
Priority Inheritance Protocol
Proved Correct

Xingyuan Zhang
PLA University of Science and Technology

Nanjing, China

joint work with
Christian Urban

Kings College, University of London, U.K.
Chunhan Wu

My Ph.D. student now working for Christian

London, 28 June 2012 – p. 1/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of ‘Priority Inversion’ problem
A flawed manual correctness proof (1990)

Notations with no precise definition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Verification of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

London, 28 June 2012 – p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of ‘Priority Inversion’ problem

A flawed manual correctness proof (1990)

Notations with no precise definition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Verification of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

London, 28 June 2012 – p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of ‘Priority Inversion’ problem
A flawed manual correctness proof (1990)

Notations with no precise definition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Verification of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

London, 28 June 2012 – p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of ‘Priority Inversion’ problem
A flawed manual correctness proof (1990)

Notations with no precise definition

Resorts to intuitions

Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Verification of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

London, 28 June 2012 – p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of ‘Priority Inversion’ problem
A flawed manual correctness proof (1990)

Notations with no precise definition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Verification of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

London, 28 June 2012 – p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of ‘Priority Inversion’ problem
A flawed manual correctness proof (1990)

Notations with no precise definition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding

Verification of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

London, 28 June 2012 – p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of ‘Priority Inversion’ problem
A flawed manual correctness proof (1990)

Notations with no precise definition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Verification of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

London, 28 June 2012 – p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of ‘Priority Inversion’ problem
A flawed manual correctness proof (1990)

Notations with no precise definition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Verification of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol
London, 28 June 2012 – p. 2/24



Our Motivation

Undergraduate OS course in our university

Experiments using intrutional OSs
PINTOS (Stanford) is choosen
Core project: Implementing PIP in it

Understanding is crucial to implemention

Little help was found in the literature

Some mentioning the complication

London, 28 June 2012 – p. 3/24



Our Motivation

Undergraduate OS course in our university
Experiments using intrutional OSs
PINTOS (Stanford) is choosen
Core project: Implementing PIP in it

Understanding is crucial to implemention

Little help was found in the literature

Some mentioning the complication

London, 28 June 2012 – p. 3/24



Our Motivation

Undergraduate OS course in our university
Experiments using intrutional OSs
PINTOS (Stanford) is choosen
Core project: Implementing PIP in it

Understanding is crucial to implemention

Little help was found in the literature

Some mentioning the complication

London, 28 June 2012 – p. 3/24



Our Motivation

Undergraduate OS course in our university
Experiments using intrutional OSs
PINTOS (Stanford) is choosen
Core project: Implementing PIP in it

Understanding is crucial to implemention

Little help was found in the literature

Some mentioning the complication

London, 28 June 2012 – p. 3/24



Our Motivation

Undergraduate OS course in our university
Experiments using intrutional OSs
PINTOS (Stanford) is choosen
Core project: Implementing PIP in it

Understanding is crucial to implemention

Little help was found in the literature

Some mentioning the complication

London, 28 June 2012 – p. 3/24



Some excerpts
“Priority inheritance is neither efficient nor
reliable. Implementations are either incomplete
(and unreliable) or surprisingly complex and
intrusive.”

“I observed in the kernel code (to my disgust),
the Linux PIP implementation is a nightmare:
extremely heavy weight, involving maintenance
of a full wait-for graph, and requiring updates
for a range of events, including priority changes
and interruptions of wait operations.”

London, 28 June 2012 – p. 4/24



Some excerpts
“Priority inheritance is neither efficient nor
reliable. Implementations are either incomplete
(and unreliable) or surprisingly complex and
intrusive.”

“I observed in the kernel code (to my disgust),
the Linux PIP implementation is a nightmare:
extremely heavy weight, involving maintenance
of a full wait-for graph, and requiring updates
for a range of events, including priority changes
and interruptions of wait operations.”

London, 28 June 2012 – p. 4/24



Our Aims
Formal specification at appropriate
abstract level, convenient for:

Constructing interactive proofs

Clarifying the underlying ideas

Theorems usable to guide implementation,
critical point:

Understanding the relationship with real

OS code

Not yet formalized

London, 28 June 2012 – p. 5/24



Our Aims
Formal specification at appropriate
abstract level, convenient for:

Constructing interactive proofs

Clarifying the underlying ideas
Theorems usable to guide implementation,
critical point:

Understanding the relationship with real

OS code

Not yet formalized

London, 28 June 2012 – p. 5/24



Our Aims
Formal specification at appropriate
abstract level, convenient for:

Constructing interactive proofs

Clarifying the underlying ideas
Theorems usable to guide implementation,
critical point:

Understanding the relationship with real

OS code

Not yet formalized

London, 28 June 2012 – p. 5/24



Real-Time OSes

Purpose: gurantee the most urgent task be

processed in time

Processes have priorities

Resources can be locked and unlocked

London, 28 June 2012 – p. 6/24



Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid indefinite priority inversion

London, 28 June 2012 – p. 7/24



Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid indefinite priority inversion

London, 28 June 2012 – p. 7/24



Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid indefinite priority inversion

London, 28 June 2012 – p. 7/24



Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid indefinite priority inversion

London, 28 June 2012 – p. 7/24



Priority Inversion

London, 28 June 2012 – p. 8/24



Mars Pathfinder Mission
1997

London, 28 June 2012 – p. 9/24



Solution
Priority Inheritance Protocol (PIP):

High-priority process

Medium-priority process

Low-priority process

(temporarily raise its priority)

London, 28 June 2012 – p. 10/24



A Correctness “Proof” in
1990

a paper? in 1990 “proved” the
correctness of an algorithm for PIP

. . . after the thread (whose priority has been
raised) completes its critical section and
releases the lock, it “returns to its original
priority level”.

? in IEEE Transactions on Computers

London, 28 June 2012 – p. 11/24



High-priority process 1

High-priority process 2

Low-priority process

Solution:
Return to highest remaining priority

London, 28 June 2012 – p. 12/24



High-priority process 1

High-priority process 2

Low-priority process

Solution:
Return to highest remaining priority

London, 28 June 2012 – p. 12/24



Event Abstraction
Use Inductive Approch of L. Paulson

System is event-driven

A state is a list of events

London, 28 June 2012 – p. 13/24



Event Abstraction
Use Inductive Approch of L. Paulson

System is event-driven

A state is a list of events

London, 28 June 2012 – p. 13/24



Event Abstraction
Use Inductive Approch of L. Paulson

System is event-driven

A state is a list of events

London, 28 June 2012 – p. 13/24



Event Abstraction
Use Inductive Approch of L. Paulson

System is event-driven

A state is a list of events

London, 28 June 2012 – p. 13/24



Events

Create thread priority
Exit thread
Set thread priority
Lock thread cs
Unlock thread cs

London, 28 June 2012 – p. 14/24



Precedences

prec th s
def

= (priority th s, last set th s)

London, 28 June 2012 – p. 15/24



RAGs

th0 cs1

th1

th2 cs2

cs3

th3

holding
waiti

ng

waiting
holding

hol
din

g

waiting

RAG wq
def
= {(T th, C cs) | waits wq th

cs} ∪ {(C cs, T th) | holds wq th cs}

London, 28 June 2012 – p. 16/24



RAGs

th0 cs1

th1

th2 cs2

cs3

th3

holding
waiti

ng

waiting
holding

hol
din

g

waiting

RAG wq
def
= {(T th, C cs) | waits wq th

cs} ∪ {(C cs, T th) | holds wq th cs}

London, 28 June 2012 – p. 16/24



Good Next Events

th /∈ threads s

step s (Create th prio)

th ∈ running s resources s th = ∅
step s (Exit th)

th ∈ running s

step s (Set th prio)

London, 28 June 2012 – p. 17/24



Good Next Events

th ∈ running s (C cs, T th) /∈ (RAG s)+

step s (P th cs)

th ∈ running s holds s th cs

step s (V th cs)

London, 28 June 2012 – p. 18/24



Theorem: “No indefinite priority inversion”

Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ‘ threads s))

and th is blocked by a thread th’ in a future state
s’ (with s’ = t@s):

th’ ∈ running (t@s) and th’ 6= th

th’ did not hold or wait for a resource in s:

¬detached s th’

th’ is running with the precedence of th:

cp (t@s) th’ = preced th s
? modulo some further assumptions

It does not matter which process gets a released lock.

London, 28 June 2012 – p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ‘ threads s))

and th is blocked by a thread th’ in a future state
s’ (with s’ = t@s):

th’ ∈ running (t@s) and th’ 6= th

th’ did not hold or wait for a resource in s:

¬detached s th’

th’ is running with the precedence of th:

cp (t@s) th’ = preced th s
? modulo some further assumptions

It does not matter which process gets a released lock.

London, 28 June 2012 – p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ‘ threads s))

and th is blocked by a thread th’ in a future state
s’ (with s’ = t@s):

th’ ∈ running (t@s) and th’ 6= th

th’ did not hold or wait for a resource in s:

¬detached s th’

th’ is running with the precedence of th:

cp (t@s) th’ = preced th s
? modulo some further assumptions

It does not matter which process gets a released lock.

London, 28 June 2012 – p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ‘ threads s))

and th is blocked by a thread th’ in a future state
s’ (with s’ = t@s):

th’ ∈ running (t@s) and th’ 6= th

th’ did not hold or wait for a resource in s:

¬detached s th’

th’ is running with the precedence of th:

cp (t@s) th’ = preced th s
? modulo some further assumptions

It does not matter which process gets a released lock.

London, 28 June 2012 – p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ‘ threads s))

and th is blocked by a thread th’ in a future state
s’ (with s’ = t@s):

th’ ∈ running (t@s) and th’ 6= th

th’ did not hold or wait for a resource in s:

¬detached s th’

th’ is running with the precedence of th:

cp (t@s) th’ = preced th s
? modulo some further assumptions

It does not matter which process gets a released lock.

London, 28 June 2012 – p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ‘ threads s))

and th is blocked by a thread th’ in a future state
s’ (with s’ = t@s):

th’ ∈ running (t@s) and th’ 6= th

th’ did not hold or wait for a resource in s:

¬detached s th’

th’ is running with the precedence of th:

cp (t@s) th’ = preced th s
? modulo some further assumptions

It does not matter which process gets a released lock.

London, 28 June 2012 – p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ‘ threads s))

and th is blocked by a thread th’ in a future state
s’ (with s’ = t@s):

th’ ∈ running (t@s) and th’ 6= th

th’ did not hold or wait for a resource in s:

¬detached s th’

th’ is running with the precedence of th:

cp (t@s) th’ = preced th s
? modulo some further assumptions

It does not matter which process gets a released lock.

London, 28 June 2012 – p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ‘ threads s))

and th is blocked by a thread th’ in a future state
s’ (with s’ = t@s):

th’ ∈ running (t@s) and th’ 6= th

th’ did not hold or wait for a resource in s:

¬detached s th’

th’ is running with the precedence of th:

cp (t@s) th’ = preced th s

? modulo some further assumptions

It does not matter which process gets a released lock.

London, 28 June 2012 – p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ‘ threads s))

and th is blocked by a thread th’ in a future state
s’ (with s’ = t@s):

th’ ∈ running (t@s) and th’ 6= th

th’ did not hold or wait for a resource in s:

¬detached s th’

th’ is running with the precedence of th:

cp (t@s) th’ = preced th s
? modulo some further assumptions

It does not matter which process gets a released lock.

London, 28 June 2012 – p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ‘ threads s))

and th is blocked by a thread th’ in a future state
s’ (with s’ = t@s):

th’ ∈ running (t@s) and th’ 6= th

th’ did not hold or wait for a resource in s:

¬detached s th’

th’ is running with the precedence of th:

cp (t@s) th’ = preced th s
? modulo some further assumptions

It does not matter which process gets a released lock.
London, 28 June 2012 – p. 19/24



Implementation
s = current state; s’ = next state = e#s

When e = Create th prio, Exit th

RAG s’ = RAG s

No precedence needs to recalculate

London, 28 June 2012 – p. 20/24



Implementation
s = current state; s’ = next state = e#s

When e = Set th prio

RAG s’ = RAG s

No precedence needs to recalculate

London, 28 June 2012 – p. 21/24



Implementation
s = current state; s’ = next state = e#s

When e = Unlock th cs where there is a thread to
take over

RAG s’ = RAG s - {(C cs, T th), (T th’, C cs)}
∪ {(C cs, T th’)}
we have to recalculate the precedence of the
direct descendants

When e = Unlock th cs where no thread takes
over

RAG s’ = RAG s - {(C cs, T th)}
no recalculation of precedences

London, 28 June 2012 – p. 22/24



Implementation
s = current state; s’ = next state = e#s

When e = Unlock th cs where there is a thread to
take over

RAG s’ = RAG s - {(C cs, T th), (T th’, C cs)}
∪ {(C cs, T th’)}
we have to recalculate the precedence of the
direct descendants

When e = Unlock th cs where no thread takes
over

RAG s’ = RAG s - {(C cs, T th)}
no recalculation of precedences

London, 28 June 2012 – p. 22/24



Implementation
s = current state; s’ = next state = e#s

When e = Lock th cs where cs is not locked

RAG s’ = RAG s ∪ {(C cs, T th’)}
no recalculation of precedences

When e = Lock th cs where cs is locked

RAG s’ = RAG s - {(T th, C cs)}
we have to recalculate the precedence of the
descendants

London, 28 June 2012 – p. 23/24



Implementation
s = current state; s’ = next state = e#s

When e = Lock th cs where cs is not locked

RAG s’ = RAG s ∪ {(C cs, T th’)}
no recalculation of precedences

When e = Lock th cs where cs is locked

RAG s’ = RAG s - {(T th, C cs)}
we have to recalculate the precedence of the
descendants

London, 28 June 2012 – p. 23/24



Conclusion
Aims fulfilled

Alternative way
using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches

scheduler in RT-Linux

multiprocessor case

other “nails” ? (networks, . . . )

Refinement to real code and relation

between implemenations

London, 28 June 2012 – p. 24/24



Conclusion
Aims fulfilled
Alternative way

using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches

scheduler in RT-Linux

multiprocessor case

other “nails” ? (networks, . . . )

Refinement to real code and relation

between implemenations

London, 28 June 2012 – p. 24/24



Conclusion
Aims fulfilled
Alternative way

using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches

scheduler in RT-Linux

multiprocessor case

other “nails” ? (networks, . . . )

Refinement to real code and relation

between implemenations

London, 28 June 2012 – p. 24/24



Conclusion
Aims fulfilled
Alternative way

using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches

scheduler in RT-Linux

multiprocessor case

other “nails” ? (networks, . . . )

Refinement to real code and relation

between implemenations

London, 28 June 2012 – p. 24/24



Conclusion
Aims fulfilled
Alternative way

using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches

scheduler in RT-Linux

multiprocessor case

other “nails” ? (networks, . . . )

Refinement to real code and relation

between implemenations

London, 28 June 2012 – p. 24/24



Conclusion
Aims fulfilled
Alternative way

using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches

scheduler in RT-Linux

multiprocessor case

other “nails” ? (networks, . . . )

Refinement to real code and relation

between implemenations
London, 28 June 2012 – p. 24/24




