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Roy intertwined with my scienti�c life on many
occasions, most notably:

he admitted me for M.Phil. in St Andrews and
made me like theory

sent me to Cambridge for Ph.D.

made me appreciate precision in proofs
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Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof in
ACM Transactions on
Computational Logic, 2005,
∼31pp

Andrew Appel
(Princeton)

relied on their proof in a
security critical application

(I also found an error in my Ph.D.-thesis about cut-elimination
examined by Henk Barendregt and Andy Pitts.)
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Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2
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A1 A2 ⇒ A1 A2

A solution: use nats ⇒ state nodes
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Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

Kozen's �paper� proof of Myhill-Nerode:
requires absence of inaccessible states

is_regular(A)
def

= ∃M. is_dfa(M) ∧ L(M) = A
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. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata
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The Myhill-Nerode Theorem

provides necessary and suf�cient conditions
for a language being regular
(pumping lemma only necessary)

key is the equivalence relation:

x ≈A y
def

= ∀z. x@z ∈ A⇔ y@z ∈ A
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The Myhill-Nerode Theorem

�nite (UNIV// ≈A) ⇔ A is regular
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UNIV

set of all
strings [[x]]≈A

an equivalence class

Two directions:

1.) �nite⇒ regular
�nite (UNIV// ≈A)⇒ ∃r. A = L(r)

2.) regular⇒ �nite
�nite (UNIV// ≈L(r))



Initial and Final States

�nalsA
def

= {[|x|]≈A
| x ∈ A}

we can prove: A =
⋃

�nalsA
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�nalsA
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Equivalence Classes

[] ∈ X

a �nal



Transitions between Eq-Classes

X
Y

c

X
c−→ Y

def

= X; c ⊆ Y

R1start
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Systems of Equations
Inspired by a method of Brzozowski '64:

X1start X2

a

b a

b

X1 =X1; b +X2; b

+ λ; []

X2 =X1; a +X2; a
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X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?
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The Other Direction
One has to prove

�nite(UNIV// ≈L(r))

by induction on r. Not trivial, but after a bit of
thinking, one can �nd a re�ned relation:

a1a2

a3 a4

a1.1

a1.2a2.1

a2.2

a3.1

a3.2 a4.1

a4.2

UNIV UNIV// ≈L(r) UNIV//R
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Derivatives of RExps
introduced by Brozowski '64
a regular expressions after a character has been
parsed

der c ∅ def

= ∅
der c []

def

= ∅
der c d

def

= if c = d then [] else ∅
der c (r1 + r2)

def

= (der c r1) + (der c r2)

der c (r?)
def

= (der c r) · r?

der c (r1 · r2)
def

= if nullable r1
then (der c r1) · r2 + (der c r2)
else (der c r1) · r2
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Derivatives of RExps
introduced by Brozowski '64
a regular expressions after a character has been
parsed

pder c ∅ def

= {}
pder c []

def

= {}
pder c d

def

= if c = d then {[]} else {}
pder c (r1 + r2)

def

= (pder c r1) ∪ (der c r2)

pder c (r?)
def

= (pder c r) · r?

pder c (r1 · r2)
def

= if nullable r1
then (pder c r1) · r2 ∪ (pder c r2)
else (pder c r1) · r2
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by Antimirov '95



Partial Derivatives

pders x r = pders y r re�nes x≈L(r) y

�nite(UNIV//R)

Therefore �nite(UNIV// ≈L(r)). Qed.
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What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language; build the language of
substrings
then this language is regular (anbn⇒ a?b?)
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(for example in�nitely large), such that

∀x, y ∈ B. x 6= y ⇒ x 6≈A y.

then A is not regular. (B
def
=

⋃
n a

n)
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Conclusion

We have never seen a proof of Myhill-Nerode
based on regular expressions.

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)
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Thank you!

Questions?
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