
Centrum voor Wiskunde en Informatica

Automata, power series, and coinduction: taking input derivatives 
seriously (extended abstract)

J.J.M.M. Rutten

Software Engineering (SEN)

SEN-R9901 January 31, 1999



Report SEN-R9901
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB  Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB  Amsterdam (NL)

Kruislaan 413, 1098 SJ  Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Automata, Power Series, and Coinduction:
taking input derivatives seriously

(extended abstract)

J.J.M.M. Rutten
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands∗

Abstract
Formal power series, which are functions from the set of words over an alphabet A to a semiring
k, are viewed coalgebraically. In summary, this amounts to supplying the set of all power series
with a deterministic automaton structure, which has the universal property of being final. Finality
then forms the basis for both definitions and proofs by coinduction, the coalgebraic counterpart
of induction. Coinductive definitions of operators on power series take the shape of what we
have called behavioural differential equations, after Brzozowski’s notion of input derivative, and
include many classical differential equations for analytic functions. The use of behavioural differ-
ential equations leads, amongst others, to easy definitions of and proofs about both existing and
new operators on power series, as well as to the construction of finite (syntactic) nondeterministic
automata, implementing them.
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1 Introduction

Formal power series are functions σ : A∗ → k from the set of words over some alphabet A to
some semiring k. Examples include formal languages (k = {0, 1}) and power series in classical
analysis (k = IR, viewing the elements of A as variables). Because of their relevance to many
different scientific areas, both in mathematics and computer science, a large body of literature
on power series exists. Most approaches to the subject are essentially algebraic. The aim of
this paper is to show that it is worthwhile to view power series from a dual perspective, called
coalgebra (see [Rut96] for a general account). In summary, this amounts to supplying the set of all
power series with a deterministic automaton structure, which has the universal property of being
final. Finality then forms the basis for both definitions and proofs by coinduction, which is the
coalgebraic counterpart of induction.

Coinductive definitions of operators on formal power series take the shape of what we have
called behavioural differential equations, since they are formulated in terms of (a generalization of)
Brzozowski’s [Brz64] notion of input derivative: the input derivative σa of a series σ can intuitively
be understood as the specification of the behaviour of σ after the input a has been accepted. For
instance, the following behavioural differential equation defines the input derivative (σ ‖ τ)a of
the so-called shuffle product of σ and τ in terms of the input derivatives of σ and τ :

(σ ‖ τ)a = (σa ‖ τ) + (σ ‖ τa) (with initial value: (σ ‖ τ)(ε) = σ(ε)τ(ε) )

(Here ε is the empty word.) It will be shown that these equations (one for each a ∈ A) determine
a unique solution, which is taken as the formal definition of the shuffle product.

Coinductive definitions allow easy proofs by the coinduction proof principle, which says that
two series are equal whenever they are related by a bisimulation relation (which is the coalgebraic
counterpart of a congruence relation). For coinductively defined operators, the construction of
such bisimulations is immediate from the defining differential equations.

The reader familiar with formal power series will know how to give a more elementary definition
(cf. [BR88, p.20]) of the shuffle product mentioned as an example above, and therefore would call
the differential equation a property. Our motivation for taking this and similar such differential
equations as a definition, is three-fold:

Firstly, the form of such equations will allow easy proofs by coinduction of many properties
of the operators they define. In Section 5, a number of laws for the familiar operators on formal
power series, will be shown to have easy proofs by coinduction. For instance, it takes a two-line
proof to show that 〈σ ‖ (τ ‖ ρ), (σ ‖ τ) ‖ ρ〉 is contained in a bisimulation relation, implying that
‖ is associative.

Secondly, the approach can be easily generalized to define new operators. This will be illus-
trated, in Section 6, by the definition of a new operator σ−1, called shuffle inverse, because it
satisfies σ ‖ σ−1 = 1 (to be proved by coinduction). It is unclear to us how this operator could
be defined without the use of coinduction. Furthermore, many classical differential equations for
analytic functions on IR appear as particular instances of behavioural equations.

Thirdly, we shall show, in Section 9, how from behavioural differential equations defining
operators on power series, nondeterministic automata (with multiplicities in k) can be derived
that implement these operators. The construction of these automata is again dictated by the
shape of the differential equations, and is syntactic in the sense that their state space consists of
expressions. The automata thus obtained are finite for rational power series (giving a new proof of
the well-known fact that rational implies recognizable), and, in fact, generally very small. To give
a flavour of this, the following two state automaton derives from the defining differential equation
of the inverse operator σ−1 (with σ × σ−1 = 1) on power series (see Example 9.3):

s1

!"#$−3/2 %& !!
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""
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1

$$
computes (2 + 3X + 7X2)−1 =

1
2
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8
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As another example of our approach, differential equations will be used to solve the well-known
problem of task-resource systems (in Section 10).

And so we see the following general scheme emerging: (a) (rational) behaviour is specified by
differential equations, which often can be solved in a canonical way, giving rise to (b) (finite)
nondeterministic automata that (efficiently) implement the specified behaviour. We see (a) and
(b) as the two main contributions of our work.

Related work: The perspective of the present paper is essentially coalgebraic, and generalizes
[Rut98], which deals with languages and regular expressions. Our way of solving differential
equations is essentially based on the processes as terms methodology, used in [RT94]. The notion
of input derivative of formal power series, generalizes Brzozowski’s original definition for regular
expressions [Brz64, Con71]. Its relation with function derivatives f ′ of functions f on IR will be
explained by invoking an example from [PE98], where a coinductive treatment of analytic functions
in terms of their Taylor expansions is given. Our present theory generalizes the settings of [Rut98]:
k = IB and A is arbitrary, and [PE98]: k = IR and A = {X}, since we are dealing with formal
power series in many non-commutative variables (A is arbitrary) over any semiring (k is arbitrary).
Moreover, we are dealing with higher-order, behavioural differential equations (such as the one
for ‖ above). Although it is well know that rational series can be finitely represented (see [BR88],
which has been our main reference on formal power series), also the syntactic construction of k-
nondeterministic automata from their defining differential equations is to the best of our knowledge
new.
Acknowledgements : I am grateful to Maurice Nivat, who offered me the opportunity to present a
preliminary version of this paper at the University of Paris VII.

2 Preliminaries

We briefly recall the definitions of semiring and formal power series, and give a coalgebraic pre-
sentation of the notion of deterministic automaton.

Semirings: A semiring is something like a ring without subtraction. More formally, a semiring
k = 〈k,+,×, 0, 1〉 consists of a set k together with two binary operations + and × (sum and
product) and two constants 0 and 1, such that (k,+, 0) is a commutative monoid with 0 as
identity; (k,×, 1) is a monoid with 1 as identity; product is distributive with respect to sum; and
0x = x0 = 0, all x ∈ k (writing xy for x×y). The following semirings will occur in examples in the
paper: the Boolean semiring IB = ({0, 1},∨,∧, 0, 1), the reals IR = (IR,+,×, 0, 1), and the max-
plus semiring IRmax = ([−∞,∞),max,+,−∞, 0). Note that both IB and IRmax are idempotent
semirings in that they satisfy x + x = x.

Words: Let A be a possibly infinite set and let A∗ be the set of all finite words over A. Prefixing
a word w in A∗ with a letter a in A is denoted by aw. Concatenation of words w and w′ is denoted
by ww′. Let ε denote the empty word.

Formal power series: A formal power series is a function σ : A∗ → k. The set of all series is
denoted by k〈〈A〉〉. A series σ assigns to each finite word w ∈ A∗ a coefficient σ(w) in k, which
may be interpreted as the multiplicity with which the word w occurs in σ. These multiplicities
may have different interpretations, depending on the semiring k. If k = IB then σ(w) is either 1
or 0, indicating whether or not w belongs to σ, which in this case simply is a set of words. In
other cases, the elements of A are best viewed as (formal non-commutative) variables. A basic
but important example is A = {X} and k = IR, when one gets the usual power series. As usual,
k and A can be considered as subsets of k〈〈A〉〉, by taking x ∈ k as the function x : A∗ → k
with x(ε) = x, and 0 everywhere else; similarly, a ∈ A is identified with a : A∗ → k, defined by
a(a) = 1, and 0 otherwise.

Deterministic automata: Let A be a possibly infinite set and let k be a semiring. A determin-
istic automaton (or Moore machine) with inputs in A and outputs in k is a pair S = (S, 〈oS , tS〉)
consisting of a set S of states , and a pair of functions: an output function oS : S → k, and a
transition function tS : S → SA. Here SA is the set of all functions from A to S. The transi-
tion function tS assigns to a state s a function tS(s) : A → S, which specifies the state tS(s)(a)
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that is reached after an input symbol a has been consumed. We shall sometimes write s x−→ for
oS(s) = x and s a−→ s′ for tS(s)(a) = s′. Also we shall simply write o and t whenever the au-
tomaton S is clear from the context. A homomorphism between automata S = (S, 〈o, t〉) and
S′ = (S′, 〈o′, t′〉) is any function f : S → S′ such that for all s in S, o(s) = o′(f(s)) and, for all a
in A, f(t(s)(a)) = t′(f(s))(a). A subset i : S′ ⊆ S of an automaton S is a subautomaton if i is a ho-
momorphism. For a state s in S, 〈s〉 denotes the subautomaton generated by s. Homomorphisms
map subautomata to subautomata. A relation R ⊆ S×S′ is a bisimulation between two automata
S and S′ if, for all s in S, s′ in S′, and a in A: if s R s′ then o(s) = o′(s′) and t(s)(a) R t′(s′)(a).
If there exists a bisimulation (between S and itself) containing s, s′ ∈ S, then we write s ∼ s′ (s
and s′ are bisimilar). Bisimilarity itself is a bisimulation relation and an equivalence relation.

3 The automaton of formal power series

The set k〈〈A〉〉 of formal power series is turned into a deterministic automaton with inputs in
A and outputs in k, having the universal property of being final and satisfying a principle of
coinduction.

For an input a in A, the input derivative σa (or ∂σ/∂a or a−1σ) of a series σ : A∗ → k is
defined by σa(w) = σ(aw), for w ∈ A∗. The constant part (or output) of a series σ is defined by
σ(ε). These notions determine an automaton structure k〈〈A〉〉 = (k〈〈A〉〉, 〈ok, tk〉), defined, for
σ ∈ k〈〈A〉〉 and a ∈ A, by ok(σ) = σ(ε) and tk(σ)(a) = σa.

Theorem 3.1 The automaton k〈〈A〉〉 satisfies the principle of (1) coinduction: for all series σ
and τ in k〈〈A〉〉, if σ ∼ τ then σ = τ . Moreover, k〈〈A〉〉 is (2) final: for any automaton S there
exists a unique homomorphism l : S → k〈〈A〉〉, satisfying: for s, s′ ∈ S, s ∼ s′ iff l(s) = l(s′).

The series l(s) is called the behaviour of the state s of the automaton S. It assigns to any word
w ∈ A∗ the output o(s′) of the state s′ that is reached from s after reading w. We say that s
represents the series l(s), and also that l(s) is the series accepted by the state s. Part (1) is easily
proved by induction on the length of words w ∈ A∗, and implies (2). The proof also follows from
general coalgebraic reasoning (see, e.g., [Rut96]), and does not depend on the semiring structure
of k.

Coinduction serves as a proof principle: in order to show σ = τ , it is sufficient to establish
the existence of a bisimulation relation R with σ R τ . The proof principle will be illustrated in
some detail in Section 5. Finality will be used as a coinductive definition principle (for instance,
in Section 4).

The relation between derivatives f ′ of functions f on IR, and input derivatives σa of formal
power series σ is explained by the following example on analytic functions, taken from [PE98]. Let
k = IR and A = {X}. Thus IR〈〈X〉〉 = IR{X}∗ ∼= IRω, where ω = {0, 1, . . .} is the set of natural
numbers. In other words, formal power series are now infinite sequences, also called streams, of real
numbers. Consider the set A of functions that are analytic in 0: the n-th derivative f (n)(0) exists,
for all n ≥ 0. Following [PE98], A can be turned into an automaton by defining oA : A → IR and
tA : A → A (identifying A{X} ∼= A) by oA(f) = f(0) and tA(f) = f ′. Because IR〈〈X〉〉 is a final
automaton, there exists a unique homomorphism l : A → IR〈〈X〉〉, which maps a function f to
the series of its Taylor coefficients: l(f) = (f(0), f ′(0), f ′′(0), . . .). Because l is a homomorphism,
l(f)X = l(f ′). In words, the input derivative of the Taylor series of f is equal to the Taylor series
of the derivative of f .

4 Behavioural differential equations

A number of operators on formal power series will be defined by coinduction. Similar to the way
one can define, for instance, a function of exponentiation exp : IR → IR by specifying a differential
equation and initial value: exp′ = exp and exp(0) = 1, coinductive definitions of (elements of and)
operators on k〈〈A〉〉 amount to the specification of behavioural differential equations. It will be a
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consequence of the finality of the automaton k〈〈A〉〉 that the systems of differential equations we
shall use, have unique solutions.

Plunging into the matter, the aim of this section is to prove the following theorem.

Theorem 4.1 There are unique functions +, ×, (−)∗, ‖, and (−)−1, called sum, product, star,
shuffle product, and inverse, satisfying the following (higher-order) behavioural differential equa-
tions: For all σ, τ ∈ k〈〈A〉〉 and a ∈ A,

differential equation initial value
(σ + τ)a = σa + τa (σ + τ)(ε) = σ(ε) + τ(ε)
(στ)a = σa τ + σ(ε)τa (στ)(ε) = σ(ε)τ(ε)
(σ∗)a = σa σ∗ (σ∗)(ε) = 1
(σ ‖ τ)a = (σa ‖ τ) + (σ ‖ τa) (σ ‖ τ)(ε) = σ(ε)τ(ε)
(σ−1)a = −σ(ε)−1σa σ∗ (σ−1)(ε) = σ(ε)−1

Note that we have written στ for σ × τ , and that we use the same symbols for sum and product
on k〈〈A〉〉 as for sum and product on k, respectively. Also note that in the expression σ(ε)τa =
σ(ε) × τa above, we are interpreting σ(ε), which is an element of k, as an element of k〈〈A〉〉,
following the convention described in Section 2. Observe that in the definition of the initial
values, the operators of the semiring structure of k are used. Finally note that the latter equation
assumes k to be a ring rather than a semiring, since it uses subtraction. It is moreover partial
since it only applies to such σ for which σ(ε) is invertible in k. Whenever we shall write −σ(ε)−1,
both conditions will silently be assumed to apply. If either of these conditions does not hold then
we put (σ−1)a = 0 and (σ−1)(ε) = 0 (simply in order to keep all functions total).
Proof of Theorem 4.1: Let the set E of expressions be given by the following syntax:

E ::= σ | E + F | EF | E∗ | (E ‖ F ) | E−1

where we write EF rather than E × F , and where for every series σ in k〈〈A〉〉 a symbol σ is
included in E . The set E is next supplied with an automaton structure (E , 〈oE , tE〉). The functions
oE : E → k and tE : E → EA are defined by induction on the structure of expressions, using the
automaton structure of k〈〈A〉〉 for the symbols σ, and following the structure of the differential
equations in Theorem 4.1 for the operators:

oE(σ) = σ(ε), oE(E + F ) = oE(E) + oE(F ), oE(EF ) = oE(E ‖ F ) = oE(E)oE (F ),

oE(E∗) = 1, oE(E−1) = oE(E)−1

(The latter expression should be interpreted as 0 if the inverse in k does not exist.) Writing Ea

for tE(E)(a), the function tE : E → EA is given by the following clauses:

(σ)a = σa, (E + F )a = Ea + Fa, (EF )a = Ea F + oE(E)Fa, (E∗)a = Ea E∗

(E ‖ F )a = (Ea ‖ F ) + (E ‖ Fa), (E−1)a = −oE(E)−1Ea E∗

(Read 0 for the last expression whenever −oE(E)−1 is undefined.) Because E now has been turned
into an automaton (E , 〈oE , tE〉), and because k〈〈A〉〉 is a final automaton, there exists, by Theorem
3.1, a unique homomorphism l : E → k〈〈A〉〉, which assigns to each expression E the formal power
series l(E) it represents. It can be used to define the operators on k〈〈A〉〉 that we are looking for:

σ + τ = l(σ + τ), στ = l(σ τ), σ∗ = l(σ∗), σ ‖ τ = l(σ ‖ τ), σ−1 = l(σ−1)

(Note that the symbols for the operators on k〈〈A〉〉 are the same as the syntactic operators.
The type will always be clear from the context.) One can show that l(σ) = σ and that l is
compositional, e.g., l(EF ) = l(E)l(F ), using the principle of coinduction (Theorem 3.1) and the
fact that bisimilarity on E is a congruence relation (e.g., if E ∼ E′ and F ∼ F ′ then EF ∼ E′F ′).
For instance, the first statement follows by coinduction from the fact that {〈l(σ), σ〉 | σ ∈ k〈〈A〉〉}
is a bisimulation relation on k〈〈A〉〉. One can now readily prove that the operators we have
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defined are solutions of their defining differential equations, using the fact that l is a compositional
homomorphism. Uniqueness of these solutions follows from the uniqueness of l. !

Either by coinduction or, alternatively, using the uniqueness part of Theorem 4.1, one can
prove that the above coinductive definitions of the operators on k〈〈A〉〉 coincide with the usual
ones. For instance, (σ∗)(w) =

∑
n≥0 σ

n(w), if σ(ε) = 0.
Given the correspondence between derivative and input derivative, mentioned at the end of

Section 3, one can easily show that the Taylor series of the product of analytic functions equals the
shuffle product of their corresponding Taylor series: l(fg) = l(f) ‖ l(g), where (fg)(x) = f(x)g(x),
as usual. (A proof (by coinduction) is easy, using the fact that (fg)′ = f ′g + fg′, which is of the
same shape as the defining differential equation for ‖.) This fact will be used in the definition
of the shuffle inverse in Section 6. The correspondence between derivative and input derivative
also shows that many classical differential equations, such as the example of exp mentioned at
the beginning of this section, have a unique corresponding behavioural differential equation. For
exp, this is the equation (e)X = e (with initial value e(ε) = 1), which determines a unique series
e = (1, 1, 1, . . .) in IR〈〈X〉〉, that is, the Taylor series of exp.

5 Proofs by coinduction

The use of coinduction is illustrated by proving some of the following familiar laws:

(1) 1 + σσ∗ = σ∗, if σ(ε) = 0 (6) σ = σ(ε) +
∑

a∈A aσa

(2) σ = τσ + ρ ⇒ σ = τ∗ρ, if τ(ε) = 0 (7) σ ‖ (τ + ρ) = (σ ‖ τ) + (σ ‖ ρ)
(3) (σ + τ)∗ = σ∗(τσ∗)∗, if τ(ε) = 0 (8) σ ‖ (τ ‖ ρ) = (σ ‖ τ) ‖ ρ
(4) (σ + τ)∗ = (σ∗τ)∗σ∗, if τ(ε) = 0 (9) σσ−1 = 1
(5) σ∗ = (1 + σ)∗ (10) σ−1σ = 1

Coinductive proofs of equalities such as σ0 = τ0 always proceed in the same way, by defining, in
stages, a bisimulation relation R containing 〈σ0, τ0〉. The first pair to be included in R is 〈σ0, τ0〉.
Next the following step is repeated until it does not yield any new pairs: the a-derivatives of the
pairs 〈σ, τ〉 already in R are computed—for the operators, these are precisely given by the defining
differential equations—and the resulting pairs 〈σa, τa〉 are added to R. When adding a pair 〈σ, τ〉 to
R, at any stage of its construction, we should check that the constant parts are equal: σ(ε) = τ(ε).
If this does not hold, the procedure aborts, and we conclude σ /= τ . Otherwise, the relation R
that is thus obtained is by construction a bisimulation, and σ0 = τ0 follows by coinduction. For
instance, (1) follows by coinduction from the fact that

R1 = {〈1 + σσ∗, σ∗〉 | σ ∈ k〈〈A〉〉, σ(ε) = 0 } ∪ {〈σ, σ〉 | σ ∈ k〈〈A〉〉 }

is a bisimulation relation on k〈〈A〉〉: if σ(ε) = 0 then (1 + σσ∗)(ε) = 1 = σ∗(ε); moreover,
〈(1 + σσ∗)a, (σ∗)a〉 = 〈0 + σaσ∗ + 0σaσ∗, σaσ∗〉 = 〈σaσ∗, σaσ∗〉, which is in R1 again. Similarly,

R2 = {〈ασ + β, ατ∗ρ+ β〉 | α, β ∈ k〈〈A〉〉}

is a bisimulation relation, for σ, τ, ρ with σ = τσ + ρ and τ(ε) = 0, implying (2) by coinduction.
All the other laws are proved similarly. To mention one last example, let R8 be the smallest
relation on k〈〈A〉〉 such that 〈σ ‖ (τ ‖ ρ), (σ ‖ τ) ‖ ρ〉 ∈ R8, for all σ, τ, ρ ∈ k〈〈A〉〉, and such
that 〈σ1, τ1〉, 〈σ2, τ2〉 ∈ R8 implies 〈σ1 + σ2, τ1 + τ2〉 ∈ R8. It is straightforward to prove that R8

is a bisimulation (using (7)), whence (8) by coinduction. Note that for none of the proofs above,
additional structure had to be introduced. Notably, there is no need of turning k〈〈A〉〉 into a
topological semiring, which is what is usually done (see, for instance, [BR88, Lm 4.1, p.5]).

6 Shuffle inverse

The correspondence between the product of two functions on the reals and the shuffle product
of their corresponding Taylor series (mentioned at the end of Section 4), suggests the following
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definition of an operator that acts as a quotient with respect to the shuffle product. Recalling
the familiar quotient law for derivatives: (f−1)′ = −f ′(1/f2) = −f ′(ff)−1, consider the following
behavioural differential equation: (σ−1)a = −σa ‖ (σ ‖ σ)−1 with initial value (σ−1)(ε) = σ(ε)−1.
Note that we write σ−1 rather than σ−1, since the latter notation is used, in Section 4, for the
inverse with respect to multiplication. Further note that k is assumed to be a ring and that the
above equation only applies to such σ for which σ(ε) is invertible in k. The above equation has
a unique solution, which can be proved along the same lines as Theorem 4.1. Assuming that k is
a ring, the following equalities hold for all σ ∈ k〈〈A〉〉 for which σ(ε) is invertible in k, showing
that the shuffle inverse behaves as intended: σ ‖ σ−1 = 1 and (σ−1)−1 = σ. This can be readily
proved by coinduction. It is not immediately obvious how this operator could be defined without
coinduction. For now, we are satisfied with the fact that it has been possible to define it at all.
Its use for the theory of power series is to be studied further (see also Section 11).

7 Rational series

We recall the notion of rational series, and illustrate the need of nondeterministic automata with
multiplicities in k in order to obtain finite representations for them.

Let the set R of regular expressions be given by the following syntax:

E ::= x ∈ k | a ∈ A | E + F | EF | E∗

Note that, for convenience, we write x and a rather than x and a and that, under the embedding
of k and A in k〈〈A〉〉, R is a subset of the set of expressions E , introduced in (the proof of)
Theorem 4.1. A series σ is called rational if there exists a regular expression E with σ = l(E),
where l : E → k〈〈A〉〉 is the unique homomorphism of Theorem 4.1. Because l is compositional, a
series is rational iff it is contained in the smallest subset of k〈〈A〉〉 that contains k and A (viewed
as subsets of k〈〈A〉〉) and that is closed under the operators of sum, product, and star.

In order to see whether a series σ is rational or not, it is sufficient to look at the subautomaton
〈σ〉 of k〈〈A〉〉 that it generates. This subautomaton is generally infinite: for instance, (xa)∗, with
x in k and a in A, gives rise to the following transitions in k〈〈A〉〉 (note that when x is interpreted
as an element of k〈〈A〉〉—cf. Section 2—we have (x)a = 0 and x(ε) = x):

(xa)∗ a−→x(xa)∗ a−→x2(xa)∗ a−→· · ·

whence 〈(xa)∗〉 = {xn(xa)∗ | n ≥ 0}. At the same time, this example is typical in the sense that
the generated subautomaton of a rational series is characterized by the property that it is finitely
generated . We shall not prove this in the present paper, but in Section 9, we shall see another,
truly finitary characterization of rational power series (from which this property easily follows).
There it will be shown that a rational series is recognized by a finite nondeterministic automaton
with multiplicities in the semiring k. For instance, the above transition sequence can be captured
by one single transition of the form (xa)∗ a|x−→ (xa)∗, which will allow the construction of a finite
automaton for (xa)∗. The point will not be so much the existence of such finite representations
for rational series (which is classical, see [BR88]), but rather the (syntactic) way in which they are
constructed.

8 Nondeterministic automata

In order to give a truly finite representation of rational series, this section introduces (a coalgebraic
formulation of) nondeterministic automata and gives a coinductive definition of their behaviour.
In Section 9, finite nondeterministic automata for rational series will be constructed.

A k-nondeterministic automaton (nd-automaton for short, also called k-transducer) with inputs
in A and outputs in k is a pair S = (S, 〈o, t〉) consisting of a set S of states , and a pair of functions:
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an output function o : S → k, and a nondeterministic transition function t : S → k(S)A. Here
k(S)A is the set of all functions from A to k(S), which at its turn is defined by

k(S) = {φ : S → k | supp (φ) is finite }

where supp (φ) = {s ∈ S | φ(s) /= 0} is the support of φ. The observation function o assigns to
each state s in S a multiplicity o(s) in k. The transition function t assigns to a state s in S a
function t(s) : A → k(S), which specifies for any a in A a function t(s)(a) ∈ k(S). Such a function
can be viewed as a kind of nondeterministic or distributed state, and specifies for any state s′ in S
a multiplicity t(s)(a)(s′) in k with which the a-transition from s to s′ occurs. We shall sometimes
write s

a|x−→ s′ for t(s)(a)(s′) = x and s x−→ for o(s) = x.
The behaviour of a state in a nd-automaton, which is again a formal power series, is defined

coinductively. To this end, we shall first associate with every nondeterministic automaton 〈o, t〉 :
S → k× k(S)A a corresponding deterministic automaton. The set of states of the new automaton
is given by the set k(S) (of distributed states) mentioned above. Next the set k(S) is turned into
a deterministic automaton (k(S), 〈ô, t̂〉), by defining an observation function ô : k(S) → k and a
deterministic transition function t̂ : k(S) → k(S)A, as follows:

ô(φ) =
∑

s∈S

o(s)φ(s), t̂(φ)(a)(s) =
∑

s′∈S

φ(s′) (t(s′)(a)(s))

Note that both these sums exist because φ in k(S) has finite support. The behaviour of a nd-
automaton S can now be defined in terms of the, by Theorem 3.1, unique homomorphism λ :
k(S) → k〈〈A〉〉, which assigns to each configuration φ in k(S) the formal power series λ(φ) it
represents. Because of the existence of the obvious inclusion {·} : S → k(S), with {s}(s′) = 1
if s = s′, and = 0 otherwise, we have obtained a function λ ◦ {·} : S → k〈〈A〉〉, which is the
coinductive definition of the behaviour of (S, 〈o, t〉) that we were after.

The term ‘multiplicity’ used above may have many different interpretations, depending on the
semiring k. If k = IB then IB-nondeterministic automata are precisely the classical nondetermin-
istic automata, with o : S → IB specifying which states are terminal (accepting), and where for a
state s ∈ S and input letter a ∈ A, t(s)(a) ∈ IB(S) ∼= Pf (S) gives the (finite) set of possible next
states. The construction of a deterministic automaton above amounts in this case exactly to the
familiar power set construction.

The following characterization of the behaviour of nd-automata, in terms of transition se-
quences, can be readily proved by coinduction: For all s in a nd-automaton S and all words
a0 · · · am−1 ∈ A∗,

λ({s})(a0 · · ·am−1) =
∑

{x0x1 · · ·xm−1x | s = u0
a0|x0−−−→ u1

a1|x1−−−→ · · · am−1|xm−1−−−−−−−→ um
x−→}

This characterization can be sometimes convenient when computing small concrete examples.
Proofs about nd-automata will all be based on the coinductive definition in terms of λ ◦ {·}.

9 Recognizability

A formal power series σ ∈ k〈〈A〉〉 is recognizable if there exists a finite nd-automaton S and a
state s ∈ S such that λ({s}) = σ (with λ as defined in Section 8). The pair (S, s) is then called
a finite representation of σ. In this section, we construct a finite representation for any rational
series l(E), with E a regular expression, thus giving a new proof of the well-known fact that any
rational series is recognizable (cf. [BR88]). The representation is syntactic in the sense that its
state space consists of (regular) expressions.

To this end, the entire set R of regular expressions is turned into an (infinite) nondeterministic
automaton (R, 〈oR, tR〉), such that the behaviour of E is precisely given by l(E). As we shall
see, the subautomaton RE ⊆ R generated by E is finite, giving a finite representation (RE , E) of
l(E).
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The observation function oR : R → k is defined by oR(E) = oE(E), where oE is the observation
function for expressions, defined in Section 4. The nondeterministic transition function tR : R →
k(R)A is defined by induction on the structure of regular expressions, following the shape of the
behavioural differential equations of Theorem 4.1:

tR(x)(a)(G) = 0 tR(b)(a)(G) =
{

1 if b = a and G = 1
0 otherwise

tR(E + F )(a)(G) = tR(E)(a)(G) + tR(F )(a)(G)

tR(EF )(a)(G) =
{

tR(E)(a)(E′) + oR(E) tR(F )(a)(G) if G = E′F
oR(E) tR(F )(a)(G) otherwise

tR(E∗)(a)(G) =
{

tR(E)(a)(E′) if G = E′E∗

0 otherwise

(Using induction on R, one easily proofs that for all F ∈ R and a ∈ A, the function tR(F )(a) is
in k(R), that is, has finite support.) Applying now the definitions from Section 8, we obtain the
following diagram, in which we have also included the homomorphism l : E → k〈〈A〉〉:

R
{·} ## k(R) λ ## k〈〈A〉〉 El%%

We can prove by coinduction that λ({E}) = l(E), for any regular expression E ∈ R, since

{〈λ(φ),
∑

E∈supp (φ)

φ(E)l(E) 〉 | φ ∈ k(R) }

is a bisimulation on k〈〈A〉〉. Because for a regular expression E in R, the subautomaton RE of
R generated by E, is finite (which follows from the definition of the transition function tR by
induction on the structure of expressions), we have proved the following theorem.

Theorem 9.1 For a regular expression E in R, (RE , E) is a finite representation of l(E) (hence
any rational series is recognizable). !

Example 9.2 Here are three examples of finite representations:

7a
a|7 ## 1 1 ## (7a)∗

!"#$a|7 %&!!
1 ##

(2 + 3X + 7X2) 2 ##

X|7
!!

X|3

&&!!!!!!!!!!!

X
X|1

## 1 1 ##

Finite representations for the shuffle product and the inverse (with respect to multiplication)
of rational expressions can be obtained in a similar fashion, by extending the above approach.
More precisely, one should first extend the definition of R as to include expressions of the form

E ::= x ∈ k | a ∈ A | E + F | EF | E∗ | E ‖ F | E−1

and next extend the definition of oR and tR, again by following the defining differential equations
from Theorem 4.1. E.g., assuming k to be a ring, we define oR(E−1) = oE(E−1) and

tR(E−1)(a)(G) =
{

−oR(E)−1tR(E)(a)(E′) if G = E′E−1 and oR(E) is invertible in k
0 otherwise

Since the proof of Theorem 9.1 can be easily extended, we have thus obtained for a rational series
σ = l(E) (with E a regular expression) a finite representation (RE−1 , E−1) of σ−1. (It is not
difficult to see that this implies that the latter series is rational again.)
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Example 9.3 Applying the definitions above to E = 2 + 3X + 7X2, the two state automaton
depicted in the introduction is obtained, with s1 = E−1 and s2 = XE−1 (in the picture, we
have simplified labels X |x to x, for x ∈ IR). This automaton is a finite representation of E−1

(strictly speaking of l(E−1)), and can be used to generate its coefficients as follows. Since l(E−1) =
λ({E−1}), we can use the formula at the end of Section 8, to compute, for instance, the coefficient
in E−1 of X2, by considering all transition sequences of length 2 starting and ending in s1 = E−1

(note that paths ending in s2 = XE−1 do not contribute since oR(XE−1) = 0). There are two
such sequences:

E−1
−3/2 ## E−1

−3/2 ## E−1
1/2 ## and E−1

−7/2 ## XE−1 1 ## E−1
1/2 ##

yielding (−3/2)(−3/2)1/2 + (−7/2)1(1/2) = −5/8 for the coefficient of X2 in l(E−1). !

10 An example in the max-plus semiring: task resource
systems

It is shown how the timed behaviour of task-resource systems can be specified coinductively, that
is, by means of a behavioural differential equation, and implemented by a finite nd-automaton,
derived from this differential equation. The relevance of this example is not so much the obtained
automaton (which is not new—see, e.g., [GM98]), but rather the way in which it illustrates our
methodology of deriving finite representations from behavioural specifications.

A (timed) task-resource system is a four tuple (A,R, r, h) consisting of a finite set A of tasks ,
a finite set R of resources, a function r : A → P(R) assigning to each task the finite non-empty
set of resources it uses, and a function h : A → IR+ specifying for each task its execution time. A
word w = a1 · · ·an ∈ A∗ is interpreted as a schedule, that is, a sequence of tasks. The question
to be addressed is how long it takes to perform all the tasks in a schedule, while adhering to the
following rules: all resources are available at time 0; the execution of a task ai in w begins as soon
as all resources r(ai) it requires, possibly used by earlier tasks, are available; and a task ai uses
the resources in r(ai) for h(ai) time units, during which these resources are not available for other
tasks. To mention two extreme cases, the execution time of a word a1 · · · an will be equal to the
maximum of the durations h(ai) in case no tasks have any resources in common. If, in contrast,
any two subsequent tasks do have a common resource, the execution time will be the sum of the
durations h(ai).

The latter examples explain why we shall be working in the so-called max-plus semiring IRmax =
([−∞,∞),max,+,−∞, 0). Taking the finite set A of tasks as our input alphabet, we are thus
looking for a formal definition of a power series y ∈ IRmax〈〈A〉〉, assigning to each schedule w its
execution time y(w) according to the above informal specification. In order to define y, first a
power series ã is associated with every task a ∈ A, which for a schedule w ∈ A∗ will give the
execution time ã(w) of w counted from the first time that the task a in w is executed . Then y can
be expressed as the maximum of all ã. The following system of behavioural differential equations
defines all these series formally:

differential equation initial value
(ã)b = ã (for b /= a) (ã)(ε) = 0
(ã)a = max {h(a) + c̃ | r(a) ∩ r(c) /= ∅ }
y = max {ã | a ∈ A}

Here we silently adopt the convention that the maximum of an empty set is (the constant series)
−∞, which is the 0 of the semiring IRmax. The existence of unique solutions for these equations
is proved by a straightforward variation on the proof of Theorem 4.1. Following the procedure of
Section 9, a finite nd-automaton for the ã can be derived from the defining differential equations.
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It consists of a set of states {sa|a ∈ A}, all with output 0, and with transitions

sa

!"#$b|0 %&!!
a|h(a)

!!

0 ##

sc

(for b ∈ A with b /= a, and c ∈ A with r(a) ∩ r(c) /= ∅)

This automaton represents y, that is, y = max {λ({sa}) | a ∈ A}, which can be easily proved
by—you guessed right—coinduction!!

11 Discussion

We briefly mention some of the work that remains to be done: (1) General formats for behavioural
differential equations, ensuring the existence of a unique solution, should be determined. (Ideally,
one should also be able to tell from the format of the equation whether its solution is rational and,
hence, finitely representable by a nd-automaton.) The definition of such formats will be related to
that of transition system specifications, for instance as described in [GV92] and used in [RT94]. See
also [PE98]. (2) The effectiveness of the coinduction proof principle is to be further investigated, as
well as the minimization of finite representations, to which it is closely related. In [Rut98], we have
shown, for the case of k = IB, that coinduction is an effective proof method for equality of regular
expressions. The proof is based on the observation that a language σ is regular iff the subautomaton
〈σ〉 ⊆ IB〈〈A〉〉 is finite (which amounts to a coalgebraic reformulation of Kleene’s theorem). In the
present setting, this easily generalizes to finite semirings, but more should be said about infinite
semirings as well. (3) The example of the shuffle inverse should be further investigated. For
instance, in control theory, one looks for a controller C such that its parallel composition with a
plant P satisfies a given specification S, that is, P ‖ C ⊆ S. It might be helpful to rewrite this
into C ⊆ P−1 ‖ S. (4) Many more examples of specifications by behavioural differential equations
and the corresponding implementations are needed, in order to get a better understanding of their
usefulness. Notably, other tropical and idempotent semirings, as described in [Gun98], should be
investigated from the present perspective. Another class of examples is to do with probabilistic
nd-transition systems and Markov chains. (5) Finally, applying the universal coalgebraic definition
of bisimulation directly to nd-automata (and not only to deterministic automata as we have done
here) will yield notions of equivalence that have an interest in their own right. For instance, taking
k = IR gives a notion of bisimulation that is (under conditions) probabilistic bisimulation [LS91],
treated coalgebraically in [dVR97]; see [Fuj98] for another example.
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