
Certified Parsing

Background

Parsing is the act of transforming plain text into
some structure that can be analyzed by comput-
ers for further processing. One might think that
parsing has been studied to death, and after yacc
and lex no new results can be obtained in this
area. However recent developments and novel ap-
proaches make it increasingly clear, that this is not
true anymore.

We propose to on parsers from a certification
point of view. Increasingly, parsers are part of cer-
tified compilers, like CompCert, which are guar-
anteed to be correct and bug-free. Such certified
compilers are crucial in areas where software just
cannot fail. However, so far the parsers of these
compilers have been left out of the certification.
This is because parsing algorithms are often ad hoc
and their semantics is not clearly specified. Un-
fortunately, this means parsers can harbour errors
that potentially invalidate the whole certification
and correctness of the compiler. In this project,
we like to change that with the help of theorem
provers.

Only in the last few years, theorem provers
have become good enough for establishing the cor-
rectness of some standard lexing and parsing algo-
rithms. For this, the algorithms still need to be for-
mulated in way so that it is easy to reason about
them. In our earlier work about lexing and regu-
lar languages, we showed that this precludes well-
known algorithms based automata. However we
showed also that regular languages can be formu-
lated and reasoned about entirely in terms regu-
lar expressions, which can be easily represented
in theorem provers. This work uses the device of
derivatives of regular expressions. We like to ex-
tend this device to parsers and grammars. The
aim is to come up with elegant and practical useful
parsing algorithms whose correctness can be certi-
fied in a theorem prover.

Proposed Work

A recent development in parsing is Parsing Ex-
pression Grammars (PEG), which are an exten-
sion of the weel-known Context Free Grammars
(CFG) [6]. The extension introduces new regu-
lar operators, such as negation and conjunction,
on the right-hand sides of grammar rules, as well
as priority orderings. With these extensions, PEG

parsing becomes much more powerful. For ex-
ample disambiguation, formerly expressed by se-
mantic filters, can now be expressed directly using
grammar rules.

However, there is serious disadvantage of PEG
for applications: is does not support grammrs in-
volving left recursion [5]. Although a new PEG
parsing algorithm has been proposed that can deal
with left recursion [11], there is no correctness
proof, not even in “paper-and-pencil” form. One
aim of this research is to solve this sorry state-of-
affairs by either certifying this algorithm or invent-
ing a new one. For this we will first formalize a
fixed point semantics of PEG, based on which an
efficient, certified parsing algorithm can be given
given. For this we take as starting point the pa-
per [6], which does not treat left-recursion, but
gives an operational semantics for PEG parsing.
For the semantics, it seems plausible that we can
adapt work on Boolean Grammars [9], which are
similar to PEGs, and for which the paper [7]
gives a semantics to negation operators, but not
to Kleene’s star operation.

For the parsing algorithm, we might also be
able to draw inspiration from parsers based on
Cocke-Younger-Kasami (CYK) algorithms [7] and
Early [4, 2] parsers. The defect CYK algorithms
is that the original grammar specification needs to
be transformed into a normal form. This trans-
formation may lead to grammar explosion and in-
efficient parsing. We will investigate whether this
transformation can be avoided. Early style parsers,
which have recently been certified by Ridge [???],
need to be extended to PEG parsing in order to be
helpful for us.

Finally, we want to investigate whether deriva-
tives of regular expressions [3, 1, 10, 8] can
be extended to parsing. Lexing based on deriva-
tives gives rise to very elegant regular expression
matchers that can be certified in a theorem prover
with ease. We will study whether the idea of tak-
ing a derivative of a regular expression can be ex-
tended to rules in grammars. The problem that
needs to be overcome again arises from possible
left recursion in parsing.



References
[1] J. B. Almeida, N. Moriera, D. Pereira, and S. M.

de Sousa. Partial Derivative Automata Formalized
in Coq. In Proc. of the 15th International Con-
ference on Implementation and Application of Au-
tomata, volume 6482 of LNCS, pages 59–68, 2010.

[2] Aycock and Horspool. Practical Earley Parsing.
COMPJ: The Computer Journal, 45, 2002.

[3] J. A. Brzozowski. Derivatives of Regular Expres-
sions. Journal of the ACM, 11:481–494, 1964.

[4] J. Earley. An Efficient Context-Free Parsing Algo-
rithm. Communications of the ACM (CACM), 13(2),
Feb. 1970.

[5] B. Ford. Packrat Parsing: a Practical Linear-Time
Algorithm with Backtracking. In ICFP ’02: Pro-
ceedings of the seventh ACM SIGPLAN international
conference on Functional programming, 2002.

[6] B. Ford. Parsing Expression Grammars: A
Recognition-based Syntactic Foundation. In POPL
’04: Proceedings of the 31st ACM SIGPLAN-SIGACT
symposium on Principles of programming lan-

guages, pages 111–122, New York, NY, USA, 2004.
ACM.

[7] V. Kountouriotis, C. Nomikos, and P. Rondogian-
nis. Well-founded Semantics for boolean Gram-
mars. Inf. Comput, 207(9):945–967, 2009.

[8] M. Might and D. Darais. Yacc is Dead. CoRR,
abs/1010.5023, 2010. informal publication.

[9] A. Okhotin. Boolean Grammars. Inf. Comput.,
194(1):19–48, 2004.

[10] S. Owens, J. Reppy, and A. Turon. Regular-
Expression Derivatives Re-Examined. Journal of
Functional Programming, 19(2):173–190, 2009.

[11] A. Warth, J. R. Douglass, and T. D. Millstein. Pack-
rat Parsers Can Support Left Recursion. In R. Glück
and O. de Moor, editors, PEPM, pages 103–110.
ACM, 2008.

[12] C. Wu, X. Zhang, and C. Urban. A Formalisation of
the Myhill-Nerode Theorem based on Regular Ex-
pressions (Proof Pearl). In Proc. of the 2nd Interna-
tional Conference on Interactive Theorem Proving,
volume 6898 of LNCS, pages 341–356, 2011.

2


