
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

GENERALIZED LR PARSING ALGORITHM
FOR BOOLEAN GRAMMARS

ALEXANDER OKHOTIN∗

Department of Mathematics, University of Turku, Turku FIN–20014, Finland
alexander.okhotin@utu.fi

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

The generalized LR parsing algorithm for context-free grammars is extended for
the case of Boolean grammars, which are a generalization of the context-free grammars
with logical connectives added to the formalism of rules. In addition to the standard LR
operations, Shift and Reduce, the new algorithm uses a third operation called Invalidate,
which reverses a previously made reduction. This operation makes the mathematical
justification of the algorithm significantly different from its prototype. On the other
hand, the changes in the implementation are not very substantial, and the algorithm
still works in time O(n4).

Keywords: Boolean grammars, language equations, conjunctive grammars, parsing, LR,
bottom-up, shift–reduce.

1. Introduction

The generalized LR parsing was introduced in 1986 by Tomita [18, 19] as a
polynomial-time method of simulating nondeterminism in standard Knuth’s LR [7].
Every time a deterministic LR parser is faced with a choice of actions to perform
(to shift an input symbol or to reduce by one or another rule), a generalized LR
parser performs both actions at the same time, storing all possible contents of
an LR parser’s stack in the form of a graph. Although the number of possible
computations of a nondeterministic LR parser can exponentially depend on the
length of the input, the compact graph-structured representation always contains
O(n) vertices and therefore fits in O(n2) memory. If carefully implemented, the
algorithm is applicable to every context-free grammar, and its complexity can be
bounded by a polynomial of a degree as low as cubic [6].

Initially, the algorithm was proposed with linguistic applications in view [18, 19],
and in the recent years there has been a growing interest in the use of this method for

∗Supported by the Academy of Finland under grant 206039.
Present address: Research Group on Mathematical Linguistics, Department of Romance Philology,
Rovira i Virgili University, 1 Placa de la Imperial Tàrraco, Tarragona 43005, Spain.

1

software engineering [2]. In particular, efficient implementation techniques are being
researched [3, 8], application-oriented parser generators are being implemented [8],
and some extensions to the algorithm motivated by applications are considered [4].

The engineering approach to extending the applicability of LR parsers lies in
equipping them with certain kludges to implement some behaviour that cannot be
expressed or is inconvenient to express in the formalism of context-free grammars.
The control over the added machinery is then given to the user in the form of
additional instructions to the parser included together with a context-free grammar.
For instance, Salomon and Cormack [15] thus implemented a very particular form
of negation in Knuth’s LR, while van der Brand et al. [4] extended their technique
and obtained a form of negation in the framework of generalized LR parsing. This
work makes apparent the insufficiency of a context-free grammar as a mathematical
model to the respective engineering tasks.

The goal of the present paper is to apply the ideas of generalized LR pars-
ing to construct a practically useful parsing algorithm for a theoretically defined
family of formal grammars: namely, for Boolean grammars recently introduced by
the author [13]. Boolean grammars are context-free grammars augmented with
Boolean operations in the formalism of rules, which, for instance, allows one to
specify negation of syntactical conditions in the most natural way. This increase in
expressive power does not lead to a complexity blowup: the languages generated by
Boolean grammars are contained in DTIME(n3) ∩DSPACE(n). Boolean gram-
mars can specify many abstract non-context-free languages, such as {anbncn|n > 0},
{ww |w ∈ {a, b}∗} and {a2n |n > 0}, the latter being outside of the Boolean closure
of the context-free languages. Another evidence of their expressive power is given
by a fairly compact grammar for the set of well-formed programs in a simple model
programming language [14], which is the first specification of any programming lan-
guage by a formal grammar from a computationally feasible class. The generalized
LR algorithm presented in this paper allows one to convert this particular gram-
mar to a square-time correctness checker. The algorithm has been implemented in
an ongoing parser generator project [11], and such a correctness checker has been
successfully produced out of that Boolean grammar.

The new algorithm is partially based upon the author’s earlier attempt to extend
the applicability of the Generalized LR to conjunctive grammars [10]. Conjunctive
grammars [9] are, to put it simply, context-free grammars with added conjunction,
or, in other words, Boolean grammars without negation. Their expressive power is
still quite greater than that of the context-free grammars. Generalized LR parsing
can be extended to these grammars rather straightforwardly, and its worst-case
complexity is still only cubic [10].

Extending the Generalized LR algorithm to Boolean grammars presents new
challenges associated with the negation. The most interesting quality of the pro-
posed algorithm is that the negation is implemented by removing arcs from the
graph-structured stack. In terms of the theory of parsing schemata [17], this means
that atomic items can be not only gained, but also lost, and regained back, etc. This
is a clear departure from the paradigm of parsing as deduction [16]. Establishing

2

the correctness of a parsing algorithm that behaves in such an uncommon way is a
new task to be solved. We shall see how this can be done.

After a short introduction to Boolean grammars given in Section 2, the LR pars-
ing table for the new algorithm is defined in Section 3. In Section 4, a high-level
description of the algorithm is given, which abstracts from some details of its im-
plementation. The description is followed by an example (Section 5), which serves
as an introduction to the proof of correctness. A negligible subclass of Boolean
grammars, to which the algorithm is not applicable, is characterized in Section 6,
and the correctness proof in Section 7 shows that the algorithm works correctly
on every grammar not from this subclass. Grammars from the prohibited subclass
can be used after some initial transformations. The earlier omitted implementation
details are defined in Section 8: it is shown that the most obvious implementation
can use exponential time, but a slightly different technique leads to an O(n4) com-
plexity upper bound. An attempt to relate this unconventional parsing method to
the theory of parsing schemata is made in Section 9. In the concluding Section 10,
the contribution is summarized and some research directions are proposed.

2. Boolean grammars

Boolean grammars are context-free grammars augmented with propositional
connectives. In addition to the implicit disjunction represented by multiple rules
for a single nonterminal, which is the only logical operation expressible in context-
free grammars, Boolean grammars include explicit conjunction and negation in the
formalism of rules.
Definition 1 A Boolean grammar [13] is a quadruple G = (Σ, N, P, S), where
Σ and N are disjoint finite nonempty sets of terminal and nonterminal symbols
respectively; P is a finite set of rules of the form

A → α1& . . . &αm&¬β1& . . . &¬βn (m + n > 1, αi, βi ∈ (Σ ∪N)∗), (1)

while S ∈ N is the start symbol of the grammar. For each rule (1), the objects A →
αi and A → ¬βj (for all i, j) are called conjuncts, positive and negative respectively.
A conjunct with unknown sign can be denoted A → ±γ, which means “A → γ or
A → ¬γ”. Let conjuncts(P) be the sets of all conjuncts, let uconjuncts(P) =
{A → γ |A → ±γ ∈ conjuncts(P)}.

A Boolean grammar is called a conjunctive grammar [9], if negation is never
used, i.e., n = 0 for every rule (1); it degrades to a standard context-free grammar
if neither negation nor conjunction are allowed, i.e., m = 1 and n = 0 for all
rules. Assume, without loss of generality, that there is a positive conjunct in every
rule, i.e., m > 1 in every rule (1). Let us adopt a commonly used short notation
A → ϕ1 | . . . | ϕn for n rules A → ϕi of the form (1) for a single a nonterminal A.

Intuitively, a rule (1) can be read as “if a string satisfies the syntactical condi-
tions α1, . . . , αm and does not satisfy any of the syntactical conditions β1, . . . , βn,
then this string satisfies the condition represented by the nonterminal A”. This
intuitive interpretation is not yet a formal definition, but this understanding is suf-

3

ficient to construct grammars. Following is an example of a Boolean grammar for
a simple non-context-free language.
Example 1 Let Σ = {a, b, c} and N = {S,A, C, D, E}, and consider the following
set of nine rules:

S → AD&¬EC

A → aA | ε

C → cC | ε

D → bDc | ε

E → aEb | ε

This grammar generates the language L = {ambncn |m,n > 0, m 6= n}.
Indeed, the nonterminals A, C, D and E have only context-free rules and hence

are assumed to generate the languages a∗, c∗, {bici | i > 0} and {aibi | i > 0},
respectively, and then the rule for S specifies the language

a∗ · {bici | i > 0} ∩ {aibi | i > 0}) · c∗ = {ambncn |m,n > 0, m 6= n}

If the negation were omitted in the rule for S, the grammar would be conjunctive
[9] and would generate the language L′ = {anbncn | n > 0}.

Though this common-sense interpretation is clear for “reasonably written”
Boolean grammars, the use of negation can, in general, lead to logical contradictions,
and for that reason the task of defining a mathematically sound formal semantics
for Boolean grammars is far from being trivial. The existing definition of Boolean
grammars [13] is based upon representing a grammar as a system of language equa-
tions with concatenation, union, intersection and complementation, similarly to the
well-known characterization of the context-free grammars due to Ginsburg and Rice
[5], which uses language equations with concatenation and union only.
Definition 2 Let G = (Σ, N, P, S) be a Boolean grammar. The system of language
equations associated with G is a system over Σ in variables N = {A1, . . . , An},
resolved with respect to these variables and containing the following equations:

Ak =
⋃

Ak→α1&...&αm&¬β1&...&¬βn∈P

[m⋂

i=1

αi ∩
n⋂

j=1

βj

]
(for all Ak ∈ N) (2)

A vector of languages L = (L1, . . . , Ln) is a solution of this system if a substitution
of Lk for Ak for all k turns each equation in (2) into an equality.
Example 2 The grammar from Example 1 has the following associated system:

S = AD ∩ EC

A = aA ∪ {ε}
C = cC ∪ {ε}
D = bDc ∪ {ε}
E = aEb ∪ {ε}

The unique solution of this system is S = {ambncn | m,n > 0, m 6= n}, A = a∗,
C = c∗, D = {bici | i > 0}, E = {aibi | i > 0}).

4

In general, systems of language equations of the form (2) have a high expressive
power and the associated undecidability results [12]. The class of languages rep-
resented by their unique solutions is exactly the class of recursive languages, and
the way these languages are represented does not well correspond to the intuitive
semantics of Boolean grammars defined above. However, a certain restriction upon
these equations leads to a feasible semantics for Boolean grammars.
Definition 3 A vector L = (L1, . . . , Ln) is called a naturally reachable solution of
(2) if for every finite substring-closed M ⊆ Σ∗ and for every string u /∈ M (such
that all proper substrings of u are in M) every sequence of vectors of the form

L(0), L(1), . . . , L(i), . . . (3)

(where L(0) = (L1 ∩M, . . . , Ln ∩M) and every next vector L(i+1) 6= L(i) in the se-
quence is obtained from the previous vector L(i) by substituting some j-th component
with ϕj(L(i)) ∩ (M ∪ {u})) converges to

(L1 ∩ (M ∪ {u}), . . . , Ln ∩ (M ∪ {u})) (4)

in finitely many steps regardless of the choice of components at each step.
The unique solution of the system in Example 2 is naturally reachable. To

illustrate Definition 3, let us show how the solution modulo {ε} of that system is
uniquely determined according to this definition, for M = ∅ and u = ε. The initial
vector in the sequence (3) is L(0) = (∅,∅,∅,∅,∅). At the first step one can choose
any of the last four components, substitute L(0) into it and obtain {ε} in all four
cases. One cannot choose S at the first step, because (AD ∩ EC)(L(0)) = ∅ =
S(L(0)). These four choices, as well as all possible continuations of the sequence,
are shown in Figure 1. The majority of these sequences converge to the unique
solution modulo {ε}, L′ = (∅, {ε}, {ε}, {ε}, {ε}), in four steps, and these sequences
differ only in the order in which ε is added to A, C, D and E.

Figure 1: Computing the naturally reachable solution in Example 1, M = ∅, u = ε.

However, the sequence can proceed differently: if ε is added to A and D before E

and C, such as in the vector L(2) = (∅, {ε},∅, {ε},∅), then ε ∈ (AD ∩ EC)(L(2)),
and it becomes possible to choose S at this step. The next vector will be
L(3) = ({ε}, {ε},∅, {ε},∅), but, as one can see from Figure 1, the computation
will eventually repair itself and converge to the unique solution modulo {ε}.

For all moduli larger than {ε}, the sequence (3) for this grammar converges
in a much simpler way. Consider the extension from M = {ε} to M ∪ {a}: the

5

sequence starts from L(0) = (∅, {ε}, {ε}, {ε}, {ε}), only A can be chosen at the first
step, which gives L(1) = (∅, {ε, a}, {ε}, {ε}, {ε}). At the second step, only S can
be chosen, and the resulting vector L(2) = ({a}, {ε, a}, {ε}, {ε}, {ε}) is the solution
modulo {ε, a}.

Proceeding in this way, the language generated by the grammar is defined.
Definition 4 Let G = (Σ, N, P, S) be a Boolean grammar and assume that the
associated system of language equations has a naturally reachable solution; let
(L1, . . . , Ln) be this solution. The language LG(Ai) generated by every i-th non-
terminal A is defined as Li, while the language generated by the grammar is
L(G) = LG(S).

Despite the increased descriptive power, the theoretical upper bound for the
parsing complexity for Boolean grammars is still O(n3) [13], the same as in the
context-free case, which is obtained by an extension of the Cocke–Kasami-Younger
algorithm. This algorithm uses cubic time for every language generated by a
Boolean grammar and on every input, and it requires that the grammar is trans-
formed to the following extension of Chomsky normal form [13]:
Definition 5 A Boolean grammar G = (Σ, N, P, S) is in the binary normal form
if every rule in P is of the form

A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DnEn&¬ε (m > 1, n > 0)

A → a

S → ε (only if S does not appear in right-hand sides of rules)

Though every Boolean grammar can be effectively transformed to this form
[13], the transformation is more difficult than in the context-free case, and thus it
is particularly important to have an algorithm that in most cases will not require
initial transformation of a grammar. Also, for a practical use it is crucial that an
algorithm uses less than worst-case time on large classes of “easy” grammars. These
requirements are met by the context-free generalized LR [18], and we shall see that
Boolean generalized LR algorithm constructed in this paper meets them as well.

3. The parsing table

Let us begin defining the generalized LR parsing algorithm for Boolean gram-
mars from its parsing table. It is generally the same as in the deterministic context-
free case [1, 7], but it still requires a new construction.

Each algorithm from the LR family is guided by a parsing table constructed
with respect to a grammar. For every state from a finite set of states Q and for
each lookahead string from Σ6k (where Σ6k is defined as {w | w ∈ Σ∗, |w| 6 k}),
the parsing table provides the parser with the action to perform: whether to shift
the next input symbol or to reduce by a certain rule. There exists a great vari-
ety of different table construction techniques for Knuth’s deterministic algorithm,
applicable to slightly different classes of grammars and yielding tables of different
size. But already in the case of Tomita’s nondeterministic algorithm, the difference

6

between these methods is not very essential. Let us adapt the simplest of them,
SLR(1) [1], for the case of Boolean grammars.

The first step is to construct a deterministic finite automaton over the alphabet
Σ ∪N , called the LR(0) automaton, which recognizes the bodies of grammar rules
in the stack. In our case this step is the same as in the context-free case. While
in the context-free case the states of the LR(0) automaton are sets of dotted rules,
dotted unsigned conjuncts are used in the case of Boolean grammars:
Definition 6 Let G = (Σ, N, P, S) be a Boolean grammar. A → α · β is called a
dotted conjunct, if the grammar contains a conjunct A → ±αβ. Let dc(P) denote
the (finite) set of all dotted conjuncts.

Let the set of states be Q = 2dc(P) ∪ {qacc}. In order to define the initial state
and the transitions between states, the functions closure and goto are used. They
are defined as in the standard context-free LR theory [1], with the only difference
that the objects they deal with are called conjuncts rather than rules.

For every set of dotted conjuncts X and for every s ∈ Σ ∪N , define

goto(X, s) = {A → αs · β |A → α · sβ ∈ X}

Next, closure(X) is defined as the least set of dotted conjuncts that contains X

and satisfies the condition that for each A → α · Bγ ∈ closure(X) (where α, γ ∈
(Σ ∪ N)∗, B ∈ N) and for each conjunct B → ±β ∈ conjuncts(P) it holds that
B → ·β ∈ closure(X).

Define the initial state of the automaton as

q0 = closure
({S → ·σ | S → ±σ ∈ conjuncts(P)}),

while the transition from a state q ⊆ dc(P) by a symbol s ∈ Σ ∪ N is defined as
follows:

δ(q, s) = closure(goto(q, s)).

If closure(goto(q0, S)) = ∅, this transition is redefined as δ(q0, S) = qacc. The
state ∅ ⊂ dc(P) is an error state and will be denoted by −. Note that, in the
terminology of Aho, Sethi and Ullman [1], δ(q, a) = q′ (a ∈ Σ) is expressed as
“Action[q, a] = Shift q′”, while δ(q,A) = q′ (A ∈ N) means “Goto(q,A) = q′”.

The finite automaton constructed so far recognizes the bodies of the conjuncts,
providing the pertinent information in the states it computes. The other component
of an LR automaton, the reduction function, decodes this information from the
numbers of the states and reports which rules can be applied. Some additional
terminology is needed to define this function.

For every string w, define

Firstk(w) =
{

w, if |w| 6 k
first k symbols of w, if |w| > k

This definition is extended to languages as Firstk(L) = {Firstk(w) | w ∈ L}.
In the case of the context-free SLR(k), the reduction function is constructed

using the sets Followk(A) ⊆ Σ6k (A ∈ N) that specify the possible continuations

7

of strings generated by a nonterminal A. This is formalized by context-free deriva-
tions: u ∈ Followk(A) means that there exists a derivation S =⇒∗ xAy, such that
Firstk(y) = u. The corresponding notion for the case of Boolean grammars is, in
the absence of derivation, somewhat harder to define:
Definition 7 Let us say that u ∈ Σ∗ follows B ∈ N if there exists a number
` > 0 and a sequence of conjuncts A0 → ±α1A1β1, A1 → ±α2A2β2, . . . , A`−1 →
±α`A`β`, such that A0 = S, A` = B and u ∈ LG(β` . . . β1).

Now, for every nonterminal A ∈ N , define Firstk(A) = Firstk(LG(A)) and
Followk(A) = {Firstk(u) | u follows A}. Already for conjunctive grammars there
cannot exist an algorithm to compute the sets Firstk and Followk precisely
[10]: this is an easy consequence of the undecidability of the emptiness problem
[9]. However, since the LR algorithm uses the lookahead information solely to
eliminate some superfluous reductions, if the sets Firstk(A) and Followk(A)
are replaced by some of their supersets, the resulting LR parser will still work,
though it will have to spend extra time doing some computations that will not
influence the result. Following are the algorithms for constructing suitable supersets
Pfirstk(A) ⊇ Firstk(A) and Pfollowk(A) ⊇ Followk(A).
Algorithm 1 Let G = (Σ, N, P, S) be a Boolean grammar compliant to the seman-
tics of naturally reachable solution. Let k > 0. For all s ∈ Σ ∪N , compute the set
Pfirstk(A), so that u ∈ LG(s) implies Firstk(u) ∈ Pfirstk(s).

let Pfirstk(A) = ∅ for all A ∈ N ;
let Pfirstk(a) = {a} for all a ∈ Σ;
while new strings can be added to 〈Pfirstk(A)〉A∈N

for each A → s11 . . . s1`1& . . . &sm1 . . . sm`m&¬β1& . . . &¬βn ∈ P

Pfirstk(A) = Pfirstk(A)∪
∪ ⋂m

i=1 Firstk
(
Pfirstk(si1) · . . . ·Pfirstk(si`i)

)
;

Note that the algorithm completely ignores negative conjuncts, effectively using
a conjunctive grammar

G+ = (Σ, N, {A → α1& . . . &αm |A → α1& . . . &αm&¬β1& . . . &¬βn ∈ P}, S)

instead of G. It is easy to see that LG(A) ⊆ LG+(A) for every A ∈ N . For the
case of conjunctive grammars [10] it is known that if u ∈ LG+(s), then Firstk(u) ∈
Pfirstk(s), which immediately implies the correctness of Algorithm 1.
Algorithm 2 For a given Boolean grammar G compliant to the semantics of nat-
urally reachable solution and for k > 0, compute the sets Pfollowk(A) for all
A ∈ N , so that if u follows A, then Firstk(u) ∈ Pfollowk(A).

let Pfollowk(S) = {ε};
let Pfollowk(A) = ∅ for all A ∈ N \ {S};
while new strings can be added to 〈Pfollowk(A)〉A∈N

for each B → β ∈ uconjuncts(P)
for each factorization β = µAν, where µ, ν ∈ V ∗ and A ∈ N

Pfollowk(A) = Pfollowk(A)∪
∪Firstk

(
Pfirstk(ν) ·Pfollowk(B)

)
;

8

Proof of correctness.. One needs to show that whenever u follows A, Firstk(u) is
added to Pfollowk(A) at some point of the computation of the algorithm. The
proof is by induction on the length ` of the sequence of conjuncts from Definition 7.

Basis ` = 0. Then A = S and u = ε, and ε is added to Pfollowk(S) by the
first statement of the algorithm.

Induction step. Suppose there exists a sequence of conjuncts Ai →
±αi+1Ai+1βi+1 (0 6 i < `), where A0 = S, A` = B and u ∈ LG(β` . . . β1). Then
there exists a factorization u = xy, such that x ∈ LG(β`) and y ∈ LG(β`−1 . . . β1).
According to Algorithm 1, Firstk(x) ∈ Pfirstk(β`). By the induction hypoth-
esis, Firstk(y) is added to Pfollowk(B) at some point. Then, at this point,
Firstk(u) = Firstk(Firstk(x) ·Firstk(y)) ∈ Firstk(Pfirstk(β`) ·Pfollowk(B)),
and hence Firstk(u) is added to Pfollowk(A) next time the conjunct A`−1 →
±α`A`β` and the factorization α`A`β` = α` ·A` · β` are considered. 2

The sets Pfollowk(A) are then used to define the reduction function R :
Q × Σ6k → 2uconjuncts(P), which tells the conjuncts recognized in a given state
if the unread portion of the string starts with a given k-character string. In the
SLR(k) table construction method, it is defined as follows:

R(q, u) = {A → α |A → α· ∈ q, u ∈ Pfollowk(A)}
for every q ∈ Q and u ∈ Σ6k. In the notation of Aho, Sethi and Ullman [1],
A → α ∈ R(q, u) means “Action[q, u] = Reduce A → α”, assuming A → α ∈ P .
As in the context-free case, the states from Q \ {−} can be enumerated with con-
secutive numbers 0, 1, . . . , |Q| − 1, where 0 refers to the state q0.

This completes the construction of the SLR(k) table for the case of Boolean
grammars, which is a straightforward generalization of the context-free and the
conjunctive case. The differences of the parsing algorithm itself from its prototype
are much more substantial.

4. The algorithm

The new LR parsing algorithm for Boolean grammars is a generalization of
the corresponding algorithm for conjunctive grammars [10], which is in turn based
upon a variant of Tomita’s algorithm [19] for context-free grammars. This section
gives a general description of the new algorithm, emphasizing its difference from
its prototypes. The common aspects of the three algorithms will be presented
uniformly, while the crucially different part, the way of doing reductions, will be
presented in three versions: for the context-free case, for the conjunctive case and
for the Boolean case.

To begin with, all three algorithms share a common data structure: the graph-
structured stack, introduced by Tomita [19] as a compact representation of the
contents of the linear stack of Knuth’s LR algorithm in all possible branches of
a nondeterministic computation. The graph-structured stack is an oriented graph
with a designated source node. The nodes are labelled with states of an LR au-
tomaton (such as the SLR(k) automaton constructed in the previous section), of
which the source node is labelled with the initial state. The arcs are labelled with

9

symbols from Σ∪N . There is a designated nonempty collection of nodes, called the
top layer of the stack. Every arc leaving one of these nodes has to go to another
node in the top layer. The labels of these nodes should be pairwise distinct, and
hence there can be at most |Q| top layer nodes.

Figure 2: Sample contents of the graph-structured stack.

Consider the graph in Figure 2: the leftmost node labelled 0 is the source node;
the three rightmost nodes labelled 5, 2 and 6 are assumed to form the top layer.
There is another node labelled 2 (the predecessor of 5), which is not in the top layer.

Initially, the stack contains a single source node, which at the same time forms
the top layer. The computation of the algorithm is an alternation of reduction
phases, in which the arcs going to the top layer are manipulated without consuming
the input, and shift phases, where a single input symbol is read and consumed, and
a new top layer is formed as a successor of the former top layer.

The shift phase is done identically in all three algorithms. Let a be the next
input symbol. For each top layer node labelled with a state q, the algorithm looks
up the entry δ(q, a) in the transition table. If δ(q, a) = q′ ∈ Q, then a new node
labelled q′ is created and q is connected to q′ with an arc labelled a; this action is
called Shift q′. If δ(q, a) = −, no new nodes are created; let us call this condition a
local error. The nodes created during a shift phase form the new top layer of the
graph, while the previous top layer nodes become regular nodes. The branches of
the graph-structured stack that do not get extended to the new top layer (due to
local errors during the shift phase) are removed; if this is the case for all the nodes,
then the entire graph is effectively deleted, and the algorithm terminates, reporting
a syntax error.

Consider the example in Figure 3(a). Before the shift phase the top layer con-
tains the nodes 1, 2, 3 and 4. Since δ(1, a) = 5, δ(2, a) = − and δ(3, a) = δ(4, a) = 6,
a new top layer formed of 5 and 6 is created, while 2 and its predecessors that be-
came disconnected from the new top layer are accordingly removed from the stack.

The reduction phase in each of the cases amounts to doing some uniform trans-
formations of the top layer until the stack comes to a stable condition, that is, no
further transformations are applicable. The difference between the three algorithms
is in the particular transformations used.

In the context-free case [19], the only operation is reduction. Let u ∈ Σ6k be
the current lookahead string and suppose there exists a top layer node q, a node q′

and a rule A → α, such that A → α ∈ R(q, u) and q′ is connected to q by a path
α. Then the algorithm can perform the operation “Reduce A → α” at q′, adding a

10

Figure 3: (a) Shifting; (b) Reductions in context-free and (c) conjunctive cases.

new arc labelled by A, which goes from q′ to a top layer node labelled q′′ = δ(q′, A).
If there is no node q′′ in the top layer, it is created. This is shown in Figure 3(b).

In the conjunctive case [10], reduction is still the only operation. However,
now rules may consist of multiple conjuncts, and, accordingly, the condition of
performing a reduction can now have multiple premises. Let A → α1& . . . &αm be
a rule, let q be a node and let q1, . . . , qm be top layer nodes, such that, for all j,
A → αj ∈ R(qj , u) and q is connected to each qj by a path αj . Then the operation
“Reduce A → α1& . . . &αm” can be done, adding a new nonterminal arc A from q

to a top layer node δ(q,A), as illustrated in Figure 3(c).
The case of Boolean grammars is more complicated. There are two operations:

reduction, which is the same as in the previous cases, but with yet more complicated
conditions, which can now have negative premises, and invalidation, which means
removing an arc placed by an earlier reduction. In order to reduce by a rule A →
α1& . . . &αm&¬β1& . . . &¬βn from a node q, this q should be connected to the
top layer by each of the paths α1, . . . , αm and by none of the paths β1, . . . , βn;
nonexistence of paths is shown in Figure 4(left) by dotted lines ending with crosses.
Then the algorithm performs “Reduce A → α1& . . . &αm&¬β1& . . . &¬βn”, adding
an arc labelled A from q to δ(q, A) in the top layer.

Figure 4: Reduction phase for Boolean grammars: (a) Reduce and (b) Invalidate.

Invalidation is the opposite of reduction. Suppose there exists a node q and an
arc labelled by A from q to a node in the top layer, such that the conditions for
making a reduction by any rule for A from the node q are not met, i.e., for every
rule A → α1& . . . &αm&¬β1& . . . &¬βn for A either for some i there is no path from
q to the top layer labelled αi, or for some j there exists a path from q to the top
layer with the labels forming βj . Then the earlier reduction (which added this A

arc to the graph) has to be invalidated, by removing the arc from q to the top layer

11

node δ(q, A). Note that an invalidation of an arc can make the graph disconnected.
Let us note that in the case of context-free and conjunctive grammars, in the

absence of negation, arcs can only be added, and the conditions for invalidation
would never hold. On the other hand, if there is a negation, then a reduction by a
rule A → α&¬β at a node q can be made at the time when there is a path α from q

to the top layer, but there is no path β; however, subsequent reductions may cause
this path β to appear, rendering the earlier reduction invalid. Also, subsequent
invalidations may cause the path α to disappear, which would also qualify the arc
A for invalidation. This is something that does not have an analogue in LR parsing
for grammars without negation.

The reduction phase as a whole is defined by the following nondeterministic
procedure:

while any reductions or invalidations can be done
arbitrarily choose a nonempty set of reductions/invalidations to do
add/remove these arcs simultaneously

This nondeterministic behaviour leaves open a dangerous possibility of nondeter-
ministic results, i.e., that different computations might construct different graphs.
Also, if two possible actions are being done at once, one of them can change the
graph-structured stack so that the conditions for making the other no longer hold.
The termination of the procedure can also be doubted. Though this definition
arouses natural suspicions regarding its validity, in Section 7 below the correctness
of the algorithm will be proved for any possible choice of reductions and invalida-
tions at every step, under certain very weak assumptions on the grammar.

One possible implementation of the reduction phase is to do just one action at
once; this is the obvious approach, yet, as we shall see, it can theoretically lead to
an exponential time complexity. The implementation described in Section 8 does
all valid reductions and invalidations at every step, which allows one to prove a
polynomial complexity upper bound.

Except for these significant differences in the reduction phase, the three algo-
rithms are the same in all other respects. Following is the general schedule of
generalized LR parsing:

Input: a string w = a1 . . . an.
Let the stack contain a single node x labelled q0, let the top layer be {x}.
do the Reduction phase using lookahead Firstk(w)
for i = 1 to n

do the Shift phase using ai

if the top layer is empty, then Reject
do the Reduction phase using lookahead Firstk(ai+1 . . . an)
remove the nodes unreachable from the source node

if there is an arc S from the source node to δ(q0, S) in the top layer, then
Accept

else
Reject

12

δ R
States as elements of 2dc(P) ∪ {qacc} a S A ε a

{S → ·A, S → ·aS, A → ·aA, A → ·} 0 1 5 2 A → ε
{S → a · S, A → a ·A,

S → ·A, S → ·aS, A → ·aA, A → ·} 1 1 3 4 A → ε

{S → A·} 2 S → A

{S → aS·} 3 S → ¬aS

{S → A·, A → aA·} 4
S → A
A → aA

qacc 5

Table 1: The LR table for the grammar from Example 3.

5. Example

Many different grammars could be taken to illustrate the algorithm. If one aims
to give a convincing example of the algorithm’s clarity and feasibility, one can take
any reasonably written grammar for some known non-context-free language, such
as the grammar in Example 1, and trace its execution on a short input string. The
resulting operation will not be much different from that in the context-free case,
which would support the claim that the algorithm is well-suited for a practical
use. On the other hand, this kind of demonstration would not give any idea of the
mathematical difficulties that appear in the new algorithm for Boolean grammars.
and would not much help understanding the proof of its correctness.

Because of that, the easy task of trying the algorithm on reasonable grammars
is left to the reader. A short artificial example given in this section is aimed to
attract the reader’s attention to the new aspects of the algorithm associated with
negation, and thus to serve as an introduction to the proof of correctness. This goal
is achieved by using the following strange grammar for a simple regular language.
Example 3 Consider the Boolean grammar

S → A&¬aS

A → aA | ε

over the unary alphabet, which generates the language (aa)∗. Fix k = 1 and use
the method of Section 3 to construct the sets Pfirst1(S) = Pfirst1(A) = {ε, a}
and Pfollow1(S) = Pfollow1(A) = {ε}. The resulting set of six states and the
functions δ and R are given in Table 1; transitions to the seventh state “−” are
denoted by empty squares.

Consider the computation on the string aa. The parser starts from a single
source node, as in Figure 5(a). No reductions are made until the entire input is
consumed (consider that R(q, a) = ∅ for all q), and the contents of the stack before
the final reduction phase is presented in Figure 5(b).

Now, according to the transition table, one S-arc and one A-arc from each of the
three nodes can possibly be added by reduction: these arcs are shown in Figure 5(c).
The arc A[2] can be set by doing a reduction by the rule A → ε, and it does not

13

Figure 5: Contents of the stack: (a) in the beginning; (b) before the last reduction
phase; (c) possible arcs in the last reduction phase; (d) final.

depend upon the rest of the arcs. The arc A[1] is set by a reduction by A → aA,
which can only be done if the arc A[2] is present, and hence there is the required
path aA. The arc A[0] is set by the same rule and requires the presence of A[1].
Turning to the S-arcs, each of them can be set only by S → A&¬aS, since this is
the sole rule for S. The arc S[2] can be set, provided that the arc A[2] is in the graph;
here the negative conjunct has no impact, since the path aS cannot start from the
top layer node 1. On the other hand, the arc S[1] requires both the presence of A[2]

and the absence of S[2]; if the arc S[2] were in the graph, then there would be a path
aS violating the negative conjunct. Similarly, the arc S[0] can be set if and only if
A[0] is present and S[1] is absent. The arc S[0] is responsible for accepting the input.

Consider how can the reduction phase proceed. Initially, none of the dotted arcs
is in the graph. The first action to be done is the reduction by A → ε, since it is
the only reduction that has no prerequisites; this sets the arc A[2]. Next, one can
set either the arc A[1] or the arc S[2]. If it is the arc S[2] that is set at this point,
then it is easy to see that the computation proceeds by setting the arcs A[1], A[0]

and S[0] is this exact order, which concludes the reduction phase. Note that the arc
S[1] cannot be set, since there is a path aS containing the arc S[2] that prohibits
that. The final contents of the graph is given in Figure 5(d).

On the other hand, if the reduction phase proceeds by setting A[2] and A[1],
then it becomes possible to add the arc S[1] instead of S[2]. This can lead to a
configuration of the arcs A[2], A[1], A[0] and S[1]. The only thing the algorithm can
do at this point is to set the arc S[2]. Then the condition of existence of the arc
S[1] is violated, and the only possible next action is the invalidation of S[1]. After
that the algorithm can do the final reduction, setting the arc S[0] and arriving at
the same graph shown in Figure 5(d).

These are not all possible cases. Since, according to the definition of the re-
duction phase, several reductions and invalidations can be done simultaneously,
following is another valid sequence of operations: reduce A[2]; reduce A[1]; reduce
A[0]; reduce S[1] and reduce S[0] in parallel; invalidate S[0] and reduce S[2] in parallel;
invalidate S[1]; reduce S[2]. The resulting graph is again the same as in Figure 5(d).

Having had a look at this example, one is likely to develop doubts about the

14

algorithm’s soundness. Why should this procedure always terminate? Are the
results consistent for different choices of reductions and invalidations? How does
this computation correspond to the original Boolean grammar, or, in other words, to
a system of language equations? In the next section we shall see that, except for an
insignificant class of prohibited grammars, the algorithm always works consistently
and determines the membership of strings in the language correctly.

6. Domain of applicability

One class of Boolean grammars on which the algorithm works correctly are
the grammars in the binary normal form. This, in particular, implies that every
language generated by a Boolean grammar can be parsed using this algorithm.
Another case where the algorithm surely works is the case of grammars without
negation, the conjunctive grammars [9]: here the parsing will proceed without using
invalidations, and the addition of arcs will correspond to derivations in a grammar
[10].

However, when chain dependencies represented by unit conjuncts are combined
with negation, the algorithm can go astray and either report inconsistent results for
different computations, or enter an infinite loop in one of the computations. Before
formulating a sufficient condition of the algorithm’s applicability, let us consider the
representative problematic cases.
Example 4 (Inconsistent computations) Consider a Boolean grammar

S → S | a&¬aE

E → ε

which generates the language ∅. The corresponding LR parser has both an accepting
and a rejecting computation on the input a.

Figure 6: (a) Inconsistency in Example 4; (b) Nontermination in Example 5.

The case is simple enough to omit the parsing table. The form of the graph-
structured stack during the second and the last reduction phase is shown in
Figure 6(a). Two reductions are possible in the beginning: by E → ε or by
S → a&¬aE; the outcome of the computation depends upon the first reduction
done. If it is by the rule E → ε, then the reduction by S → a&¬aE becomes im-
possible, the reduction phase terminates and the parser rejects the input. However,

15

if the reduction by the rule S → a&¬aE takes place before the reduction by E → ε,
then the arc labelled S cannot be invalidated, because its presence is now justified
by the rule S → S.

Note that the grammar given in Example 4 belongs to the subclass of stratified
Boolean grammars introduced by Wrona [20], in which negation cannot be iterated.
The next example uses iterated negation to express a contradiction, which can lead
the parser into a hopeless infinite search for a solution.
Example 5 (Nonterminating computation) The Boolean grammar

T → ¬T&S

S → S | a&¬aE

E → ε

with the start symbol T generates the language ∅. The corresponding LR parser
can go into an infinite loop on the input a.

The nonterminals S and E are as in the previous example, T is the new start
symbol. If the first reduction is by E → ε, then the reduction by S → a&¬aE will
be blocked. In the absence of the arc S, the contradiction expressed in the rule
for T will not take effect. However, if the first reduction in by S → a&¬aE, then
the reduction by T → ¬T&S becomes possible. Once the arc T is added to the
stack, it violates its own condition of existence, and the algorithm proceeds with
invalidating this arc. The computation proceeds infinitely by alternating reductions
and invalidations of the arc T .

In both cases the essential cause of incorrect behaviour is a circular dependence of
a nonterminal upon itself (represented by the rule S → S) combined with a negative
dependence of this nonterminal on something. Let us formalize this condition.
Definition 8 Let G be a Boolean grammar, and let G+ = (Σ, N, P+, S) be a con-
junctive grammar with the set of rules

P+ = {A → α1& . . . &αm |A → α1& . . . &αm&¬β1& . . . &¬βn ∈ P}

Let Nullable(G+) = {A | ε ∈ LG+(A)}.
A sequence of conjuncts A1 → ±η1A2θ1, A2 → ±η2A3θ2, . . .A` → ±η`A`+1θ`

such that ` > 1 and ηi, θi ∈ (Nullable(G+))∗ is called a chain from A1 to A`+1. A
cycle is a chain from a nonterminal to itself. If the condition ηi ∈ (Nullable(G+))∗,
is lifted, while the rest of the conditions remain (including the requirement that
θi ∈ (Nullable(G+))∗ for all i), the sequence is called a right-chain from A1 to
A`+1.
Definition 9 Let G be a Boolean grammar and let a nonterminal A have a chain
to itself. This cycle is said to be negatively fed by a right-chain, if there exists
a right-chain from A to a nonterminal B, such that some rule for B contains a
negative conjunct. In the following, a cycle negatively fed by a right-chain will be
referred as just a negatively fed cycle.

The grammars from Examples 4 and 5 each have a cycle from S to S negatively
fed by the conjunct S → ¬A.

16

The use of negatively fed cycles does not give any extra expressive power to a
Boolean grammar. They can be effectively removed from a grammar, for instance,
by transforming the grammar to the binary normal form. From the practical point
of view, a negatively fed cycle is something unnatural, which one would not typically
write, unless aiming to produce a counterexample for this algorithm, and avoiding
such cycles can be regarded as a matter of writing a grammar properly. So there is
hardly any loss of generality in the assumption that a grammar does not have such
cycles.

In addition, this assumption guarantees that the semantics of a grammar is
well-defined.
Theorem 1 Every Boolean grammar without negatively fed cycles complies to the
semantics of naturally reachable solution. Furthermore, for every M and w, as in
Definition 3, there exists a monotone sequence (3), in which the string w is only
added to the components of the vector and is never removed.

The proof is by reduction to a system of Boolean equations. Let us first define
the corresponding restriction on Boolean equations.
Definition 10 Let f(x1, . . . , xn) be a Boolean function of n variables (i.e.,
f : Bn → B). A variable xi is said to be an essential variable of
f , if f(c1, . . . , ci−1, 0, ci+1, . . . , cn) 6= f(c1, . . . , ci−1, 1, ci+1, . . . , cn) for some
c1, . . . , ci−1, ci+1, . . . , cn ∈ B.
Definition 11 Let xi = fi(x1, . . . , xn) (1 6 i 6 n) be a system of Boolean equa-
tions. A sequence of variables xi1 , . . . , xi`+1 (` > 1), such that xij+1 is an essential
variable in fij for all j (1 6 j 6 `), is called a chain from xi1 to xi`+1 . A cycle is a
chain from a variable to itself. It is said to be negatively fed, if there exists a chain
from some xij to a variable xk, such that fk is not a monotone function.

The following lemma on Boolean equations contains the main idea of the proof
of Theorem 1. This lemma will also be used later in the proof of the algorithm’s
correctness.
Lemma 1 Let xi = fi(x1, . . . , xn) (1 6 i 6 n) be a system of Boolean equations
without negatively fed cycles. Consider any sequence of Boolean vectors

(b(0)
1 , . . . , b(0)

n), (b(1)
1 , . . . , b(1)

n), . . . , (b(j)
1 , . . . , b(j)

n), . . . , (5)

such that (b(0)
1 , . . . , b

(0)
n) = (0, . . . , 0), and for every j > 0 it holds that:

• There exists a nonempty set {t1, . . . , tp} ⊆ {1, . . . , n} of positions in the vector,
such that b

(j+1)
ti

= fti(b
(j)
1 , . . . , b

(j)
ti−1) (for 1 6 ti 6 n) and b

(j+1)
i = b

(j)
i for all

positions i not in the designated set, and

• (b(j+1)
1 , . . . , b

(j+1)
n) 6= (b(j)

1 , . . . , b
(j)
n),

Then, regardless of the choice of the set of positions at each step, this sequence
converges to a solution of the system in at most 2n steps, and all these sequences
converge to the same solution. If {1, . . . , n} is chosen as a set of positions at every
step, the sequence converges in at most n steps. Also, there exists a particular choice
of sets of positions, such that the sequence (5) increases and converges in at most
n steps.

17

Proof. The absence of negatively fed cycles implies that the variables can be ar-
ranged into two groups, (x1, . . . , x`) and (x`+1, . . . , xn), and the latter group can
be sorted, so that the system of equations can be written as





x1 = p1 (x1, . . . , x`)
...

x` = p` (x1, . . . , x`)
x`+1 = f`+1 (x1, . . . , x`)
x`+2 = f`+2 (x1, . . . , x`, x`+1)
x`+3 = f`+3 (x1, . . . , x`, x`+1, x`+2)

...
xn = fn (x1, . . . , x`, x`+1, x`+2, . . . , xn−1)

(6)

where p1, . . . , p` are monotone Boolean functions (that is, representable by a com-
position of conjunction, disjunction, 0, 1 and the variables), while f`+1, . . . fn are
arbitrary Boolean functions.

The target solution c = (c1, . . . , c`, c`+1, . . . , cn) is defined as follows: (c1, . . . , c`)
is the least solution of the first ` equations in (6), given by ` applications of a vector
function (p1, . . . , p`) to a zero vector, while each of the subsequent ci (` < i 6 n) is
fi(c1, . . . , c`, c`+1, . . . , ci−1). It remains to prove that every sequence (5) converges
to this vector in finitely many steps.

Each of the first ` components of every vector b(j) is less or equal to the cor-
responding component of (c1, . . . , c`), which can be proved by a straightforward
induction on j. Define the following measure of divergence of a vector from the
target solution: this is a mapping τ : Bn → Bn, such that for every Boolean vector
(x1, . . . , xn), τ(x1, . . . , xn) = (y1, . . . , yn), where

y1 = x1 ⊕ c1,
...

y` = x` ⊕ c`,
y`+1 = x`+1 ⊕ f`+1(x1, . . . , x`),
y`+2 = x`+2 ⊕ f`+2(x1, . . . , x`, x`+1),
y`+3 = x`+3 ⊕ f`+3(x1, . . . , x`, x`+1, x`+2)

...
yn = x`+1 ⊕ fn(x1, . . . , x`, x`+1, x`+2, . . . , xn−1)

It is claimed that for every sequence (5) the corresponding sequence
τ(b(0)

1 , . . . , b
(0)
n), . . . , τ(b(k)

1 , . . . , b
(k)
n) decreases with respect to the lexicographical

order.
Let (x1, . . . , xn) be a term of the sequence (5), let (x′1, . . . , x

′
n) be the next term.

Denote (y1, . . . , yn) = τ(x1, . . . , xn) and (y′1, . . . , y
′
n) = τ(x′1, . . . , x

′
n). Let i be the

least number, such that xi 6= x′i. This implies that i is the least number, such that
yi 6= y′i.

If 1 6 i 6 `, then xi = 0 and x′i = ci = 1 by the monotonicity of the first `

components and by the construction of ci; hence yi = 1 and y′i = 0. On the other

18

hand, if ` < i 6 n, then x′i = fi(x1, . . . , xi−1) by the definition of the sequence
(5), and therefore, since xi 6= x′i, yi = xi ⊕ fi(x1, . . . , xi−1) = xi ⊕ x′i = 1, while
y′i = x′i ⊕ fi(x′1, . . . , x

′
i−1) = x′i ⊕ fi(x1, . . . , xi−1) = x′i ⊕ x′i = 0. In each case

τ(x′1, . . . , x
′
n) is lexicographically less than τ(x1, . . . , xn).

So the sequence {τ(b(i))} is decreasing, and hence it converges. Its limit
τ(x1, . . . , xn) is the zero vector: assuming the contrary, it is easy to show that the
corresponding vector (x1, . . . , xn) would not be a solution of the system, and hence
further transformations would be applicable to it. If τ(x1, . . . , xn) = (0, . . . , 0), then
(x1, . . . , xn) = (c1, . . . , cn), which is the limit of the sequence regardless of the order
of transformations. So the sequence (5) converges. It converges in at most 2n steps,
because there are 2n distinct vectors of n bits.

It remains to consider two special cases. Suppose the set {1, . . . , `} is cho-
sen until the first ` components reach (c1, . . . , c`) (this takes at most ` steps),
and then sequence proceeds with the following sets of positions: {` + 1} (if
f`+1(c1, . . . , c`) = 1), {` + 2} (if f`+2(c1, . . . , c`, c`+1) = 1), and so on until {n}
(if fn(c1, . . . , c`, c`+1, . . . , cn−1) = 1). Thus the true bits among (c`+1, . . . , cn) are
gradually set to 1, forming the promised monotone sequence.

If the set of positions chosen at every step is {1, . . . , n}, then the first ` positive
components converge in at most ` steps as in the previous case, but the remaining
n− ` acyclic components can assume various wrong values in the process. However,
the subsequent iterations (there are at most n− ` of them) gradually correct these
values, and the sequence finally converges to (c1, . . . , cn). 2

Proof of Theorem 1. For all M,w and L (mod M) as in the definition of naturally
reachable solution, it has to be shown that the computation of a naturally reachable
solution modulo M ∪ {w} always terminates and converges to the same vector
modulo M ∪ {w}. The proof is an induction on the cardinality of M .

Basis. M = ∅, w = ε.

xA =
∨

A→α1&...&αm&¬β1&...&¬βn∈P

(m∧

i=1

conjunct(αi) ∧
m∧

i=1

¬conjunct(βi)
)

(7a)

conjunct(s1 . . . sk) =
{

xs1 ∧ . . . ∧ xsk
, if si ∈ Nullable(G+) for all i

0 otherwise (7b)

Let the equation for a variable xA refer to a variable xB in its right hand side;
this implies ε ∈ LG+(si) for all i, and hence a conjunct A → ±ηBθ, such that
ε ∈ LG+(η) and ε ∈ LG+(θ). Hence, every chain in the dependencies (7) implies a
chain in the grammar in the sense of Definition 8, and every negatively fed cycle in
(7) implies a cycle negatively fed by a chain in the grammar. By assumption, the
original grammar contains no such cycles, which implies that the Boolean system (7)
has no negatively fed cycles. Therefore, Lemma 1 holds for (7), and the condition
from the definition of naturally reachable solution is satisfied.

Induction step. Let LM be the naturally reachable solution modulo M . Con-

19

struct a system of Boolean equations as follows:

xA =
∨

A→α1&...&αm&¬β1&...&¬βn∈P

(m∧

i=1

conjunct(αi) ∧
m∧

i=1

¬conjunct(βi)
)

(8a)

conjunct(s1 . . . sk) =





1, if w ∈ s1 . . . sk(LM)∨

i: ε ∈ LM (sj) for all j 6= i

xsk
otherwise (8b)

Again, if the equation for xA refers to xB , this implies a conjunct A → ±ηBθ,
such that ε ∈ LG+(η) and ε ∈ LG+(θ). The rest of the argument is as in the basis
case. 2

7. Proof of correctness

Let G be a Boolean grammar without negative fed cycles. The task is to establish
the correctness of the LR algorithm described in Sections 3 and 4. The proof
is comprised of two parts. First, it has to be shown that the algorithm reports
consistent results for every input string w, that is, the same graph is constructed
for every choice of actions during the reduction phases. Second, it should be argued
how does the constructed graph correspond to the original grammar. It will follow
then that w is accepted if and only if w ∈ L(G).

In order to analyze the LR parsing algorithm, it is convenient to redefine the
graph-structured stack by augmenting its nodes with the information on when they
were added: a layer number corresponding to a position in the input. There is no
need to store this extended information in an implementation; simply the properties
of the algorithm become much clearer in these terms.
Definition 12 Let G = (Σ, N, P, S) be a Boolean grammar, let (Q, q0, δ, R) be the
SLR(k) automaton, let w = a1 . . . a|w| be the input string.

The graph-structured stack is an acyclic graph with a set of vertices V ⊆ Q ×
{0, 1, . . . , |w|} and with the arcs labelled with symbols from Σ ∪ N , such that the
following condition holds: for every arc from (q′, p′) to (q′′, p′′) labelled with s ∈
Σ ∪N , p′ 6 p′′ and δ(q′, s) = q′′.

For each p (0 6 p 6 n), the set of all vertices of the form (q, p), where q ∈ Q,
is called the p-th layer of the graph. A nonempty layer with the greatest number is
called the top layer.

Consider the reduction phase in a layer p (0 6 p 6 |w|): the symbols a1 . . . ap

have already been read, while Firstk(ap+1 . . . a|w|) is the lookahead string. For the
sake of the argument, let us first suppose that every state q is added to the top
layer in the beginning of the reduction phase, that is, (q, p) ∈ V for all q ∈ Q.
The reduction phase thus modified will be called the simplified reduction phase.
The correctness of the simplified version of the algorithm will be proved first; the
correctness of the algorithm as it is will be subsequently established as a corollary
of the simplified algorithm’s correctness.

This arrangement of the proof initially allows us to abstract from the matter of
creating nodes in the top layer, and to represent the reduction phase as a process

20

of adding arcs to the graph and removing arcs from the graph. Let us use the term
permanent arcs for the arcs present in the stack immediately before the reduction
phase, such as those in Figure 5(b). It is easy to see from the algorithm that all
permanent arcs going to the top layer are labelled with terminals.

The arcs that, according to the transition table, can theoretically be added
during this reduction phase will be called possible arcs, such as those shown with
dotted lines in Figure 5(c). Every possible arc is a nonterminal arc going to the
top layer, and the reduction phase is a manipulation of these arcs. Initially, there
are none of them. A reduction adds an arc. An invalidation removes an arc. This
process can be viewed as negating the bits in the bit vector of possible arcs, starting
from a zero vector.

A possible arc from (q, p0) to (δ(q,A), p) and labelled with A ∈ N , where q ∈ Q,
0 6 p0 6 p, will be formally denoted by a triple (q, p0, A), It is required that the
transition δ(q, A) is defined and there is either a permanent arc entering the vertex
(q, p0), or an arc already known to be a possible arc. There are at most p · |Q|2
possible arcs.

Each possible arc (q, p0, A) has its condition of existence, which causes the re-
duction by some rule for A at the vertex (q, p0), or prevents an invalidation of this
arc. Let 〈xq,p0,A〉 be a vector of Boolean variables corresponding to the possible
arcs. The condition of existence of every possible arc xq,p0,A can be written as the
following Boolean formula over these variables:

xq,p0,A =
∨

A→α1&...&αm&
&¬β1&...&¬βn∈P

(m∧

i=1

conj(q, p0, A → αi) ∧
m∧

i=1

¬conj(q, p0, A → ¬βi)
)

conj(q, p0, A → ±γ) =





path(q, p0, γ),
if A → ±γ ∈ R(δ(q, γ), F irstk(ap+1 . . . a|w|))

0 otherwise

path(q, p0, α) =
p−1∨

p′=p0

∨

α=α′CD1...D`:
∃ path α′

from (q, p0) to layer p′;
Di ∈ Nullable(G+)

(
xδ(q,α′C),p′,C ∧

∧̀

i=1

xδ(q,α′CD1...Di−1),p,Di

)
∨

∨
∨

α=α′aD1...D`:
∃ path α′a from (q, p0) to

layer p; Di ∈ Nullable(G+)

∧̀

i=1

xδ(q,α′aD1...Di−1),p,Di
, if p0 < p

path(q, p, D1 . . . D`) =





∧̀

i=1

xδ(q,D1...Di−1),p,Di
, if p0 = p, Di ∈ Nullable(G+)

0 otherwise

The expression path(q, p0, α) states the existence of a path from a vertex (q, p0)
to the top layer p, with the labels forming the string α ∈ (Σ∪N)∗. There are three
cases, which are illustrated in Figure 7. If p0 < p, then the path should contain an
arc from some layer p′, where p0 6 p′ < p, to the layer p. This arc can be labelled

21

Figure 7: path(q, p0, α): three cases.

by a nonterminal C (the first case) or by a terminal a (the second case). In the
third case, p0 = p, all arcs are nonterminal arcs within the top layer.

The reduction phase can now be viewed as a search for a solution of this system
of Boolean equations, which resembles the definition of the semantics of a Boolean
grammar (Definition 3).
Lemma 2 If the equation for a variable xq1,p1,A refers to a variable xq2,p2,B, then:

1. p1 6 p2.

2. There exists a conjunct A → ±ηBθ, such that θ
G+=⇒∗ ε and, in the case p1 =

p2, η
G+=⇒∗ ε.

Proof. If there is an equation xq1,p1,A = . . . xq2,p2,B . . ., then, according to the above
construction, there exists a conjunct A → ±ηBθ, such that the variable xq2,p2,B

appears in path(q1, p1, α), There are four places where it can occur. In each of
these places, p2 has to be greater or equal to p1, and all the symbols to the right of
B (i.e., in θ) have to be nonterminals from Nullable(G+) by the construction. In

the case p1 = p2, all symbols in ηBθ must be in Nullable(G+), and hence η
G+=⇒∗ ε

as well. 2

Corollary 1 If the equation for a variable xq1,p1,A refers to a variable xq2,p2,B,
then, using the terminology of Definition 8, there exists a one-step right-chain from
A to B; if p1 = p2, then this is a one-step chain from A to B.
Lemma 3 (Termination and confluence of simplified reduction phase)
Let G be a Boolean grammar without negatively fed cycles, let (Q, q0, δ, R) be any
LR automaton, let w ∈ Σ∗ be an input string. Then, for every layer p (0 6 p 6 |w|)
and for every initial contents of the graph-structured stack (in the form of the
permanent arcs), the simplified reduction phase in the layer p terminates, and the
resulting contents of the graph-structured stack do not depend upon the order of
reductions and invalidations.
Proof. The main claim is that the resolved system of Boolean equations in vari-
ables 〈xq,p0,A〉 constructed above does not have negatively fed cycles in the sense of
Lemma 1. Suppose there is such a cycle, i.e., a sequence of variables 〈xqi,pi,Ai〉`i=1,

22

such that the variables depend upon each other as follows:

xq1,p1,A1 = . . . xq2,p2,A2 . . .
xq2,p2,A2 = . . . xq3,p3,A3 . . .

...
xqn−1,pn−1,An−1 = . . . xqn,pn,An

. . .
xqn,pn,An = . . . xqn+1,pn+1,An+1 . . . xq1,p1,A1 . . .
xqn+1,pn+1,An+1 = . . . xqn+2,pn+2,An+2 . . .

...
xq`−1,p`−1,A`−1 = . . . xq`,p`,A`

. . .
xq`,p`,A`

= . . .¬(. . .) . . .

(10)

and the right hand side of the equation for xq`,p`,A`
employs negation.

According to the first part of Lemma 2, the first n equations in (10) imply
p1 6 p2 6 . . . 6 pn−1 6 pn 6 p1, which obviously means that

p1 = p2 = . . . = pn (11)

Using (11) with Corollary 1 for the first n equations in (10), the existence of a chain
from An to An is deduced. Applied for equations for xqn,pn,An , . . . , xq`−1,p`−1,A`−1 ,
Corollary 1 gives a right-chain from An to A`. The negation in the equation for
xq`,p`,A`

implies the existence of a negative conjunct for one of the rules for A`.
Hence a negatively fed cycle in the grammar is obtained, which contradicts the
assumption.

This proves that the system of Boolean equations constructed above has no
negatively fed cycles. Therefore, as established in Lemma 1, the search for a solution
of this Boolean system is successful, and it ends with the same solution regardless
of the choice of components at every step. Since this transformation of Boolean
vectors directly corresponds to the transformation of the possible arcs in the graph-
structured stack in course of the simplified reduction phase, this completes the proof
of the lemma. 2

Lemma 4 (Termination and confluence of the reduction phase) Let G be
a Boolean grammar without negatively fed cycles, let (Q, q0, δ, R) be any LR au-
tomaton, let w ∈ Σ∗ be an input string. Then, for every layer p (0 6 p 6 |w|) and
for every initial contents of the stack, the reduction phase in the layer p terminates,
and, provided that the parts of the graph unreachable from the source node are dis-
carded afterwards, the resulting contents of the stack do not depend upon the order
of reductions and invalidations.
Proof. It is easy to see that every possible computation of the standard reduction
phase is at the same time a possible computation of the simplified reduction phase.

This observation immediately implies the termination of the standard reduc-
tion phase under any choice of actions. Supposing that it could continue infinitely
for some order of reductions and invalidations, the same infinite sequence of ac-
tions would be possible in the simplified reduction phase, which would contradict
Lemma 3.

23

It remains to prove that the unique result of the simplified reduction phase is
the same (modulo reachability) as the graph constructed by the standard reduc-
tion phase in each of its computations. Consider an arbitrary computation of the
standard reduction phase, which ends at some stable graph Γ0. The simplified re-
duction phase might continue further, producing the graphs Γ1, Γ2, . . . , Γ`, . . ., until
the unique resulting graph is reached in one or another way. It is claimed that the
reachable portion of each of the graphs Γ` in each of these continuations is equal to
the reachable portion of Γ0.

The proof is an induction on `. Basis, Γ0 equals Γ0 modulo reachability: true.
For the induction step, suppose Γ` equals Γ0 modulo reachability, and consider the
next graph Γ`+1. Let (q, p) be the node, from which the action at the (` + 1)-th
step of this computation (whether a reduction or an invalidation) does originate.

Let us see that (q, p) is not reachable in Γ0. Supposing that it is, the set of
paths from (q, p) to the top layer should be the same in Γ0 and Γ` by the induction
hypothesis, because these paths become reachable in this case. Hence, the action
done at this step would be applicable to Γ0 with respect to a standard reduction
phase, which would contradict the assumption that Γ0 is stable.

Since (q, p) is not reachable in Γ0, it is not reachable in Γ`. Hence the modifi-
cations at the (` + 1)-th step refer to the unreachable portion of Γ`, and therefore
the reachable parts of Γ0 and Γ`+1 are equal. 2

Lemma 4 implies termination and confluence of the whole algorithm. If G is
a Boolean grammar without negatively fed cycles and (Q, q0, δ, R) is an LR au-
tomaton, then, for every input string w ∈ Σ∗, either the algorithm terminates and
accepts regardless of the order of actions, or the algorithm terminates and rejects
regardless of the order of actions. So, despite its ambiguously defined computation,
the algorithm constructs some definite graph and computes some definite predicate
on Σ∗. It is left to show that this predicate is exactly the membership in L(G),
while the contents of the stack after every phase have a certain meaning in terms
of the grammar. This meaning is stated in the following definition:
Definition 13 An arc from a node (q, p) to a node (δ(q, s), p′) labelled s (s ∈ Σ∪N)
is called correct if and only if ap+1 . . . ap′ ∈ LG(s) and, in the case s = A ∈ N ,
Firstk(ap+1 . . . an) ∈ Pfollowk(A).

A correct arc is called reachable if and only if either it originates from the
source node, or it originates from a node to which there comes a correct arc known
to be reachable.

Let 0 6 i 6 |w|. A reachable correct arc is called i-reaching if and only if either
it goes to the layer i, or it goes to a node, from which there originates a reachable
correct arc known to be i-reaching.

The goal of the whole algorithm is to construct the graph comprised of all reach-
able and |w|-reaching correct arcs. In order to prove that the algorithm actually
constructs such a graph, it is sufficient to present a single computation of the al-
gorithm and establish the correctness of this computation. This, by Lemma 4, will
imply that the rest of possible computations converge to the same correct result.

24

Lemma 5 (On a model computation in the simplified reduction phase)
Let G be a Boolean grammar without negatively fed cycles, let (Q, q0, δ, R) be
an SLR(k) automaton, let w ∈ Σ∗ be an input string, let p > 0. Suppose the
graph-structured stack contains exactly the following arcs:

• all reachable and p-reaching correct arcs going to the layers 0, 1, . . . , p− 1,

• all reachable and p-reaching correct terminal arcs coming to the layer p.

Then there exists a computation of the simplified reduction phase that employs re-
ductions only and adds exactly the following arcs:

• all reachable and p-reaching correct nonterminal arcs from the layers
0, 1, . . . , p− 1 to the layer p,

• all correct nonterminal arcs within the layer p.

The resulting configuration of arcs is stable.
The proof of Lemma 5 is by a construction of such a computation. The con-

struction is based upon the following correspondence between the definition of a
naturally reachable solution and the computation of the simplified reduction phase.
Lemma 6 (Simulating naturally reachable solution in model computation)
Let G have no negatively fed cycles, let (Q, q0, δ, R) be an SLR(k) automaton,
let w ∈ Σ∗ be a string. Let 0 6 p0 6 p, denote u = ap0+1ap0+2 . . . ap and
v = ap+1ap+2 . . . a|w|. For M equal to the set of proper substrings of u, and for this
string u, let L(0), . . . , L(t) be a monotone sequence of vectors of languages modulo
M ∪ {u} corresponding to the definition of a naturally reachable solution, which
exists according to Theorem 1. Let 0 6 ` 6 t.

Suppose the stack during the simplified reduction phase in the layer p contains
exactly the following arcs:

• all reachable and p-reaching correct arcs going to the layers 0, 1, . . . , p− 1,

• all reachable and p-reaching correct terminal arcs coming to the layer p,

• all reachable correct nonterminal arcs from the layers p0 + 1, p0 + 2, . . . , p− 1
to the layer p,

• if p0 < p, all correct nonterminal arcs within the layer p,

• all correct arcs (all reachable correct arcs, if p0 < p) from the layer p0 to the
layer p labelled with nonterminals B, such that u ∈ B(L(`)).

Then: (i) for every possible arc (q, p0, A), such that Firstk(v) ∈ Pfollowk(A),
and for every conjunct A → ±γ, the graph contains a path γ from (q, p0) to the
top layer if and only if u ∈ γ(L(`)); (ii) the condition of existence of a possible
arc (q, p0, A) is satisfied if and only if u ∈ (α1& . . . &αm&¬β1& . . . &¬βn)(L(`)) for
some rule

A → α1& . . . &αm&¬β1& . . . &¬βn ∈ P, (12)

and Firstk(v) ∈ Pfollowk(A).

25

Proof. Let us start from the first part of the lemma.
⇒© Let γ = s1 . . . st and let p1 6 p2 6 . . . 6 pt = p be the numbers of the layers

of the nodes forming the path γ from (q, p0) to the top layer. These numbers give
a factorization u = u1 . . . ut, such that |uj | = pj − pj−1.

Consider every j-th arc in the path, labelled sj and spanning over uj . By the
assumption of the arcs’ correctness, uj ∈ sj(L(`)). Concatenating this for all j, one
obtains u ∈ γ(L(`)).

⇐© If u ∈ s1 . . . st(L(`)), there exists a factorization u = u1 . . . ut, such that

uj ∈ sj(L(`)) (13)

First it has to be proved that each arc sj going from (δ(q, s1 . . . sj−1), p0 +
|u1 . . . uj−1|) to the layer p0 + |u1 . . . uj−1uj | is correct. If sj = a ∈ Σ, then (13)
is sufficient for correctness. If sj = B ∈ N , it has to be additionally demonstrated
that Firstk(uj+1 . . . utv) ∈ Pfollowk(B). By (13), uj+1 . . . ut ∈ sj+1 . . . st(L(`)).
Hence, Firstk(uj+1 . . . ut) ∈ Pfirstk(sj+1 . . . sr) by the construction of the sets
Pfirstk (see Algorithm 1 on p. 8 and the statement of its correctness). Since
Firstk(v) ∈ Pfollowk(A) by assumption, the string Firstk(uj+1 . . . utv) was
added to Pfollowk(B) by Algorithm 2.

If p0 = p, then the correctness of all arcs in this path, together with the condition
(13), implies that each of them is in the graph.

If p0 < p, it is easy to see that all arcs in the path are reachable: the first of
them is reachable, because (q, p0, A) is a possible arc and hence the node (q, p0)
must be in the graph, while the rest are reachable because each of them follows a
reachable arc. Similarly, the last arc of the path goes to the layer p and hence is
p-reaching, while all the preceding arcs are p-reaching by the same straightforward
argument. So, all arcs forming the path γ are reachable and p-reaching correct arcs
that satisfy (13), and hence they must be in the graph.

Let us turn to the second part of the lemma.
⇒© If the condition of existence of (q, p0, A) is satisfied, this means that there ex-

ists a rule (12), such that there is a path αi from (q, p0) to the layer p and A → αi ∈
R(δ(q, αi), F irstk(v)) for every i, and at the same time the graph does not contain
a path βi from (q, p0) to the layer p for every i. By the construction of the func-
tion R, A → α1 ∈ R(δ(q, α1), F irstk(v)) means that Firstk(v) ∈ Pfollowk(A),
which allows us to apply the first part of the lemma to obtain u ∈ αi(L(`)) and
u /∈ βi(L(`)). Hence, u ∈ (α1& . . . &αm&¬β1& . . . &¬βn)(L(`)).

⇐© Suppose that there exists a rule (12), such that

u ∈ αi(L(`)) (for all i) (14a)

u /∈ βi(L(`)) (for all i) (14b)

Firstk(v) ∈ Pfollowk(A) (14c)

The latter allows us to apply the first part of the lemma to (14a) and to (14b) and
thus determine the existence of the paths αi and the non-existence of the paths βi.
In addition, (14c) implies A → αi ∈ R(δ(q, αi), F irstk(v)) by the construction of

26

R. This completes the proof that the condition of existence of the arc (q, p0, A) is
satisfied. 2

Sketch of a proof of Lemma 5. Let us construct such a computation. It is organized
in the following way: first all correct arcs within the layer p are added, then all
reachable correct arcs from the layer p− 1 to the layer p, all reachable correct arcs
from the layer p− 2 to the layer p, and so on, ending with all correct reachable arcs
from the layer 0 to the layer p.

Consider each layer p0 (0 6 p0 6 p), let u = ap0+1ap0+2 . . . ap and v =
ap+1ap+2 . . . a|w|. As in Lemma 6, consider the monotone sequence of vectors cor-
responding to the definition of the naturally reachable solution modulo the set of
substrings of u. Let A1, . . . , Ar be the sequence of the nonterminals, such that u is
added to the component Aj in every j-th term of this sequence. Let Aj1 , . . . , Ajt

be a subsequence of nonterminals Aj`
, such that v ∈ Pfollowk(Aj`

).
Now construct a t-step computation of the reduction phase, such that at every

`-th step all possible arcs of the form (q, p0, Aj`
) (for all relevant q ∈ Q) are added to

the graph by simultaneous reductions. This is possible according to Lemma 6, which
states that the condition of existence of these arcs should hold. After these t steps,
the conditions of existence of these arcs still hold, and nothing can be invalidated.
If any further reductions were applicable, then, by the converse of Lemma 6, the
same would apply to the sequence {L(`)}, which has presumably converged. 2

The computation constructed in Lemma 5 uses reductions only, which may give
a false impression that the operation of invalidation is redundant. This is not so.
The composition of a model computation relies upon the knowledge of the actual
languages generated by the nonterminals of the grammar, something that will not be
readily available to an efficient parsing algorithm, which is supposed to determine
the correct languages by itself. A real computation of the proposed algorithm
involves some trial and error, represented by reductions followed by invalidations,
but still constructs the same graph as in the model computation.
Lemma 7 (The computation done by the reduction phase) Let G be a
Boolean grammar without negatively fed cycles, let (Q, q0, δ, R) be an SLR(k) au-
tomaton, let w ∈ Σ∗ be an input string, let p > 0. Suppose the graph-structured
stack contains exactly the following arcs:

• all reachable and p-reaching correct arcs going to the layers 0, 1, . . . , p− 1,

• all reachable and p-reaching correct terminal arcs coming to the layer p.

Then every computation of the reduction phase terminates and constructs a graph
with exactly the following arcs:

• all reachable and p-reaching correct arcs going to the layers 0, 1, . . . , p− 1, p,

• depending on the computation, some set of nonterminal arcs within the layer
p that are not reachable from the source node.

The reduction phase followed by the removal of unreachable arcs yields a graph
consisting of exactly all reachable and p-reaching correct arcs going to the layers
0, 1, . . . , p− 1, p.

27

This explains the operation of the reduction phase. Let us now determine what
does the shift phase do.
Lemma 8 (Existence of a terminal arc) Suppose a nonterminal arc A from a
node (q0, p0) to a layer p′ is correct and reachable. Then for every layer p (p0 6
p < p′) there exists a state q and a reachable correct terminal arc ap+1 from (q, p)
to the layer p + 1, such that there is a path from (q0, p0) to (q, p) formed by correct
arcs.
Sketch of a proof. Since the A-arc in question is correct, it is known that u =
ap0+1 . . . ap′ ∈ LG(A). Let ` be the least number of steps in the monotone sequence
in the definition of naturally reachable solution, in which the string u is added to
the component A. Induction on the lexicographically ordered pairs (p′ − p0, `).

Consider the rule A → α1& . . . &αm&¬β1& . . . &βn, such that u ∈ αi(L(`−1))
and u /∈ βi(L(`−1)). Let us use the first conjunct of this rule, which must be positive,
and denote α1 = s1 . . . st. Then there exists a factorization u = u1 . . . ut, such that
uj = sj(L(`−1)).

By the first part of Lemma 6, there is a path α formed by correct arcs that
connects (q0, p0) to the layer p. Let j be the uniquely defined number, such that
ap+1 is a part of uj . If sj = ap+1, this arc sj is the arc sought. If sj = B ∈ N

then this B-arc is correct and reachable, and the induction hypothesis can be used
as follows: if uj is a proper substring of u, then the number of layers spanned by
B is less than the number of layers spanned by A; if uj = u, then u ∈ B(L`−1)
and the induction hypothesis is again applicable. In both cases, the existence of the
terminal arc is deduced. 2

Lemma 9 Let the graph contain exactly all reachable and p-reaching correct arcs
up to the layer p. Then the shift phase from the layer p to the layer p+1 constructs
a graph with the following arcs:

• all reachable and (p + 1)-reaching correct arcs to the layers up to p;

• all reachable and (p + 1)-reaching correct terminal arcs to the layer p + 1.

Proof. Every terminal arc added in the shift phase is labelled with ap and goes from
(q, p) to (δ(q, ap+1), p + 1). It is correct, because ap ∈ LG(ap+1). It is reachable,
because the node (q, p) must have an incoming arc, while all arcs in the original
graph are known to be reachable. It is (p+1)-reaching, because it goes to the layer
p + 1.

Conversely, consider any correct reachable terminal arc going to the layer p + 1.
Then it goes from a node (q, p), which has an incoming reachable correct arc, and
δ(q, ap+1) 6= −. By the definition of the shift phase, the node (q, p) is eventually
considered, and the arc ap+1 from this node to the layer p + 1 is added.

Let us now prove the claim on the handling of the nonterminal arcs during the
shift phase. No new nonterminal arcs are added during the shift phase, but some of
them can get removed: these must be exactly the arcs that are p-reaching, but not
(p + 1)-reaching. Every nonterminal arc that remains in the graph is a reachable
correct arc by assumption. It is (p + 1)-reaching, because it is continued by a
terminal arc going to the layer p + 1.

28

Conversely, if a reachable correct nonterminal arc A is (p + 1)-reaching, then it
could be continued by a sequence of correct arcs leading to a certain correct arc
labelled s that goes to the layer p + 1. If s = B ∈ N , then, according to Lemma 8,
there must be a path from the original arc A to a correct terminal arc from the
layer p to the layer p + 1. Then this terminal arc will be added during the shift
phase, and hence the nonterminal arc in question will not be removed. If s ∈ Σ,
the arc A will not be removed by the same reason. 2

These lemmata can be combined to prove the algorithm’s correctness.
Theorem 2 Let G be a Boolean grammar without negatively fed cycles, let
(Q, q0, δ, R) be the SLR(k) automaton for G, let w ∈ Σ∗ be an input string. Then
the generalized LR algorithm constructed with respect to G and (Q, δ,R) terminates
on w, and:

• After i iterations of the main loop, the graph-structured stack contains all
reachable and i-reaching correct arcs to the layers 0, 1, . . . , i (see Defini-
tion 13).

• The input string is accepted if and only if w ∈ L(G).

Proof. The first claim is proved using an induction on i, the number of iterations of
the loop.

Basis: i = 0. When the algorithm starts, there are no arcs in the graph, and hence
it satisfies the condition of Lemma 7 with p = 0. Thus the reduction phase
followed by the removal of unreachable arcs leads to a graph of all reachable
and 0-reaching correct arcs within the layer 0. This is the state in which the
algorithm enters its main loop.

Induction step: i → i + 1. Suppose the graph contains all reachable and i-
reaching correct arcs, and consider the computation of the (i+1)-th iteration
of the algorithm’s main loop.

By Lemma 9, after the shift phase the graph contains all reachable and (i+1)-
reaching correct arcs to the layers up to i, and all reachable and (i+1)-reaching
correct terminal arcs to the layer i + 1. This allows us to apply Lemma 7 to
conclude that the reduction phase followed by the removal of unreachable arcs
gives a graph consisting of all reachable and (i + 1)-reaching correct arcs.

Thus it has been proved that the outer loop terminates and the final graph
contains exactly all reachable and |w|-reaching correct arcs.

Consider the acceptance condition. First, there is a case when the algorithm
prematurely terminates if all nodes in the top layer fail to shift during the shift
phase in some i-th layer. It has to be proved that this implies w /∈ L(G). Suppose
the contrary, w ∈ LG(S). Then the arc S from (q0, 0) to (δ(q0, S), |w|) is a reachable
correct arc, and hence, by Lemma 8, there exists a reachable correct terminal arc
ai+1 from the layer i to the layer i + 1. This arc should have been added at the
mentioned shift phase. The fact it was not forms a contradiction.

29

δ R
a S A ε a

0 1 5 2 A → ε

1 1 3 4 A → ε

2 S → A

3
A → aS

A → ¬aS

4
S → A

A → ¬aA
A → aA

5

Figure 8: LR table in Example 6; the possible arcs at the last reduction phase.

Suppose the algorithm accepts the string. This can only happen if all iterations
of the main loop are successfully completed and there is an arc S from (q0, 0) to
(δ(q0, S), |w|). Since this arc is correct, this implies w ∈ LG(S) = L(G).

Conversely, suppose w ∈ L(G) = LG(S). Since ε ∈ Pfollowk(S), the condition
of the correctness of the arc S from (q0, 0) to (δ(q0, S), |w|) is satisfied. This arc
is reachable, because it starts from the source node, and it is |w|-reaching, since
it goes to the layer |w|. Hence, this arc will be in the graph constructed by the
algorithm, and therefore the algorithm accepts the string w. 2

8. Implementation and complexity

The overall composition of the algorithm has been defined in Section 4, but an
important detail of its implementation has been intentionally omitted: it has not
been defined how actions are selected at the reduction phase. Instead, the algorithm
was proved correct for any possible sequence of valid actions. Though the order of
actions does not influence the result of the computation, it certainly has an impact
on the complexity of the algorithm and needs to be defined to consider the algorithm
complete.

The most natural method would be to do reductions and invalidation in series,
that is, one operation at once. Though this will probably work fine in practice, there
exists an example, in which one of the possible computations takes exponential time.
Example 6 Consider a Boolean grammar over the alphabet {a} that contains the
following rules:

S → A

A → aS&¬aA | ¬aS&aA | ε

The grammar, which generates {ε}, has no negatively fed cycles, and its LR parsing
table is given in Figure 8. However, for every string an there exists a computation
of the last reduction phase that takes at least 2n+1 steps.

Proof. Like in Example 3, the algorithm first shifts the entire input an to the stack
and then enters the final reduction phase. The possible arcs in the stack are given in

30

Figure 8, and are exactly as in Example 3. Following are the conditions of existence
for each arc, where ⊕ denotes sum modulo two:

S[i] = A[i] (0 6 i 6 n)
A[i] = S[i+1] ⊕A[i+1] (0 6 i < n)
A[n] = 1

It is easy to see that if A[n] and S[n] are added by two consecutive reductions,
then the final configuration is obtained. By Theorem 4, any other course of the
reduction phase leads to the same result. Let us construct a different sequence of
configurations that computes this result in no fewer than 2n+1 steps.

For every number k (0 6 k < 2n+1), denote each i-th digit in its binary notation
by xi, and define the configuration of possible arcs corresponding to k as follows:

S[i] = xi ⊕ xi+1 (0 6 i 6 n)
A[i] = xi+1 (0 6 i 6 n) (15)

Obviously, different numbers correspond to different configurations.
The configuration corresponding to the number 0 contains all the A-arcs and

none of the S-arcs; it can be reached by doing n+1 reductions by A[n−1], . . . , A[0],
exactly in this order.

Consider any two configurations corresponding to consecutive numbers k and
k + 1, where k + 1 < 2n+1. Let j be the number of the least significant zero bit in
the binary notation of k, so that x0 = . . . = xj−1 = 1 and xj = 0; note that j < n,
since k < 2n+1 − 1. Denote each i-th bit in the binary notation of k + 1 by yi. It is
easy to see that y0 = . . . = yj−1 = 0, yj = 1 and yi = xi for all i > j.

By (15), the status of arcs in the configuration corresponding to k is as follows:
S[0] = . . . = S[j−2] = 0, S[j−1] = 1, S[j] = xj+1, A[0] = . . . = A[j−2] = 0, A[j−1] =
1 and A[j] = xj+1. The configuration corresponding to k + 1 has the following
arcs: S′[0] = . . . = S′[j−2] = 0, S′[j−1] = 1, S′[j] = xj+1, A′[0] = . . . = A′[j−2] = 0,
A′[j−1] = 1 and S′[j] = xj+1, while the rest of the arcs are the same as in the
previous configuration, since yi = xi for all i > j. These bit vectors are given in
the following table:

i 0 . . . j − 2 j − 1 j j + 1 . . .
xi 1 . . . 1 1 0 xj+1 . . .
yi 0 . . . 0 0 1 xj+1 . . .
S[i] 0 . . . 0 1 xj+1 xj+1 ⊕ xj+2 . . .
S′[i] 0 . . . 0 1 xj+1 xj+1 ⊕ xj+2 . . .

A[i] 0 . . . 0 1 xj+1 xj+2 . . .
A′[i] 1 . . . 1 0 xj+1 xj+2 . . .

The transition from the k-th to the (k + 1)-th configuration can be done as
follows. First, the possible arc S[j] is negated: added by a reduction by S → A,
if xj+1 = 0, or removed by an invalidation otherwise; this can be done because
S[j] 6= A[j]. Next, the condition of existence of the arc A[j−1] becomes violated, and
it is removed by an invalidation. This in turn allows us to add the following arcs,

31

one by one: A[j−2], A[j−3], . . . , A[0]; every next arc in this list depends upon the
previous one. Then the (k + 1)-th configuration is obtained.

We have constructed a sequence of over 2k+1 distinct configurations that can be
visited one after another in a single reduction phase. Therefore, this computation
contains at least 2k+1 steps, which proves the correctness of Example 6. 2

Since doing one action at a time can result in an exponentially long computation,
a different implementation is needed to ensure polynomial time complexity. The
proposed method is based upon doing all possible actions at every step of the
reduction phase, which reduces the total number of elementary actions to O(n2). Let
us combine this method with some straightforward breadth-first search techniques
in the graph to obtain a complete implementation of the algorithm, the complexity
of which can be analyzed.
Definition 14 Consider any contents of the graph-structured stack. For each ver-
tex v and for each number ` > 0, let predecessors`(v) be the set of vertices that are
connected to v with a path that is exactly ` arcs long.

This set can be computed iteratively on ` by taking predecessors0(v) = {v},
and then constructing predecessors`+1(v) as the set of all vertices v′, such that
there is an arc from v′ to some v′′ ∈ predecessors`(v). Now the algorithm for doing
the reduction phase reads as follows:
while the graph can be modified

// Conjunct gathering
let x[] be an array of sets of vertices, indexed by conjuncts.
for each node v = (q, ptop) in the top layer

for each A → α ∈ R(q, u)
x[A → α] = x[A → α] ∪ predecessors|α|(v)

// Reductions
let valid be a set of arcs, initially empty
for each rule A → α1& . . . &αm&¬β1& . . . &¬βn ∈ P

for each node v ∈ ⋂m
i=1 x[A → αi] \

⋃n
i=1 x[A → βi]

if v is not connected to the top layer by an arc labelled A, then
add an arc from v to the top layer labelled A

valid = valid ∪ {the arc from v to the top layer labelled A}
// Invalidations
for each arc (v′, v) going to the top layer and labelled A

if this arc is not in the set valid, then
remove the arc from the graph

end while
At the stage of conjunct gathering, the algorithm scans the stack and determines,

which reductions and invalidations can possibly be done. The set x[] of gathered
conjuncts stores this information, which reflects the state of the graph at the time
of conjunct gathering. Then these operations are applied sequentially on the basis
of the gathered conjuncts. This ensures that all reductions and invalidations are
performed independently.

32

Let us give an upper bound for the complexity of this implementation of the
reduction phase, and of the algorithm as a whole.
Lemma 10 The above algorithm for the reduction phase performs O(n2) reductions
and invalidations, using time O(n3).
Sketch of a proof. The number of iterations is O(n), because the dependencies of the
possible arcs upon each other are O(n) deep, and hence O(n) parallel applications
of all possible reductions and invalidations are sufficient: this has been stated in
Lemma 1.

The conjunct gathering stage computes predecessors` a constant number of
times, and ` is also bounded by a constant. Computing the set of immediate prede-
cessors involves considering O(n) nodes, each of which has O(n) predecessors, and
thus each conjunct gathering stage takes O(n2) steps. The subsequent reduction
and invalidation stages take O(n) time. Therefore, each iteration of the while loop
terminates in time O(n2).

It can be concluded that the algorithm for doing the reduction phase terminates
in at most C · n3 steps. 2

The cubic upper bound for the complexity of the reduction phase yields an O(n4)
upper bound for the whole algorithm.
Theorem 3 Under the conditions of Theorem 2 and using the above implementa-
tion on a random-access machine, the generalized LR parsing algorithm, given an
input string of length n, performs O(n) shifts, O(n) local errors, O(n3) reductions
and O(n3) invalidations. The number of elementary operations on a random access
machine is O(n4), and the memory used is O(n2).

This upper bound for the complexity of the given implementation is actually
precise, as witnessed by the following grammar:
Example 7 Consider the following one-nonterminal Boolean grammar over the
alphabet {a} that generates the language {a} ∪ (aa)+:

S → SS&¬aS | aa | a

Using the above implementation, the generalized LR parsing algorithm executed on
the string an performs C ·n shifts, C ′ ·n3 reductions and C ′′ ·n3 invalidations. The
number of elementary operations is C ′′′ · n4, and quadratic space is used.

Whether the worst-case execution time can be improved to O(n3) or not, remains
unknown. Under the current implementation, the bottleneck is the procedure of
conjunct gathering: as mentioned in Lemma 10, it uses C · n2 time, because this
is the time needed to compute the list of predecessors of a given set of vertices. If
one could organize a more efficient computation of this list, the performance of the
algorithm could be improved.

For instance, for conjunctive grammars there exists a method of doing the re-
duction phase in time O(n2) [10], which is based upon maintaining data structures
for the sets predecessors`(v), for each vertex v in the graph and for all numbers `,
such that 0 6 ` 6 maxA→±γ∈conjuncts(G) |γ|. Every time a new arc (v, v′) is added
to the graph, the predecessors of v are inherited by v′ and by all successors of v′.

33

This has two consequences: on one hand, conjunct gathering is done in time O(n),
because instead of computing predecessors`(v) one can just take the value from
the memory; on the other hand, the addition of every arc can no longer be done
in time O(1), and O(n) operations are necessary to update the new data struc-
tures. However, since in the conjunctive case every arc is added only once and is
never removed, there will be at most C · n2 arc additions, and thus the time spent
maintaining stored values of predecessors`(v) sums up to O(n3) for the entire al-
gorithm. This shows that the Generalized LR algorithm for conjunctive grammars
can be made to work in time O(n3) [10].

The above approach will not work in the case of Boolean grammars for two rea-
sons. First, it is not clear how to update the set predecessors`(v) for invalidations:
when an arc (v0, v) is removed, but the vertex v has other incoming arcs, how can
the algorithm efficiently determine what should be removed from predecessors`(v)?
Second, the number of reductions need not be O(n2) any longer, and thus if the
addition of an arc requires time C · n, this will become the new bottleneck of the
algorithm, which will subsequently require at least C · n4 time. But perhaps one
could still invent a way to overcome these difficulties and design a square-time
implementation of the reduction phase.

9. On parsing schemata for Boolean grammars

From an implementation point of view, the algorithm is very similar to its
context-free prototype, the Generalized LR [19]. However, a quick glance at the
proof of its correctness shows that its mathematical justification is entirely different
from that of any context-free parsing algorithms. Let us try to consider the given
algorithm in terms of the theory of parsing schemata, developed by Sikkel [17],
which represents the main ideas of context-free parsing.

A parsing schema consists of a set of elementary propositions, called items, a
set of items assumed to be true, called axioms, and a set of inference rules, which
are used to deduce the truth of other items [17] in line with the principle of parsing
as deduction proposed by Shieber, Schabes and Pereira [16]. In the case of Boolean
LR parsing, the items are the arcs in the stack, and the parser manipulates them
as bits. However, the bits are not only set, but also reset and set back again, which
certainly does not fit into the deductive paradigm.

The given algorithm actually conducts a search for a solution of a system of
Boolean equations. The latter description is also true with respect to any context-
free parsing schema, though the system of Boolean equations is monotone in this
case, and hence the search for a solution degrades to a search for a least fixed
point, which can be done using the corresponding methods. The fact that quite
a representative context-free parsing algorithm, the generalized LR, was extended
for the nonmonotone case demonstrates that the context-free parsing theory does
not absolutely depend upon the monotonicity and the underlying fixed point tech-
niques, and perhaps more ideas from the context-free parsing would hold in the
more general context of underlying Boolean equations. Extending the framework of
parsing schemata to the nonmonotone case, which would allow one to analyze such

34

algorithms as the one described in this paper, is proposed as an interesting research
problem.

10. Conclusion

The first practically useful parsing algorithm for Boolean grammars has been
developed. It is as easy to implement and use as its prototypes [19, 10], and per-
forms as efficiently. Taking into account the greater expressive power of Boolean
grammars, this is a good argument to use Boolean grammars instead of context-free
grammars in those numerous applications, where the use of context-free generalized
LR parsing is considered justified. In particular, the new algorithm is a mathemat-
ically well-defined alternative to simulating negation in the context-free LR by the
means of ad hoc kludges.

Designing an efficient implementation of the given algorithm, or inventing its
more efficient variant, is proposed as a research problem. It would be interesting to
study whether any of the advanced practical techniques developed for the context-
free case [3, 6, 8] could be extended for the Boolean case. In particular, could the
generalized LR algorithm for Boolean grammars be implemented to work in time
O(n3)?

It is worth mention that the given algorithm has been used to parse a simple pro-
gramming language specified entirely by a Boolean grammar [14]; the automatically
generated parser worked in quadratic time [11]. Though this example is certainly
far from being practically applicable, it nevertheless shows that the combination
of Boolean grammars and generalized LR parsing can be used for quite nontrivial
tasks, such as ensuring declaration before use and checking scope rules for variables.
This gives a further evidence that this theoretically defined family of grammars is
suitable for practical use.

Acknowledgements

I would like to thank Kai Salomaa for his helpful comments on the first revisions
of this paper, which formed a part of my Ph.D. thesis. I am grateful to Oksana
Yakimova for suggesting the first example of exponential time [21], which can be
reached on the following grammar:

S → aS&aaS | A&¬aS&¬aaS

A → Aa | ε

though the proof of that is not as easy as the proof of Example 6. Thanks are due
to the referees for careful reading and for good advices regarding the presentation.
In the end, I wish to thank a former colleague for putting me, in August 2001, in a
perfect environment for inventing and implementing this algorithm.

References

1. A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques and Tools,
Addison-Wesley, 1986.

35

2. J. Aycock, “Why Bison is becoming extinct”, ACM Crossroads, 7 (2001).

3. J. Aycock, R. N. Horspool, J. Janousek, B. Melichar, “Even faster generalized LR
parsing”, Acta Informatica, 37:9 (2001), 633–651.

4. M. van den Brand, J. Scheerder, J. J. Vinju, E. Visser, “Disambiguation filters for
scannerless generalized LR parsers”, Compiler Construction (CC 2002, Grenoble,
France, April 8–12, 2002), LNCS 2304, 143–158.

5. S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal
of the ACM, 9 (1962), 350–371.

6. J. R. Kipps, “GLR parsing in time O(n3)”, in: M. Tomita (Ed.), Generalized LR
Parsing, Kluwer, 1991, 43–59.

7. D. E. Knuth, “On the translation of languages from left to right”, Information and
Control, 8 (1965), 607–639.

8. S. McPeak, G. C. Necula, “Elkhound: a fast, practical GLR parser generator”,
Compiler Construction (CC 2004, Barcelona, Spain, March 29–April 2, 2004), LNCS
2985, 73–88.

9. A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Com-
binatorics, 6:4 (2001), 519–535.

10. A. Okhotin, “LR parsing for conjunctive grammars”, Grammars 5 (2002), 81–124.

11. A. Okhotin, “Whale Calf, a parser generator for conjunctive grammars”, Implemen-
tation and Application of Automata (CIAA 2002, Tours, France, July 3–5, 2002),
LNCS 2608, 213–220.

12. A. Okhotin, “Decision problems for language equations with Boolean operations”,
Automata, Languages and Programming (ICALP 2003, Eindhoven, The Nether-
lands, June 30–July 4, 2003), LNCS 2719, 239–251.

13. A. Okhotin, “Boolean grammars”, Information and Computation, 194:1 (2004), 19–
48.

14. A. Okhotin, “On the existence of a Boolean grammar for a simple programming
language”, Proceedings of AFL 2005 (May 17–20, 2005, Dobogókő, Hungary).

15. D. J. Salomon, G. V. Cormack, “Scannerless NSLR(1) parsing of programming
languages”, SIGPLAN Notices, 24:7 (1989), 170–178.

16. S. M. Shieber, Y. Schabes, F. C. N. Pereira, “Principles and implementation of
deductive parsing”, Journal of Logic Programming, 24 (1995), 3–36.

17. K. Sikkel, Parsing Schemata, Springer-Verlag, 1997.

18. M. Tomita, Efficient Parsing for Natural Language, Kluwer, 1986.

19. M. Tomita, “An efficient augmented context-free parsing algorithm”, Computational
Linguistics, 13:1 (1987), 31–46.

20. M. Wrona, “Stratified Boolean grammars”, Mathematical Foundations of Computer
Science (MFCS 2005, Gdansk, Poland, August 29–September 2, 2005), LNCS 3618,
801–812.

21. O. S. Yakimova, personal communication, July 2005.

36

http://dx.doi.org/10.1145/321127.321132�
http://dx.doi.org/10.1016/j.ic.2004.03.006�
http://dx.doi.org/10.1145/73141.74833�
http://dx.doi.org/10.1145/73141.74833�

