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Abstract. We describe and formally verify a procedure to decide regu-
lar expressions equivalence: two regular expressions are equivalent if and
only if they recognize the same language. Our approach to this prob-
lem is inspired by Brzozowski’s algorithm using derivatives of regular
expressions, with a new definition of finite sets. In this paper, we detail
a complete formalization of Brzozowki’s derivatives, a new definition of
finite sets along with its basic meta-theory, and a decidable equivalence
procedure correctly proved using Coq and Ssreflect.

Introduction

The use of regular expressions is common in programming languages to extract
data from strings, like the scanf function of the C-language for example. As
shown in recent works [4,11] the equational theory of regular expressions can
also be important for interactive theorem provers as providing a convenient tool
for reasoning about binary relations. The fundamental result which is used there
is the decidability of the problem whether two regular expressions are equivalent,
i.e. recognize the same language, or not.

The purpose of this paper is to represent in type theory the elegant algorithm
of Brzozowski [5] to test this equivalence. In an intuitionistic framework such as
type theory, this in particular amounts to show that the equivalence between two
regular expressions is a decidable relation. For this, we define in type theory a
boolean valued function corresponding to Brzozowski’s algorithm, and we show
that this function reflects [18] equivalence: this function returns true on two
regular expressions if and only if they are equivalent.

Brzozowski’s algorithm has already been formally investigated but it never
has been completely proved correct: in [11], the authors did not proved formally
the termination of their algorithm, and in [1], the authors did not finished the
proof of correctness of the procedure. In this paper, we describe a complete
formalization of Brzozowski decision procedure based on derivatives of regular
expressions.

In order to achieve this formal representation, we introduce a new definition
of finiteness in type theory, which may have an interest in itself. This definition
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is not equivalent constructively to the usual definition, which expresses that one
can list all elements in this set. (Intuitively this new definition expresses that
if we keep removing elements from a finite set, this will stop eventually.) We
believe that this notion is useful to express in type theory algorithms relying
on the computation of least fixed point of finite sets (see Coro. 1), such as
the computation of minimal automata or the computation of a deterministic
automaton associated to a non deterministic automaton.

In Sect. 1, we describe a new definition of finite sets called inductively finite
sets, along with some basic properties required by the decision procedure cor-
rectness. In Sect. 2, we recall the definition of regular expressions and the notion
of Brzozowski derivatives. The third section is dedicated to Brzozowski’s proof
that the set of derivatives is finite (inductively finite in our case). The decision
algorithm for equivalence is then defined by recursion over this proof of finite-
ness and we discuss its representation in type theory. This uses an elegant idea
of Barras for representing in type theory functions defined by well-founded re-
cursion, which keeps logical soundness while having a satisfactory computational
behavior. The last section presents some test cases. The whole development has
been formalized1 using Coq [7] and Ssreflect [18], and can be found at [8].

1 Finite Sets in Type Theory

1.1 Informal Motivations

The notion of finiteness is basic in mathematics and was one of the first notion
to be formalized by Dedekind and Frege. A 1924 paper by Tarski [19] describes
different possible axiomatizations in the framework of Zermelo set theory. One
definition comes from Russell and Whitehead [17]: a subset of a set is finite if
it can be inductively generated from the empty set by the operation of adding
one singleton. A set A is then finite if A itself is a finite subset. Tarski shows
that this is equivalent to another definition, in the framework of classical set
theory: a set is finite if the relation of strict inclusion on subsets is well-founded.
(By taking complement, this is equivalent to the fact that the relation X � Y
is well-founded, i.e. there is no infinite sequences X0 � X1 � X2 � . . . ) On the
other hand, these two definitions are only equivalent to Dedekind definition (a
finite set is such that any endomap which is injective is a bijection) in presence
of the axiom of choice.

In intuitionistic frameworks, the most commonly used definition seems to be
the one of being Kuratowski finite [10], which is a small variation of Russell-
Whitehead definition: a subset is finite if it can be inductively generated from
the empty set, the singleton and the union operations. In type theory, this defi-
nition takes an equivalent more concrete form: a subset is finite if and only if it

1 There are no axioms neither in this development nor in Ssreflect libraries. However,
due to a flaw in the Print Assumptions command, one might think there are. This
command considers definitions made opaque by signature ascription to be axioms,
which is not the case.
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can be enumerated by a list. The situation is complex if we consider sets with
a non necessarily decidable equality. In this paper however, we limit essentially
ourselves to discrete sets where the equality is decidable. With this extra as-
sumption, to be Kuratowski finite is equivalent to be in bijection with a set Nk

where Nk is defined recursively by Nk+1 = Nk +N1 where N0 is the empty type
and N1 the unit type. So, given the information that A is Kuratowski finite, we
can compute from it the cardinality of A, and, in particular, we can decide if A
is empty of not.

In this paper, we explore another inductive definition of finiteness: a set A is
noetherian (or inductively finite) if and only if for all a in A the set A − {a} is
noetherian. Intuitively, if we keep picking distinct elements in A, eventually we
reach the empty set. It should be intuitive then that if A is Kuratowski finite
then A is noetherian (by induction on the cardinality of A), but also that, only
from the information that A is noetherian, one cannot decide if A is empty or
not. So to be noetherian is intuitionistically weaker than being Kuratowski finite.
(See the reference [9] which analyzes these notions in the framework of Bishop
mathematics.) We have shown formally that to be noetherian is equivalent in
type theory to a variation of Tarski definition: A is noetherian if and only if the
relation X � Y is well-founded on subsets of A given by lists. Independently of
our work, corresponding definitions of finiteness have been recently considered
in the work [2].

1.2 Inductively Finite Sets in Type Theory

From now on, we use predicates over a given type A to represent subsets. Pred-
icates over A are Prop-valued functions, the universe of propositions of Coq.
Given a binary relation R and an element x of type A, R x represents the set of
the elements {y : A | R x y holds }.

Given a type A, a set E and a binary relation R over A, we say that Bar R E
holds if and only if for any x in E, Bar R (E ∩ (R x )) holds. This is an inductive
definition2 , which expresses intuitively that we can not find an infinite sequence
x0, x1, x2, . . . of elements satisfying E and such that we have R xi xj if i < j.

This definition is closely connected to the notion of well-quasi-ordering [16].
Indeed R is a well-quasi-ordering on E if and only if it is transitive and decidable
and its complement R’ is such that Bar R’ E holds. If we start from a type
A with a decidable equality =A then we define E to be (inductively) finite if
Bar (λ x.λ y.¬ (x =A y)) E. Intuitively, it expresses that for any infinite sequence
x0, x1, x2, . . . there exists i < j such that xi =A xj .

As explained above, the usual definition of finite (or “Kuratowski finite”)
is that we can list all elements in E (see Fig. 2). It can be shown that E is
inductively finite if it is finite, but the converse does not hold. Therefore, we
capture more sets with this definition, but in general, it is not possible to describe
an inductively finite set as the list of its elements.

2 This is a particular case of Bar induction [16], and we kept the name.
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Variable A:Type.
Definition gset := A → Prop.
Definition grel := A → A → Prop.

Inductive Bar (R: grel A ) (E : gset A ) : Prop :=
| cBar : (∀ x :A, E x → Bar R (Intersection E (R x))) → Bar R E.

Definition IFinite (R : grel A) (E : gset A) := Bar (neq R) E.

Fig. 1. Definition of Bar

Lemma 1. Basic properties of inductively finite sets

– If Bar R F and E ⊆ F then Bar R E.
– If Bar R E and Bar R F then Bar R (E ∪ F).
– If Bar R E and Bar S E then Bar (R ∪ S) E.
– If Bar R E and Bar S F then Bar (R × S) (E × F),

where (E × F) (x,y) means E x ∧ F y, and (R × S) (x0,y0) (x1,y1) means
R x0 x1 ∨ S y0 y1.

The proof of the last point is essentially the same as the proof that a product of
two well-quasi-ordering is a well-quasi-ordering [16].

For any set E over a type A, a list of elements of E can be interpreted as
a finite subset of E. Any list defines a subset of E by defining a membership
function InA:

– InA [ ] x is always false
– InA (hd :: tl) x holds if and only if x =A hd or InA tl x.

Using this membership function, we can describe in type theory what it means
to be Kuratowski finite. E is Kuratowski finite when there is a list X that
enumarates the elements of E:

∃X : [A], ∀x : A, E x ↔ InA X x

If A is a type with decidable equality =A, InA is a decidable predicate, and
we can define a decidable equality =[A] on the type [A] of lists (also written eql
in the code) such that X0 =[A] X1 holds if and only if X0 and X1 represent the
same subset of E. If X is of type [A], we define [E] X (or gpred list E X ) to
mean that all elements in X satisfy the predicate E.

Since we are working with an abstract equality over the type A, a natural
condition on E is to require it to be compatible with the equality over A, that
is for all x, y such that x =A y and E x holds, then E y also holds.

Proposition 1. (Bar gpred list) If E is inductively finite on A and compatible
then [E] is inductively finite on [A].

This can be expressed as the result that the collection of all subsets (given by
lists) of an inductively finite set is inductively finite. The proof is reminiscent of
the constructive proof of Higman’s Lemma about well-quasi-ordering in [16].
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Definition KFinite (eqA : grel A) (E : gset A) : Prop :=
∃ X , (∀ x :A, E x ↔ INA eqA X x).

Definition gpred list (E : gset A ) : gset (seq A) :=
fix aux l : Prop :=
match l with
| nil ⇒ True
| x :: xs ⇒ E x ∧ aux xs

end.

Fig. 2. Definition of Kuratowski finite and gpred list

Definition E compat (eqA : grel A) (E :gset A) := ∀ x y, eqA x y → E x → E y.

Lemma Bar gpred list : ∀ (eqA : grel A) (E : gset A),
E compat eqA E → IFinite eqA E → IFinite eql (gpred list E ).

Fig. 3. Finiteness of gpred list

Proposition 2. (Bar fun) If f is a function preserving equality

∀x y, x =A y → fx =B fy

and if E is inductively finite, then fE, the image of E by f , is also inductively
finite.

Both Prop. 1 and 2 are important for the proof of the main Lemma 2.

Variable f : A → B.
Variable eqA : grel A.
Variable eqB : grel B.

Definition f set (E : gset A) : gset B := fun (y :B) ⇒ exists2 x, E x & eqB (f x) y.
Variable f compat : ∀ (a a’ : A), eqA a a’ → eqB (f a) (f a’ ).

Lemma Bar fun : ∀ E , IFinite eqA E → IFinite eqB (f set E ).

Fig. 4. Definition of the property Bar fun

A major result for proving Prop. 1 is the fact that if E is inductively finite
on A then the relation of strict inclusion (sup) between subsets of E enumerated
by a list is well-founded.
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Theorem 1. (IFinite supwf) For all compatible set E, the relation sup is well
founded if and only if E is inductively finite.

Corollary 1. If E is inductively finite, any monotone operator acting on subsets
of E enumerated by a list has a least fixed-point.

This is proved by building this list by well-founded recursion.

Theorem IFinite supwf : ∀ (eqA : grel A) (E : gset A) , E compat eqA E →
(IFinite eqA E ↔ well founded sup (gpred list E )).

Fig. 5. Strict inclusion of lists

2 Regular Expressions

Now that we know how to encode inductively finite sets in type theory, we focus
on the main purpose of this paper, deciding regular expressions equivalence. It
is direct to represent the type of all regular expressions on a given alphabet Σ
as an inductive type. Following Brzozowski’s approach, we work with extended
regular expressions, having conjunction and negation as constructors, and a “.”
constructor that matches any letter of the alphabet.

E, E1, E2 ::= ∅ | ε | a | . | E1 + E2 | E∗ | E1E2 | E1&E2 | ¬E

It is a remarkable feature of Brzozowski’s algorithm that it extends directly
the treatment of negation. If one uses finite automata instead, the treatment
of negation is typically more difficult, since one would have to transform an
automaton to a deterministic one in order to compute its complement.

To each regular expression E we associate a boolean predicate (using Ssre-
flect’s pred) L(E ) on the set of words Σ∗ such that a word u satisfies L(E ) if and
only if u is recognized by E. So the boolean function L(E ) reflects the predicate
of being recognized by the language E. We can then write “u \in E” (this is
a notation for mem E u) to express that the word u is recognized by E. We
consider that two languages are equal if they contain the same words:

∀L1 L2, L1 = L2 ↔ ∀u ∈ Σ∗, u ∈ L1 = u ∈ L2

Two regular expressions are equivalent if their associated languages are equal.
It is direct to define a boolean δ(E) (or has eps E in our formalization) which

tests whether the empty word ε is in L(E ) or not (see Fig. 6).
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Variable symbol : eqType.

Definition word := seq symbol.
Definition language := pred word.

Inductive regular expression :=
| Void
| Eps
| Dot
| Atom of symbol
| Star of regular expression
| Plus of regular expression & regular expression
| And of regular expression & regular expression
| Conc of regular expression & regular expression
| Not of regular expression.

Definition EQUIV (E F :regexp) := ∀ s:word, (s \in E ) = (s \in F).

Notation "E ≡ F” := (EQUIV E F ) ( at level 30).

Fixpoint has eps (e: regular expression) :=
match e with

| Void ⇒ false
| Eps ⇒ true
| Dot ⇒ false
| Atom x ⇒ false
| Star e1 ⇒ true
| Plus e1 e2 ⇒ has eps e1 || has eps e2
| And e1 e2 ⇒ has eps e1 && has eps e2
| Conc e1 e2 ⇒ has eps e1 && has eps e2
| Not e1 ⇒ negb (has eps e1 )
end.

Fig. 6. Definition of regular expressions and the δ operator

2.1 Derivatives

Given a letter a in Σ and a regular expression E, we define E/a (or der a E ),
the derivative of E by a, by induction on E (see Fig. 7 for a direct encoding in
type theory, or [5] for the original definition). A word u is in L(E/a) if and only
if the word au is in L(E ): L(E/a) is called the left-residual of L(E ) by a. It is
then possible to define E/u (or wder u E) for any word u by recursion on u

E/ε = E E/(au) = (E/a)/u

The function δ and derivation operators give us a way to check whether a word
is recognized by a regular expression. With the previous definitions, a word u is
in L(E ) if and only if ε is in L(E/u), which is equivalent to δ(E/u) = true.
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Fixpoint der (x : symbol) (e: regular expression) :=
match e with

| Void ⇒ Void
| Eps ⇒ Void
| Dot ⇒ Eps
| Atom y ⇒ if x == y then Eps else Void
| Star e1 ⇒ Conc (der x e1 ) (Star e1 )
| Plus e1 e2 ⇒ Plus (der x e1 ) (der x e2 )
| And e1 e2 ⇒ And (der x e1 ) (der x e2 )
| Conc e1 e2 ⇒ if has eps e1 then Plus (Conc (der x e1 ) e2 ) (der x e2 )
else (Conc (der x e1 ) e2 )

| Not e1 ⇒ Not (der x e1 )
end.

Fixpoint wder (u: word) (e: regular expression) :=
if u is x :: v then wder v (der x e) else e.

Fixpoint mem der (e: regular expression) (u: word) :=
if u is x :: v then mem der (der x e) v else has eps e.

Lemma mem derE : ∀ (u: word) (e: regular expression), mem der E u = (u \in E).

Lemma mem wder : ∀ (u: word) (e: regular expression),
mem der E u = has eps (wder u E ).

Fig. 7. Definition of the der operator and some of its properties

2.2 Similarity

Brzozowski proved in [5] that there is only a finite number of derivatives for a
regular expression, up to the following rewriting rules:

E + E ∼ E E + F ∼ F + E E + (F + G) ∼ (E + F ) + G

This defines a decidable equality over regular expressions, called similarity, which
also satisfies L(E ) = L(F ) if E ∼ F.

The exact implementation of these rewriting rules is not relevant to show that
the set of derivatives is inductively finite. We provide two implementations in
our formalization, one exactly matching these three rules, and a more efficient
one which also includes the following rules:

E + ∅ ∼ E (EF )G ∼ E(FG) E & E ∼ E
E & ∅ ∼ ∅ E & (F & G) ∼ (E & F )& G E∗∗ ∼ E∗

E &� ∼ E E & F ∼ F & E ¬¬E ∼ E
εE ∼ Eε ∼ E ∅∗ ∼ ε∗ ∼ ε

The regular expression � stands for the regular expression that recognize any
word, which we implemented as ¬∅.
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Our implementation is close to the one in [15]. To enforce these additional
simplifications, we introduce a notion of canonical form (with a boolean predi-
cate wf re for being “a well-formed canonical expression”) and a normalization
function canonize in such a way that E ∼ F is defined as canonize E = can-
onize F (where = is the structural equality). This function relies on the use of
smart-constructors which perform the previous rewriting rules. For example, the
rewriting rules of Plus are enforced by keeping a strictly sorted lists of all the reg-
ular expressions linked by a “+”. We then prove that these smart-constructors
indeed satisfy the similarity requirements (see Fig. 8). In [11], the idea of nor-
malizing regular expression to enforce the rules is also used, with the exact same
idea of keeping sorted lists of regular expression. However, they do not create a
different structure and just modify the existing regular expressions.

Fixpoint canonize c : canonical regexp := match c with

| Void ⇒ CVoid
| Eps ⇒ CEps
| Dot ⇒ CDot
| Atom n ⇒ CAtom n
| Star c’ ⇒ mkStar (canonize c’ )
| Plus c1 c2 ⇒ mkPlus (canonize c1 ) (canonize c2 )
| And c1 c2 ⇒ mkAnd (canonize c1 ) (canonize c2 )
| Conc c1 c2 ⇒ mkConc (canonize c1 ) (canonize c2 )
| Not c1 ⇒ mkNot (canonize c1 )
end.

Lemma mkPlusC : ∀ r1 r2, mkPlus r1 r2 = mkPlus r2 r1.

Lemma mkPlus id : ∀ r, wf re r → mkPlus r r = r.

Lemma mkPlusA : ∀ r1 r2 r3, wf re r1 → wf re r2 → wf re r3 →
mkPlus (mkPlus r1 r2 ) r3 = mkPlus r1 (mkPlus r2 r3 ).

Fig. 8. canonize function and some properties of the Plus smart constructor

Brzozowski’s result [5] that any regular expression has only a finite number
of derivatives is purely existential. It is not so obvious how to extract from it a
computation of a list of all derivatives up to similarity: even if we have an upper
bound on the number of derivatives of a given regular expression E, it is not
clear when to stop if we start to list all possible derivatives of E. In type theory,
this will correspond to the fact that we can prove that the set of all derivatives
of E is inductively finite up to similarity, but we can not prove without a further
hypothesis on similarity (namely that similarity is closed under derivatives) that
this set of Kuratowski finite up to similarity. On the other hand, we can always
show that the set of derivatives is Kuratowski finite up to equivalence.
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3 Brzozowski Main Result

The key property of Brzozowski we need to build the decision procedure is the
fact that the set of derivatives of a regular expression is inductively finite (with
respect to similarity). An interesting point is that we do not actually need Σ to
be finite to prove this fact. However, we need Σ to be finite in order to effectively
compute all the derivatives and compare two regular expressions.

The proof uses the following equalities about derivatives (see [5], Annexe II
for a detailed proof):

(E + F )/u = E/u + F/u (E & F )/u = E/u & F/u ¬(E/u) = (¬E)/u

If u = a1 . . . an

(EF )/u = (E/u)F + δ(E/a1 . . . an−1)F/an+

δ(E/a1 . . . an−2)F/an−1an + · · · + δ(E)F/a1 . . . an

and finally

E∗/u ∼ (E/u)E∗ + Σ δ(E/u1) . . . δ(E/up−1)(E/up)E∗

for any decomposition of u in non-empty words u = u1 . . . up.
We represent the set of all derivatives of a given regular expression E by the

predicate
Der E = {F | ∃u : Σ∗, E/u ∼ F}

We proved formally that this set was inductively finite with respect to similarity.

Lemma 2. The set of derivatives is inductively finite
For any regular expression E, the set Der E is inductively finite with respect

to the similarity:
∀(E : regexp), IFinite ∼ (Der E)

Proof. The proof is done by induction on E, with a combination of the lemmas
Bar gpred list and Bar fun described in Sect. 1. We only describe here the case
for Conc, which is the most difficult case. All the other ones are done in a
similar way.

By induction, we know that Der E and Der F are inductively finite, and we
want to prove that Der EF is too. Equality of regular expressions is performed
using the ∼ operator with its extension [∼] to list of regular expressions [regexp].
Let us consider the following function:

fConc : regexp × regexp × [regexp]→ regexp
fConc (e, f, L) = e f + L1 + · · · + Ln

– Using the equalities of derivatives we just stated, we first show that

Der(EF ) ⊆ fConc (Der E, {F}, [Der F ]) (1)
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– The set [DerF ] is inductively finite for [∼] thanks to lemma Bar gpred list,
and the singleton set {F} is obviously inductively finite for ∼.

– Using Brzozowski minimal set of rewriting rules, it is direct to show that
fConc preserves equality:

∀e e′ f f ′ l l′, e ∼ e′ ∧ f ∼ f ′ ∧ l [∼] l′ → fConc (e, f, l) ∼ fConc (e′, f ′, l′)

Then the image of the set Der E×{F}× [Der F ] by fConc is inductively finite
thank to lemma Bar fun. Thanks to Lemma 1 and (1), we can conclude that
Der(EF ) is inductively finite.

To simplify we assume that Σ is now the type with two elements {0, 1}, but
it would work with any finite set. The particular instance of regular expression
over this alphabet is named regexp.

As we said, it is not possible in the general case to enumerate any inductively
finite set with a list, but in this particular case, it is possible to do so.

Lemma 3. Enumeration of the set of derivatives
For any regular expression E, it is possible to build a list LE such that:

– LE ⊆ Der E
– E ∈ LE

– ∀(e : regexp)(e ∈ LE)∃(e′ : regexp), (e′ ∈ LE) ∧ (e′ ∼ e/0)
– ∀(e : regexp)(e ∈ LE)∃(e′ : regexp), (e′ ∈ LE) ∧ (e′ ∼ e/1)

To build such a list, and prove Lemma 3, we apply Coro. 1 on the mononotone
function:

deriv l = map(der 0) l ++map(der 1) l

The list LE is the least fixpoint of deriv above the singleton list [E].
As a consequence of these properties, we can show that any derivative of E is

represented inside LE :

Theorem 2. The list LE is complete
For any regular expression E and any word u, there is a regular expression e

in LE such that L(E/u) = L(e).
Another way to state it is to say is that the set of all all derivatives of E is

KFinite up to equivalence.

Proof. The proof goes by induction on the length of the word u:

– If the length of u is 0, then u = ε, and we have E/ε = E. We can close this
case since E is in LE .

– If the length of u is n + 1, then u = vi where its last letter i is either 0 or 1.
By induction, there is e in LE such that L(e) = (E/v). Using the two last
properties of LE as described in the previous lemma, there is e′ in LE such
that e′ ∼ e/i, which implies L(e′) = L(e/i). If we combine both conclusions,
we get that L(E/u) = L((E/v)/i) = L(e/i) = L(e′), which ends this proof.

What we prove is that the set of all derivatives is Kuratowski finite up to equiv-
alence. Contrary to what one may thought at first, it does not seem possible to
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show that this set is Kuratowski finite up to similarity. In order to be able to
prove it, we need a priori a stronger condition on ∼, that we have A/0 ∼ B/0
and A/1 ∼ B/1 whenever A ∼ B. This is the case for Brzozowski minimal set
of rules, but it is not the case for our efficient implementation of the similarity.
(As it turned out, to have a list up to equivalence is sufficient to get a decision
for equivalence.) In particular, the rule E∗∗ ∼ E∗ is not stable by derivation, it
would require to add E∗E∗∗ ∼ E∗ to our set of rules.

4 Description of the Decision Procedure

From the definition of regular expressions equivalence ≡ and the basic properties
of the δ operator, we can derive another specification for being equivalent:

∀E F, E ≡ F = L(E) = L(F )
↔ ∀u ∈ Σ∗, u ∈ L(E) = u ∈ L(F )
↔ ∀u ∈ Σ∗, δ(E/u) = δ(F/u)

Definition delta2 (ef :regexp × regexp) := let (e,f ) := ef in has eps e == has eps f.

Definition build list fun : regexp → regexp → seq (regexp× regexp).

Definition regexp eq (r1 r2 : regexp) : bool := (all delta2 (build list fun r1 r2 )).

Lemma regexp eqP : ∀ (r1 r2 :regexp), reflect (r1 ≡ r2 ) (regexp eq r1 r2 ).

Fig. 9. Decision procedure with its correctness proof

For any regular expressions E and F, we consider the set

Der2 E F = {(e, f) | ∃(u : word), e ∼ E/u ∧ f ∼ F/u}
This set is included inside Der E ×Der F , so with Lemmas 1 and 2, we can

conclude that Der2 E F is inductively finite for any E F . A similar approach
to the proof Lemma 3 and Thm. 2 allows us to conclude that Der2 E F can be
enumerated by a list LE,F and for all word u in Σ∗, there is (e, f) in LE,F such
that L(e) = L(E/u) and L(f) = L(F/u).

This property of LE,F is enough to decide the equivalence: we know that
L(E) = L(F ) ↔ ∀u ∈ Σ∗, δ(E/u) = δ(F/u) and we proved that, for any u in
Σ∗, there is (e, f) in LEF such that L(e) = L(E/u) and L(f) = L(F/u). Since
δ(e) = δ(E/u) and δ(f) = δ(F/u), we can show that

L(E) = L(F ) ↔ ∀(e, f) ∈ LEF , δ(e) = δ(f)

which is a decidable predicate.
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5 Representation in Type Theory

While we have been carrying out our formal development in the systems Coq [7]
and Ssreflect [18], we never use in an essential way the impredicativity of the sort
of propositions. So all our proofs could have been done as well in a predicative
system with universes, such as the one presented in [12], extended with inductive
definitions.

One key issue is for the representation of the function regexp eq which is
defined by well-founded recursion, itself defined (see Fig. 10) by saying that all
elements are accessible [14]. Indeed, this function is defined by recursion on the
fact that the set of derivatives of a regular expression is inductively finite, which
can be expressed, as we have seen above, by the fact that a relation is well-
founded. This representation, theoretically sound, is problematic operationally:
the computation of this function requires a priori the computation of the proof
that an element is accessible. This computation is heavy, and furthermore seems
irrelevant, since the accessibility predicate has only one constructor. In order to
solve this problem, we follow the solution of Barras, refined by Gonthier, which
allows us to keep the logical soundness of the representation with a satisfactory
computational behaviour. The main idea is to “guard” the accessibility proofs
by adding constructors (see Fig. 10). If we replace a proof that a relation is
well-founded wf by its guarded version guard 100 wf , we add in a lazy way 2100

constructors, and get in this way a new proof that the relation is well-founded
which has a reasonable computational behavior.

Inductive Acc (E :gset A) (R:grel A) (x :A) : Prop :=
Acc intro : (∀ y, E y → R y x → Acc E R y) → Acc E R x.

Definition well founded (E : gset A) (R : grel A) := ∀ a: A, Acc E R a.

Fixpoint guard (E : gset A) (R : grel A) n (wfR: well founded E R):
well founded E R :=
match n with

| 0 ⇒ wfR
| S n ⇒ fun x ⇒ Acc intro (fun y ⇒ guard E R n (guard E R n wfR) y)

end.

Fig. 10. Guarded version of accessibility proof

6 Some Examples

One important feature of our formalization is the fact that we obtain the decision
procedure as a type theoretic boolean function, with which you can compute
directly without extracting to ML code. We can then use this function to build
in type theory other tactics to solve problems which can be encoded in the
language of regular expressions.
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The following tests have been performed on an Intel Core2 Duo 1.6 GHz, with
2 GB of memory, running Archlinux with kernel 2.6.39. We used Coq v8.3pl2
and Ssreflect v1.3pl1 to formalize the whole development. It is direct to reduce
the problem of inclusion to the problem of equivalence by expressing E ⊆ F as
E + F ≡ F .

The first example we tested is due to Nipkow and Krauss in [11]. The the-
ories of Thiemann and Sternagel [20] contains the lemma which reduces to the
following inclusion of regular expressions

0(00∗1∗ + 1∗) ⊆ 00∗1∗

Our implementation of similarity answers true in 0.007 seconds.
The second example is extracted from the following predicate

∀n � 8, ∃x y, n = 3x + 5y

Is this predicate true or false ? This can be rewritten as the following regular
expression problem:

000000000∗ ⊆ (000 + 00000)∗

Our implementation answers true in 1.6 seconds.
Some more examples can be found in the file ex.v at [8]. Since we are only

looking for building a tactic on top of this decision procedure, like in the reference
[11], both results are within acceptable range for this purpose.

Conclusion and Future Work

The main contributions of this work are

– a complete formalization in type theory of Brzowoski’s algorithm for testing
the equivalence of regular expressions

– a new definition of finiteness and formal proofs of its basic closure properties,
which may have an interest in itself

– the experimental verification that it is feasible to define in type theory func-
tions by well-founded induction and to prove their properties, obtaining pro-
grams that have a reasonable operational behavior3

As a direct extension of Brzozowski’s procedure, we also defined and proved
correct a decision algorithm for the inclusion of regular expressions, that we
have tested on some simple examples.

While doing this formalization, we discovered two facts about Brzozowski’s
algorithm that may not be obvious at first, and which are examples of what one
3 As far as we know, this approach to representation of terminating general recursive

function in type theory has not been tested before. For instance this approach is
explicitly rejected in the reference [4], as being “inconvenient”, since it “requires
mixing some non-trivial proofs with the codes” while our work shows that it is
reasonable in practice and theoretically satisfactory.
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may learn from formalization (and new to us, though we have been teaching
the notion of Brzozowski’s derivatives for a few years). First, the number of
derivatives is finite even if the alphabet is not. (However in practice, one has
to restrict to finite alphabets if one wants to extract the list describing the
derivatives.) Second, it is not so obvious how to extract from Brzozowski’s purely
existential result an actual computation of a list of all derivatives up to similarity
(as one may have expected at first; without the further assumption that similarity
is closed under derivatives we obtain only a list of derivatives up to equivalence).

There are other notions of derivatives that are worth investigating, like in [21]
where they use partial derivatives known as Antimorov ’s derivatives. A natu-
ral extension of this work would be, like in the references [4,11] to use it for a
reflexive tactic for proving equalities in relation algebra. We don’t expect any
problem there, following [4,11]. A more ambitious project will be to use this
work for writing a decision procedure for the theory WS1S [6], where formulae
of this language are interpreted by regular expressions. Since we use extended
regular expression, we have a direct interpretation of all boolean logical connec-
tives, and what is missing is the interpretation of the existential quantification.
For giving this interpretation, one possible Lemma would be to show that any
extended regular expression is equivalent to a regular expression which uses only
the operator of union, concatenation and Kleene star. This in turn should be
a simple consequence of the fact that the set of derivatives of a given expres-
sion is Kuratowski finite up to equivalence. Using this result, we can then define
given any map f : Σ1 → Σ2 extended to words f∗ : Σ∗

1 → Σ∗
2 , and given a

regular expression E over Σ1, a new regular expression f∗(E) over Σ2 such that
L(f∗(E)) = f∗(L(E)). It is then possible to interpret existential quantification
using this operation.
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