tphols-2011

By xingyuan

February 7, 2011

Contents

```
regular language \Rightarrow finite partition 1
theory Myhill
 imports Myhill-2
begin
```
1 Direction regular language \Rightarrow finite partition

A determinisite finite automata (DFA) M is a 5-tuple $(Q, \Sigma, \delta, s, F)$, where:

- 1. Q is a finite set of *states*, also denoted Q_M .
- 2. Σ is a finite set of *alphabets*, also denoted Σ_M .
- 3. δ is a transition function of type $Q \times \Sigma \Rightarrow Q$ (a total function), also denoted δ_M .
- 4. $s \in Q$ is a state called *initial state*, also denoted s_M .
- 5. $F \subseteq Q$ is a set of states named *accepting states*, also denoted F_M .

Therefore, we have $M = (Q_M, \Sigma_M, \delta_M, s_M, F_M)$. Every DFA M can be interpreted as a function assigning states to strings, denoted δ_M , the definition of which is as the following:

$$
\hat{\delta}_M([\rbrack] \equiv s_M
$$
\n
$$
\hat{\delta}_M(xa) \equiv \delta_M(\hat{\delta}_M(x), a)
$$
\n(1)

A string x is said to be accepted (or recognized) by a DFA M if $\hat{\delta}_M(x) \in F_M$. The language recoginzed by DFA M , denoted $L(M)$, is defined as:

$$
L(M) \equiv \{x \mid \hat{\delta}_M(x) \in F_M\} \tag{2}
$$

The standard way of specifying a laugage $\mathcal L$ as regular is by stipulating that: $\mathcal{L} = L(M)$ for some DFA M.

For any DFA M, the DFA obtained by changing initial state to another $p \in Q_M$ is denoted M_p , which is defined as:

$$
M_p \equiv (Q_M, \Sigma_M, \delta_M, p, F_M) \tag{3}
$$

Two states $p, q \in Q_M$ are said to be *equivalent*, denoted $p \approx_M q$, iff.

$$
L(M_p) = L(M_q) \tag{4}
$$

It is obvious that \approx_M is an equivalent relation over Q_M . and the partition induced by \approx_M has $|Q_M|$ equivalent classes. By overloading \approx_M , and equivalent relation over strings can be defined:

$$
x \approx_M y \equiv \hat{\delta}_M(x) \approx_M \hat{\delta}_M(y) \tag{5}
$$

It can be proved that the the partition induced by \approx_M also has $|Q_M|$ equivalent classes. It is also easy to show that: if $x \approx_M y$, then $x \approx_{L(M)} y$, and this means \approx_M is a more refined equivalent relation than $\approx_{L(M)}$. Since partition induced by \approx_M is finite, the one induced by $\approx_{L(M)}$ must also be finite. Now, we get one direction of Myhill-Nerode Theorem:

Lemma 1 (Myhill-Nerode Theorem, Direction one). If a language \mathcal{L} is regular (i.e. $\mathcal{L} = L(M)$ for some DFA M), then the partition induced by $\approx_{\mathcal{L}}$ is finite.

The other direction is:

Lemma 2 (Myhill-Nerode Theorem, Direction two). If the partition induced by $\approx_{\mathcal{L}}$ is finite, then $\mathcal L$ is regular (i.e. $\mathcal L = L(M)$ for some DFA M).

To prove this lemma, a DFA $M_{\mathcal{L}}$ is constructed out of $\approx_{\mathcal{L}}$ with:

$$
Q_{M_{\mathcal{L}}} \equiv \{ [\![x]\!]_{\approx_{\mathcal{L}}} \mid x \in \Sigma^* \} \tag{6a}
$$

$$
\Sigma_{M_{\mathcal{L}}} \equiv \Sigma_M \tag{6b}
$$

$$
\delta_{M_{\mathcal{L}}} \equiv (\lambda([\![x]\!]_{\approx_{\mathcal{L}}}, a).[\![xa]\!]_{\approx_{\mathcal{L}}}) \tag{6c}
$$

$$
s_{M_{\mathcal{L}}} \equiv \Box \Box \approx_{\mathcal{L}} \tag{6d}
$$

$$
F_{M_{\mathcal{L}}} \equiv \{ [\![x]\!]_{\approx_{\mathcal{L}}} \mid x \in \mathcal{L} \} \tag{6e}
$$

From the assumption of lemma [2,](#page-1-0) we have that $\{\llbracket x \rrbracket_{\approx_{\mathcal{L}}} \mid x \in \Sigma^*\}$ is finite It can be proved that $\mathcal{L} = L(M_{\mathcal{L}})$.

end

Figure 1: The relationship between automata and finite partition