMADA, H., [1962]. "Real-time computation and recursive functions not real-
time computable," PGEC, 11:6, 753-760.

YOUNGER, D. H., [1967]. "Recognition and parsing of context-free languages
in time na, '' Inf. and Control, 10:2, 189-208.

INDEX

A

Acceptance, by final state, 26-27, 30,
41, 70, 72, 79, 82, 166, 191,201-202

by empty store, 70, 72-73, 79, 187,
201-202

Acceptor; see Automaton
Algorithm, 2-6, 91,108, 211-212; s e e

a l s o Recursive
Alphabet, 1
Ambiguity, 64-65, 182, 222-229
Automaton; s e e Finite automaton,

Linear bounded automaton,
Pushdown automaton, Stack
automaton, Turing machine

Backus normal form, 9
Binary relation, 28
Blank symbol, 81,189
Boolean algebra, 35-36, 133
Bottom of stack marker, 71, 74-75, 190
Bounded language, 64, 232

Checking off symbols, 86-88
Chomsky normal form, 46, 51-52, 54,

57, 65-66, 156, 161-162
Church's hypothesis, 80
Closure (operation), 37-38, 121-122,

132-133, 208
Closure properties, 35-39, 120-134,,

167-179, 208-209

Complementation, 35-36, 110, 122-123,
132, 167, 170, 208, 221,230

Complex product; s e e Product
Complexity; s e e Time complexity,

Tape complexity
Composite move, 206
Computable function, 91-92
Concatenation; s e e Product
Configuration, 41, 72, 81-82, 89, 92,

115, 191,215
Constructable function, 149-151
Containment, 221, 230, 232
Context-free grammar/language, 13-16,

19-24, 45-67, 74-78, 120-123, 125,
127, 130-132, 156-165, 166-188,
219-232

Context-sensitive grammar/language,
13-18, 116-121,126-128, 130-133,
192, 200-201,205-206, 219,
230-232

Countable function, 152-153
Countable infinity, 1-2
Counter machine, 98-100
Crossing sequence, 143-146

D

Decidability; s e e Solvability
Derivation, 10-11
Derivation tree, 18-24, 47-48, 58-59,

62, 186-187
Descendant, 19
Deterministic gsm, 172-173, 223-224
Deterministic language/pushdown

automaton, 73, 166-188, 229-232
239

240 INDEX

Deterministic linear bounded
automaton, 116, 118-119, 193, 207

Deterministic stack automaton,
192-196, 199-201,208

Diagonalization, 89-90, 101,118,
150-151,153

Direct descendant, 19
Domain, 26
Dyck language, 67

Edge, 18
Emptiness of intersection problem, 220,

230
Emptiness problem, 40, 46-48, 211,

219, 230-231
Empty sentence, 1, 15-16
Empty set, 10
Endmarker, 45, 115, 135, 189
Enumeration, 5-7, 108-109, 118; see

also Recursively enumerable
Epsilon-free gsm mapping, 130, 132,

208
Epsilon-free substitution, 125-126, 132,

208
Epsilon-move, 70, 76, 167-171
Epsilon-rule, 62-63
Equivalence, 11, 40, 221,230, 232
Equivalence class, 28-30
Equivalence relation, 28-30

Finite automaton, 26-27; see also

Regular
Finite control; see Automaton
Finite index; see Index
Finite representation, 2
Finite substitution, 127, 129, 131
Finiteness problem, 40, 59, 230

G

Generalized sequential machine; see

gsm mapping

Generation, 5, 11
Grammar, 10; see also Recursively

enumerable, Context free, Context
sensitive, Regular

Greibach normal form, 46, 53-57, 61,
66, 75

gsm mapping, 128-132, 172-173, 187,
208, 223-224

H

Halting (Turing machine), 82
Halting problem (for Turing

machines), 102, 108-109, 211,
215-218

Homomorphism, 127, 133

Index (of an equivalence relation),
28-29

Inherent ambiguity, 6 4 - 6 5 , 180,
222-229

Init (operation), 45, 134
Initial state; see Automaton
Input; see Automaton
Intersection, 3 5 - 3 6 , 122, 132, 208,

220-221,230
Intersection with regular set, 122-123,

129-133, 171,208
Inverse gsm mapping; see gsm mapping

K

Kleene closure; see Closure
k-limited erasing, 127-128, 130, 132,

208

Label, 19
Language, 1
Leaf, 20
Leftmost derivation, 49-50, 53-54,

62, 186-187

IN D EX 241

Linear bounded automaton, 115-119;
see also Context sensitive

Linear grammar/language, 63-64, 232
L R (k) grammar, 180-188; see also

Deterministic pushdown automaton

M

Machine; see Automaton
Max (operation), 179-180
Membership problem, 211; see also

Recursive
Min (operation), 134, 179-180
Minimum state finite automaton, 29
Modified Post's correspondence

problem, 213-218
Multiple tracks (on a tape), 85-86, 93,

95, 117, 139-143
Multitape Turing machine, 94-96,

135-155, 158-160

N

Node, 18
Nondeterministic finite automaton,

30-34, 45
Nondeterministic stack automaton,

189-192, 194-209, 231
Nondeterministic Turing machine, 96,

111,115, 136, 155, 189, 197-201
Nonerasing stack automaton, 192-200
Nonterminal; see Variable

Off-line Turing machine, 97, 160-164
On-line Turing machine, 97, 160-161,

164
One-way stack automaton, 192,

201-209, 231

Parenthesis language, 232
Parikh's theorem, 67

Parse tree; see Derivation tree
Partial recursive function, 92
Path (of a derivation tree), 47
Perfect number, 2-5
Post's correspondence problem,

212-222, 231
Power set, 30
Predicting machine, 173-179
Procedure, 2-6, 16, 80, 91
Product (operation), 37-38, 121,132,

208, 230
Production, 10
Pushdown automaton, 68-79, 98, 101,

166-180, 184-189; see also Context
free

Pushdown transducer, 79

Q

Question, 211
Quotient, 131-133, 177-178, 208

R

Read-only input (of Turing machine),
97-101,135, 155

Real time Turing machine, 165
Rebound table, 202
Recognition matrix, 156-160
Recognizer, 5; see also Automaton
Recursive function, 92
Recursive set/language, 6-7, 16-18, 91,

109-110, 117-118, 149
Recursive unsolvability; see Solvability
Recursively enumerable set/language,

6-7, 13-15, 91,109-114, 120-125,
127, 130-133, 154, 230

Regular expression, 39, 45
Regular grammar/set/language, 14-16,

26-45, 61-62, 121,125, 127,
130-132, 154, 182-184; see also

Intersection with regular set
Relation; see Binary relation
Result (of a derivation tree), 20
Reversal, 44, 121-122, 132, 208
Right invariance, 29
Rightmost derivation, 180-187
Root, 18

242 INDEX

Self-embedding, 61-62
Sentence, 1
Sentence symbol, 10
Sentential form, 11
Sequential grammar/language, 64, 232
Sequential machine; s e e Finite

automaton
Shifting symbols, 88-89, 97.
Simple pushdown automaton, 231-232
Simulation, 89, 102, 150-151, 153, 193,

196-201,207-208
Single-tape Turing machine, 143-146;

s e e a l s o Turing machine
Solvability, 39-40, 102, 108, 211-232
Speed up, 137-138, 143
Stack automaton, 189-210, 231
Stack scan, 194, 202,206
Start symbol; s e e Sentence symbol
State; s e e listings under Automaton
State diagram, 27, 31
Storage in finite control, 84-85
Storage state, 147
String, 1
Subroutine (of a Turing machine), 90
Substitution, 124-127, 132, 208
Subtree, 20
Summary machine, 204-206

Transition matrix, 147-149, 152
Transition table, 194-199
Transmission table, 204-205
Tree; s e e Derivation tree
Turing machine, 2, 80-115, 135-155,

158-164, 193, 196-201,209,
215-218, 232

Two-dimensional Turing machine, 97
Two pushdown tape machine, 98
Two-way finite automaton, 41-45
Two-way infinite tape (of a Turing

machine), 92-94
Two-way pushdown automaton, 79
Two-way stack automaton, 189-201,

207-210
Two-tape Turing machine, 140-143
Type 0 grammar/language; s e e

Recursively enumerable
Type 1 grammar/language; s e e Context

sensitive
Type 2 grammar/language; s e e Context

free
Type 3 grammar/language; s e e Regular

U

Tape; s e e Automaton V
Tape-bounded Turing machine; s e e

Tape complexity
Tape complexity, 135-138, 147-155,

159-164, 196-201,232
Tape hierarchy, 150-152
Tape reduction, 137-138 W
Terminal, 10
Time-bounded Turing machine; s e e

Time complexity
Time complexity, 135-146, 153-160,

232 Y
Time hierarchy; 153
Tracks (of a tape); s e e Multiple tracks

Unambiguity; s e e Ambiguity
Union, 35, 38, 121,132-133, 208, 230
Universal Turing machine, 102-110
Unsolvability; s e e Solvability

Variable, 10
Vocabulary, 1

Word, 1

Yield; s e e Result

