
J. Functional Programming 1 (1): 1{000, January 1993 c 1993 Cambridge University Press 1
FUNCTIONAL PEARLSProof-Directed DebuggingRobert HarperCarnegie Mellon UniversityPittsburgh, PA 15213AbstractThe close relationship between writing programs and proving theorems has frequently beencited as an advantage of functional programming languages. We illustrate the interplaybetween programming and proving in the development of a program for regular expressionmatching. The presentation is inspired by Lakatos's method of proofs and refutations inwhich the attempt to prove a plausible conjecture leads to a revision not only of the proof,but of the theorem itself. We give a plausible implementation of a regular expressionmatcher that contains a aw that is uncovered in an attempt to prove its correctness.The failure of the proof suggests a revision of the speci�cation, rather than a change tothe code. We then show that a program meeting the revised speci�cation is neverthelesssu�cient to solve the original problem.Capsule ReviewThe capsule review goes here. 1 IntroductionA signi�cant challenge in an introductory programming course is to teach studentsto reason inductively. While it is not di�cult to devise small examples to illustratethe idea, it is quite hard to convince students that these ideas are useful, evenessential, in practice. What is required is a collection of compelling examples of theuse of inductive reasoning methods to help solve interesting programming problems.In this note we present one such example. The problem is to implement an on-lineregular expression matching algorithm in Standard ML: given a regular expression rand a string s determine whether or not s matches r.y It is relatively easy to devise,by \seat of the pants" reasoning, an algorithm to solve the problem. The primarydi�culty is with sequential composition of regular expressions, for which we usecontinuations. With this in mind it is easy to give a very plausible implementationof a regular expression matcher that works in nearly every case.y By \on line" we mean that we do not pre-process the regular expression before matching.

2 Robert HarperHowever, the program contains a subtle error that we tease out by attempting tocarry out a proof of its correctness. The development is inspired by Lakatos's bookProofs and Refutations (1976), which is concerned with the dynamics of mathemati-cal reasoning: formulating conjectures, devising proofs, and discovering refutations.The �rst step is to give a precise speci�cation of the continuation-passing regularexpression matcher. This leads to the conjecture that the matcher satis�es its spec-i�cation, which we proceed to investigate. Inspection of the code suggests a proofby induction on the structure of the given regular expression, with a case analysison its outermost form. The proof proceeds along relatively familiar lines, with noserious di�culties, except in the case of iteration, where we discover that the in-ductive hypothesis is inapplicable. Further analysis suggests an inner induction onthe length of the candidate string. Once again the proof appears to go through, butfor a small gap at a critical step of the argument. Analysis of the gap in reasoningreveals a counterexample to the conjecture | the proposed implementation doesnot satisfy the speci�cation.A common impulse is to change the code to correct the error, often by an ad hocmethod that only buries the problem, rather than eliminates it. A less obvious al-ternative is to change the speci�cation to eliminate the counterexample | \monsterbarring", in Lakatos's colorful terminology. The failed proof of correctness is a validproof of a weaker speci�cation. But what about those \monsters"? We show thatthere is no loss of generality in ruling them out because every regular expressionis equivalent to one that is not a \monster". By pre-processing to eliminate the\monsters", we arrive at a fully-general matching procedure.All programs are written in Standard ML (Milner et al., 1997), but there shouldbe no di�culty transcribing the examples into other functional languages.2 BackgroundWe review here some basic de�nitions in order to establish notation.2.1 LanguagesFix an alphabet, �, a countable set of letters. The set �� is the set of strings overthe alphabet �. The null string is written �, and string concatenation is indicatedby juxtaposition. A language L is any subset of �� | that is, any set of strings over�. We will identify � with the ML type char and �� with the ML type string.We will need the following operations on languages (over a �xed alphabet):Zero 0 = ;Unit 1 = f � gAlternation L1 + L2 = L1 [L2Concatenation L1 L2 = f s1 s2 j s1 2 L1; s2 2 L2 gIteration L(0) = 1L(i+1) = LL(i)L� = Si�0 L(i)

Functional pearls 3It is instructive to observe that L� is the smallest languageM such that 1+LM �M | that is, the smallest language containing the null string and closed underconcatenation with L on the left. It follows that L� = 1+LL�, an identity that weshall use shortly. 2.2 Regular ExpressionsRegular expressions are a notation system for languages. The set of regular expres-sions over an alphabet � is given by the following inductive de�nition:1. 0 and 1 are regular expressions.2. If a 2 �, then a is a regular expression.3. If r1 and r2 are regular expressions,then so are r1 + r2 and r1 r2.4. If r is a regular expression, then so is r�.The language, L(r), of a regular expression r is de�ned by induction on thestructure of r as follows: L(0) = 0L(1) = 1L(a) = f a gL(r1 + r2) = L(r1) + L(r2)L(r1 r2) = L(r1)L(r2)L(r�) = L(r)�On the left-hand side we are dealing with syntax, whereas on the right we are dealingwith semantics. Thus 0 on the right-hand side stands for the empty language, 1stands for f � g, and so on, whereas on the left-hand side 0 and 1 are just forms ofexpression.We say that a string s matches a regular expression r i� s 2 L(r). Thus s nevermatches 0; s matches 1 only if s = �; s matches a i� s = a; s matches r1 + r2 ifit matches either r1 or r2; s matches r1 r2 if s = s1 s2, where s1 matches r1 ands2 matches r2; s matches r� i� either s = �, or s = s1 s2 where s1 matches r ands2 matches r�. An equivalent formulation for the last case is that s matches r� i�there exists n � 0 such that s = s1 : : : sn with si matching r for each 1 � i � n.3 A Matching AlgorithmWe are to de�ne a function accept with type regexp -> string -> bool suchthat accept r s evaluates to true i� smatches r, and evaluates to false otherwise.The type regexp is de�ned as follows:datatype regexp =Zero| One| Char of char| Times of regexp * regexp| Plus of regexp * regexp| Star of regexp

4 Robert HarperThe correspondence to the de�nition of regular expressions should be clear. It isa simple matter to de�ne for each regular expression r its representation prq asa value of type regexp in such a way that a given value v of type regexp is prqfor exactly one regular expression r. We shall gloss over the distinction between aregular expression r and its representation prq as a value of type regexp.The matcher is de�ned using a programming technique called continuation-passing. We will de�ne an auxiliary function acc of typeregexp -> char list -> (char list -> bool) -> boolwhich takes a regular expression, a character list, and a continuation, and yieldseither true or false. Informally, the function acc matches some initial segment ofthe given character list against the given regular expression, and passes the corre-sponding �nal segment to the continuation, which determines the �nal outcome. Toensure that the matcher succeeds (yields true) whenever possible, we must be sureto consider all ways in which an initial segment of the input character list matchesthe given regular expression in such a way that the remaining unmatched inputcauses the continuation to succeed. Only if there is no way to do so may we yieldfalse.This informal speci�cation may be made precise as follows. We call a functionf of type �->� 0 total i� for every value v of type � , there exists a value v0 of type� 0 such that f(v) evaluates to v0. For every s of type char list, every r of typeregexp, and every total function k of type char list -> bool1. If there exists s1 and s2 such that s = s1 s2, s1 2 L(r), and k(s2) evaluatesto true, then acc r s k evaluates to true.2. If for every s1 and s2 such that s = s1 s2 with s1 2 L(r) we have that k(s2)evaluates to false, then acc r s k evaluates to falseNotice that we restrict attent to continuations k that always yield either true orfalse on any input. Notice as well that the speci�cation implies that the resultshould be false in the case that there is no way to partition the input string ssuch that an initial segment matches r.Without giving an implementation of acc, we can de�ne accept as follows:fun accept r s =acc r (String.explode s) (fn nil => true | => false)We \explode" the string argument into a list of characters to facilitate sequentialprocessing of the string. The initial continuation yields true or false accordingto whether the remaining input has been exhausted. Assuming that acc satis�esthe speci�cation given above, it is easy to see that accept is indeed the requiredmatching algorithm.We now give the code for acc:

Functional pearls 5fun acc Zero cs k = false| acc One cs k = k cs| acc (Char d) nil k = false| acc (Char d) (c::cs) k =if c=d then k cs else false| acc (Plus (r1, r2)) cs k =acc r1 cs k orelse acc r2 cs k| acc (Times (r1, r2)) cs k =acc r1 cs (fn cs' => acc r2 cs' k)| acc (r as (Star r1)) cs k =k cs orelse acc r1 cs (fn cs' => acc r cs' k)Does acc satisfy the speci�cation given above? A natural way to approach theproof is to proceed by induction on the structure of the regular expression. Forexample, consider the case r = Times(r1,r2). We have two proof obligations, ac-cording to whether or not the input may be partitioned in such a way that aninitial segment matches r and the continuation succeeds on the corresponding �nalsegment.First, suppose that s = s1 s2 with s1 matching r and k(s2) evaluates to true.We are to show that acc r s k evaluates to true. Now since s1 matches r, we havethat s1 = s1;1 s1;2 with s1;1 matching r1 and s1;2 matching r2. Consequently, bythe inductive hypothesis applied to r2, we have that acc r2 (s1;2 s2) k evaluatesto true. Therefore the application (fn cs' => acc r2 cs' k) (s1;2 s2) evaluatesto true, and hence by the inductive hypothesis applied to r1, the expression acc r1s (fn cs' => acc r2 cs' k) evaluates to true, which is enough for the result.Second, suppose that no matter how we choose s1 and s2 such that s = s1 s2 withs1 2 L(r), we have that k(s2) evaluates to false. We are to show that acc r s kevaluates to false. It su�ces to show that acc r1 s (fn cs' => acc r2 cs' k)evaluates to false. By the inductive hypothesis (applied to r1) it su�ces to showthat for every s1;1 and s02 such that s = s1;1 s02 with s1;1 2 L(r1), we have that accr2 s02 k evaluates to false. By the inductive hypothesis (applied to r2) it su�cesto show that for every s1;2 and s2 such that s02 = s1;2 s2 with s1;2 2 L(r2), wehave that k(s2) evaluate to false. But this follows from our assumptions, takings1 = s1;1 s1;2.The cases for 0, 1, a, and r1 + r2 follow a similar pattern of reasoning.What about iteration? Let r be Star r1, and suppose that s = s1 s2 with s1matching r and k(s2) evaluates to true. By our choice of r, there are two cases toconsider: either s1 = �, or s1 = s1;1s1;2 with s1;1 matching r1 and s1;2 matching r.In the former case the result is the result of k(s), which is k(s2), which is true,as required. In the latter case it su�ces to show that acc r1 s (fn cs' => acc rcs' k) evaluates to true. By inductive hypothesis it su�ces to show that acc rs1;2s2 k evaluates to true. It is tempting at this stage to appeal to the inductivehypothesis to complete the proof | but we cannot because the regular expressionargument is the original regular expression r, and not some sub-expression of it!What to do? Let's try to �x the proof. The o�ending call to acc is on the original

6 Robert Harperregular expression r, but only after some initial segment of the string argument shas been matched by r1. This suggests that we proceed by an inner induction on thelength of the string argument to acc, relying on the inner inductive hypothesis inthe critical case of a recursive call to acc with the original regular expression r. Thisseems appealing, until we realize that the initial segment s1;1 of s matched by r1might be the null string, in which case neither the regular expression nor the stringargument change on the recursive call! This immediately suggests a counterexampleto the conjecture: acc 0� � k loops in�nitely, even if k succeeds on input �.So the conjecture, as stated, is false. What to do? Following Lakatos, we observethat the proof proves something, it is only a question of what. Call a regular ex-pression r standard i� whenever r�1 occurs in r, the language L(r1) does not containthe null string. Observe that for a standard regular expression, if r = r�1 matchesa string s, then either s = � or s = s1 s2, where s1 6= � matches r1 and s2 againmatches r. Thus the proof proves that the regular expression matcher is correct forregular expressions in standard form. Rather than change the code, we change thespeci�cation! 4 StandardizationBut haven't we lost something by making the restriction to standard form? After all,0� is a perfectly reasonable regular expression, yet we've ruled it out as a possibleinput to the matching algorithm (or, at any rate, only guaranteed the behavior ofthe matcher for regular expressions in standard form). Isn't this just mathematicalsleight of hand?No, because any regular expression can be brought into standard form. Moreprecisely, every regular expression is equivalent to one in standard form in the sensethat they both accept the same language. Moreover this equivalence is e�ective inthat we may de�ne an algorithm to put every regular expression into standard form.Thus we may de�ne a fully general regular expression matcher by composing thematcher de�ned in the previous section with a standardization algorithm that putsregular expressions into standard form.We rely on the equation r = �(r) + r�, where �(r) is either 1 or 0 according towhether or not r accepts the null string, and where L(r�) = L(r) n f � g.(Berry &Sethi, 1987) The function �(r) is de�ned as follows.�(0) = 0�(1) = 1�(a) = 0�(r1 + r2) = �(r1)� �(r2)�(r1 r2) = �(r1)
 �(r2)�(r�) = 1Here r1 � r2 is de�ned to be 1 if either r1 or r2 is 1, and 0 otherwise. Similarly,r1
 r2 is de�ned to be 0 if either r1 or r2 is 0, and is 1 otherwise.

Functional pearls 7The function r� is de�ned as follows:0� = 01� = 0a� = a(r1 + r2)� = r�1 + r�2(r1 r2)� = �(r1) r�1 + r1 �(r2) + r�1 r�2(r�)� = r�(r�)�The last two clauses deserve comment. The non-empty strings matching r1 r2 are(1) the non-empty strings in r2, in the case that r1 contains the empty string, (2)the non-empty strings in r1, in the case that r2 contains the empty string, and (3)the concatenation of a non-empty string in r1 followed by a non-empty string in r2.The clause for iteration is motivated by the observation that the non-empty stringsin the iteration r� are simple the non-zero iterations of the non-empty strings in r.It is easy to check that �(r) and r� have the properties stated above, that r� isin standard form, and that L(r) = L(�(r)+r�). It follows that we may relax the re-striction to standard form regular expressions in the speci�cation of the matcher bycomposing the matcher given in the previous section with a simple standardizationalgorithm based on the equations given above.5 ConclusionThe example of regular expression matching illustrates a number of important pro-gramming concepts:1. Continuation-passing: the use of higher-order functions to manage the ow ofcontrol in a program.2. Proof-directed debugging: the use of a failed proof attempt to discover an errorin the code.3. Change of speci�cation: once we isolated the error, we didn't change the code,but rather the speci�cation. Debugging isn't always a matter of changing thecode!4. Pre-processing: to satisfy the more stringent speci�cation we pre-processedthe regular expression so that it satis�es the additional assumption requiredfor correctness. 6 AcknowledgementThe regular expression matching problem was suggested by Frank Pfenning, towhom I am grateful for his comments and suggestions.ReferencesBerry, Gerard, & Sethi, Ravi. (1987). From regular expressions to deterministic automata.Theoretical computer science, 25(1).Lakatos, Imre. (1976). Proofs and refutations. Cambridge University Press.

8 Robert HarperMilner, Robin, Tofte, Mads, Harper, Robert, & MacQueen, David. (1997). The de�nitionof Standard ML (revised). MIT Press.

