A Semi-Functional Implementation
of a Higher-Order Logic Programming Language

Conal Elliott Frank Pfenning

Draft of February 1990

1 Introduction

In this chapter we develop an interpreter of a higher-order constraint logic programming language
in Standard ML (SML). The logic programming language is closely related to AProlog [25], though
the type system supported by our implementation is more general, for example by allowing explicit
abstraction over types. The implementation is closely modeled after eLLP, an implementation of
AProlog in the Ergo Support System [8, 20] and may be considered as a rational reconstruction
and explanation of the eLP implementation.

This is not a tutorial on AProlog (we present no AProlog programs at all), but for someone
familiar with ML this should serve as a high-level operational semantics of a variant of the AProlog
language. Prior knowledge of ML is assumed, but not at a very deep or sophisticated level (see [15]
for an SML tutorial). We try to emphasize programming techniques as well as the gradual de-
velopment of the interpreter in its full generality from a very simple starting point. For someone
considering experimentation with variations on logic programming languages, this chapter should
provide enough detail and techniques for the rapid implementation of a modified interpreter of
related languages. Our approach is to write a true interpreter, and not to embed Prolog in ML
the way Prolog is embedded in Scheme in [9] and [17]. The primary difference is that we separate
carefully the name space of predicates of the logic programming language from the name space of
functions in ML.

We do not address the use of the SML module system, nor do we discuss a number of features
of AProlog such as its module system, input/output, and other built-in special predicates. Also
omitted are the front end of the interpreter (parsing, unparsing, type inference) and, due to space
constraints, we limit ourselves to a sketch of higher-order unification. We hope to write a com-
panion paper which concentrates primarily on a development of higher-order unification and type
reconstruction within the framework laid out in this chapter.

One might also miss a discussion of compilation, which is not very well understood in this
context and is the subject of current research [24].

We begin with an interpreter for propositional Horn logic, which introduces the central technique
of the success continuation, due to Carlsson [2]. We then move on to first-order Horn logic, which
is very much in the tradition of Prolog. In Section 4 we generalize this to include embedded

implication and universal quantification (see [1, 11, 21] for the motivation for these constructs)
which complicates primarily unification. In Section 5 we introduce side-effects and assignment in a
controlled way to increase the efficiency of unification. This is refined in the next section where we
address non-logical control constructs such as if-then-else and cut and introduce the trail. Section 7
sketches a more efficient clausal representation of programs which hitherto were simply formulas
and hints at indexing. In Section 8 we generalize the underlying language of terms from first-order
terms to typed A-terms, at which point unification no longer generates most general unifiers and
constraints enter the interpreter. Finally we discuss how to make the transition from terms to
goals to allow true higher-order logic programming. Throughout this chapter we remark on the
differences between the interpreter developed here and our Common Lisp implementation.

2 Propositional Horn Logic

We begin the development with a very simple propositional logic amenable to an interpretation as
a programming language: propositional Horn logic. Our presentation is non-standard in that we
do not require the formulas to be in clausal form: throughout our development we view this as
a normal form, which must be justified by an appropriate metatheorem. A more efficient clausal
representation for formulas will be introduced in Section 7.

2.1 The Language of Goals and Programs

The definition of propositional Horn logic is by induction in the form of a BNF grammar. G denotes
the legal goal formulas (which are also the legal queries) and D the legal program formulas.! We
sometimes refer to these classes as D-formulas and G-formulas, respectively, and collectively as
Sformulas.

G o= A|T|G1/\G2|G1\/G2
D = A|T|D1/\D2|G—>D

The letter A generally stands for atomic formulas; here this means propositional constants,
T stands for truth, A stands for conjunction, Vv for disjunction, and — for implication. In logic
programming it is often more conspicuous to use ¢, where D + G can be read as “D if G” and is
a purely notational variant of G — D.

The following figure shows how this would be translated into a datatype definition in SML
(comments are enclosed in (* *)).

datatype gform = (* Goal formula *)
Gtrue (* Truth *)
| Gand of gform * gform (* Conjunction *)
| Gor of gform * gform (* Disjunction *)
| Gatom of string (* Atomic G formula *)

'D is derived from definite as in definite clauses, though our definition is broader.

and dform = (* Program formula *)

Dtrue (* Truth *)

Dand of dform * dform (* Conjunction *)
Dimplies of gform * dform (* Implication *)
Datom of string (* Atomic D formula %)

This defines constructors such as Dand, which, when applied to two D-formulas, yields a D-
formula. For example, the program p A (p — ¢) would be represented as

Dand(Datom("p") ,Dimplies(Gatom("p"),Datom("q")))

A query, such as whether ¢ is true, would be represented as

Gatom("q")

2.2

A First Interpreter

The next step is to give goals and programs an operational interpretation. For this simple logic, this
is straightforward, though the precise definition of “upon backtracking” is deferred to the actual
interpreter in ML. First comes the reduction of a goal to its subgoals, then the analysis of whether
an atomic goal follows from the program.

1.

2.

Given goal T, succeed.

Given goal Gy A G, attempt to solve G and, if it succeeds, attempt to solve G.

. Given goal GGy V (G5, attempt to solve G1. If this succeeds, succeed. If this fails, attempt to

solve G.

. Given an atomic goal A, look through the program for ways to establish A following the

control structure below.

If we assumed the program to be in clausal form, we would enumerate the clauses of the form
A + (G and attempt to solve GG for each such clause. It is easy to see that the following program
analysis will behave this way on the special case of clausal form programs. We assume we are given
a program D, and atomic goal A. We also have an “accumulated subgoal” which is initialized to

T.

. D= D ADy. Attempt to infer A from D;. If this fails, attempt to infer A from Ds.

. D =G — Dy. Attempt to infer A from Dy, but conjoin G to the subgoal that remains to be

solved.

. D= A. Attempt to solve the accumulated subgoal.

D = B for atomic B distinct from A. In this case D is not helpful in the attempt to derive
A and we backtrack.

Thus our program consists of two mutually recursive functions. solve analyzes a composite
goal, and match_atom analyzes the program with respect to an atomic goal. The fundamental idea
of the formulation as a functional program is that of a success continuation due to Carlsson [2]. The
obvious arguments to solve are the current goal and program. The non-obvious argument is the
success-continuation sc. sc is a function (of no arguments) that is to be called when the current
goal succeeds. Backtracking is achieved simply by returning from the current function with an
uninteresting value (we have chosen () : wunit). The function match_atom calls a local recursive
function rec_match, which accumulates subgoals as outlined above

fun solve (Gtrue) prog sc = sc ()
| solve (Gand(gl,g2)) prog sc =
solve gl prog (fn () => solve g2 prog sc)
| solve (Gor(gl,g2)) prog sc =
(solve gl prog sc ; solve g2 prog sc)
| solve (Gatom(goal_const)) prog sc =
match_atom goal_const prog sc

and match_atom goal_const prog sc =
let fun rec_match (Dtrue) subgoal = ()
| rec_match (Dand(d1,d2)) subgoal =
(rec_match d1 subgoal ; rec_match d2 subgoal)
| rec_match (Dimplies(g,d)) subgoal =
rec_match d (Gand(subgoal,g))
| rec_match (Datom(prog_const)) subgoal =
if prog_const = goal_const
then solve subgoal prog sc
else ()
in rec_match prog (Gtrue) end

Let us inspect this compact program line-by-line.

1. If the current goal is T, we succeed by invoking the success continuation.

2. If the current goal is Gy A G2, we attempt to solve G, but also build a success continuation
that will eventually solve G5, which is necessary in order for the conjunction to succeed. (fn
() => ...) is the SML way of constructing a function of no arguments.

3. If the current goal is G'; V G2, we attempt to solve G; with the same success continuation. If
this should fail and thus return, we attempt to solve G3. Semicolon is the SML sequencing
operator. Note that in a purely functional setting without any side-effects, it would make no
sense to try the left and right subgoals in succession: if solving the left subgoal succeeds, it
must produce some record of this. In the framework of success continuations, this is achieved
through the initial success continuation, which could be a function such as (fn () => print
"Goal succeeded!") (see Section 2.3)

4. If the current goal is atomic we look through the program to find D-formulas that might help
us prove the goal.

Next we consider the program analysis. We call rec_match with a current subgoal Gtrue, which
will always succeed and the whole program prog as the current D-formula. Here are the cases for
rec_match.

1. If the program is T, any atomic goal (which excludes T) will fail. We return to indicate
failure.

2. If the program is a conjunction we attempt to use the left conjunct and then the right conjunct
to derive the atomic goal. This is dual to the case of a disjunctive goal.

3. If the program is an implication G — D, we conjoin G onto the subgoal that would have to
be solved if D matched the atomic goal, and continue by attempting to use D to derive the
atomic goal.

4. If the program is atomic and equal to the atomic goal, we attempt to solve the accumulated
subgoal, otherwise we backtrack by returning.

There are some obvious inefficiencies in this control structure. Some of these will be addressed
in later sections.

2.8 The Initial Success Continuation

From the exposition above we can see that
val solve : gform -> dform -> (unit -> unit) -> unit}

and solve goal prog sc may be read as “solve goal in program prog and call sc if successful,
otherwise return.” This is not quite accurate, since if sc returns, it will be called again for every
way of proving goal the interpreter can find.

For example, let val psc = (fn () => print "Success! "). Then solve p (p A p) psc
will print Success! twice. On the other hand, due to the incompleteness of depth-first search,
solve p ((p — p) A p) psc will get into an infinite loop, while solve p (p A (p — p)) psc will
print an infinite stream of Success!’s.

At first this might seem like a serious limitation of this implementation technique. However,
using exceptions we can prevent the initial success continuation from returning. For example, the
following top-level interface would stop after the first solution is found.

fun one_solve goal prog =
let exception Success
in (solve goal prog (fn () => raise Success) ;
print "no ")
handle Success => print "yes "
end

It is also easy to add a query of the user that checks if more solutions are desired or not. The
elLP implementation [8] plays even more tricks with the initial success continuation: it presents
the first solution, but then works ahead without waiting for instructions as to whether additional
solutions are required. If an externally visible side-effect is just about to be executed, it suspends.
This has the advantage that we can often return to the top-level without user input if the query
has only one solution.

3 First-Order Horn Logic

The interpreter from the previous section can be generalized and improved in several different
directions. Before we introduce some improvements, we continue with a few generalizations. The
most important and obvious step is that from a propositional to a first-order logic. This requires
the introduction of unification and substitution. Interestingly, the basic structure of the interpreter
stays intact: success continuations can be generalized to deal with unification and substitutions.
This first version of an interpreter for first-order Horn logic requires no side-effects except for the
presentation of solutions.

The definition of first-order Horn logic is again somewhat non-standard in that we do not require
a clausal form.

G
D

A|T|G1/\G2|G1\/G2|3$G

We add two new cases for the quantifiers to the datatypes gform and dform, but we also have to
change the definition of atomic formulas, since they now may consist of a predicate constant applied
to a number of terms built from constants, function constants, and variables. Partly for reasons
of simplicity and partly in preparation for a higher-order language, we do not distinguish between
constants, function constants, and predicate constants. Thus atomic formulas are considered to
be terms, which also means that not every gform or dform represents a well-formed formula of
first-order Horn logic. However, this property can be checked statically and we thus consider it a
problem for an appropriate front-end for our interpreter that is beyond the scope of this chapter.
Before we go into detail in the representation of terms, here is the changed definition of formulas.

datatype gform = (* Goal formula *)
Gtrue (* Truth *)
| Gand of gform * gform (* Conjunction *)
| Gor of gform * gform (* Disjunction *)
| Gatom of term (* Atomic G formula *)
| Gexists of varbind * gform (* Existential *)
and dform = (* Program formula *)
Dtrue (* Truth *)
| Dand of dform #* dform (* Conjunction *)
| Dimplies of gform * dform (* Implication *)
| Datom of term (* Atomic D formula %)
| Dall of varbind * dform (* Universal *)

3.1 Terms and Substitution

Our inductive definition of terms has three base cases: Bvar for bound wvariables, Evar for logic
variables,®> and Const for constants, including predicate and function constants. These variables
and constants can be combined via application using the Appl constructor, giving the representation
the flavor of a curried form, which will aid us in the transition to the higher-order language later
on, but also leads to more compact code here.

datatype term =

Bvar of string (* Bound Variables *)
| Evar of string * int (* Logic Variables , Stamped *)
| Const of string (* Constants *)
| Appl of term * term (* Applications *)

and varbind = Varbind of string (* Variable binders *)

Varbind’s are used to bind variables at quantifiers, but seem to belong to the term language
rather than the formula language are thus implemented as a separate type rather than merely by
strings. Later, in Section 8 a Varbind will also contain the bound variable’s type.

Under this representation the Prolog clause append(nil, K, K) has an explicit quantifier on K
and is represented as®

Dall(Varbind("K"),
Datom(Appl (Appl(Appl(Const ("append") ,Const("nil")) ,Bvar("K")),Bvar("K"))))

Logic variables must be generated many times in such a way as not to conflict with previous logic
variables of the same name. For example, every time a clause in Prolog is used, its free variables
must be instantiated with fresh logic variables. In our setting, the quantification on the variables is
explicit, since this approach lends itself more easily to later generalizations. Nonetheless, we must
be able to generate new unique logic variables when instantiating universally quantified D-formulas
(programs). We do this by attaching to each logic variable an integer stamp which makes it unique.
We use the function new_evar to generate new logic variables from given variable names. In order
to properly explain substitution and later unification, we will need to introduce some terminology.
We say an occurrence of a Bvar is loose in a term or formula if it is not in the scope of a binding
operator binding the same name. We say a term or formula is tight if it contains no loose Bvar’s,
and it is closedif it is tight and also contains no Evar’s. Here are the types of some of the lower-level
functions implemented below.

val new_evar : varbind -> term
val shadow : varbind -> varbind -> bool
val subst : term -> varbind -> term -> term

2The name is derived from existential variables, since logic variables may be viewed as variables that are existen-
tially quantified in the meta-theory.

#Note that we use the conventional Prolog uncurried notation in the concrete syntax of examples for this first-order
term language.

shadow determines if one variable binding shadows another and is used to correctly substitute
in formulas such as Va (P(2) A Ve Q(2)). subst s x ¢ substitutes the tight term s for all loose
occurrences of z in t. The implementations are straightforward as renaming can be avoided, since
t is required to contain no loose Bvar’s.

(* Externally invisible counter to create unique variables *)
local val varcount = ref O
in fun new_evar (Varbind(vname)) =
(varcount := !varcount + 1;
Evar(vname, !varcount))
end (* local val varcount %)

fun shadow (Varbind(vnamel)) (Varbind(vname2)) = (vnamel = vname2)

fun subst s (Varbind(vname)) t =
let fun sb (t as Bvar(bvname)) = if vname = bvname then s else t
| sb (Appl(t1,t2)) = Appl(sb ti1,sb t2)
| sbt =t (¥ Evar , Const *)
in sb t end

There are also functions that substitute in G-formulas and D-formulas. These are mutually
recursive,* but each function changes only a subset of the arguments in the recursion. The following
illustrates a general implementation technique for such a recursion structure.

local fun formsubst t x =
let fun gsb (Gtrue) = Gtrue
| gsb (Gand(gl,g2)) = Gand(gsb gl, gsb g2)
| gsb (Gor(gl,g2)) = Gor(gsb gi, gsb g2)
| gsb (Gexists(y,g)) =
Gexists(y, if shadow x y then g else gsb g)
| gsb (Gatom(s)) = Gatom(subst t vbd s)
and dsb (Dtrue) = Dtrue
dsb (Dand(d1,d2)) = Dand(dsb di, dsb d2)
dsb (Dimplies(g,d)) = Dimplies(gsb g, dsb d)
dsb (Datom(s)) = Datom(subst t vbd s)
dsb (Dall(y,d)) =
Dall(y, if shadow x y then d else dsb d)
in (gsb , dsb) end
in

fun gsubst t x g =

let val (gsb , _)
and dsubst t x d =

let val (_ , dsb)

formsubst t x in gsb g end

formsubst t x in dsb d end

end

*Actually, in this version D-formulas may not occur in G-formulas, but this will change later on.

3.2 Unification

The basic new data structure we need is that of a substitution, which maps logic variables to terms.
First, a section of the signature.

type substitution = (term * term) list
val unify : term -> term -> (substitution -> unit) -> substitution -> unit

The structure of unify is again based on the idea of a success continuation, except that we now
need to communicate some information to the success continuation, namely the substitution that
arises from unifying two terms. Thus unify s ¢t sc subst unifies s and ¢ under the substitution
subst and applies sc to the resulting new substitution. This means that substitutions arising from
unification are never explicitly applied, but when an Evar is encountered we need to see if it has
been instantiated to a term by previous unifications. If unification fails, unify simply returns.
unify requires the auxiliary function lookup, which returns the substitution term for a logical
variable in a substitution, or the token NONE, if no such term exists.?

First, we show a version that implements unsound unification as used in Prolog. Omitting
the occurs-check as done here may be justified by efficiency arguments, but has the undesirable
side-effect that X and f(X) are unifiable (where X is the variable).

(* val lookup : term -> substitution -> term option *)
fun lookup (Evar(_,stamp)) subst =
let fun 1k nil = NONE
| 1k ((Evar(_,tstamp),t)::tail) =
if stamp = tstamp then SOME(t) else 1k tail
in 1k subst end

fun unify (s as Evar _) t sc subst = unify_evar s t sc subst
| unify s (t as Evar _) sc subst = unify_evar t s sc subst
| unify (Const(cnamel)) (Const(cname2)) sc subst =
if cnamel = cname2 then (sc subst) else ()
| unify (Appl(si,s2)) (Appl(t1,t2)) sc subst =
unify s1 t1 (fn newsubst => unify s2 t2 sc newsubst) subst
| unify _ _ sc subst = ()
and unify_evar e t sc subst =
case (lookup e subst)
of NONE => sc ((e,t)::subst) (* Instantiate e to t, succeed *)
| SOME(s0) => unify sO t sc subst (* e is instantiated to s0 *)

Adding the occurs-check requires a few auxiliary functions and a modification of the definition
of unify_evar. The definitions of occurs_in and same_evar are straightforward and omitted here.
The occurs-check is only called once we know that we are not trying to unify a variable with itself.
The definition of unify remains unchanged and the new definition of unify_evar is

5The frequently used type ’a option is not part of the definition of SML but defined as datatype ’a option =
NONE | SOME of ’a.

unify_evar e t sc subst =
case (lookup e subst)
of NONE => if same_evar e t subst

then sc subst (¥ e = e %)
else if occurs_in e t subst
then () (* Occurs check fails *)

else sc ((e,t)::subst) (* Bind e to t *)
| SOME(s0) => unify sO t sc subst

The obvious inefficiency in the structure of this function is that substitutions must be built up,
and that it may be very costly to continue to look up possible substitutions terms for Evar’s. This
can be corrected using destructive substitutions (see Section 5).

3.3 The Interpreter

The generalized version of the function solve now takes one additional argument (the current
substitution for Evar’s), and the success continuation also expects to be passed a substitution.

fun solve (Gtrue) prog sc subst = sc subst
| solve (Gand(gl,g2)) prog sc subst =
solve gl prog (fn newsubst => solve g2 prog sc newsubst) subst
| solve (Gor(gl,g2)) prog sc subst =
(solve gl prog sc subst ; solve g2 prog sc subst)
| solve (Gatom(t)) prog sc subst =
match_atom t prog sc subst
| solve (Gexists(x,g)) prog sc subst =
solve (gsubst (new_evar x) x g) prog sc subst

and match_atom t prog sc subst =
let fun rec_match (Dtrue) subgoal = ()
| rec_match (Dand(d1,d2)) subgoal =
(rec_match d1 subgoal ; rec_match d2 subgoal)
| rec_match (Dimplies(g,d)) subgoal =
rec_match d (Gand(subgoal,g))
| rec_match (Datom(s)) subgoal =
unify s t (fn newsubst => solve subgoal prog sc newsubst) subst
| rec_match (Dall(x,d)) subgoal =
rec_match (dsubst (new_evar x) d) subgoal
in rec_match prog (Gtrue) end

Again, the question arises how we call this interpreter at the top-level. The initial success
continuation will have to be slightly more complicated than before since we would like to present
a substitution for the logic variables in the query. To this end we have functions

val project_substitution : term list -> substitution -> substitution
val print_substitution : substitution -> unit

10

project_substitution evars subst takes a list of Evar’s and determines their substitution terms
in subst. This includes looking up of all the logic variables in the substitution terms that were
instantiated during the unification. print_substitution subst just presents the substitution in
a human readable format. For the sake of brevity we will not show the implementation of these
straightforward functions. It will also be the responsibility of the front end to ensure that all free
uppercase identifiers in the original query are converted into new logic variables, and that the final
substitution is projected onto these variables and then printed.

4 Hereditary Harrop Logic

We now further generalize from the first-order Horn logic to allow hereditary Harrop formulas as
goals. This means that a goal can be an implication (called embedded implication) or a universally
quantified formula (embedded universal quantification). For some general motivation for these
constructs refer to [1, 12, 11, 21, 25]. The mutually recursive definitions of the classes of goals and
programs now become

G = A|T|G1/\G2|G1\/G2|E|$G|D—>G|V$G
D == A|T|DiANDy|G—D|VaD

The definition of gform is changed by adding two new cases.

| Gimplies of dform * gform (* Embedded Implication *)
| Gall of varbind * gform (* Embedded Universal *)

The operational interpretation of these new constructs follows the intuitionistic reading of im-
plication and universal quantification.

e Given goal D — (G, assume D into the program and then attempt to solve G. The additional
assumption is in effect only while solving GG. D is added “to the beginning” of the program,
which means that the most recently assumed formula is considered first when we are trying
to solve an atomic goal.

e Given goal Vo (G, create a new parameter ¢ and attempt to solve [a/z]G. “New” means that
a is not allowed to occur in the current program or G.

As examples, consider the goals p — p (which clearly succeeds) and 3z (P(z) — (P(1) A P(2))),
which fails (due to the intuitionistic reading of 3) where the classically equivalent (Va P(z)) —
(P(1) A P(2)) succeeds. Quantifier dependence now also becomes an issue, as one can see from the

goals Jz Yy (P(2) — P(y)) (which fails) and Vy Jz (P(z) — P(y)) (which succeeds).

4.1 Embedded Implication

Embedded implication can be added trivially to the interpreter as we have developed it so far,
since the program is an explicit parameter to the solve function. We just add a new case to the
definition of solve:

| solve (Gimplies(d,g)) prog sc subst =
solve g (Dand(d,prog)) sc subst

11

4.2 Embedded Universal Quantification

Embedded universal quantifiers require much more pervasive changes, since the dependence of exis-
tential and universal quantifiers on each other now must be taken into account. In theorem provers
this is typically addressed by a one-time Skolemization pass during the preprocessing stage. Here
this does not seem possible (since the logic is essentially intuitionistic). Moreover, we can take
advantage of special properties of hereditary Harrop formulas to obtain a more efficient implemen-
tation.

First of all, we need to update the definition of the datatype of term to include the case
that the term is a parameter. In our implementation we call these parameters Uvar’s, thinking
of them as universally quantified at the meta-level. Note that in unification they act essentially
like constants, except for certain quantifier dependence considerations. The way we implement
quantifier dependence is for every Evar to explicitly contain a list of parameters on which it may
depend.

datatype term =
Bvar of string (* Bound Variables *)
| Evar of string * int * term list
(* Logic Variables , Stamped , Depends on *)

| Uvar of string * int (* Parameters , Stamped *)
| Const of string (* Constants *)
| Appl of term * term (* Applications *)

and varbind = Varbind of string (* Variable binders *)

Consider, for example, the goal Yo Jy G. First we introduce a new parameter a for z and solve
Jy [a/2]G. Then we introduce a new logic variable Y and solve G = [Y/y][a/2z]G. We are free to
instantiate Y with terms which contain a, that is, ¥ may depend on a. If, on the other hand, our
goal is Jy Va G, we first introduce a logic variable Y for y and then a parameter a for . Note that
here Y may not contain occurrences of a!

In the interpreter this is implemented by adding a new argument to solve, namely the list of
parameters (Uvar’s) which have been introduced so far and thus may occur in the substitution term
for any logic variable (Evar) which is introduced subsequently. There are some additional minor
interface changes. For example, the function new_evar must now be passed the list of Uvar’s on
which the new Evar is allowed to depend on. Since the new parameter is passed along unchanged
in all cases except the embedded universal quantifier, we only show this case in solve.

| solve (Gall(x,g)) prog uvars sc subst =
let val a = new_uvar x
in solve (gsubst a x g) prog (a::uvars) sc subst end

There are some further bookkeeping changes (for example, in substitution), but the crucial
change now is in the unifier. More specifically, we have to extend the occurs-check to account for
dependency. When the prospective substitution term t contains a Uvar on which the Evar s is
not allowed to depend, we have to fail. However, this is not quite sufficient. Consider the problem

12

of unifying X with f(Y), where X and Y are logic variables, and X is allowed to depend only on
parameter a, but Y is allowed to depend on parameters ¢ and b. If we merely bind X to f(Y), Y
might later be instantiated to a term containing b, thus unwittingly violating the condition that
the substitution term for X not depend on b. Thus we also need to restrict further instantiations
of Y not to depend on b.

In general, all Evar’s Y embedded in a substitution term for an Evar X can depend only on the
intersection of the parameters legal for X and Y. This is implemented by instantiating ¥ with a
new Evar Y’ whose Uvar list is thus restricted. We don’t need to implement this in full generality
due to a metatheorem: when we have to consider the lists of Uvar’s from two Evar’s during the
execution of a logic program one of the lists will be an initial segment of the other.®

Rather than using two passes, we combine the occurs-check with the restriction of Evar’s. Since
restriction of Evar’s is an instantiation process, the extended occurs-check may need to change the
substitution and thus is programmed using success continuations, just as unify itself.

fun init_seg uvarsl uvars2 = length uvarsl <= length uvars2

fun extended_occurs_check (Evar(_,stampl,uvarsl)) t sc subst =
let fun eoc (e as Evar(x,stamp2,uvars2)) sc subst =
(case (lookup e subst)
of NONE => if (stampl = stamp2)
then () (* fail *)
else if init_seg uvars2 uvarsl
then sc subst
else sc ((e,new_evar (Varbind(x)) uvarsil)
::subst)
| SOME t0 => eoc t0 sc subst)
| eoc (Appl(t1,t2)) sc subst =
eoc t1 (fn newsubst => eoc t2 sc newsubst) subst
| eoc (Uvar(_,stamp2)) sc subst =
if exists (fn (Uvar(_,stampl)) => stampl = stamp2
| 8 => raise subtype('eoc'",s,'"is not a Uvar"))
uvarsi
then sc subst
else ()
| eoc _ sc subst = sc subst
in eoc t sc subst end
| extended_occurs_check s =

raise subtype("extended_occurs_check",s,"is not an Evar")

One more detail here is the use of a function subtype which generates an exception from a
function name, term, and error message. The intent is that these exceptions signal an internal

5This also gives rise to the even more efficient implementation used in eLP, where whole lists of parameters are
represented by their upper bound (a single integer).

13

error, called subtype, because being a term, but not an Evar or Uvar constitutes a form of subtype
violation (though subtypes are not supported in SML).

The extended occurs-check is called from unify_evar. The only subtlety here is perhaps that
we have to postpone the substitution until the extended occurs-check has succeeded. Note also that
we have to previously check if we are unifying an Evar with itself and succeed without changing
the substitution—otherwise the occurs-check would fail for this case.

and unify_evar e t sc subst =
case (lookup e subst)
of NONE => if same_evar e t subst
then sc subst
else extended_occurs_check e t
(fn newsubst => sc ((e,t)::newsubst))
subst
| SOME s0 => unify sO0 t sc subst

5 Destructive Substitution

Of the code presented so far, the two most important optimizations will be (a) introduction of
destructive substitution in order to avoid repeated lookup of the substitution terms for logic vari-
ables, and (b) the conversion of the program into clausal form in order to have ready access to the
part of the program relevant to a particular predicate symbol. In this section we will deal with the
first issue.

Up to now we were using almost exclusively purely functional code. Destructive substitutions
will violate this principle, but in a relatively disciplined way. This means that whenever the
unification algorithm instantiates a logic variable to a term it has to make provisions to undo this
instantiation upon backtracking. Since backtracking is indicated simply by returning rather than
calling the success continuation, this is easy to implement.”

Before plunging into the code, a brief word about assignment in SML. Traditionally in impera-
tive languages we assign to variables. In SML, we assign to references. References are distinguished
by their type (which will be *a ref for some type *a) and are created by applications of the func-
tion ref to a value. ref is also a constructor so that we can access the value stored in a location
using match expressions as for usual function definitions. Thus the dereferencing operation ! can
be defined explicitly as fun ! (ref v) = v.

In order to implement the idea of destructive substitutions, we give Evar’s an additional slot
that could either hold the term to which the Evar was instantiated, or a token indicating that the
Evar is not instantiated. We must be able to assign to this slot, and it will thus be a reference to
an optional term. Here is the updated definition of the datatype of terms.

datatype term =

"In Section 6 we will be forced to abandon this assumption, and will thus require a more sophisticated implemen-
tation of instantiation and uninstantiation of variables.

14

Bvar of string (* Bound Variables *)
| Evar of string * int * term list * (term option) ref
(* Logic Variables , Stamped , Depends on , Inst’d to *)
| Uvar of string * int (* Parameters , Stamped *)
| Const of string (* Constants *)
| Appl of term * term (* Applications *)

When a new Evar is created, it is uninstantiated and thus contains a reference to NONE. Now
most operations will have to dereference Evar’s if they are instantiated to a term. This is illustrated,
for example, in the second clause in the definition of unify_evar below.®

The most profound changes in unify are that (a) it no longer requires a substitution as an
argument since it instantiates variables destructively, and (b) it needs to take action to uninstantiate
variables upon failure of the success continuation. Instantiation is accomplished by an assignment
to the reference in the value slot of an Evar, uninstantiation assigns NONE. The instantiation is
performed when the extended occurs-check succeeds and thus is passed in the success continuation
to extended_occurs_check. The function for the extended occurs-check must also be changed in

an analogous fashion.

fun unify (s as Evar _) t sc = unify_evar s t sc
| unify s (t as Evar _) sc = unify_evar t s sc
| unify (Const(cnamel)) (Const(cname2)) sc =
if cnamel = cname2 then sc () else ()
| unify (Uvar(_,stampl)) (Uvar(_,stamp2)) sc subst =
if stampl = stamp2 then (sc subst) else ()
| unify (Appl(si,s2)) (Appl(t1,t2)) sc =
unify s1 t1 (fn () => unify s2 t2 sc)
| unify _ _ sc = O
and unify_evar (e as Evar(_,_,_,(vslot as (ref NONE)))) t sc =
if same_evar e t
then sc ()
else extended_occurs_check e t
(fn () => (vslot := SOME t ; sc () ; vslot := NONE ; ()))
| unify_evar (Evar(_,_,_,ref (SOME s0))) t sc = unify s0 t sc
| unify_evar s _ _ = raise subtype("unify_evar",s,"is not an Evar")

The definition of G-formulas and D-formulas and the functions for substituting into formulas
does not change from the previous section. The interpreter undergoes only a very minor change:
since explicit substitutions are no longer required, solve and the success continuation both require
one argument less than before.

8 An important optimization arises from the invariant that an Evar is never instantiated to a term with a loose
Bvar: In the operation of substituting for a Bvar in a term, if the term is an instantiated Evar, we can simply return
it without dereferencing and further traversal.

15

6 Control Primitives and Trailing

So far, the only mechanism available for search control in our logic programming language has
been clause ordering. There are many programs where this is insufficient and there are a number
of ways one can address this deficiency. The most common construct is cut (!, in concrete Prolog
syntax), though we will discuss this only briefly in Section 6.2. Our focus will be on what is
commonly called if-then-else and written as G1 -> G2 | G3 . In our abstract syntax we have
a corresponding guard constructor. guard is general enough to allow a direct definition of the
constructs once and not in a higher-order language (see Section 9), and most programs using cut
can easily be transformed into programs using guard. We show that the guard control primitive can
be implemented using SML exceptions without disturbing the general structure and organization of
the interpreter. However, the use of exceptions relies on a non-local exit from a success continuation,
which requires a different implementation of the uninstantiation of variables on backtracking. This
alternative implementation technique for backtracking is referred to as trailing.

6.1 The guard Control Construct

The operational reading of G; — G5 | G (not to be confused with implication) is

e Solve the guard Gy. If this succeeds, solve (73 (with the new substitution). On backtracking,
do not reconsider the choices made while solving G4, but simply fail the overall goal G; —

Gy | Gs.

e If solving (G fails, solve G3 and fail the overall goal Gy — G5 | G5 on backtracking.

In the interpreter, we first augment the definition of the gform data type and modify the
substitution function to include the obvious additional case. A first, as it turns out, incorrect
attempt at the additional case for the interpreter (from Section 5) would be

| solve (Guard(gl,g2,g3)) prog sc =
let exception Guard_success in
(solve gl prog (fn () => raise Guard_success) ;
solve g3 prog sc)
handle Guard_success => solve g2 prog sc
end

If we succeed in solving the guard gi, raising the exception Guard_success will transfer control
back to the handler for the exception, bypassing all the choice points, and then solve g2. Choice
points are established, for example, when solving a disjunction, or when descending through a
conjunction when analyzing the program in match_atom. One can now see what is wrong with this
attempt: the code in the unifier which uninstantiates variables on backtracking (the assignment of
NONE below)

extended_occurs_check e t
(fn () => (vslot := SOME t ; sc () ; wvslot := NONE ; ()))

16

will not be executed when solving g2 eventually backtracks, because the call sc () exited with an
exception, bypassing the second assignment.

The solution to this problem is move the responsibility for uninstantiating variables from the
unifier to the choice points. Thus, in the case of a goal Gy V G5, for example, we have to keep
track of all the variables which may have been instantiated during an attempt to solve Gy and
uninstantiate them before attempting to solve G5. Keeping track of these variables is the purpose
of the tra:l.

A SML variable global_trail contains a reference to a trail. When a variable is instantiated,
it is added to the trail (which is accessed as a stack). At a choice point, when the first alternative
backtracks, we uninstantiate all variables which have been pushed onto the trail and simultaneously
unwind the trail (that is, pop the stack). This is bundled up into a few functions and the datatype
trail. The function trail is used by the interpreter at choice points: it remembers the global
stack, evaluates its argument (by applying it to the unit element) and then uninstantiates all the
“new” variables it finds on the stack. The function instantiate_evar is used by the unifier in
order to instantiate logic variables and simultaneously push them onto the trail. The variable
global_trail is local to a context with these functions, which guarantees that no other functions
can obtain access to it and change the value of the location it refers to. In order to be able to
properly unwind the trail, we must have a reference (= pointer) to a trail which we can compare
with the result of unwinding it. Since the only way to compare for pointer equality is by comparing
references, the tail of a trail must be implemented as a reference to a trail even though is never

modified.

datatype trail =
consTrail of term * (trail ref)
| nilTrail

local val global_trail = ref (ref nilTrail)
in

fun unwind_trail shorter_trail longer_trail =
if longer_trail = shorter_trail
then (global_trail := shorter_trail; ())
else (case !'longer_trail of
(consTrail (Evar(_,_,_,vslot),rest_trail)) =>
(vslot := NONE; unwind_trail shorter_trail rest_trail)
| _ => raise Subtype('"unwind_trail: Ill-formed trail.'"))

fun trail func =
let val old_trail = !global_trail in
(func () ; unwind_trail old_trail (!global_trail) ; ())
end

fun instantiate_evar (s as Evar(_,_,_,vslot)) t =

(vslot := SOME t;
global_trail := ref (consTrail(s,'global_trail)))

17

| instantiate_evar s _ = raise subtype('instantiate_evar",s,"is not an Evar'")
end (* local val global_trail *)

The main function of the unifier does not change, but unify_evar changes, since it no longer
has the responsibility of uninstantiating variables upon backtracking. Thus the call to the extended
occurs-check now looks like

extended_occurs_check e t (fn () => (instantiate_evar e t ; sc ()))

The interpreter makes use of the functional trail where it establishes choice points. This
happens in exactly three cases: Gor, Guard, Dand. The argument to trail is protected by a
vacuous abstraction in order to prohibit premature evaluation—just as success continuations.

fun solve (Gtrue) prog uvars sc = sc ()
| solve (Gand(gl,g2)) prog uvars sc =
solve gl prog uvars (fn () => solve g2 prog uvars sc)
| solve (Gor(gl,g2)) prog uvars sc =
(trail (fn () => solve gl prog uvars sc) ;
solve g2 prog uvars sc)
| solve (Gatom(t)) prog uvars sc =
match_atom t prog uvars sc
| solve (Gexists(x,g)) prog uvars sc =
solve (gsubst (new_evar x uvars) X g) prog uvars sc
| solve (Gimplies(d,g)) prog uvars sc =
solve g (Dand(d,prog)) uvars sc
| solve (Gall(x,g)) prog uvars sc =
let val a = new_uvar x
in solve (gsubst a x g) prog (a::uvars) sc end
| solve (Guard(gl,g2,g3)) prog uvars sc =
let exception Guard_success
in (trail (fn () => solve gl prog uvars (fn () => raise Guard_success)) ;
solve g3 prog uvars sc)
handle Guard_success => solve g2 prog uvars sc
end

and match_atom t prog uvars sc =
let fun rec_match (Dtrue) subgoal = ()

| rec_match (Dand(d1,d2)) subgoal =

(trail (fn () => rec_match d1 subgoal) ;
rec_match d2 subgoal)

| rec_match (Dimplies(g,d)) subgoal =
rec_match d (Gand(subgoal,g))

| rec_match (Datom(s)) subgoal =
unify s t (fn () => solve subgoal prog uvars sc)

18

| rec_match (Dall(x,d)) subgoal =
rec_match (dsubst (new_evar x uvars) x d) subgoal
in rec_match prog (Gtrue) end

6.2 Cut

Instead of the guard construct, we can use cut (written as !) as a non-logical control primitive.
The operational reading of cut is

e When encountering cut as a goal, succeed. When the interpreter backtracks to this point, do
not simply backtrack further, but jump past all the choice points which have been created
since the immediate atomic supergoal of the cut.

The reference to the “immediate atomic supergoal” requires the addition of another argument
to solve and match_atom. This additional argument is an exception which, when raised, will
transfer control back to the immediate atomic supergoal. This additional argument ctag is merely
passed along in most cases in the interpreter, so we show only the critical changes to the previous
incarnation of solve.

fun solve (Gatom(t)) prog uvars ctag sc =
let exception new_ctag
in (match_atom t prog uvars new_ctag sc)
handle new_ctag => ()
end
| solve (Gcut) prog uvars ctag sc
(sc () ; raise ctag)

and match_atom t prog uvars ctag sc
let fun rec_match (Datom(s)) subgoal =
unify s t (fn () => solve subgoal prog uvars ctag sc)

in rec_match prog (Gtrue) end

In addition to the initial success continuation (see Section 2.3) we now also need to create an
initial exception to pass to solve. This is easily accomplished by

fun top_solve goal free_vars prog =
let exception top_ctag
in (trail (fn () => solve goal prog nil top_ctag
(fn () => print_substitution free_vars)))
handle top_ctag => ()
end

19

where free_vars is the list of variables (Evar’s) free in goal. Trailing is necessary so that
top_solve does not have a side-effect on the variables among free_vars which are instantiated
during the call to solve. Now we can also see how a Prolog-like top-level can be implemented: the
initial success continuation could present the substitution and then require user input. If the user

types a semi-colon “;” it returns, and otherwise is raises the exception top_ctag.

7 Clausal Form

One of the problems with the interpreter so far is the inefficiency of the program analysis. We
would like to restrict the search for potentially applicable assumptions as much as possible. Here,
the clausal form theorem for Horn logic (and hereditary Harrop logic) is helpful: any legal D-formula
is equivalent to one in clausal form. The clausal form is defined by

D TIC|CAD
C = G- A|Va O

where (' is a clause, A (referred to as the clause head) stands for an atomic formula, and G' (referred
to as the clause body) stands for a G-formula as before. Atomic formulas have the form P(tq,...,¢,)
for a predicate symbol P and terms ty,...,t,. We call P the head of A and, more generally, f the
head of a term of the form f(¢1,...,t,), including the cases where n = 0. We refer to the head of
the clause head of a clause C' as the head predicate of C'. Given an atomic goal A with head P, the
interpreter, that is, match_atom, can only succeed in applying a clause if its head predicate is also

P.

Thus we can represent an arbitrary program as a list of clauses, and store with each clause its
head predicate, for direct comparison with the head of an atomic goal. In a first step, the program
is searched clause by clause for one with a matching head predicate. A straightforward optimization
that we do not discuss here further, stores a list of clauses relevant to each head predicate in a hash
table indexed by the head predicate. This can be carried even further by “indexing” on the head
function symbol of one or more of the predicate arguments.

Recall that in our implementation atomic formulas are represented by terms, since this simplifies
the code. We now add the definition of the datatype of clause:

datatype clause = Clause of head * varbind list * term * gform

head is a new type exported in the implementation of terms: it is the type of legal heads. Up to
and including this section, a head can be only a constant and can be implemented simply as its
name. The varbind list is the list of the universally quantified variables in the clause, term is the
clause head, and gform is the clause body. Together with this we have a function that converts an
arbitrary formula into clausal form. clausify carries three accumulator arguments: the body, the
universally quantified variables, and a list of clauses. Thus clausify D (Gtrue) nil nil will
convert a D-formula D into clausal form.

fun gand_opt (Gtrue,g) = g
| gand_opt (g,Gtrue)

1}
o

20

| gand_opt (gl,g2) = Gand (gl,g2)

fun clausify Dtrue _ _ rest = rest
| clausify (Dand(d1,d2)) body vars rest =
clausify d1 body vars (clausify d2 body vars rest)
| clausify (Dall(x,d)) body vars rest =
if exists (fn y => shadow x y) vars
then let val (new_x,sb) = rename_sb x
in clausify (dapply_sb sb d) body (new_x::vars) rest end
else clausify d body (x::vars) rest
| clausify (Dimplies(g,d)) body vars rest =
clausify d (gand_opt (body,g)) vars rest
| clausify (Datom(t)) body vars rest =
Clause(head t,vars,t,body) :: rest

The function gand_opt eliminates some Gtrue subgoals. Bound variables may have to be re-
named during the conversion to clausal form (consider, for example, the clausal form of Va (Pz —
Vo (Qx — Ruz))). rename_sb returns the new variable name and also a renaming substitution.
This notion of substitution is different from the one discussed in Section 3: here we substitute for
Bvar’s rather than for Evar’s. The new version of match_atom below takes a list of clauses, instead
of a D-formula. It uses a function new_evar_sb, which takes a list of bound variables and returns
a substitution that, when applied, substitutes new Evar’s for all the Bvar’s. Note that the body of
a clause is not copied (that is, substituted into) until the unification of the atomic goal with the
clause head has succeeded.

match_atom t clauses uvars sc =
let val t_head = head t
fun rec_match nil = ()
| rec_match ((clause as Clause(s_head,vars,s,gbody))::rest) =
if head_equal s_head t_head
then let val nesb = new_evar_sb vars uvars in
(trail (fn () =>
unify (apply_sb nesb s) t (fn () =>
solve (gapply_sb nesb gbody) clauses uvars sc)) ;
rec_match rest)
end
else rec_match rest
in rec_match clauses end

We could store the head of atoms in the atomic formula, to avoid the call to head. Along similar
lines, we could statically convert D-formulas which appear on the left-hand sides of embedded
implications into clauses rather than convert them at assumption time. This is an important
optimization, but it requires substitution functions into the clausal representation which we would
like to avoid in the presentation. Thus the case for embedded implication in solve looks as follows:

21

| solve (Gimplies(d,g)) prog uvars sc =
solve g (clausify d (Gtrue) nil prog) uvars sc

Before, functions such as gsubst substituted for a single (bound) variable in order to achieve
clause copying. Calls to this are now replaced with calls to gapply_sb, which achieves the more
efficient simultaneous substitution. Checking of variable name conflicts is still avoided, except in a
rare case during conversion of programs to clausal form. Changes to the corresponding substitution
functions on formulas are straightforward, though with an interesting twist. When descending
through a quantified formula, we augment the substitution by adding a pair substituting the bound
variable for itself. Noting that this still cannot introduce “capturing,” we rewrite the substitution
as follows.

type sb = (varbind * term) list
exception Loose_Bvar of term

(* val lookup_vbind : string -> sb -> term *)
fun lookup_vbind vname sb =
let fun 1k ((Varbind(xname),t)::rest) =
if vname = xname then t else lk rest
| 1k nil = raise Loose_Bvar(Bvar(vname))
in 1k sb end

(* val apply_sb : sb => term -> term *)
fun apply_sb sb s =
let fun asb (Bvar(vname)) = lookup_vbind vname sb
| asb (Appl(s1,s2)) = Appl((asb s1),(asb s2))
| asb t =t (¥ Evar , Uvar , Const *)
in asb s end

Remember that substitution due to unification is done destructively and not by the function
above.

8 Higher-order Terms

So far we have been working with a first-order, untyped term language. We will now make the
transition to a higher-order, typed term language. This necessitates handling constraints in the
interpreter (a simple change) and a major change in unification, which may now branch and is no
longer guaranteed to terminate.

8.1 The Interpreter

The modules defining propositions and the interpreter need to change very little. The primary
change is that we have to introduce constraints, since the higher-order unification algorithm gen-
erates constraints, that is, sets of equations which are known to be satisfiable. Though somewhat

22

more general through our use of types, implication, and explicit quantification, our language now
becomes a constraint logic programming language in the sense of Jaffar and Lassez [19]. The way
constraints are handled in the interpreter is reminiscent of the way we handled substitutions in
Section 3.3 before the introduction of destructive instantiation of variables: where the success con-
tinuation previously expected a substitution subst, it now expects a constraint con as an argument.

fun solve (Gtrue) clauses uvars con sc = sC con
| solve (Gand(gl,g2)) clauses uvars con sc =
solve gl clauses uvars con (fn newcon => solve g2 clauses uvars hewcon sc)
| solve (Gor(gl,g2)) clauses uvars con sc =
(trail (fn () => solve gl clauses uvars con sc) ;
solve g2 clauses uvars con sc)
| solve (Gatom(M)) clauses uvars con sc =
match_atom M clauses uvars con sc
| solve (Gexists(x,g)) clauses uvars con sc =
solve (gapply_sb (term_sb x (new_evar x uvars)) g) clauses uvars con sc
| solve (Gimplies(d,g)) prog uvars con sc =
solve g (clausify d (Gtrue) nil prog) uvars con sc
| solve (Gall(x,g)) prog uvars con sc =
let val a = new_uvar x
in solve (gapply_sb (term_sb x a) g) prog (a::uvars) con sc end
| solve (Guard(gl,g2,g3)) clauses uvars con sc =
let exception Guard_success of constraint
in (trail (fn () =>
solve gl clauses uvars con (fn newcon =>
raise Guard_success(newcon))) ;
solve g3 clauses uvars con sc)
handle Guard_success(newcon) => solve g2 clauses uvars newcon sc
end

and match_atom M clauses uvars con sc =
let val M_head = head M
fun rec_match nil = ()
| rec_match ((clause as Clause(N_head,vars,N,gbody))::rest) =
if head_equal N_head M_head
then let val nesb = new_evar_sb vars uvars
in (trail (fn () =>
unify (apply_sb nesb N) M con (fn newcon =>
solve (gapply_sb nesb gbody) clauses
uvars newcon sc)) ;
rec_match rest)
end
else rec_match rest
in rec_match clauses end

23

8.2 Representing Higher-Order Terms

For convenience, we use a single representation type term for both terms and types in our calculus.
If we were only interested in implementing a logic programming language over the simply typed
A-calculus without polymorphism this would be unnecessarily complicated, but we are interested
in including dependent types (in the form of LF [14]) and polymorphism, at which point it is
convenient to have to write only one function each for substitution and unification, rather than
two (one for unifying terms and one for unifying types, for example). The algorithm we outline
below will be complete only for certain fragments of the full calculus, but we can now implement
various subcalculi merely by changing the type checking phase and the set of predeclared constants
in the front end. This basic approach, though different in various details, is taken in the Calculus
of Constructions [4]. The representation of terms is perhaps more direct, but less efficient than
deBruijn indices [5] which are used in eL.P and almost all other modern implementations of A-calculi
which require access to the internal structure of A-terms. Nonetheless, we were quite surprised how
little of the code depends on the choice of the representation of bound variables.

datatype term =
Bvar of string (* Bound Variables *)
| Evar of varbind * int # term list * (term option) ref
(* Logic Variables , Stamped , Depends on , Inst’d to *)

| Uvar of varbind * int (* Parameters , Stamped *)
| Const of string (* Constants *)

| Appl of term * term (* Applications *)

| Abst of varbind * term (* Abstractions *)

and varbind = Varbind of string * term (* Variable binders , Type *)

In the implementation of the term language and the type checker, we have two constants
type and pi. And, yes, type is a type, though this could be avoided by introducing universes
(see [16]) without any changes to the code of the unifier. As is customary, we use A — B as
an abbreviation for Ilz : A. B if = does not occur free in B. Also, however, Ilz : A.B is an
abbreviation for the application pi A (Az: A. B). In our formulation, then, the constant pi has
type l1A:type. ((A — type) — type).

As an example consider a predicate constant eq of type I1A :type. A — A — o (where o is
the type of formulas as indicated in Section 9). The single clause eq A M M. correctly models
equality, that is, a goal of the form eq A M N will succeed if M and N are unifiable. The fact that
unification now has to branch can be seen by considering the goal eq int (/"1 1) 1 which has three
solutions for the functional logic variable F, namely Az :int.Ay:int.z, Az :int. Ay:int.y, and
Az:int. Ay:int. 1.

The functions supporting substitution are extended in the obvious way. In particular, we now
have to substitute inside Varbind’s, since they contain terms which may contain free variables.
The type of a constant is accessible in a signature which maps names of constants to their types,
implemented, for example, as a list of pairs of strings and types.

The unification procedure we use is based on the one in [6, 7] for higher-order unification with
dependent types, which itself is an extension of Huet’s procedure for (higher-order) unification in

24

the simply typed A-calculus [18]. This procedure is most easily understood in terms of a collection
of “transformations,” some on terms, some on pairs of terms being unified, and some on sets of
such pairs.

With the right control structure (such as iterative deepening) the unifier would be complete for
the LF fragment of our calculus, but logic variables ranging over types destroy this completeness.
The unifier detects if there is a possibility for incompleteness on a particular execution and can
give a warning in such a case, if desired.

8.3 Rewriting

Because we are using transformations as a fundamental structuring device in the implementation
of unification, we adopted a very elegant technique from Paulson’s higher-order implementation
of rewriting [27], which itself was patterned after the tactics and tacticals in LCF [13]. Because
we are not worried about having our implementation prove the correctness of applications of its
transformations, we can use a somewhat simpler implementation than in [27]. The basic kind of
object we deal with we call a rewriter, which is simply a partial function from some type to itself—
“partial” because it may fail to apply (which is communicated by a raised exception) as well as fail
to terminate. Thus we have simply

type ’a rewriter = ’a -> ’a

The exception Fail may be raised in case a rewriter fails to apply and takes string as an argument
which is intended but not required to give some indication of reason for the failure of the rewriter
to apply. Here are the general rewriting primitives we found useful.

exception Fail of string

fun rew_and rewl rew2 = rew2 o rewl

fun rew_or rewl rew2 x = (rewl x) handle Fail => (rew2 x)

fun rew_id x = x
fun rew_try rew = rew_or rew rew_id
fun rew_repeat rew x = rew_try (rew_and rew (rew_repeat rew)) x
(¥ rew_first: ’a rewriter -> ’a list rewriter *)
fun rew_first rew nil = raise Fail("rew_first")
| rew_first rew (x :: 1) = (rew x) :: 1
(* rew_rest: ’a list rewriter -> ’a list rewriter *)

fun rew_rest list_rew nil = nil
| rew_rest list_rew (x :: 1) = x :: (list_rew 1)

25

8.4 Unification

The basic structure of the unifier involves maintaining a collection of pairs of terms to be unified
simultaneously. Traditionally such pairs are called disagreement pairs and such a collection is called
a disagreement set (though represented and used as a list).

datatype dpair = Dpair of term * term
type dset = dpair list

During unification, we transform terms, disagreement pairs, and disagreement sets, as described
below. However, because some unification problems have more than just a single most general
unifier, we will also have one branching step. This will be implemented using success continuations,
thus meshing nicely with the interpreter.?

8.4.1 Normalization

One kind of rewriting we will need to do during unification is “weak head normalization” of terms.
This just means normalizing enough to determine the top-level structure of the S-normal form of
the term.!® In mathematical notation, a weak head reduction step reduces a term of the form
(Az:A. M) Ny...N, to the term ([Ny/2]M) Ny...N,.!t Thus the rewriter below fails, if the given
term does not have the form of the left-hand side of this rewriting rule (modulo dereferencing of
instantiated Evar’s).

fun head_reduce_term (Appl(M,N)) =
(let fun hrt (Abst(xofA,MO0)) = apply_sb (term_sb xofA N) MO
| hrt (Evar(_,_,_,ref(SOME MO))) = hrt MO
| hrt _ = Appl(head_reduce_term M,N)
in hrt M end)
| head_reduce_term (Evar(_,_,_,ref(SOME MO))) = head_reduce_term MO
| head_reduce_term _ = raise Fail("head_reduce_term")

The conventions for naming ML variables in the code for the unifier are as follows: we use M
and N for terms and A, B, and C for types.!? Furthermore, we use xofA and yofB for Varbind’s (a
pair consisting of a variable name and its type) and Gamma for contexts (lists of Varbind’s).

Next, we raise this from a term rewriter to a disagreement pair rewriter that tries to head reduce
the left member of the pair and, if this fails, tries to reduce the right member. The functional
rew_dpair does this kind of raising:

fun rew_dpair rew =
rew_or (fn (Dpair(M,N)) => Dpair(rew M, N))
(fn (Dpair(M,N)) => Dpair(M, rew N))

val head_reduce_dpair = rew_dpair head_reduce_term

?Success continuations can be used for rewriting as well, but they do not seem as appropriate in this context with
only a very simple form of nondeterminism (succeed with the rewritten term or fail).

%More specifically, “weak” here refers to not doing any normalization inside of abstractions.

' Application associates to the left, so with parentheses the redex would be (... ((Az:A. M) Ni)...Ny).

12«Types” are simply terms used in the capacity of types.

26

8.4.2 Extensionality

The next transformation involves a disagreement pair made up of one or two abstraction terms.
This can be justified by an extensionality principle or the n-rule. For example, consider unifying
Ar:A. M and Ay: B.N. In this case we introduce a new parameter ¢ and reduce the problem to
unifying [a/xz]M and [a/y]N. There are two similar cases in which only one of terms being unified
is an abstraction where we simply form an application.

fun abst_reduce_dpair (Dpair(Evar(_,_,_,ref(SOME MO)),N))
abst_reduce_dpair (Dpair(MO,N))
| abst_reduce_dpair (Dpair(M,Evar(_,_,_,ref(SOME NO))))
abst_reduce_dpair (Dpair(M,NO))
| abst_reduce_dpair (Dpair(Abst(xofA,M0), Abst(yofA,N0))) =
let val a = new_uvar xofA
in Dpair(apply_sb (term_sb xofA a) MO,
apply_sb (term_sb yofA a) NO)

end
| abst_reduce_dpair (Dpair(Abst(xofA,MO), N)) =
let val a = new_uvar xofA
in Dpair(apply_sb (term_sb xofA a) MO, Appl(N,a))
end
| abst_reduce_dpair (Dpair(M,Abst(yofA,N0))) =
let val a = new_uvar yofA
in Dpair(Appl(M,a),apply_sb (term_sb yofA a) NO)
end
| abst_reduce_dpair _ = raise Fail("abst_reduce_dpair")

8.4.3 Rigid pairs

We now focus on the case of unifying two terms, neither of which is subject to weak head reduction
and neither of which is an abstraction. Of these, the simplest case is when each of the two terms
is “rigid”, i.e., its top-level structure does not change under substitution. This is the case when
the head of a term is either a constant or a Uvar. The treatment in this case is to compare heads.
If they are the same, we replace the disagreement pair with the corresponding pairs of arguments.
Otherwise, we conclude that the two terms are non-unifiable, and hence the disagreement set
containing them is non-unifiable as well.

To distinguish non-unifiability from non-applicability of a rewriter, we introduce a new exception
with exception Nonunifiable. Rather than extracting the heads and lists of arguments first,
in the implementation below, we accumulate disagreement pairs matching up the corresponding
arguments while descending to the heads. When we get to a head, we either succeed or fail.

(* rigid_rigid : dpair -> dset -> dset,
Adds result of rigid-rigid decomposition to the given dset.
Fails if the dpair is not rigid-rigid.
Can raise the exception Nonunifiable. *)

27

fun rigid_rigid (Dpair(Evar(_,_,_,ref (SOME MO)), N)) dset
rigid_rigid (Dpair(MO,N)) dset
| rigid_rigid (Dpair(M, Evar(_,_,_,ref (SOME NO)))) dset
rigid_rigid (Dpair(M,NO)) dset
| rigid_rigid (Dpair(Appl(M1,N1),Appl(M2,N2))) dset =
(* Note the "head-recursion' *)
rigid_rigid (Dpair(M1,M2)) (Dpair(N1,N2)::dset)
| rigid_rigid (Dpair(Const(namel),Const(name2))) dset =
if namel = name2 then dset else raise Nonunifiable
| rigid_rigid (Dpair(Uvar(_,stampl),Uvar(_,stamp2))) dset =
if stampl = stamp2 then dset else raise Nonunifiable
(* Otherwise, either not rigid-rigid or unification fails. %)
| rigid_rigid (Dpair(M,N)) _ =
if (is_rigid M) andalso (is_rigid N)
then raise Nonunifiable
else raise Fail("rigid_rigid")

It is a simple matter to make this function into a disagreement set rewriter that attempts to
apply rigid_rigid to the first disagreement pair in a disagreement set:

(* rigid_rigid_rew : dset rewriter *)
fun rigid_rigid_rew nil = raise Fail("rigid_rigid_rew")
| rigid_rigid_rew (dp :: rest) = rigid_rigid dp rest

8.4.4 SIMPL

We can now assemble the previous rewriters into a main component of the unification algorithm,
corresponding to Huet’s “SIMPL” phase. One step of the SIMPL phase is accomplished by the
following disagreement set rewriter, which tries first head reduction, then (if that fails to apply)
extensionality, and finally rigid-rigid decomposition.

val SIMPL_rew =
rew_or (rew_or (rew_first head_reduce_dpair)
(rew_first abst_reduce_dpair))
rigid_rigid_rew

The complete SIMPL phase repeats SIMPL_rew as long as it applies, transforming the first
disagreement pair, and then recursively works on the remaining disagreement pairs.

fun SIMPL ds =
rew_and (rew_repeat SIMPL_rew)
(¥ if SIMPL_rew fails, (rew_repeat SIMPL_rew) succeeds and
either we have run out of disagreement pairs and are done,

28

or the first is no longer rigid-rigid and we need to go on. *)
(rew_rest SIMPL)
ds

8.4.5 MATCH

The SIMPL phase leads either to non-unifiability or to a disagreement set made up completely
of disagreement pairs relating two flexible (non-rigid) terms or one rigid and one flexible term.
As in Huet’s algorithm, we defer treating flexible-flexible disagreement pairs, as their treatment
leads to an intractable explosion of the search space, or, if a particular solution is chosen, to an
overcommitment which must be avoided in this setting of constraint logic programming. At least
in the LF sub-calculus, these disagreement sets are always unifiable when they arise [6].

The “MATCH” phase examines a flexible-rigid disagreement pair, instantiates the logic variable
at the head of the flexible term, and calls the success continuation on an augmented disagreement
set. Upon backtracking, further instantiations may be tried. Once all possibilities are exhausted
MATCH returns. The interested reader can consult [6] for an explanation and justification of
these instantiations, as well as completeness proofs. Actually, completeness can in general only
be guaranteed for a subcalculus where logic variables do not occur at the head of types. As logic
variables ranging over types are extremely useful in practice (they provide for polymorphism),
and the algorithm will often be complete even in this case, enforcing this restriction statically is
counter-productive. Instead, we give a run-time warning if the unification procedure might be
incomplete.

A full discussion of MATCH is beyond the scope of this chapter; we merely show some fragments
of the code illustrating its control structure.

(* MATCH : dpair -> dset -> (dset -> unit) %)
fun MATCH (Dpair(flex,rigid)) ds sc =
let val F as Evar(Varbind(Fname,Ftype),_,ok_uvars,_) = flex_term_head flex

(* Try a substitution given a term and its type *)
(* Given M and A such that |- M : A
instantiate F to M and constrain Ftype ==
(not necessary in the simply typed lambda-calculus) *)
fun try_subst_term M A =
(instantiate_evar F M ;
sc (Dpair(Ftype, A) :: ds))

in
(* project_from and imitate enumerate the possible substitution terms for
F, calling try_subst_term on each; expecting it to return upon
backtracking. *)

29

(trail (fn (O => imitate ()) ; project_from Gamma_w)
end

There is no distinction in AProlog or our hypothetical language between choice points established
during unification and choice points established during clause selection. Thus trailing must be done
at choice points during unification, as in the interpreter.

8.4.6 Putting it together

Now we combine the various pieces into the function unify_dset. It expects a disagreement set and
a success continuation, which is to be called on a possibly remaining constraint, if the disagreement
set is unifiable. If not, we simply return to signify failure and initiate backtracking. Constraints
are nothing but disagreement sets with only flexible-flexible pairs.

type constraint = dset

(* unify_dset : dset -> (constraint -> unit) -> unit *)
fun unify_dset ds sc =
(* First SIMPL. This may raise exception Nonunifiable handled below. *)
let val ds’ = SIMPL ds
in (* ds’ will have only flex-rigid, rigid-flex, or flex-flex pairs.
Select a flex-rigid or rigid-flex and call MATCH.
If there is none, we succeed with the remaining constraints.
MATCH returns upon backtracking. *)
case (find_flex_rigid ds’)
of SOME(dp) => MATCH dp ds’ (fn match_ds => unify_dset match_ds sc)
| NONE => sc ds’ (* Success: only flex-flex left *)
end
handle Nonunifiable => () (* Failure in SIMPL *)

(* unify : term -> term -> constraint -> (constraint -> unit) -> unit *)
fun unify M N dset sc = unify_dset (Dpair(M,N) :: dset) sc

9 Higher-Order Logic

The language of higher-order terms introduced so far has not changed the underlying logic of our
logic programming language: it is still a first-order logic, though over a very rich domain. This is
sufficient for many application programs (see, for example, [10]), but there are instances where it is
very elegant and natural to allow true higher-order programming. By higher-order programming we
mean the ability of programs to construct other programs (to be assumed) and other goals (to be
invoked). In Prolog some semblance of such a facility is provided through the call primitive. Here
we have a higher-order term language, and, following Church [3], we introduce a distinguished type
of propositions (o) and constants representing the logical quantifiers and connectives. For example,

30

logical conjunction is represented by a constant and of type o — o — o, and the existential quantifier
is represented by a constant exists of type lIA:type. ((A — o) — o).

Two simple examples of higher-order programs in the sense given above are clauses defining once
and not (negation-as-failure), given the more general guard construct we adopted in Section 6. L
is simply a goal which always fails.

once(() « (G — T |1).
not(G) «+ (G— L|T).

Here (G is a variable of type o and once and not are constants of type o — o. Note that the
argument G will be passed as a term, but has to be converted to a goal before it can be invoked.

If we implemented strictly higher-order hereditary Harrop formulas (see [22]), some of the work
below would not be necessary, but in practice it is important not to restrict statically to D-formulas
and G-formulas whose predicate symbol is fixed and known at the time where terms are translated
into propositions. Instead we introduce a new case in the definitions of the datatypes gform and
dform, namely Gflex of term and Dflex of term, respectively. They convey that we do not yet
know whether this term will be atomic, a conjunction, etc., since it begins with a predicate variable
which might be instantiated by unification before the current G-formula or D-formula is needed by
the interpreter.

The functions term_to_gform and term_to_dform (not shown here) translate a term to a
formula. They proceed by converting the term to head normal form and then deciding from the
constant at the head of the term if it is a conjunction, disjunction, etc. If it matches none of the
logical constants, it is either atomic (if the head is rigid) or “flex” if the head is an Evar or a Bvar.
The quantifiers are represented as constants applied to abstractions.

All that is required to complete the interpreter is to modify the clausification function to allow
Dflex formulas and the interpreter to allow Gflex formulas. In either case, the argument is
again converted to a proposition. If the formula remains flexible, an error results. Recall that
flexible formulas may become rigid through instantiation during unification. Consider, for example,
Jdz(xz = T Az). At translation time, 2 is flexible, but by the time the goal « is encountered, it has
been instantiated to T, which should simply succeed. We thus add the following case to solve:

| solve (Gflex(M)) clauses uvars con sc =
(case term_to_gform M
of Gflex(M’) => raise error("solve: Goal " ~ term_makestring(M’)
~ " with variable head predicate.')
| g => solve g clauses uvars con sc)

and a corresponding case to clausify

| clausify (Dflex(M)) body vars rest =
(case term_to_dform M
of Dflex(M’) => raise error("clausify: Program " ~ term_makestring(M’)
~ " with variable head predicate.')
| d => clausify d body vars rest)

31

10 Conclusion

The interpreter we have developed is relatively close to eLLP, our Common Lisp implementation of
AProlog in the Ergo Support System [8, 20]. Most of the differences have already been mentioned:
clauses are indexed and stored in a global hashtable, bound variables are represented by deBruijn
indices and parameters and logic variables are time-stamped for comparison and unification of
terms that have not been Skolemized. There are also the front-end, that is, parsing, unparsing, and
type reconstruction, the implementation of AProlog’s module system, and “special” (non-logical)
predicates which we ignored in this presentation, some of which are by no means trivial. Unification
also differs: the one given here supports a much richer A-calculus, but does not implement a number
of important optimizations (see [23]) used in el.P. Finally, there are a number of design mistakes
which are still part of the current eLP implementation which we chose not to expose here.

We expect that the next set of significant improvements in the implementation techniques for
AProlog and related languages will come from a more economical representation of A-terms [26]
and the development of compilation technology [24].

We conclude with the remark that the complete Standard ML code for all versions of the
interpreter discussed here including a modest front end are available via ftp over the Internet.'3

References

[1] Anthony J. Bonner, L. Thorne McCarty, and Kumar Vadaparty. Expressing database queries
with intuitionistic logic. In Ewing Lusk and Ross Overbeek, editors, Proceedings of the North
American Conference on Logic Programming, pages 831-850, Cambridge, Massachusetts, 1989.
MIT Press.

[2] Mats Carlsson. On implementing Prolog in functional programming. New Generation Com-
puting, 2(4):347-359, 1984.

[3] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

[4] Thierry Coquand and Gérard Huet. The Calculus of Constructions. Information and Compu-
tation, 76(2/3):95-120, February/March 1988.

[65] N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for automatic
formula manipulation with application to the Church-Rosser theorem. Indag. Math., 34(5):381~
392, 1972.

[6] Conal Elliott. Extensions and Applications of Higher-order Unification. PhD thesis, Carnegie
Mellon University, May 1990. Available as Technical Report CMU-CS-90-134, Carnegie Mel-
lon University, Pittsburgh.

[7] Conal Elliott. Higher-order unification with dependent types. In Rewriting Techniques and
Applications, pages 121-136. Springer-Verlag LNCS 355, April 1989.

'3Please send mail to the second author at fp@cs.cmu.edu for more information.

32

[8] Conal Elliott and Frank Pfenning. eLP: A Common Lisp implementation of AProlog in the
Ergo Support System. Available via ftp over the Internet, October 1989. Send mail to elp-
request@cs.cmu.edu on the Internet for further information.

[9] Matthias Felleisen. Transliterating Prolog into Scheme. Technical Report 182, Indiana Uni-
versity, Bloomington, Indiana, October 1985.

[10] Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic Program-
ming Language. PhD thesis, Department of Computer and Information Science, University of
Pennsylvania, July 1989.

[11] D. M. Gabbay. N-prolog: an extension of Prolog with hypothetical implications II. Journal of
Logic Programming, 2(4):251-283, 1985.

[12] D. M. Gabbay and U. Reyle. N-prolog: an extension of Prolog with hypothetical implications
1. Journal of Logic Programming, 1(4):319-355, 1985.

[13] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF. Springer-
Verlag LNCS 78, 1979.

[14] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Submitted.
A preliminary version appeared in Symposium on Logic in Computer Science, pages 194-204,
June 1987, January 1989.

[15] Robert Harper, Robin Milner, Kevin Mitchell, Nick Rothwell, and Don Sannella. Functional
programming in Standard ML. Notes to a five day course given at the University of Edinburgh,
April 1988.

[16] Robert Harper and Robert Pollack. Type checking, universe polymorphism, and typical am-
biguity in the Calculus of Constructions. In TAPSOFT 89, Proceedings of the International
Joint Conference on Theory and Practice in Software Development, Barcelona, Spain, pages
241-256. Springer-Verlag LNCS 352, March 1989.

[17] Christopher T. Haynes. Logic continuations. Journal of Logic Programming, 4(2):157-176,
June 1987.

[18] Gérard Huet. A unification algorithm for typed A-calculus. Theoretical Computer Science,
1:27-57, 1975.

[19] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Programming Languages, Munich, pages
111-119. ACM, January 1987.

[20] Peter Lee, Frank Pfenning, Gene Rollins, and William Scherlis. The Ergo Support System: An
integrated set of tools for prototyping integrated environments. In Peter Henderson, editor,
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pages 25-34. ACM Press, November 1988. Also available
as Ergo Report 88-054, School of Computer Science, Carnegie Mellon University, Pittsburgh.

33

[21] Dale Miller. A logical analysis of modules in logic programming. Journal of Logic Programming,
6(1-2):57-77, January 1989.

[22] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
foundation for logic programming. Journal of Pure and Applied Logic, 1988. To appear.
Available as Ergo Report 88-055, School of Computer Science, Carnegie Mellon University,
Pittsburgh.

[23] Dale A. Miller. Unification under mixed prefixes. Unpublished manuscript, 1987.

[24] Gopalan Nadathur and Bharat Jayaraman. Towards a WAM model for lambda Prolog. In
Proceedings of the 1989 North American Conference on Logic Programming, pages 1180-1198.
MIT Press, October 1989.

[25] Gopalan Nadathur and Dale Miller. An overview of AProlog. In Robert A. Kowalski and
Kenneth A. Bowen, editors, Logic Programming: Proceedings of the Fifth International Con-

ference and Symposium, Volume 1, pages 810-827, Cambridge, Massachusetts, August 1988.
MIT Press.

[26] Gopalan Nadathur and Debra Sue Wilson. A representation of lambda terms suitable for
operations on their intensions. In Proceedings of the 1990 Conference on Lisp and Functional
Programming. ACM Press, June 1990. To appear.

[27] Lawrence Paulson. A higher-order implementation of rewriting. Science of Computer Pro-
graming, 3:119-149, 1983.

34

