
CIS511
Introduction to the Theory of Computation

Formal Languages and Automata
Models of Computation

Jean Gallier

February 25, 2009

2

Chapter 1

Basics of Formal Language Theory

1.1 Generalities, Motivations, Problems

In this part of the course we want to understand

• What is a language?

• How do we define a language?

• How do we manipulate languages, combine them?

• What is the complexity of a language?

Roughly, there are two dual views of languages:

(A) The recognition point view.

(B) The generation point of view.

3

4 CHAPTER 1. BASICS OF FORMAL LANGUAGE THEORY

No matter how we view a language, we are typically con-
sidering two things:

(1) The syntax , i.e., what are the “legal” strings in that
language (what are the “grammar rules”?).

(2) The semantics of strings in the language, i.e., what
is the meaning (or interpretation) of a string.

The semantics is usually a lot more interesting than the
syntax but unfortunately much more difficult to deal with!

Therefore, sorry, we will only be dealing with syntax!

In (A), we typically assume some kind of “black box”,
M , (an automaton) that takes a string, w, as input and
returns two possible answers:

Yes, the string w is accepted , which means that w be-
longs to the language, L, that we are trying to define.

No, the string w is rejected , which means that w does
not belong to the language, L.

1.1. GENERALITIES, MOTIVATIONS, PROBLEMS 5

Usually, the black box M gives a definite answer for every
input after a finite number of steps, but not always.

For example, a Turing machine may go on computing
forever and not give any answer for certain strings not in
the language. This is an example of undecidability .

The black box may compute deterministically or non-
deterministically , which means roughly that on input w,
the machine M is allowed to try different computations
and to ignore failing computations as long as there is some
successful computation on input w.

This affects greatly the complexity of recognition, i.e,.
how many steps it takes to process w.

6 CHAPTER 1. BASICS OF FORMAL LANGUAGE THEORY

Sometimes, a nondeterministic version of an automaton
turns out to be equivalent to the deterministic version
(although, with different complexity).

This tends to happen for very restrictive models—where
nondeterminism does not help, or for very powerful
models—where again, nondeterminism does not help, but
because the deterministic model is already very powerful!

We will investigate automata of increasing power of recog-
nition:

(1) Deterministic and nondeterministic finite automata
(DFA’s and NFA’s, their power is the same).

(2) Pushdown automata (PDA’s) and determinstic push-
down automata (DPDA’s), here PDA > DPDA.

(3) Deterministic and nondeterministic Turing machines
(their power is the same).

(4) If time permits, we will also consider some restricted
type of Turing machine known as LBA (linear bounded
automaton).

1.1. GENERALITIES, MOTIVATIONS, PROBLEMS 7

In (B), we are interested in formalisms that specify a
language in terms of rules that allow the generation of
“legal” strings. The most common formalism is that of a
formal grammar .

Remember:

• An automaton recognizes (or accepts) a language,

• a grammar generates a language.

• grammar is spelled with an “a” (not with an “e”).

• The plural of automaton is automata
(not automatons).

For “good” classes of grammars, it is possible to build an
automaton, MG, from the grammar, G, in the class, so
that MG recognizes the language, L(G), generated by the
grammar G.

8 CHAPTER 1. BASICS OF FORMAL LANGUAGE THEORY

However, grammars are nondeterministic in nature. Thus,
even if we try to avoid nondeterministic automata, we
usually can’t escape having to deal with them.

We will investigate the following types of grammars (the
so-called Chomsky hierarchy) and the corresponding fam-
ilies of languages:

(1) Regular grammars (type 3-languages).

(2) Context-free grammars (type 2-languages).

(3) The recursively enumerable languages or r.e. sets
(type 0-languages).

(4) If time permit, context-sensitive languages
(type 1-languages).

Miracle: The grammars of type (1), (2), (3), (4) corre-
spond exactly to the automata of the corresponding type!

1.1. GENERALITIES, MOTIVATIONS, PROBLEMS 9

Furthermore, there are algorithms for converting gram-
mars to the corresponding automata (and backward), al-
though some of these algorithms are not practical.

Building an automaton from a grammar is an important
practical problem in language processing. A lot is known
for the regular and the context-free grammars, but there
is still room for improvements and innovations!

There are other ways of defining families of languages, for
example

Inductive closures .

In this style of definition, a collection of basic (atomic)
languages is specified, some operations to combine lan-
guages are also specified, and the family of languages is
defined as the smallest one containing the given atomic
languages and closed under the operations.

10 CHAPTER 1. BASICS OF FORMAL LANGUAGE THEORY

Investigating closure properties (for example, union, in-
tersection) is a way to assess how “robust” (or complex)
a family of languages is.

Well, it is now time to be precise!

1.2 Alphabets, Strings, Languages

Our view of languages is that a language is a set of strings.
In turn, a string is a finite sequence of letters from some
alphabet. These concepts are defined rigorously as fol-
lows.

Definition 1.2.1 An alphabet Σ is any finite set.

We often write Σ = {a1, . . . , ak}. The ai are called the
symbols of the alphabet.

1.2. ALPHABETS, STRINGS, LANGUAGES 11

Examples :

Σ = {a}
Σ = {a, b, c}
Σ = {0, 1}

A string is a finite sequence of symbols. Technically, it is
convenient to define strings as functions. For any integer
n ≥ 1, let

[n] = {1, 2, . . . , n},
and for n = 0, let

[0] = ∅.
Definition 1.2.2 Given an alphabet Σ, a string over
Σ (or simply a string) of length n is any function

u: [n] → Σ.

The integer n is the length of the string u, and it is
denoted as |u|. When n = 0, the special string u: [0] → Σ
of length 0 is called the empty string, or null string , and
is denoted as ε.

12 CHAPTER 1. BASICS OF FORMAL LANGUAGE THEORY

Given a string u: [n] → Σ of length n ≥ 1, u(i) is the
i-th letter in the string u. For simplicity of notation, we
denote the string u as

u = u1u2 . . . un,

with each ui ∈ Σ.

For example, if Σ = {a, b} and u: [3] → Σ is defined such
that u(1) = a, u(2) = b, and u(3) = a, we write

u = aba.

Strings of length 1 are functions u: [1] → Σ simply picking
some element u(1) = ai in Σ. Thus, we will identify every
symbol ai ∈ Σ with the corresponding string of length 1.

The set of all strings over an alphabet Σ, including the
empty string, is denoted as Σ∗.

1.2. ALPHABETS, STRINGS, LANGUAGES 13

Observe that when Σ = ∅, then

∅∗ = {ε}.
When Σ �= ∅, the set Σ∗ is countably infinite. Later on,
we will see ways of ordering and enumerating strings.

Strings can be juxtaposed, or concatenated.

Definition 1.2.3 Given an alphabet Σ, given any two
strings u: [m] → Σ and v: [n] → Σ, the concatenation
u · v (also written uv) of u and v is the string
uv: [m + n] → Σ, defined such that

uv(i) =

{
u(i) if 1 ≤ i ≤ m,
v(i − m) if m + 1 ≤ i ≤ m + n.

In particular, uε = εu = u.

It is immediately verified that

u(vw) = (uv)w.

Thus, concatenation is a binary operation on Σ∗ which is
associative and has ε as an identity.

14 CHAPTER 1. BASICS OF FORMAL LANGUAGE THEORY

Note that generally, uv �= vu, for example for u = a and
v = b.

Given a string u ∈ Σ∗ and n ≥ 0, we define un as follows:

un =

{
ε if n = 0,
un−1u if n ≥ 1.

Clearly, u1 = u, and it is an easy exercise to show that

unu = uun,

for all n ≥ 0.

1.2. ALPHABETS, STRINGS, LANGUAGES 15

Definition 1.2.4 Given an alphabet Σ, given any two
strings u, v ∈ Σ∗ we define the following notions as fol-
lows:

u is a prefix of v iff there is some y ∈ Σ∗ such that

v = uy.

u is a suffix of v iff there is some x ∈ Σ∗ such that

v = xu.

u is a substring of v iff there are some x, y ∈ Σ∗ such
that

v = xuy.

We say that u is a proper prefix (suffix, substring) of
v iff u is a prefix (suffix, substring) of v and u �= v.

16 CHAPTER 1. BASICS OF FORMAL LANGUAGE THEORY

Recall that a partial ordering ≤ on a set S is a binary
relation ≤ ⊆ S × S which is reflexive, transitive, and
antisymmetric.

The concepts of prefix, suffix, and substring, define binary
relations on Σ∗ in the obvious way. It can be shown that
these relations are partial orderings.

Another important ordering on strings is the lexicographic
(or dictionary) ordering.

1.2. ALPHABETS, STRINGS, LANGUAGES 17

Definition 1.2.5 Given an alphabet Σ = {a1, . . . , ak}
assumed totally ordered such that a1 < a2 < · · · < ak,
given any two strings u, v ∈ Σ∗, we define the lexico-
graphic ordering 	 as follows:

u 	 v

if v = uy, for some y ∈ Σ∗, or
if u = xaiy, v = xajz,
and ai < aj, for some x, y, z ∈ Σ∗.

It is fairly tedious to prove that the lexicographic ordering
is in fact a partial ordering. In fact, it is a total ordering ,
which means that for any two strings u, v ∈ Σ∗, either
u 	 v, or v 	 u.

The reversal wR of a string w is defined inductively as
follows:

εR = ε,

(ua)R = auR,

where a ∈ Σ and u ∈ Σ∗.

18 CHAPTER 1. BASICS OF FORMAL LANGUAGE THEORY

It can be shown that

(uv)R = vRuR.

Thus,
(u1 . . . un)

R = uR
n . . . uR

1 ,

and when ui ∈ Σ, we have

(u1 . . . un)
R = un . . . u1.

We can now define languages.

Definition 1.2.6 Given an alphabet Σ, a language over
Σ (or simply a language) is any subset L of Σ∗.

If Σ �= ∅, there are uncountably many languages. We
will try to single out countable “tractable” families of
languages. We will begin with the family of regular lan-
guages , and then proceed to the context-free languages .

We now turn to operations on languages.

1.3. OPERATIONS ON LANGUAGES 19

1.3 Operations on Languages

A way of building more complex languages from simpler
ones is to combine them using various operations. First,
we review the set-theoretic operations of union, intersec-
tion, and complementation.

Given some alphabet Σ, for any two languages L1, L2 over
Σ, the union L1 ∪ L2 of L1 and L2 is the language

L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 or w ∈ L2}.

The intersection L1 ∩ L2 of L1 and L2 is the language

L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 and w ∈ L2}.

The difference L1 − L2 of L1 and L2 is the language

L1 − L2 = {w ∈ Σ∗ | w ∈ L1 and w /∈ L2}.
The difference is also called the relative complement .

20 CHAPTER 1. BASICS OF FORMAL LANGUAGE THEORY

A special case of the difference is obtained when L1 = Σ∗,
in which case we define the complement L of a language
L as

L = {w ∈ Σ∗ | w /∈ L}.

The above operations do not use the structure of strings.
The following operations use concatenation.

Definition 1.3.1 Given an alphabet Σ, for any two lan-
guages L1, L2 over Σ, the concatenation L1L2 of L1 and
L2 is the language

L1L2 = {w ∈ Σ∗ | ∃u ∈ L1, ∃v ∈ L2, w = uv}.
For any language L, we define Ln as follows:

L0 = {ε},
Ln+1 = LnL.

1.3. OPERATIONS ON LANGUAGES 21

The following properties are easily verified:

L∅ = ∅,
∅L = ∅,

L{ε} = L,

{ε}L = L,

(L1 ∪ {ε})L2 = L1L2 ∪ L2,

L1(L2 ∪ {ε}) = L1L2 ∪ L1,

LnL = LLn.

In general, L1L2 �= L2L1.

So far, the operations that we have introduced, except
complementation (since L = Σ∗−L is infinite if L is finite
and Σ is nonempty), preserve the finiteness of languages.
This is not the case for the next two operations.

22 CHAPTER 1. BASICS OF FORMAL LANGUAGE THEORY

Definition 1.3.2 Given an alphabet Σ, for any lan-
guage L over Σ, the Kleene ∗-closure L∗ of L is the
language

L∗ =
⋃
n≥0

Ln.

The Kleene +-closure L+ of L is the language

L+ =
⋃
n≥1

Ln.

Thus, L∗ is the infinite union

L∗ = L0 ∪ L1 ∪ L2 ∪ . . . ∪ Ln ∪ . . . ,

and L+ is the infinite union

L+ = L1 ∪ L2 ∪ . . . ∪ Ln ∪

Since L1 = L, both L∗ and L+ contain L.

1.3. OPERATIONS ON LANGUAGES 23

In fact,

L+ = {w ∈ Σ∗, ∃n ≥ 1,

∃u1 ∈ L · · · ∃un ∈ L, w = u1 · · ·un},
and since L0 = {ε},
L∗ = {ε} ∪ {w ∈ Σ∗, ∃n ≥ 1,

∃u1 ∈ L · · · ∃un ∈ L, w = u1 · · ·un}.

Thus, the language L∗ always contains ε, and we have

L∗ = L+ ∪ {ε}.

24 CHAPTER 1. BASICS OF FORMAL LANGUAGE THEORY

However, if ε /∈ L, then ε /∈ L+. The following is easily
shown:

∅∗ = {ε},
L+ = L∗L,

L∗∗ = L∗,
L∗L∗ = L∗.

The Kleene closures have many other interesting proper-
ties.

Homomorphisms are also very useful.

Given two alphabets Σ, ∆, a homomorphism
h: Σ∗ → ∆∗ between Σ∗ and ∆∗ is a function h: Σ∗ → ∆∗

such that

h(uv) = h(u)h(v)

for all u, v ∈ Σ∗.

1.3. OPERATIONS ON LANGUAGES 25

Letting u = v = ε, we get

h(ε) = h(ε)h(ε),

which implies that (why?)

h(ε) = ε.

If Σ = {a1, . . . , ak}, it is easily seen that h is completely
determined by h(a1), . . . , h(ak) (why?)

Example : Σ = {a, b, c}, ∆ = {0, 1}, and

h(a) = 01, h(b) = 011, h(c) = 0111.

For example

h(abbc) = 010110110111.

26 CHAPTER 1. BASICS OF FORMAL LANGUAGE THEORY

Given any language L1 ⊆ Σ∗, we define the image h(L1)
of L1 as

h(L1) = {h(u) ∈ ∆∗ | u ∈ L1}.

Given any language L2 ⊆ ∆∗, we define the
inverse image h−1(L2) of L2 as

h−1(L2) = {u ∈ Σ∗ | h(u) ∈ L2}.

We now turn to the first formalism for defining languages,
Deterministic Finite Automata (DFA’s)

Chapter 2

Regular Languages

2.1 Deterministic Finite Automata (DFA’s)

First we define what DFA’s are, and then we explain how
they are used to accept or reject strings. Roughly speak-
ing, a DFA is a finite transition graph whose edges are
labeled with letters from an alphabet Σ.

The graph also satisfies certain properties that make it
deterministic. Basically, this means that given any string
w, starting from any node, there is a unique path in the
graph “parsing” the string w.

27

28 CHAPTER 2. REGULAR LANGUAGES

Example 1. A DFA for the language

L1 = {ab}+ = {ab}∗{ab},
i.e.,

L1 = {ab, abab, ababab, . . . , (ab)n, . . .}.

Input alphabet: Σ = {a, b}.

State set Q1 = {0, 1, 2, 3}.

Start state: 0.

Set of accepting states: F1 = {2}.

Transition table (function) δ1:

a b
0 1 3
1 3 2
2 1 3
3 3 3

Note that state 3 is a trap state or dead state.

2.1. DETERMINISTIC FINITE AUTOMATA (DFA’S) 29

Example 2. A DFA for the language

L2 = {ab}∗ = L1 ∪ {ε}
i.e.,

L2 = {ε, ab, abab, ababab, . . . , (ab)n, . . .}.

Input alphabet: Σ = {a, b}.

State set Q2 = {0, 1, 2}.

Start state: 0.

Set of accepting states: F2 = {0}.

Transition table (function) δ2:

a b
0 1 2
1 2 0
2 2 2

State 2 is a trap state or dead state.

30 CHAPTER 2. REGULAR LANGUAGES

Example 3. A DFA for the language

L3 = {a, b}∗{abb}.

Note that L3 consists of all strings of a’s and b’s ending
in abb.

Input alphabet: Σ = {a, b}.

State set Q3 = {0, 1, 2, 3}.

Start state: 0.

Set of accepting states: F3 = {3}.

Transition table (function) δ3:

a b
0 1 0
1 1 2
2 1 3
3 1 0

Is this a minimal DFA?

2.1. DETERMINISTIC FINITE AUTOMATA (DFA’S) 31

0 1 2

3

a

b

b

a
a

b

a, b
Figure 2.1: DFA for {ab}+

0 1

2
b

a

b
a

a, b
Figure 2.2: DFA for {ab}∗

0 1 2 3
a b

a
b

b a
b

a

Figure 2.3: DFA for {a, b}∗{abb}

32 CHAPTER 2. REGULAR LANGUAGES

Definition 2.1.1 A deterministic finite automaton (or
DFA) is a quintuple D = (Q, Σ, δ, q0, F), where

• Σ is a finite input alphabet

• Q is a finite set of states ;

• F is a subset of Q of final (or accepting) states ;

• q0 ∈ Q is the start state (or initial state);

• δ is the transition function, a function

δ: Q × Σ → Q.

2.1. DETERMINISTIC FINITE AUTOMATA (DFA’S) 33

For any state p ∈ Q and any input a ∈ Σ, the state
q = δ(p, a) is uniquely determined. Thus, it is possible to
define the state reached from a given state p ∈ Q on input
w ∈ Σ∗, following the path specified by w. Technically,
this is done by defining the extended transition function
δ∗: Q × Σ∗ → Q.

Definition 2.1.2 Given a DFA D = (Q, Σ, δ, q0, F),
the extended transition function δ∗: Q × Σ∗ → Q is
defined as follows:

δ∗(p, ε) = p,

δ∗(p, ua) = δ(δ∗(p, u), a),

where a ∈ Σ and u ∈ Σ∗.

It is immediate that δ∗(p, a) = δ(p, a) for a ∈ Σ. The
meaning of δ∗(p, w) is that it is the state reached from
state p following the path from p specified by w.

34 CHAPTER 2. REGULAR LANGUAGES

It is also easy to show that

δ∗(p, uv) = δ∗(δ∗(p, u), v).

We can now define how a DFA accepts or rejects a string.

Definition 2.1.3 Given a DFA D = (Q, Σ, δ, q0, F),
the language L(D) accepted (or recognized) by D is
the language

L(D) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}.

Thus, a string w ∈ Σ∗ is accepted iff the path from q0 on
input w ends in a final state.

We now come to the first of several equivalent definitions
of the regular languages.

2.1. DETERMINISTIC FINITE AUTOMATA (DFA’S) 35

Regular Languages, Version 1

A language L is a regular language if it is accepted by
some DFA.

Note that a regular language may be accepted by many
different DFAs. Later on, we will investigate how to find
minimal DFA’s. (For a given regular language, L, a min-
imal DFA for L is a DFA with the smallest number of
states among all DFA’s accepting L. A minimal DFA
for L must exist since every nonempty subset of natural
numbers has a smallest element.)

In order to understand how complex the regular languages
are, we will investigate the closure properties of the reg-
ular languages under union, intersection, complementa-
tion, concatenation, and Kleene ∗.

It turns out that the family of regular languages is closed
under all these operations. For union, intersection, and
complementation, we can use the cross-product construc-
tion which preserves determinism.

36 CHAPTER 2. REGULAR LANGUAGES

However, for concatenation and Kleene ∗, there does not
appear to be any method involving DFA’s only. The way
to do it is to introduce nondeterministic finite automata
(NFA’s).

2.2 The “Cross-product” Construction

Let Σ = {a1, . . . , am} be an alphabet.

Given any two DFA’s D1 = (Q1, Σ, δ1, q0,1, F1) and
D2 = (Q2, Σ, δ2, q0,2, F2), there is a very useful construc-
tion for showing that the union, the intersection, or the
relative complement of regular languages, is a regular lan-
guage.

Given any two languages L1, L2 over Σ, recall that

L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 or w ∈ L2},
L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 and w ∈ L2},
L1 − L2 = {w ∈ Σ∗ | w ∈ L1 and w /∈ L2}.

2.2. THE “CROSS-PRODUCT” CONSTRUCTION 37

Let us first explain how to constuct a DFA accepting the
intersection L1 ∩L2. Let D1 and D2 be DFA’s such that
L1 = L(D1) and L2 = L(D2). The idea is to construct a
DFA simulating D1 and D2 in parallel. This can be done
by using states which are pairs (p1, p2) ∈ Q1×Q2. Thus,
we define the DFA D as follows:

D = (Q1 × Q2, Σ, δ, (q0,1, q0,2), F1 × F2),

where the transition function δ: (Q1×Q2)×Σ → Q1×Q2

is defined as follows:

δ((p1, p2), a) = (δ1(p1, a), δ2(p2, a)),

for all p1 ∈ Q1, p2 ∈ Q2, and a ∈ Σ.

Clearly, D is a DFA, since D1 and D2 are. Also, by the
definition of δ, we have

δ∗((p1, p2), w) = ((δ∗1(p1, w), δ∗2(p2, w)),

for all p1 ∈ Q1, p2 ∈ Q2, and w ∈ Σ∗.

38 CHAPTER 2. REGULAR LANGUAGES

Now, we have w ∈ L(D1) ∩ L(D2)

iff w ∈ L(D1) and w ∈ L(D2),

iff δ∗1(q0,1, w) ∈ F1 and δ∗2(q0,2, w) ∈ F2,

iff (δ∗1(q0,1, w), δ∗2(q0,2, w)) ∈ F1 × F2,

iff δ∗((q0,1, q0,2), w) ∈ F1 × F2,

iff w ∈ L(D).

Thus, L(D) = L(D1) ∩ L(D2).

We can now modify D very easily to accept
L(D1)∪L(D2). We change the set of final states so that
it becomes (F1 × Q2) ∪ (Q1 × F2).
Indeed, w ∈ L(D1) ∪ L(D2)

iff w ∈ L(D1) or w ∈ L(D2),

iff δ∗1(q0,1, w) ∈ F1 or δ∗2(q0,2, w) ∈ F2,

iff (δ∗1(q0,1, w), δ∗2(q0,2, w)) ∈ (F1 × Q2) ∪ (Q1 × F2),

iff δ∗((q0,1, q0,2), w) ∈ (F1 × Q2) ∪ (Q1 × F2),

iff w ∈ L(D).

Thus, L(D) = L(D1) ∪ L(D2).

2.2. THE “CROSS-PRODUCT” CONSTRUCTION 39

We can also modify D very easily to accept
L(D1)−L(D2). We change the set of final states so that
it becomes F1 × (Q2 −F2). Indeed, w ∈ L(D1)−L(D2)

iff w ∈ L(D1) and w /∈ L(D2),

iff δ∗1(q0,1, w) ∈ F1 and δ∗2(q0,2, w) /∈ F2,

iff (δ∗1(q0,1, w), δ∗2(q0,2, w)) ∈ F1 × (Q2 − F2),

iff δ∗((q0,1, q0,2), w) ∈ F1 × (Q2 − F2),

iff w ∈ L(D).

Thus, L(D) = L(D1) − L(D2).

In all cases, if D1 has n1 states and D2 has n2 states, the
DFA D has n1n2 states.

40 CHAPTER 2. REGULAR LANGUAGES

2.3 Morphisms, F -Maps, B-Maps and Homomorphisms

of DFA’s

A map between DFA’s is a certain kind of graph ho-
momorphism. The following Definition is adapted from
Eilenberg.

Definition 2.3.1 Given any two DFA’s
D1 = (Q1, Σ, δ1, q0,1, F1) and D2 = (Q2, Σ, δ2, q0,2, F2),
a morphism h: D1 → D2 of DFA’s is a function
h: Q1 → Q2 satisfying the following conditions:

(1)

h(δ1(p, a)) = δ2(h(p), a),

for all p ∈ Q1 and all a ∈ Σ;

(2) h(q0,1) = q0,2.

An F -map of DFA’s , for short, a map, is a morphism
of DFA’s h: D1 → D2 that satisfies the condition

(3a) h(F1) ⊆ F2.

A B-map of DFA’s is a morphism of DFA’s
h: D1 → D2 that satisfies the condition

(3b) h−1(F2) ⊆ F1.

2.3. MORPHISMS, F -MAPS, B-MAPS AND HOMOMORPHISMS OF DFA’S 41

A proper homomorphism of DFA’s , for short, a homo-
morphism, is an F -map of DFA’s that is also a B-map
of DFA’s.

Now, for any function f : X → Y and any two subsets
A ⊆ X and B ⊆ Y ,

f (A) ⊆ B iff A ⊆ f−1(B).

Thus, (3a) & (3b) is equivalent to the condition

(3c) h−1(F2) = F1.

Note that the condition for being a proper homomor-
phism of DFA’s is not equivalent to

h(F1) = F2.

It forces h(F1) = F2 ∩ h(Q1), and furthermore, for every
p ∈ Q1, whenever h(p) ∈ F2, then p ∈ F1.

The reader should check that if f : D1 → D2 and
g: D2 → D3 are morphisms (resp. F -map, resp.
B-map), then g ◦ f : D1 → D3 is also a morphism (resp.
F -map, resp. B-map).

42 CHAPTER 2. REGULAR LANGUAGES

Remark: In previous versions of these notes, an F -map
was called simply a map and a B-map was called an F−1-
map. Over the years, the old terminology proved to be
confusing. We hope the new one is less confusing!

Note that an F -map or a B-map is a special case of the
concept of simulation of automata. A proper homomor-
phism is a special case of a bisimulation . Bisimulations
play an important role in real-time systems and in con-
currency theory.

The main motivation behind these definitions is that when
there is an F -map h: D1 → D2, somewhow, D2 simulates
D1, and it turns out that L(D1) ⊆ L(D2).

When there is a B-map h: D1 → D2, somewhow, D1

simulates D2, and it turns out that L(D2) ⊆ L(D1).

When there is a proper homomorphism h: D1 → D2,
somewhow, D1 bisimulates D2, and it turns out that
L(D2) = L(D1).

2.3. MORPHISMS, F -MAPS, B-MAPS AND HOMOMORPHISMS OF DFA’S 43

A DFA morphism (resp. F -map, resp. B-map),
f : D1 → D2, is an isomorphism iff there is a DFA mor-
phism (resp. F -map, resp. B-map), g: D2 → D1, so
that

g ◦ f = idD1 and f ◦ g = idD2.

The map g is unique and it is denoted f−1. The reader
should prove that if a DFA F -map is an isomorphism,
then it is also a proper homomorphism and if a DFA
B-map is an isomorphism, then it is also a proper homo-
morphism.

If h: D1 → D2 is a morphism of DFA’s, it is easily shown
by induction on the length of w that

h(δ∗1(p, w)) = δ∗2(h(p), w),

for all p ∈ Q1 and all w ∈ Σ∗.

As a consequence, we have the following Lemma:

44 CHAPTER 2. REGULAR LANGUAGES

Lemma 2.3.2 If h: D1 → D2 is an F -map of DFA’s,
then L(D1) ⊆ L(D2). If h: D1 → D2 is a B-map of
DFA’s, then L(D2) ⊆ L(D1). Finally, if h: D1 → D2

is a proper homomorphism of DFA’s, then
L(D1) = L(D2).

A DFA is accessible, or trim, if every state is reachable
from the start state.

A morphism (resp. F -map, B-map) h: D1 → D2 is sur-
jective if h(Q1) = Q2.

It can be shown that if D1 is trim, then there is a most
one morphism h: D1 → D2 (resp. F -map, B-map). If
D2 is also trim and we have a morphism h: D1 → D2,
then h is surjective.

It can also be shown that a minimal DFA DL for L is
characterized by the property that there is unique surjec-
tive proper homomorphism h: D → DL from any trim
DFA D accepting L to DL.

2.3. MORPHISMS, F -MAPS, B-MAPS AND HOMOMORPHISMS OF DFA’S 45

Another useful notion is the notion of a congruence on a
DFA.

Definition 2.3.3 Given any DFA
D = (Q, Σ, δ, q0, F), a congruence ≡ on D is an equiva-
lence relation ≡ on Q satisfying the following conditions:

(1) If p ≡ q, then δ(p, a) ≡ δ(q, a), for all p, q ∈ Q and
all a ∈ Σ.

(2) If p ≡ q and p ∈ F , then q ∈ F , for all p, q ∈ Q.

It can be shown that a proper homomorphism of DFA’s
h: D1 → D2 induces a congruence ≡h on D1 defined as
follows:

p ≡h q iff h(p) = h(q).

Given a congruence ≡ on a DFA D, we can define the
quotient DFA D/ ≡, and there is a surjective proper
homomorphism π: D → D/ ≡.

We will come back to this point when we study minimal
DFA’s.

46 CHAPTER 2. REGULAR LANGUAGES

2.4 Nondeteterministic Finite Automata (NFA’s)

NFA’s are obtained from DFA’s by allowing multiple tran-
sitions from a given state on a given input. This can be
done by defining δ(p, a) as a subset of Q rather than a
single state. It will also be convenient to allow transitions
on input ε.

We let 2Q denote the set of all subsets of Q, including the
empty set. The set 2Q is the power set of Q. We define
NFA’s as follows.

2.4. NONDETETERMINISTIC FINITE AUTOMATA (NFA’S) 47

Example 4. A NFA for the language

L3 = {a, b}∗{abb}.

Input alphabet: Σ = {a, b}.

State set Q4 = {0, 1, 2, 3}.

Start state: 0.

Set of accepting states: F4 = {3}.

Transition table δ4:

a b
0 {0, 1} {0}
1 ∅ {2}
2 ∅ {3}
3 ∅ ∅

0 1 2 3
a b b

a, b

Figure 2.4: NFA for {a, b}∗{abb}

48 CHAPTER 2. REGULAR LANGUAGES

Example 5. Let Σ = {a1, . . . , an}, let

Li
n = {w ∈ Σ∗ | w contains an odd number of ai’s},

and let
Ln = L1

n ∪ L2
n ∪ · · · ∪ Ln

n.

The language Ln consists of those strings over Σ that
contain an odd number of some letter ai ∈ Σ∗.

Equivalently Σ∗−Ln consists of those strings over Σ with
an even number of every letter ai ∈ Σ∗.

It can be shown that that every DFA accepting Ln has
at least 2n states.

However, there is an NFA with 2n + 1 states accepting
Ln (and even with 2n states!).

2.4. NONDETETERMINISTIC FINITE AUTOMATA (NFA’S) 49

Definition 2.4.1 A nondeterministic finite automa-
ton (or NFA) is a quintuple N = (Q, Σ, δ, q0, F), where

• Σ is a finite input alphabet

• Q is a finite set of states ;

• F is a subset of Q of final (or accepting) states ;

• q0 ∈ Q is the start state (or initial state);

• δ is the transition function, a function

δ: Q × (Σ ∪ {ε}) → 2Q.

For any state p ∈ Q and any input a ∈ Σ ∪ {ε}, the
set of states δ(p, a) is uniquely determined. We write
q ∈ δ(p, a).

Given an NFA N = (Q, Σ, δ, q0, F), we would like to
define the language accepted by N , and for this, we need
to extend the transition function δ: Q× (Σ ∪ {ε}) → 2Q

to a function
δ∗: Q × Σ∗ → 2Q.

50 CHAPTER 2. REGULAR LANGUAGES

The presence of ε-transitions (i.e., when q ∈ δ(p, ε))
causes technical problems, and to overcome these prob-
lems, we introduce the notion of ε-closure.

2.5 ε-Closure

Definition 2.5.1 Given an NFA N = (Q, Σ, δ, q0, F)
(with ε-transitions) for every state p ∈ Q, the ε-closure
of p is set ε-closure(p) consisting of all states q such that
there is a path from p to q whose spelling is ε. This means
that either q = p, or that all the edges on the path from
p to q have the label ε.

We can compute ε-closure(p) using a sequence of approx-
imations as follows. Define the sequence of sets of states
(ε-cloi(p))i≥0 as follows:

ε-clo0(p) = {p},
ε-cloi+1(p) = ε-cloi(p) ∪

{q ∈ Q | ∃s ∈ ε-cloi(p), q ∈ δ(s, ε)}.

2.5. ε-CLOSURE 51

Since ε-cloi(p) ⊆ ε-cloi+1(p), ε-cloi(p) ⊆ Q, for all i ≥ 0,
and Q is finite, there is a smallest i, say i0, such that

ε-cloi0(p) = ε-cloi0+1(p),

and it is immediately verified that

ε-closure(p) = ε-cloi0(p).

When N has no ε-transitions, i.e., when δ(p, ε) = ∅ for all
p ∈ Q (which means that δ can be viewed as a function
δ: Q × Σ → 2Q), we have

ε-closure(p) = {p}.

It should be noted that there are more efficient ways of
computing ε-closure(p), for example, using a stack (basi-
cally, a kind of depth-first search).

We present such an algorithm below. It is assumed that
the types NFA and stack are defined. If n is the number
of states of an NFA N , we let

eclotype = array[1..n] of boolean

52 CHAPTER 2. REGULAR LANGUAGES

function eclosure[N : NFA, p: integer]: eclotype;

begin

var eclo: eclotype, q, s: integer, st: stack;

for each q ∈ setstates(N) do

eclo[q] := false;

endfor

eclo[p] := true; st := empty;

trans := deltatable(N);

st := push(st, p);

while st �= emptystack do

q = pop(st);

for each s ∈ trans(q, ε) do

if eclo[s] = false then

eclo[s] := true; st := push(st, s)

endif

endfor

endwhile;

eclosure := eclo

end

This algorithm can be easily adapted to compute the set
of states reachable from a given state p (in a DFA or an
NFA).

2.5. ε-CLOSURE 53

Given a subset S of Q, we define ε-closure(S) as

ε-closure(S) =
⋃
p∈S

ε-closure(p).

When N has no ε-transitions, we have

ε-closure(S) = S.

We are now ready to define the extension δ∗: Q×Σ∗ → 2Q

of the transition function δ: Q × (Σ ∪ {ε}) → 2Q.

54 CHAPTER 2. REGULAR LANGUAGES

2.6 Converting an NFA into a DFA

The intuition behind the definition of the extended transi-
tion function is that δ∗(p, w) is the set of all states reach-
able from p by a path whose spelling is w.

Definition 2.6.1 Given an NFA N = (Q, Σ, δ, q0, F)
(with ε-transitions), the extended transition function
δ∗: Q × Σ∗ → 2Q is defined as follows: for every p ∈ Q,
every u ∈ Σ∗, and every a ∈ Σ,

δ∗(p, ε) = ε-closure({p}),
δ∗(p, ua) = ε-closure(

⋃
s∈δ∗(p,u)

δ(s, a)).

The language L(N) accepted by an NFA N is the set

L(N) = {w ∈ Σ∗ | δ∗(q0, w) ∩ F �= ∅}.

2.6. CONVERTING AN NFA INTO A DFA 55

We can also extend δ∗: Q × Σ∗ → 2Q to a function

δ̂: 2Q × Σ∗ → 2Q

defined as follows: for every subset S of Q, for every
w ∈ Σ∗,

δ̂(S, w) =
⋃
p∈S

δ∗(p, w).

Let Q be the subset of 2Q consisting of those subsets S
of Q that are ε-closed, i.e., such that S = ε-closure(S).
If we consider the restriction

∆:Q× Σ → Q
of δ̂: 2Q×Σ∗ → 2Q to Q and Σ, we observe that ∆ is the
transition function of a DFA. Indeed, this is the transition
function of a DFA accepting L(N). It is easy to show that
∆ is defined directly as follows (on subsets S in Q):

∆(S, a) = ε-closure(
⋃
s∈S

δ(s, a)).

56 CHAPTER 2. REGULAR LANGUAGES

Then, the DFA D is defined as follows:

D = (Q, Σ, ∆, ε-closure({q0}),F),

where F = {S ∈ Q | S ∩ F �= ∅}.

It is not difficult to show that L(D) = L(N), that is, D
is a DFA accepting L(N). Thus, we have converted the
NFA N into a DFA D (and gotten rid of ε-transitions).

Since DFA’s are special NFA’s, the subset construction
shows that DFA’s and NFA’s accept the same family of
languages, the regular languages, version 1 (although
not with the same complexity).

The states of the DFA D equivalent to N are ε-closed
subsets of Q. For this reason, the above construction is
often called the “subset construction”. It is due to Rabin
and Scott. Although theoretically fine, the method may
construct useless sets S that are not reachable from the
start state ε-closure({q0}). A more economical construc-
tion is given next.

2.6. CONVERTING AN NFA INTO A DFA 57

An Algorithm to convert an NFA into a DFA:
The “subset construction”

Given an input NFA N = (Q, Σ, δ, q0, F), a DFA D =
(K, Σ, ∆, S0,F) is constructed. It is assumed that K is
a linear array of sets of states S ⊆ Q, and ∆ is a 2-
dimensional array, where ∆[i, a] is the target state of the
transition from K[i] = S on input a, with S ∈ K, and
a ∈ Σ.

S0 := ε-closure({q0}); total := 1; K[1] := S0;

marked := 0;

while marked < total do;

marked := marked + 1; S := K[marked];

for each a ∈ Σ do

U :=
⋃

s∈S δ(s, a); T := ε-closure(U);

if T /∈ K then

total := total + 1; K[total] := T

endif;

∆[marked, a] := T

endfor

endwhile;

F := {S ∈ K | S ∩ F �= ∅}

58 CHAPTER 2. REGULAR LANGUAGES

Let us illustrate the subset construction on the NFA of
Example 4.

A NFA for the language

L3 = {a, b}∗{abb}.
Transition table δ4:

a b
0 {0, 1} {0}
1 ∅ {2}
2 ∅ {3}
3 ∅ ∅

Set of accepting states: F4 = {3}.

0 1 2 3
a b b

a, b

Figure 2.5: NFA for {a, b}∗{abb}

2.6. CONVERTING AN NFA INTO A DFA 59

The pointer ⇒ corresponds to marked and the pointer
→ to total.

Initial transition table ∆.

⇒ names states a b→ A {0}
Just after entering the while loop

names states a b⇒→ A {0}
After the first round through the while loop.

names states a b⇒ A {0} B A
→ B {0, 1}

After just reentering the while loop.

names states a b
A {0} B A

⇒→ B {0, 1}
After the second round through the while loop.

names states a b
A {0} B A

⇒ B {0, 1} B C
→ C {0, 2}

60 CHAPTER 2. REGULAR LANGUAGES

After the third round through the while loop.

names states a b
A {0} B A
B {0, 1} B C

⇒ C {0, 2} B D
→ D {0, 3}

After the fourth round through the while loop.

names states a b
A {0} B A
B {0, 1} B C
C {0, 2} B D

⇒→ D {0, 3} B A

This is the DFA of Figure 2.3, except that in that example
A, B, C, D are renamed 0, 1, 2, 3

0 1 2 3
a b

a
b

b a
b

a

Figure 2.6: DFA for {a, b}∗{abb}

