Priority Inheritance Protocol Proved Correct

Xingyuan Zhang?, Christian Urban?, and Chunhan Wu*

1 PLA University of Science and Technology, China
2 King’s College London, United Kingdom

Abstract. Inreal-time systems with threads, resource locking and priority sched-
uling, one faces the problem of Priority Inversion. This problem can make the be-
haviour of threads unpredictable and the resulting bugs can be hard to find. The
Priority Inheritance Protocol is one solution implemented in many systems for
solving this problem, but the correctness of this solution has never been formally
verified in a theorem prover. As already pointed out in the literature, the original
informal investigation of the Property Inheritance Protocol presents a correctness
“proof” for an incorrect algorithm. In this paper we fix the problem of this proof
by making all notions precise and implementing a variant of a solution proposed
earlier. Our formalisation in Isabelle/HOL uncovers facts not mentioned in the
literature, but also shows how to efficiently implement this protocol. Earlier cor-
rect implementations were criticised as too inefficient. Our formalisation is based
on Paulson’s inductive approach to verifying protocols.

Keywords: Priority Inheritance Protocol, formal connectness proof, real-time
systems, Isabelle/HOL

1 Introduction

Many real-time systems need to support threads involving priorities and locking of re-
sources. Locking of resources ensures mutual exclusion when accessing shared data or
devices that cannot be preempted. Priorities allow scheduling of threads that need to
finish their work within deadlines. Unfortunately, both features can interact in subtle
ways leading to a problem, called Priority Inversion. Suppose three threads having pri-
orities H(igh), M (edium) and L(ow). We would expect that the thread H blocks any
other thread with lower priority and itself cannot be blocked by any thread with lower
priority. Alas, in a naive implementation of resource looking and priorities this property
can be violated. Even worse, H can be delayed indefinitely by threads with lower pri-
orities. For this let L be in the possession of a lock for a resource that also H needs. H
must therefore wait for L to exit the critical section and release this lock. The problem
is that L might in turn be blocked by any thread with priority M, and so H sits there
potentially waiting indefinitely. Since H is blocked by threads with lower priorities, the
problem is called Priority Inversion. It was first described in [4] in the context of the
Mesa programming language designed for concurrent programming.

2 Xingyuan Zhang, Christian Urban, and Chunhan Wu

If the problem of Priority Inversion is ignored, real-time systems can become un-
predictable and resulting bugs can be hard to diagnose. The classic example where this
happened is the software that controlled the Mars Pathfinder mission in 1997 [6]. Once
the spacecraft landed, the software shut down at irregular intervals leading to loss of
project time as normal operation of the craft could only resume the next day (the mis-
sion and data already collected were fortunately not lost, because of a clever system
design). The reason for the shutdowns was that the scheduling software fell victim of
Priority Inversion: a low priority thread locking a resource prevented a high priority
thread from running in time leading to a system reset. Once the problem was found, it
was rectified by enabling the Priority Inheritance Protocol (PIP) [7]° in the scheduling
software.

The idea behind PIP is to let the thread L temporarily inherit the high priority from
H until L leaves the critical section unlocking the resource. This solves the problem of
H having to wait indefinitely, because L cannot be blocked by threads having priority
M. While a few other solutions exist for the Priority Inversion problem, PIP is one that
is widely deployed and implemented. This includes VxWorks (a proprietary real-time
OS used in the Mars Pathfinder mission, in Boeing’s 787 Dreamliner, Honda’s ASIMO
robot, etc.), but also the POSIX 1003.1c Standard realised for example in libraries for
FreeBSD, Solaris and Linux.

One advantage of PIP is that increasing the priority of a thread can be dynamically
calculated by the scheduler. This is in contrast to, for example, Priority Ceiling [7],
another solution to the Priority Inversion problem, which requires static analysis of the
program in order to prevent Priority Inversion. However, there has also been strong crit-
icism against PIP. For instance, PIP cannot prevent deadlocks when lock dependencies
are circular, and also blocking times can be substantial (more than just the duration of
a critical section). Though, most criticism against PIP centres around unreliable imple-
mentations and PIP being too complicated and too inefficient. For example, Yodaiken
writes in [12]:

“Priority inheritance is neither efficient nor reliable. Implementations are ei-
ther incomplete (and unreliable) or surprisingly complex and intrusive.”

He suggests to avoid PIP altogether by not allowing critical sections to be preempted.
Unfortunately, this solution does not help in real-time systems with hard deadlines for
high-priority threads.

In our opinion, there is clearly a need for investigating correct algorithms for PIP.
A few specifications for PIP exist (in English) and also a few high-level descriptions of
implementations (e.g. in the textbook [9, Section 5.6.5]), but they help little with actual
implementations. That this is a problem in practise is proved by an email from Baker,
who wrote on 13 July 2009 on the Linux Kernel mailing list:

“I observed in the kernel code (to my disgust), the Linux PIP implementation is
a nightmare: extremely heavy weight, involving maintenance of a full wait-for
graph, and requiring updates for a range of events, including priority changes
and interruptions of wait operations.”

3 Sha et al. call it the Basic Priority Inheritance Protocol [7] and others sometimes also call it
Priority Boosting.

Proving the Priority Inheritance Protocol Correct 3

The criticism by Yodaiken, Baker and others suggests to us to look again at PIP from a
more abstract level (but still concrete enough to inform an implementation), and makes
PIP an ideal candidate for a formal verification. One reason, of course, is that the
original presentation of PIP [7], despite being informally “proved” correct, is actually
flawed.

Yodaiken [12] points to a subtlety that had been overlooked in the informal proof by
Sha et al. They specify in [7] that after the thread (whose priority has been raised) com-
pletes its critical section and releases the lock, it “returns to its original priority level.”
This leads them to believe that an implementation of PIP is “rather straightforward” [7].
Unfortunately, as Yodaiken points out, this behaviour is too simplistic. Consider the case
where the low priority thread L locks fwo resources, and two high-priority threads H
and H' each wait for one of them. If L releases one resource so that H, say, can pro-
ceed, then we still have Priority Inversion with H’ (which waits for the other resource).
The correct behaviour for L is to revert to the highest remaining priority of the threads
that it blocks. The advantage of formalising the correctness of a high-level specification
of PIP in a theorem prover is that such issues clearly show up and cannot be overlooked
as in informal reasoning (since we have to analyse all possible behaviours of threads,
i.e. traces, that could possibly happen).

Contributions: There have been earlier formal investigations into PIP [2,3,11], but they
employ model checking techniques. This paper presents a formalised and mechanically
checked proof for the correctness of PIP (to our knowledge the first one; the earlier
informal proof by Sha et al. [7] is flawed). In contrast to model checking, our formali-
sation provides insight into why PIP is correct and allows us to prove stronger properties
that, as we will show, can inform an efficient implementation. For example, we found
by “playing” with the formalisation that the choice of the next thread to take over a lock
when a resource is released is irrelevant for PIP being correct. Something which has not
been mentioned in the relevant literature.

2 Formal Model of the Priority Inheritance Protocol

The Priority Inheritance Protocol, short PIP, is a scheduling algorithm for a single-
processor system.* Our model of PIP is based on Paulson’s inductive approach to proto-
col verification [5], where the state of a system is given by a list of events that happened
so far. Events of PIP fall into five categories defined as the datatype:

datatype event Create thread priority

| Exit thread

| Set thread priority reset of the priority for thread

| P thread cs request of resource cs by thread
| Vthread cs release of resource cs by thread

whereby threads, priorities and (critical) resources are represented as natural numbers.
The event Set models the situation that a thread obtains a new priority given by the

* We shall come back later to the case of PIP on multi-processor systems.

4 Xingyuan Zhang, Christian Urban, and Chunhan Wu

programmer or user (for example via the nice utility under UNIX). As in Paulson’s
work, we need to define functions that allow us to make some observations about states.
One, called threads, calculates the set of “live” threads that we have seen so far:

threads || Y 5

threads (Create th prio::s) o {th} U threads s
threads (Exit th::s) Y threads s — {th}
threads (_::s) Y threads s

In this definition _::_ stands for list-cons. Another function calculates the priority for a
thread th, which is defined as

priority th [] =0

priority th (Create th' prio::s) & if th’ = th then prio else priority th s
priority th (Set th prio::s) & if th’ = th then prio else priority th s
priority th (_:s) & priority th s

In this definition we set 0 as the default priority for threads that have not (yet) been
created. The last function we need calculates the “time”, or index, at which time a
process had its priority last set.

last_set th || “
last_set th (Create th’ prio::s) “ if th = th' then |s| else last_set th s
last_set th (Set th' prio::s) “ if th = th' then |s| else last_set th s

d
last_set th (_::s) “ last_set th s

In this definition |s| stands for the length of the list of events s. Again the default value
in this function is O for threads that have not been created yet. A precedence of a thread
th in a state s is the pair of natural numbers defined as

prec th s o (priority th s, last_set th s)

The point of precedences is to schedule threads not according to priorities (because what
should we do in case two threads have the same priority), but according to precedences.
Precedences allow us to always discriminate between two threads with equal priority
by taking into account the time when the priority was last set. We order precedences so
that threads with the same priority get a higher precedence if their priority has been set
earlier, since for such threads it is more urgent to finish their work. In an implementation
this choice would translate to a quite natural FIFO-scheduling of processes with the
same priority.

Next, we introduce the concept of waiting queues. They are lists of threads asso-
ciated with every resource. The first thread in this list (i.e. the head, or short kd) is
chosen to be the one that is in possession of the “lock™ of the corresponding resource.
We model waiting queues as functions, below abbreviated as wgq. They take a resource
as argument and return a list of threads. This allows us to define when a thread holds,
respectively waits for, a resource cs given a waiting queue function wq.

Proving the Priority Inheritance Protocol Correct 5

holds wq th cs Y th € set (wq cs) A th = hd (wq cs)
waits wq th cs Y th € set (wq cs) A th # hd (wgq cs)
In this definition we assume set converts a list into a set. At the beginning, that is in the

state where no thread is created yet, the waiting queue function will be the function that
returns the empty list for every resource.

all_unlocked % X_.] (1)

Using holds and waits, we can introduce Resource Allocation Graphs (RAG), which
represent the dependencies between threads and resources. We represent RAGs as rela-
tions using pairs of the form

(Tth,Ccs) and (Cecs, Tth)

where the first stands for a waiting edge and the second for a holding edge (C and T
are constructors of a datatype for vertices). Given a waiting queue function, a RAG is
defined as the union of the sets of waiting and holding edges, namely

RAG wq o {(T th, C cs) | waits wq th ¢s} U {(C cs, T th) | holds wq th cs}

Given three threads and three resources, an instance of a RAG can be pictured as fol-
lows:

y)
th
N waiting @

The use of relations for representing RAGs allows us to conveniently define the notion
of the dependants of a thread using the transitive closure operation for relations. This
gives

dependants wq th 4 {th"| (Tth', T th) € (RAG wq)™}

This definition needs to account for all threads that wait for a thread to release a re-
source. This means we need to include threads that transitively wait for a resource being
released (in the picture above this means the dependants of thg are thy and ths, which
wait for resource csq, but also ths, which cannot make any progress unless thy makes
progress, which in turn needs to wait for thg to finish). If there is a circle in a RAG,
then clearly we have a deadlock. Therefore when a thread requests a resource, we must
ensure that the resulting RAG is not circular.

Next we introduce the notion of the current precedence of a thread th in a state s. It
is defined as

cprec wq s th Y Max ({prec th s} U {prec th’ s | th’ € dependants wq th}))

6 Xingyuan Zhang, Christian Urban, and Chunhan Wu

where the dependants of th are given by the waiting queue function. While the prece-
dence prec of a thread is determined by the programmer (for example when the thread
is created), the point of the current precedence is to let the scheduler increase this prece-
dence, if needed according to PIP. Therefore the current precedence of 4 is given as the
maximum of the precedence th has in state s and all threads that are dependants of #h.
Since the notion dependants is defined as the transitive closure of all dependent threads,
we deal correctly with the problem in the informal algorithm by Sha et al. [7] where a
priority of a thread is lowered prematurely.

The next function, called schs, defines the behaviour of the scheduler. It will be
defined by recursion on the state (a list of events); this function returns a schedule state,
which we represent as a record consisting of two functions:

(wq_fun, cprec_fun))

The first function is a waiting queue function (that is, it takes a resource cs and returns
the corresponding list of threads that lock, respectively wait for, it); the second is a
function that takes a thread and returns its current precedence (see (2)). We assume the
usual getter and setter methods for such records.

In the initial state, the scheduler starts with all resources unlocked (the correspond-
ing function is defined in (1)) and the current precedence of every thread is initialised

with (0, 0); that means initial_cprec Y5 (0, 0). Therefore we have for the initial
state

schs |] 4

(wq—fun = all _unlocked, cprec_fun = initial _cprec|)

The cases for Create, Exit and Set are also straightforward: we calculate the waiting
queue function of the (previous) state s; this waiting queue function wq is unchanged
in the next schedule state—because none of these events lock or release any resource;
for calculating the next cprec_fun, we use wq and cprec. This gives the following three
clauses for schs:

schs (Create th prio::s) &

let wg = wq_fun (schs s) in
(wq_fun = wq, cprec_fun = cprec wq (Create th prio::s)))

schs (Exit th::s) 4

let wg = wq_fun (schs s) in
(wq_fun = wq, cprec_fun = cprec wq (Exit th::s)|)

schs (Set th prio::s) &
let wg = wq_fun (schs s) in
(wq—fun = wq, cprec_fun = cprec wq (Set th prio::s)))

More interesting are the cases where a resource, say cs, is locked or released. In these
cases we need to calculate a new waiting queue function. For the event P th cs, we have
to update the function so that the new thread list for cs is the old thread list plus the
thread th appended to the end of that list (remember the head of this list is assigned to
be in the possession of this resource). This gives the clause

Proving the Priority Inheritance Protocol Correct 7

schs (P th cs::s) «

let wg = wq_fun (schs s) in
let new_wq = wq(cs := (wq cs Q [th])) in
(wq_fun = new_wgq, cprec_fun = cprec new_wq (P th cs::s)))

The clause for event V th cs is similar, except that we need to update the waiting queue
function so that the thread that possessed the lock is deleted from the corresponding
thread list. For this list transformation, we use the auxiliary function release. A simple
version of release would just delete this thread and return the remaining threads, namely

release || =

release (_::qs) = gs

In practice, however, often the thread with the highest precedence in the list will get
the lock next. We have implemented this choice, but later found out that the choice of
which thread is chosen next is actually irrelevant for the correctness of PIP. Therefore
we prove the stronger result where release is defined as

release || 4]

release (—::qs) Y soME gs'. distinct gs' N set gs’' = set gs

where SOME stands for Hilbert’s epsilon and implements an arbitrary choice for the
next waiting list. It just has to be a list of distinctive threads and contain the same
elements as gs. This gives for V the clause:

schs (V th cs::s) «
let wqg = wq_fun (schs s) in
let new_wq = release (wq cs) in
(wq_fun = new_wgq, cprec_fun = cprec new_wq (V th cs::s)))

Having the scheduler function schs at our disposal, we can “lift”, or overload, the
notions waits, holds, RAG and cprec to operate on states only.

holds s % holds (wg_fun (schs s))
waits s % waits (wq_fun (schs s))
RAG s ¥ RAG (wq_fun (schs s))

d
cprec s) cprec_fun (schs s)

With these abbreviations we can introduce the notion of threads being ready in a state
(i.e. threads that do not wait for any resource) and the running thread.

ready s « {th € threads s | ¥ cs. = waits s th cs}
running s “ {th € ready s | cprec s th = Max (cprec s ‘ ready s)}

8 Xingyuan Zhang, Christian Urban, and Chunhan Wu

In this definition _ “ _ stands for the image of a set under a function. Note that in the
initial state, that is where the list of events is empty, the set threads is empty and there-
fore there is neither a thread ready nor running. If there is one or more threads ready,
then there can only be one thread running, namely the one whose current precedence
is equal to the maximum of all ready threads. We use sets to capture both possibilities.
We can now also conveniently define the set of resources that are locked by a thread in
a given state.

resources s th % {es | (Ccs, T th) € RAG s}

Finally we can define what a valid state is in our model of PIP. For example we can-
not expect to be able to exit a thread, if it was not created yet. These validity constraints
on states are characterised by the inductive predicate step and valid_state. We first give
five inference rules for step relating a state and an event that can happen next.

th ¢ threads s th € running s resources s th = &

step s (Create th prio) step s (Exit th)

The first rule states that a thread can only be created, if it does not yet exists. Similarly,
the second rule states that a thread can only be terminated if it was running and does
not lock any resources anymore (this simplifies slightly our model; in practice we would
expect the operating system releases all locks held by a thread that is about to exit). The
event Set can happen if the corresponding thread is running.

th € running s

step s (Set th prio)

If a thread wants to lock a resource, then the thread needs to be running and also we
have to make sure that the resource lock does not lead to a cycle in the RAG. In practice,
ensuring the latter is the responsibility of the programmer. In our formal model we brush
aside these problematic cases in order to be able to make some meaningful statements
about PIP

th € running s (Ccs, Tth) ¢ (RAG s)*
step s (P th cs)

Similarly, if a thread wants to release a lock on a resource, then it must be running and
in the possession of that lock. This is formally given by the last inference rule of step.

th € running s holds s th cs
step s (V th cs)

A valid state of PIP can then be conveniently be defined as follows:

5 This situation is similar to the infamous occurs check in Prolog: In order to say anything
meaningful about unification, one needs to perform an occurs check. But in practice the occurs
check is ommited and the responsibility for avoiding problems rests with the programmer.

Proving the Priority Inheritance Protocol Correct 9

valid_state s step s e

valid_state || valid_state (e::s)

This completes our formal model of PIP. In the next section we present properties that
show our model of PIP is correct.

3 The Correctness Proof

Sha et al. [7, Theorem 6] state their correctness criterion for PIP in terms of the number
of critical resources: if there are m critical resources, then a blocked job with high
priority can only be blocked m times—that is a bounded number of times. This result on
its own, strictly speaking, does not prevent indefinite, or unbounded, Priority Inversion,
because if one low-priority thread does not give up its critical resource (the one the high-
priority thread is waiting for), then the high-priority thread can never run. The argument
of Sha et al. is that if threads release locked resources in a finite amount of time, then
indefinite Priority Inversion cannot occur—the high-priority thread is guaranteed to run
eventually. The assumption is that programmers always ensure that this is the case.
However, even taking this assumption into account, ther correctness property is not true
for their version of PIP. As Yodaiken [12] pointed out: If a low-priority thread possesses
locks to two resources for which two high-priority threads are waiting for, then lowering
the priority prematurely after giving up only one lock, can cause indefinite Priority
Inversion for one of the high-priority threads, invalidating their bound.

Even when fixed, their proof idea does not seem to go through for us, because of the
way we have set up our formal model of PIP. The reason is that we allow that critical
sections can intersect (something Sha et al. explicitly exclude). Therefore we have a
different correctness criterion for PIP. The idea behind our criterion is as follows: for
all states s, we know the corresponding thread th with the highest precedence; we show
that in every future state (denoted by s’ @ s) in which # is still alive, either ¢4 is running
or it is blocked by a thread that was alive in the state s. Since in s, as in every state,
the set of alive threads is finite, #h can only be blocked a finite number of times. We
will actually prove a stricter bound below. However, this correctness criterion hinges
upon a number of assumptions about the states s and s’ @ s, the thread th and the events
happening in s’. We list them next:

Assumptions on the states s and s’ @ s: In order to make any meaningful
statement, we need to require that s and s’ @ s are valid states, namely

valid_state s
valid_state (s’ Q s)

Assumptions on the thread ri: The thread th must be alive in s and has the
highest precedence of all alive threads in s. Furthermore the priority of 4 is
prio (we need this in the next assumptions).

th € threads s
prec th s = Max (cprec s ‘ threads s)
prec th s = (prio, _)

10 Xingyuan Zhang, Christian Urban, and Chunhan Wu

Assumptions on the events in s": We want to prove that ¢z cannot be blocked
indefinitely. Of course this can happen if threads with higher priority than th
are continously created in s’. Therefore we have to assume that events in s’ can
only create (respectively set) threads with equal or lower priority than prio of
th. We also need to assume that the priority of i does not get reset and also that
th does not get “exited” in s’. This can be ensured by assuming the following
three implications.

If Create th’ prio’ € set s’ then prio’ < prio
If Set th’ prio’ € set s’ then th' # th and prio’ < prio
If Exitth’ € set s’ then th' # th

Under these assumptions we will prove the following correctness property:

Theorem 1. Given the assumptions about states s and s’ Q s, the thread th and the
events in s', if th' € running (s" Q s) and th' # th then th’ € threads s.

This theorem ensures that the thread th, which has the highest precedence in the state
s, can only be blocked in the state s’ @ s by a thread ¢k’ that already existed in 5. As
we shall see shortly, that means by only finitely many threads. Like in the argument by
Sha et al. this finite bound does not guarantee absence of indefinite Priority Inversion.
For this we further have to assume that every thread gives up its resources after a finite
amount of time. We found that this assumption is awkward to formalise in our model.
Therefore we leave it out and let the programmer assume the responsibility to program
threads in such a benign manner (in addition to causeing no circularity in the RAG). In
this detail, we do not make any progress in comparison with the work by Sha et al.

In what follows we will describe properties of PIP that allow us to prove Theorem 1
and, when instructive, briefly describe our argument. It is relatively easily to see that

running s C ready s C threads s
If valid_state s then finite (threads s).

whereby the second property is by induction of valid_state. The next three properties
are

If valid_state s and waits s th cs1 and waits s th cso then c¢s1 = ¢so.
If holds s thy cs and holds s the cs then thy = ths.
If valid_state s and thy € running s and tho € running s then thy = ths.

The first property states that every waiting thread can only wait for a single resource
(because it gets suspended after requesting that resource); the second that every re-
source can only be held by a single thread; the third property establishes that in every
given valid state, there is at most one running thread. We can also show the following
properties about the RAG in s.

If valid_state s then:
acyclic (RAG s), finite (RAG s) and wf ((RAG s)~1),
if T th € Domain (RAG s) then th € threads s and
if Tth € Range (RAG s) then th € threads s.

Proving the Priority Inheritance Protocol Correct 11

The acyclicity property follow from how we restricted the events in step; similarly the
finiteness and well-foundedness property. The last two properties establish that every
thread in a RAG (either holding or waiting for a resource) is a live thread.

To state the key lemma in our proof, it will be convenient to introduce the notion of
a detached thread in a state, that is one which does not hold any critical resource nor
requests one.

Lemma 1. Given the assumptions about states s and s’ Q s, the thread th and the events
ins’, if th' € treads (s’ Q s), th’ # th and detached (s’ Q s) th’
then th’ & running (s’ Q s).

The point of this lemma is that a thread different from ¢/ (which has the highest prece-
dence in s) not holding any resource cannot be running in the state s’ @ s.

Proof. Since thread th’ does not hold any resource, no thread can depend on it. There-
fore its current precedence cprec (s’ @ s) th’ equals its own precedence prec th’ (s’ @
s). Since th has the highest precedence in the state (s’ @ s) and precedences are distinct
among threads, we have prec th’ (s’ @ s) < prec th (s’ @ s). From this we have cprec
(s" @ s) th’ < prec th (s’ @ s). Since prec th (s’ Q) is already the highest cprec (s’
@ s) th can not be higher than this and can not be lower either (by definition of cprec).
Consequently, we have prec th (s’ @ s) = cprec (s’ @Q s) th. Finally we have cprec (s’
@ s) th' < cprec (s’ @ s) th. By defintion of running, th’ can not be running in state s’
@ s, as we had to show. O

Since th’is not able to run at state s’ @ s, it is not able to issue a text ”P” or V event.
Therefore if s’ @ s is extended one step further, A’ still cannot hold any resource. The
situation will not change in further extensions as long as #h holds the highest prece-
dence.

The following lemmas show how every node in RAG can be chased to ready threads:
1. Every node in RAG can be chased to a ready thread (chain_building):

[valid_state s; node € Domain (RAG s)]
= Jth'. th’ € ready s N\ (node, T th') € (RAG s)*

2. The ready thread chased to is unique (dchain_unique):

[valid_state s; (n, T thy) € (RAG s)*; thy € ready s; (n, T thy) € (RAG s)™T;
the € ready s
= thy = thy

Some deeper results about the system:

1. The maximum of cprec and prec are equal (max_cp—_eq):

valid_state s —
Max (cprec s ‘ threads s) = Max ((Ath. prec th s) threads s)

2. There must be one ready thread having the max cprec-value (max_cp_readys_threads):

12 Xingyuan Zhang, Christian Urban, and Chunhan Wu
valid_state s => Max (cprec s ‘ ready s) = Max (cprec s ‘ threads s)

The relationship between the count of P and V and the number of critical resources held
by a thread is given as follows:

1. The V-operation decreases the number of critical resources one thread holds (cntCS_v_dec)

valid_state (V thread cs::s) =
cntCS (V thread cs::s) thread + 1 = cntCS s thread

2. The number of V never exceeds the number of P (cnp_cnv_cncs):

valid_state s =

cntP s th =

cntVs th 4

(if th € ready s V th ¢ threads s then cntCS s th else cntCS s th + 1)

3. The number of V equals the number of P when the relevant thread is not living:
(cnp_cnv_eq):

[valid_state s; th ¢ threads s| = detached s th
4. When a thread is not living, it does not hold any critical resource (not_thread _holdents):
[valid_state s; th ¢ threads s| = resources s th = &

5. When the number of P equals the number of V, the relevant thread does not hold
any critical resource, therefore no thread can depend on it (count_eq_dependents):

[valid_state s; detached s th] = dependants (wq s) th = &

running (t Q s) #£ &

3.1 Proofidea

The reason that only threads which already held some resoures can be runing and block
th is that if , otherwise, one thread does not hold any resource, it may never have
its prioirty raised and will not get a chance to run. This fact is supported by lemma
moment_blocked:

[th' # th; th' € threads (moment i t Q s); detached (moment it Q s) th’
i<l
= detached (moment j t Q s) th’ A\

th' € threads (moment jt Q s) A th’ ¢ running (moment j t Q s)

When instantiating i to 0, the lemma means threads which did not hold any resource
in state s will not have a change to run latter. Rephrased, it means any thread which is
running after th became the highest must have already held some resource at state s.

Proving the Priority Inheritance Protocol Correct 13

When instantiating i to a number larger than 0, the lemma means if a thread releases
all its resources at some moment in #, after that, it may never get a change to run. If
every thread releases its resource in finite duration, then after a while, only thread ## is
left running. This shows how indefinite priority inversion can be avoided.

So, the key of the proof is to establish the correctness of moment_blocked. We
are going to show how this lemma is proved. At the heart of this proof, is lemma
pv_blocked:

[th' € threads (t Q s); th’ # th; detached (t Q s) th]
= th' ¢ running (t Q s)

This lemma says: for any s-extension text ’t”, if thread t2’ does not hold any resource,
it can not be running at tQs.
Proof:

1. Since thread rh’ does not hold any resource, no thread may depend on it, so its
current precedence cp (rQs) th’ equals to its own precedence preced th’ (rQs).

2. Since th has the highest precedence in the system and precedences are distinct
among threads, we have preced th’ (1Qs) < preced th (tQs). From this and item 1,
we have cp (1Qs) th' < preced th (1Qs).

3. Since preced th (1Qs) is already the highest in the system, ¢p (#Q@s) th can not be
higher than this and can not be lower neither (by the definition of cp), we have
preced th (1Qs) = cp (1Qs) th.

4. Finally we have cp (tQs) th’ < cp (tQs) th.

5. By defintion of running, th’ can not be runing at rQs.

Since th’ is not able to run at state rQ@s, it is not able to make either text ”P” or V
action, so if Qs is extended one step further, th’ still does not hold any resource.
The situation will not unchanged in further extensions as long as th holds the high-
est precedence. Since this ¢ is arbitarily chosen except being constrained by predicate
extend_highest_gen and this predicate has the property that if it holds for ¢, it also holds
for any moment i inside #, as shown by lemma red_moment:

extend_highest_gen s th prio tm t —>
extend_highest_gen s th prio tm (moment i t)

so pv_blocked can be applied to any moment i t. From this, lemma moment_blocked
follows.

4 Key properties

All these assumptions are put into a predicate extend_highest_gen. It can be proved that
extend_highest_gen holds for any moment i in it ¢ (red_moment):

extend_highest_gen s th prio tm (moment i t)

From this, an induction principle can be derived for #, so that properties already
derived for ¢ can be applied to any prefix of ¢ in the proof of new properties about ¢
(ind):

14 Xingyuan Zhang, Christian Urban, and Chunhan Wu

[R[);

Ne t. [valid_state (1 Q s); step (1 Q s) e;
extend_highest_gen s th prio tm t;
extend_highest_gen s th prio tm (e::t); R 1]
= R (ex1)]

— Rt

The following properties can be proved about ¢4 in #:

1. In¢, thread th is kept live and its precedence is preserved as well (th_kept):
th € threads (t Q s) A prec th (t Q s) = prec th s

2. Int, thread th’s precedence is always the maximum among all living threads (max_preced):
prec th (1 Q s) = Max ((A\th’. prec th’ (t Q 5)) “ threads (r Q s))

3. In 1, thread th’s current precedence is always the maximum precedence among all
living threads (th_cp_max_preced):

cprec (t Qs) th = Max ((Mth'. prec th' (t Q 5)) ‘ threads (t Q s))

4. In ¢, thread th’s current precedence is always the maximum current precedence
among all living threads (th_cp_max):

cprec (t Qs) th = Max (cprec (t Q s) threads (t Q s))
5. Int, thread th’s current precedence equals its precedence at moment s (th_cp_preced):

cprec (t Q s) th=precths

The main theorem of this part is to characterizing the running thread during ¢ (runing _inversion_2):

th' € running (1t Q s) =
th! =thV th' # th A\ th' € threads s N\ cntV s th' < cntP s th'

According to this, if a thread is running, it is either th or was already live and held some
resource at moment s (expressed by: cntV s th’ < cntP s th').

Since there are only finite many threads live and holding some resource at any mo-
ment, if every such thread can release all its resources in finite duration, then after finite
duration, none of them may block th anymore. So, no priority inversion may happen
then.

5 Properties for an Implementation

While a formal correctness proof for our model of PIP is certainly attractive (especially
in light of the flawed proof by Sha et al. [7]), we found that the formalisation can even
help us with efficiently implementing PIP.

For example Baker complained that calculating the current precedence in PIP is
quite “heavy weight” in Linux (see the Introduction). In our model of PIP the current
precedence of a thread in a state s depends on all its dependants—a “global” transitive
notion, which is indeed heavy weight (see Def. shown in (2)). We can however improve
upon this. For this let us define the notion of children of a thread th in a state s as

Proving the Priority Inheritance Protocol Correct 15

children s th & {th"|Jes. (Tth', Ccs) € RAG s A (C cs, T th) € RAG s}

where a child is a thread that is one “hop” away from the tread ¢k in the RAG (and
waiting for #h to release a resource). We can prove that

Lemma 2. If valid_state s then

cprec s th = Max ({prec th s} U cprec s * children s th).

That means the current precedence of a thread th can be computed locally by consider-
ing only the children of k. In effect, it only needs to be recomputed for 2 when one of
its children changes its current precedence. Once the current precedence is computed in
this more efficient manner, the selection of the thread with highest precedence from a
set of ready threads is a standard scheduling operation implemented in most operating
systems.

Of course the main implementation work for PIP involves the scheduler and cod-
ing how it should react to events. Below we outline how our formalisation guides this
implementation for each kind of event.

Create th prio: We assume that the current state s’ and the next state s Y Create th

prio::s’ are both valid (meaning the event is allowed to occur). In this situation we can
show that

RAG s = RAG s/,
cprec s th = prec th s, and
If th' # th then cprec s th’ = cprec s’ th'.

This means we do not have recalculate the RAG and also none of the current prece-
dences of the other threads. The current precedence of the created thread #h is just its
precedence, namely the pair (prio, |s|).

; . d ;
Exit th: We again assume that the current state s’ and the next state s Y Exit the:s' are
both valid. We can show that

RAG s = RAG s, and
If th' # th then cprec s th’ = cprec s’ th'.

This means again we do not have to recalculate the RAG and also not the current prece-
dences for the other threads. Since #4 is not alive anymore in state s, there is no need to
calculate its current precedence.

d .
Set th prio: We assume that s’ and s Y Set th prio::s’ are both valid. We can show that

RAG s = RAG s’, and
If th’ # th and th ¢ dependants s th’ then cprec s th' = cprec s’ th'.

The first property is again telling us we do not need to change the RAG. The second
however states that only threads that are not dependants of th have their current prece-
dence unchanged. For the others we have to recalculate the current precedence. To do

16 Xingyuan Zhang, Christian Urban, and Chunhan Wu

this we can start from i and follow the RAG-chains to recompute the cprec of every
thread encountered on the way using Lemma 2. Since the RAG is loop free, this pro-
cedure will always stop. The following two lemmas show, however, that this procedure
can actually stop often earlier without having to consider all dependants.

If th € dependants s th’' and cprec s th = cprec s’ th then cprec s th' = cprec s'th'’.
If th € dependants s th’, th’ € dependants s th'’ and cprec s th' = cprec s’ th’
then cprec s th'' = cprec s’ th”.

The first states that if the current precedence of th is unchanged, then the procedure can
stop immediately (all dependent threads have their cprec-value unchanged). The second
states that if an intermediate cprec-value does not change, then the procedure can also
stop, because none of its dependent threads will have their current precedence changed.

V th cs: We assume that s’ and s = V th cs::s’ are both valid. We have to consider two
subcases: one where there is a thread to “take over” the released resource cs, and one
where there is not. Let us consider them in turn. Suppose in state s, the thread i’ takes
over resource cs from thread th. We can show

RAG s = RAG s’ — {(Ccs, Tth), (Tth',Ccs)} U{(Ccs, Tth')}

which shows how the RAG needs to be changed. This also suggests how the current
precedences need to be recalculated. For threads that are not ¢ and i’ nothing needs to
be changed, since we can show

If th" # th and th'' # th' then cprec s th’' = cprec s’ th”’.

For th and th’ we need to use Lemma 2 to recalculate their current prcedence since their
children have changed.

In the other case where there is no thread that takes over cs, we can show how to
recalculate the RAG and also show that no current precedence needs to be recalculated.

RAG s =RAG s’ — {(Cecs, Tth)}
cprec s th' = cprec s’ th’

d . .
P th cs: We assume that s” and s Y P th cs::s' are both valid. We again have to analyse
two subcases, namely the one where cs is locked, and where it is not. We treat the second
case first by showing that

RAG s = RAG s’ U {(Ccs, Tth)}
cprec s th' = cprec s’ th’

This means we do not need to add a holding edge to the RAG and no current precedence
needs to be recalculated.

In the second case we know that resouce cs is locked. We can show that

Proving the Priority Inheritance Protocol Correct 17

RAG s = RAG s" U {(Tth, Ccs)}
If th ¢ dependants s th' then cprec s th’ = cprec s' th'.

That means we have to add a waiting edge to the RAG. Furthermore the current prece-
dence for all threads that are not dependants of ¢h are unchanged. For the others we need
to follow the edges in the RAG and recompute the cprec. However, like in the @case of
text Set, this operation can stop often earlier, namely when intermediate values do not
change.

A pleasing result of our formalisation is that the properties in this section closely in-
form an implementation of PIP: Whether the RAG needs to be reconfigured or current
precedences need to recalculated for an event is given by a lemma we proved.

6 Conclusion

The Priority Inheritance Protocol (PIP) is a classic textbook algorithm used in real-time
operating systems in order to avoid the problem of Priority Inversion. Although classic
and widely used, PIP does have its faults: for example it does not prevent deadlocks in
cases where threads have circular lock dependencies.

We had two goals in mind with our formalisation of PIP: One is to make the no-
tions in the correctness proof by Sha et al. [7] precise so that they can be processed
by a theorem prover. The reason is that a mechanically checked proof avoids the flaws
that crept into their informal reasoning. We achieved this goal: The correctness of PIP
now only hinges on the assumptions behind our formal model. The reasoning, which is
sometimes quite intricate and tedious, has been checked beyond any reasonable doubt
by Isabelle/HOL. We can also confirm that Paulson’s inductive method for protocol
verification [5] is quite suitable for our formal model and proof. The traditional appli-
cation area of this method is security protocols. The only other application of Paulson’s
method we know of outside this area is [10].

The second goal of our formalisation is to provide a specification for actually imple-
menting PIP. Textbooks, for example [9, Section 5.6.5], explain how to use various im-
plementations of PIP and abstractly discuss their properties, but surprisingly lack most
details for a programmer who wants to implement PIP. That this is an issue in practice
is illustrated by the email from Baker we cited in the Introduction. We achieved also
this goal: The formalisation gives the first author enough data to enable his undergrad-
uate students to implement PIP (as part of their OS course) on top of PINTOS, a small
operating system for teaching purposes. A byproduct of our formalisation effort is that
nearly all design choices for the PIP scheduler are backed up with a proved lemma. We
were also able to establish the property that the choice of the next thread which takes
over a lock is irrelevant for the correctness of PIP. Earlier model checking approaches
which verified implementations of PIP [2,3,11] cannot provide this kind of “deep un-
derstanding” about the principles behind PIP and its correctness.

PIP is a scheduling algorithm for single-processor systems. We are now living in
a multi-processor world. So the question naturally arises whether PIP has any rele-
vance in such a world beyond teaching. Priority Inversion certainly occurs also in multi-
processor systems. However, the surprising answer, according to [8], is that except for

18 Xingyuan Zhang, Christian Urban, and Chunhan Wu

one unsatisfactory proposal nobody has a good idea for how PIP should be modified
to work correctly on multi-processor systems. The difficulties become clear when con-
sidering that locking and releasing a resource always requires a small amount of time.
If processes work independently, then a low priority process can “steal” in such an un-
guarded moment a lock for a resource that was supposed allow a high-priority process
to run next. Thus the problem of Priority Inversion is not really prevented. It seems
difficult to design a PIP-algorithm with a meaningful correctness property on a multi-
processor systems where processes work independently. We can imagine PIP to be of
use in situations where processes are not independent, but coordinated via a master pro-
cess that distributes work over some slave processes. However, a formal investigation
of this is beyond the scope of this paper. We are not aware of any proofs in this area,
not even informal ones.

The most closely related work to ours is the formal verification in PVS for Prior-
ity Ceiling done by Dutertre [1]. His formalisation consists of 407 lemmas and 2500
lines of “specification” (we do not know whether this includes also code for proofs).
Our formalisation consists of around 210 lemmas and overall 6950 lines of readable
Isabelle/Isar code with a few apply-scripts interspersed. The formal model of PIP is
385 lines long; the formal correctness proof 3800 lines. Some auxiliary definitions and
proofs took 770 lines of code. The properties relevant for an implementation took 2000
lines. Our code can be downloaded from ...

References

1. B. Dutertre. The Priority Ceiling Protocol: Formalization and analysis using PVS. Tech-
nical report, System Design Laboratory, SRI International, Menlo Park, CA, October 1999.
Available at http://www.sdl.sri.com/dsa/publis/prio-ceiling.html.

2. J. M. S. Faria. Formal Development of Solutions for Real-Time Operating Systems with
TLA+/TLC. PhD thesis, University of Porto, 2008.

3. E. Jahier, B. Halbwachs, and P. Raymond. Synchronous Modeling and Validation of Prior-
ity Inheritance Schedulers. In Proc. of the 12th International Conference on Fundamental
Approaches to Software Engineering (FASE), volume 5503 of LNCS, pages 140-154, 2009.

4. B. W. Lampson and D. D. Redell. Experiences with Processes and Monitors in Mesa. Com-
munications of the ACM, 23(2):105-117, 1980.

5. L. C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols. Journal of
Computer Security, 6(1-2):85-128, 1998.

6. G. E. Reeves. Re: What Really Happened on Mars? Risks Forum, 19(54), 1998.

7. L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Approach to
Real-Time Synchronization. IEEE Transactions on Computers, 39(9):1175-1185, 1990.

8. U. Steinberg, A. Botcher, and B. Kauer. Timeslice Donation in Component-Based Systems.
In Proc. of the 6th International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT), pages 16-23, 2010.

9. U. Vahalia. UNIX Internals: The New Frontiers. Prentice-Hall, 1996.

10. J. Wang, H. Yang, and X. Zhang. Liveness Reasoning with Isabelle/HOL. In Proc. of the
22nd International Conference on Theorem Proving in Higher Order Logics (TPHOLs), vol-
ume 5674 of LNCS, pages 485499, 2009.

11. A. Wellings, A. Burns, O. M. Santos, and B. M. Brosgol. Integrating Priority Inheritance
Algorithms in the Real-Time Specification for Java. In Proc. of the 10th IEEE International

http://www.sdl.sri.com/dsa/publis/prio-ceiling.html

Proving the Priority Inheritance Protocol Correct 19

Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC),
pages 115-123. IEEE Computer Society, 2007.

12. V. Yodaiken. Against Priority Inheritance. Technical report, Finite State Machine Labs
(FSMLabs), 2004.

	Introduction
	Formal Model of the Priority Inheritance Protocol
	The Correctness Proof
	Proof idea

	Key properties
	Properties for an Implementation
	Conclusion

