
Formalising
Regular Language Theory
with Regular Expressions,

Only

Christian Urban
King's College London

joint work with Chunhan Wu and Xingyuan Zhang from the
PLA University of Science and Technology in Nanjing

St Andrews, 19 November 2011 � p. 1/18

Formalising
Regular Language Theory
with Regular Expressions,

Only

Christian Urban
King's College London

joint work with Chunhan Wu and Xingyuan Zhang from the
PLA University of Science and Technology in Nanjing

St Andrews, 19 November 2011 � p. 1/18

Roy intertwined with my scienti�c life on many
occasions, most notably:

he admitted me for M.Phil. in St Andrews and
made me like theory

sent me to Cambridge for Ph.D.

made me appreciate precision in proofs

St Andrews, 19 November 2011 � p. 2/18

Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof in
ACM Transactions on
Computational Logic, 2005,
∼31pp

Andrew Appel
(Princeton)

relied on their proof in a
security critical application

(I also found an error in my Ph.D.-thesis about cut-elimination
examined by Henk Barendregt and Andy Pitts.)

St Andrews, 19 November 2011 � p. 3/18

Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof in
ACM Transactions on
Computational Logic, 2005,
∼31pp

Andrew Appel
(Princeton)

relied on their proof in a
security critical application

(I also found an error in my Ph.D.-thesis about cut-elimination
examined by Henk Barendregt and Andy Pitts.)

St Andrews, 19 November 2011 � p. 3/18

Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof in
ACM Transactions on
Computational Logic, 2005,
∼31pp

Andrew Appel
(Princeton)

relied on their proof in a
security critical application

(I also found an error in my Ph.D.-thesis about cut-elimination
examined by Henk Barendregt and Andy Pitts.)

St Andrews, 19 November 2011 � p. 3/18

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

St Andrews, 19 November 2011 � p. 4/18

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2

⇒ A1 A2

St Andrews, 19 November 2011 � p. 4/18

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

St Andrews, 19 November 2011 � p. 4/18

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

disjoint union:

A1]A2
def

= {(1, x) |x ∈ A1} ∪ {(2, y) | y ∈ A2}

St Andrews, 19 November 2011 � p. 4/18

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

disjoint union:

A1]A2
def

= {(1, x) |x ∈ A1} ∪ {(2, y) | y ∈ A2}

St Andrews, 19 November 2011 � p. 4/18

Problems with de�nition for regularity:

is_regular(A)
def

= ∃M. is_dfa(M) ∧ L(M) = A

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

A solution: use nats ⇒ state nodes

St Andrews, 19 November 2011 � p. 4/18

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

A solution: use nats ⇒ state nodes

You have to rename states!

St Andrews, 19 November 2011 � p. 4/18

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

Kozen's �paper� proof of Myhill-Nerode:
requires absence of inaccessible states

is_regular(A)
def

= ∃M. is_dfa(M) ∧ L(M) = A

St Andrews, 19 November 2011 � p. 5/18

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

St Andrews, 19 November 2011 � p. 6/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

St Andrews, 19 November 2011 � p. 6/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

St Andrews, 19 November 2011 � p. 6/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

St Andrews, 19 November 2011 � p. 6/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

St Andrews, 19 November 2011 � p. 6/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

regular expression matching

most textbooks are about automata

St Andrews, 19 November 2011 � p. 6/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

regular expression matching (⇒Brozowski'64, Owens et al '09)

most textbooks are about automata

St Andrews, 19 November 2011 � p. 6/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

regular expression matching (⇒Brozowski'64, Owens et al '09)

most textbooks are about automata

St Andrews, 19 November 2011 � p. 6/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

The Myhill-Nerode Theorem

provides necessary and suf�cient conditions
for a language being regular
(pumping lemma only necessary)

key is the equivalence relation:

x ≈A y
def

= ∀z. x@z ∈ A⇔ y@z ∈ A

St Andrews, 19 November 2011 � p. 7/18

The Myhill-Nerode Theorem

�nite (UNIV// ≈A) ⇔ A is regular

St Andrews, 19 November 2011 � p. 8/18

UNIV

set of all
strings

The Myhill-Nerode Theorem

�nite (UNIV// ≈A) ⇔ A is regular

St Andrews, 19 November 2011 � p. 8/18

UNIV

set of all
strings [[x]]≈A

an equivalence class

The Myhill-Nerode Theorem

�nite (UNIV// ≈A) ⇔ A is regular

St Andrews, 19 November 2011 � p. 8/18

UNIV

set of all
strings [[x]]≈A

an equivalence class

Two directions:

1.) �nite⇒ regular
�nite (UNIV// ≈A)⇒ ∃r. A = L(r)

2.) regular⇒ �nite
�nite (UNIV// ≈L(r))

Initial and Final States

�nalsA
def

= {[|x|]≈A
| x ∈ A}

we can prove: A =
⋃

�nalsA

St Andrews, 19 November 2011 � p. 9/18

Equivalence Classes

Initial and Final States

�nalsA
def

= {[|x|]≈A
| x ∈ A}

we can prove: A =
⋃

�nalsA

St Andrews, 19 November 2011 � p. 9/18

Equivalence Classes

[] ∈ X

Initial and Final States

�nalsA
def

= {[|x|]≈A
| x ∈ A}

we can prove: A =
⋃

�nalsA

St Andrews, 19 November 2011 � p. 9/18

Equivalence Classes

[] ∈ X

a �nal

Transitions between Eq-Classes

X
Y

c

X
c−→ Y

def

= X; c ⊆ Y

R1start

St Andrews, 19 November 2011 � p. 10/18

Systems of Equations
Inspired by a method of Brzozowski '64:

X1start X2

a

b a

b

X1 =X1; b +X2; b

+ λ; []

X2 =X1; a +X2; a

St Andrews, 19 November 2011 � p. 11/18

Systems of Equations
Inspired by a method of Brzozowski '64:

X1start X2

a

b a

b

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

St Andrews, 19 November 2011 � p. 11/18

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

St Andrews, 19 November 2011 � p. 12/18

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

St Andrews, 19 November 2011 � p. 12/18

a

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

St Andrews, 19 November 2011 � p. 12/18

a

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

St Andrews, 19 November 2011 � p. 12/18

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

St Andrews, 19 November 2011 � p. 12/18

a

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

St Andrews, 19 November 2011 � p. 12/18

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

St Andrews, 19 November 2011 � p. 12/18

X1start X2

a

b a

b

The Other Direction
One has to prove

�nite(UNIV// ≈L(r))

by induction on r. Not trivial, but after a bit of
thinking, one can �nd a re�ned relation:

a1a2

a3 a4

a1.1

a1.2a2.1

a2.2

a3.1

a3.2 a4.1

a4.2

UNIV UNIV// ≈L(r) UNIV//R

St Andrews, 19 November 2011 � p. 13/18

a

Derivatives of RExps
introduced by Brozowski '64
a regular expressions after a character has been
parsed

der c ∅ def

= ∅
der c []

def

= ∅
der c d

def

= if c = d then [] else ∅
der c (r1 + r2)

def

= (der c r1) + (der c r2)

der c (r?)
def

= (der c r) · r?

der c (r1 · r2)
def

= if nullable r1
then (der c r1) · r2 + (der c r2)
else (der c r1) · r2

St Andrews, 19 November 2011 � p. 14/18

Derivatives of RExps
introduced by Brozowski '64
a regular expressions after a character has been
parsed

pder c ∅ def

= {}
pder c []

def

= {}
pder c d

def

= if c = d then {[]} else {}
pder c (r1 + r2)

def

= (pder c r1) ∪ (der c r2)

pder c (r?)
def

= (pder c r) · r?

pder c (r1 · r2)
def

= if nullable r1
then (pder c r1) · r2 ∪ (pder c r2)
else (pder c r1) · r2

St Andrews, 19 November 2011 � p. 14/18

partial derivatives

by Antimirov '95

Partial Derivatives

pders x r = pders y r re�nes x≈L(r) y

�nite(UNIV//R)

Therefore �nite(UNIV// ≈L(r)). Qed.

St Andrews, 19 November 2011 � p. 15/18

Partial Derivatives

pders x r = pders y r︸ ︷︷ ︸
R

re�nes x≈L(r) y

�nite(UNIV//R)

Therefore �nite(UNIV// ≈L(r)). Qed.

St Andrews, 19 November 2011 � p. 15/18

a Antimirov '95

Partial Derivatives

pders x r = pders y r︸ ︷︷ ︸
R

re�nes x≈L(r) y

�nite(UNIV//R)

Therefore �nite(UNIV// ≈L(r)). Qed.

St Andrews, 19 November 2011 � p. 15/18

a Antimirov '95

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language; build the language of
substrings
then this language is regular (anbn⇒ a?b?)

St Andrews, 19 November 2011 � p. 16/18

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language; build the language of
substrings
then this language is regular (anbn⇒ a?b?)

St Andrews, 19 November 2011 � p. 16/18

x ≈A y
def
= ∀z. x@z ∈ A⇔ y@z ∈ A

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language; build the language of
substrings
then this language is regular (anbn⇒ a?b?)

St Andrews, 19 November 2011 � p. 16/18

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language; build the language of
substrings
then this language is regular (anbn⇒ a?b?)

St Andrews, 19 November 2011 � p. 16/18

If there exists a suf�ciently large setB
(for example in�nitely large), such that

∀x, y ∈ B. x 6= y ⇒ x 6≈A y.

then A is not regular. (B
def
=

⋃
n a

n)

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language; build the language of
substrings

then this language is regular (anbn⇒ a?b?)

St Andrews, 19 November 2011 � p. 16/18

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language; build the language of
substrings
then this language is regular (anbn⇒ a?b?)

St Andrews, 19 November 2011 � p. 16/18

Conclusion

We have never seen a proof of Myhill-Nerode
based on regular expressions.

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

St Andrews, 19 November 2011 � p. 17/18

Conclusion

We have never seen a proof of Myhill-Nerode
based on regular expressions.

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

St Andrews, 19 November 2011 � p. 17/18

Conclusion

We have never seen a proof of Myhill-Nerode
based on regular expressions.

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

St Andrews, 19 November 2011 � p. 17/18

Thank you!

Questions?

St Andrews, 19 November 2011 � p. 18/18

