Regular Expression Matching using Partial Derivatives

Martin Sulzmann

Informatik Consulting Systems AG
martin.sulzmann@gmail.com

Abstract

Regular expression matching is a classical and well-stugieb-
lem. Prior work applies DFA and Thompson NFA methods for the
construction of the matching automata. We propose the nmebf
derivatives and partial derivatives for regular exprassiatching.
We show how to obtain algorithms for various matching pebci
such as POSIX and greedy left-to-right. Our benchmarkisglte
show that the run-time performance is promising and thatagur
proach can be applied in practice.

1. Introduction

Regular expression pattern matching is a natural genaetiliz of
pattern matching known from ML and Haskell. Here is an exampl
written in a Haskell style language.

f :: (Space | Text)* -> Textx*

f nn —_ un

f (x::Space*, y::(Space | Text)*) = f y

f (x::Text+, y::(Space | Text)*) =x ++ f y

The data typeText refers to some alpha-numeric character and
Space refers to white space. The above function removes all white
space from the input string as specified by its type signatute
(Space | Text)* -> Text*. For example,f " Hello Bye"
yields"HelloBye".

Removal of white space is achieved via the three patterrsetau
which are applied from top to bottom. The first clause apgles
case the input is empty. We use strings to represent seqefice
white space and text. Therefore, the empty word is repreddmnt
the empty string'". In the second clause, the regular expression
pattern(x: :Spacex, y::(Space | Text)*) matches any non-
empty string (sequence) of white space and text. The poinbte
is that via the sub-patterns we can refer to sub-parts ofrtheti
string.

Variablex in x: : Space* matches any string of white space and
variabley in y: : (Space | Text)#* matches any remaining input
symbol. For our example input, we find the matchibe : " ",
y::"Hello Bye"]. But this is not the only possible matching be-
causespacex* matches also the empty string. Hence, the matching
[x::"", y::" Hello Bye"] is possible as well.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titisenand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright© ACM [to be supplied)]. .. $5.00.

Kenny Zhuo Ming Lu

Circos.com, Inc.
luzhuomi@gmail.com

To make pattern matching unambiguous, we usually impose a
specific pattern matching policy such as greedy or POSIX Imatc
ing. This guarantees that only one matching results fronteess-
ful pattern match. For our running example, we assume a greed
matching policy. Therefore, we obtain the matchifg: :" ",
y::"Hello Bye"] which leads to the subsequent function dall
"Hello Bye". The last pattern clause is the only one applicable.
Under greedy matching, we obtalx: : "Hello", y::" Bye"]
which leads to yet another function call " Bye" resulting in
"Bye”. We write ++ to denote string concatenation. Hence, we ob-
tain the final result "HelloBye”.

There are numerous prior works, e.g. consider [7, 4, 9, 8],6, 5
which study regular expression pattern matching and tifiédient
implementation. Our contributions to this area is the nasd of
regular expression derivatives [2] and partial derivatiMg for reg-
ular expression pattern matching. Derivatives and padgaiva-
tives are related to each other like DFAs and NFAs. The diévea
based algorithm has exponential run-time complexity dusattk-
tracking, while the the partial derivative-based algarmtbnjoys the
optimal linear time complexity.

In summary, we make the following contributions:

e We extend the notion of derivatives of regular expressians t
patterns and thus derive an elegant algorithm for regular ex
pression pattern matching (Section 3).

e We show how to obtain a linear time complexity regular ex-
pression matching algorithm by employing partial derivedi
(Section 4).

e We discuss how to obtain an optimized implementation with
competitive performance results (Section 5).

All of our results are stated as propositions. We providerinf
mal explanations but omit formal proofs which we plan to pdev
at some later stage. We will use Haskell as our executabtsfigze
tion language and for the implementation of all algorithiaskell
is a natural choice because of the functional nature of theative-
based approach towards pattern matching. The implemensadie
available via

http://code.google.com/p/xhaskell-library/
Related work is discussed in Section 6. Section 7 concludes.

2. Regular Expression Pattern Matching

We first formally introduce regular expression matching ig-F
ure 1. The definition of words, regular expressions and laggs is
standardX refers to a finite set of alphabet symbels B, etc. To

avoid confusion with the EBNF symbo]”, we write "+” to denote
the regular expression choice operator. The pattern laygoan-
sists of variables, pair, choice and star patterns. Pattetables:

are always distinct. The treatment of extensions such amctea
classes, back-references is postponed until a later se&iwiron-
ments are ordered multi-sets, i.e. lists. We wittd denote multi-

2010/4/24

Words:

w = € Empty word
| leX Letters
| ww Concatenation
Regular expressions:
r == r—+r Choice
| (r,r) Concatenation
| Kleene star
| € Empty word
| @ Empty language
| leX Letters
Languages:
L(ri+72) = L(r1)UL(re)
L(?“177“2) = {'LUl'LUQ | w1 € L(T1),w2 € L(Tz)}
L(r) = {e} U{wi...wn|w; € L(r)}
L(e) = {e
L(¢) = {I
L(1) = {
Patterns:
p == (x:r) VariablesBase
| (xz:p) Variables Group
| (p.p) Pairs
| (p+p) Choice
| p* Kleene Star
Environments:
I' == {z:w} Variable binding
| TI'wl Ordered multi-set of variable bindings
Pattern matching relatiom - p ~ T°
L [r
(VarBase) w € L(r) (VarGroup) wrp~
whkz:ir~{z:w} wkzip~{z:wlyl
w = wrws (ChoiceL) wkm~T 3
_ w1 F p1~ Ty w b p14+p2~T1 w7w1...wn.
(Pair) (Star) w; Fp~T; fori=1.n
wa F p2o Iy w b pa~> T whkp'~Iy ..yl
w F (pr,p2) ~ T1 T2 (ChoiceR) s m

w F p1+p2~ T

Figure 1. Regular Expressions and Matching Relation

set union, i.e. list concatenation. The reason for usingtirsats
rather than sets is that we record multiple bindings for &atde .
See the up-coming match rule for Kleene star patterns.

Concatenation among regular expressions and patternteis of
left implicit and to omit parentheses we assume thahas a
lower precedence than concatenation. Heate; AB is a short-
hand forA + (A,B) andz : A+ y : AB is a short-hand for
(z:A)+ (y: AB).

Matching a patterp against a wordv is defined by the match-
ing relationw F p ~ I which results in a bindind", mapping
variables to matched sub-parts of the word. The matchiradioel
as defined is indeterministic, i.e. ambiguous, for the folig rea-
sons.

In case of choice, we can arbitrarily match a word eitherrsgjai
the left or right pattern. See rules (ChoicelL) and (ChoicéR)e-
terminism also arises in case of (Pair) and (Star) whererpati
word w can be broken up arbitrarily. Next, we consider some ex-
amples to discuss these points in more detail.

For pattern(zyz : (z: A+y: AB+z: B)")and inputABA
the following matchings are possible:

o {zyz: ABA,x: A,z: B,x : A}.

In the first iteration, we matctd (bound byz), then B
(bound byz) , and then agaid (bound byz). For each iteration
step we record a binding and therefore treat bindings as list
We write the bindings in the order as they appear in the patter
starting with the left-most binding.

o {vyz: ABA,y: AB,z: B}.

We first matchA B (bound byy) and in the final last iteration

thenB (bound byz).

For pattern(zyz : (zy : (x : A+ AB,y : BAA+ A),z :
AC + C)) and inputABAAC we find the following matchings:
o {zyz: ABAAC,zy: ABAA,x: A,y: BAA,z: C}.
o {zyz: ABAAC,zy: ABA,x: AB,y: A,z : AC}.
To make the matching relation deterministic, we impose a pat
tern matching policy such as POSIX. POSIX demands that wé mus
always match the longest word relative to the pattern siracSee

Figure 2 where we introduce the POSIX rules (POSIX-Pair) and
(POSIX-Star). All other rules from Figure 1 remain unchahge

2010/4/24

Word ordering:

|w] = length of wordw
w1 > wy = |wi] 2 |wo|
(w17"'7wn) 2 (’LUi, 7w;n) = (U)l >’LU£)\/(|’UJ1| == |wll|/\n> 1/\(’LU2,...,’U}n) 2 (U}é, aw;n))
Free pattern variables:
fo(x:r) = {z} baseFv(x :) = {a}
fu(z : p) = {z} U fu(p) baseFv(x : p) = baseFv(p)
fv(pi,p2) = fu(p)Ufu(p2) baseFu(pi,p2) = baseFuv(p1)U baseFv(p2)
fo(p* = fu(p) baseFv(p* = baseFv(p)
fo(pr+p2) = fu(p1)U fo(p2) baseFv(p1 +p2) = baseFv(p1)UbaseFv(p2)
POSIX matching:
w = Wi1w2
w1 Fposrx p1 ~ I'1 W = W1...Wn
w2 Fposix p2 ~ I'a w; Fposix p~T; fori=1.n
forall w’, w), I}, ', such that forall wi, ..., w,,,T'1, ..., I',, such that
_ ! _ / /
(POSIX-Pair) Y=t (POSIX-Star) Y=t

wy Fposix p1~ I
wy Fposix p2 ~ I'h
we have that
(w1, w2) > (wh, wp)
wkposrx (p1,p2) ~ T1 W

Greedy left-to-right matching:

w Fgire p1 ~ 'y
fo(p2) ={z1, .., xn}
Io={x1:€,...,2n : €}
W kgiro p1 +p2~ 18

(GLR-ChoicelL)

U}; '_POSIX P~ F; fori =1..m

we have that
(W1, ey Wi) > (WY, ooy Why)

wkFposrx p* ~ Iy ...y,

w = wi...Wn
wi Fgiro p~ Ty fori=1.n
forall wi, ..., w,,,T'1, ..., I',, such that
w=wi..w,

GLR-Star
w g 2p2,\,>1"2 () U}; }_glr2p’\’> F; fori=1..m
glr

) fo(p) = {z1, .., 20} we have t/hat ,
(GLR-ChoiceR) (T1y...,Tp) > (T, ..., T7)
Flz{ah:e,...,xn:e}) 1yt m
w }_glr2 p* ~Tiw..wly,

tw '_gl'rQ P1 —|—p2 d Fl] FQ
w }_glr2 D~ r

forall T’ such thatw b2 p ~ T”

we have

(GLR) Lo ={z:wlx:

,={z:wlz:wel’

thal", > I',, where
weTl € baseFv(p)}
x € baseFv(p)}

w

|_gl'r b~ r

Figure 2. Matching Policies

The premise in rule (POSIX-Pair) implies that there existsds
w1, we and bindingsl'y, I's such that the following conditions
hold:

® w = wiws, and
® w1 Fposrx p1 ~ I'1,and
® wx Fposrx p2~ I'z

That is,w; matcheg; andw2 matchegp.. The additional for all
qualified conditions ensure that the first pattginis matched by
the longest sub-part ab. Similarly, rule (POSIX-Star) demands

that in each iteration we match the longest sub-word. Fdn gac
ation we record the binding and therefore use multi-setslists.

ProPOSITION2.1 (POSIX Correctness).et w be a word,p be
a pattern andl’ a binding such thatw Fposrx p ~ T'. Then,
wkp~T

A different matching policy is greedy left-to-right mataoli.
Judgment kg2 - ~ - performs greedy left-to-right matching
for all intermediate nodes. The rules for choice and starrere
placed by rules (GLR-ChoicelL), (GLR-ChoiceR) and (GLRfpta
All other rules remain unchanged. In case of (GLR-Choicels),

2010/4/24

append some empty bindifig: behind the left matci';. In case
of (GLR-ChoiceR), we append the empty bindifig ahead of the
right matchl's. This guarantees that we cover all pattern variables
even if they only contribute the empty binding and all birgiirre-
flect the order of the variables in the pattern. This is thasbias
the greedy left-to-right comparison in rules (GLR-Sta) é6LR).
Rule (GLR-Star) is similar to rule (POSIX-Pair). The di#aice
is that we favor the earliest match and use the bindingsstead
of words w; for comparison. Thus, we select the greedy left-to-
right match instead of only the longest match as in case ol ROS
The bindings reflect the greedy left-to-right matching ordife
write (T1,...,I'») > (T%4,...,T7,) as a short-hand fofx1,
Wiyy s Ty 2 Wiy) > (=, : wil,...,x;nlm : w;nlm) where
(zi; +wi;) € Dy and(z;, : wi,) € T The sequence of variables
x;; is a suffix of the sequencdj.
Rule (GLR) finally selects the greedy left-to-right matchdnyy
considering the base bindings resulting frem r. See the use of
baseF v in the definitions. We writd’, > T', as a short-hand for

(Wi, ..oy wn) > (v1,...,vm) Wherel's = {x1 : wi,...,Tn : Wn}
andT, = {y1 : v1,...,Ym : vm}. The bindingsz; : w; and
y; : v; correspond to the leftmost matching order which implies

thatz, ...z, is a suffix ofyi...ym.

PROPOSITION2.2 (Greedy Left-To-Right Correctnesd)et w be
a word, p be a pattern and” a binding such thatv g p ~ T
Then,w + p ~» T” for somel” such thatl'(z) = (=) for all
x € dom(I).

Because we also record empty bindings resulting from chuate
terns, see rules (GLR-Choicel) and (GLR-ChoiceR), the dyree
left-to-right bindingl" represents a superset of the bindiHgzom-
puted via Figure 1. Therefore, we comparandI’ with respect
to the variable bindings ili’. For convenience, we treat bindings
like functions and writelom(I"") to denote the function domain of

I'". The codomain is the power set over the language of words be-

cause of repeated bindings in case of the pattern staridterdtor
instance, fol"”" = {z : A,z : B} we have that"'(z) = {4, B}.

Let's revisit our earlier examples. For patténryz : (z : A+y :
AB + z : B)") and inputABA we have that

e {ryz: ABA,y: AB,z: B} is the POSIX match, and
e{r:Ay:ez:er:6y:€z:Bx:Avy:ez:eristhe
greedy left-to-right match.

The repeated bindings far, y andz arise because of the choice and
Kleene star pattern. The above shows that POSIX strictiyrfathe
longest match, regardless whether the match is in the lefgbt
component of a choice pattern.

We consider an additional, new example. For pattem: (x :
A+vy: AA)*) and inputdA A we find that

o {zy: AA y: AA}is the POSIX match, and

oe{z : Ay : e,x : Ay : e} is the greedy left-to-right
match. In some intermediate step, we encounter the mathing
{z : Ay : ez : Ajy : e} and{z : ¢,y : AA}. Rule
(GLR-Star) then selectsr : A,y : e,z : A,y : €}.
For pattern(zyz : (zy : (x : A+ AB,y : BAA+ A),z :

AC + C)) and inputABAAC we have that

o {ryz: ABAAC,zy : ABAA,x: A,y : BAA,z : C}isthe
POSIX match, and

o {ryz : ABAAC,zy : ABA,xz : AB,y : A,z :
greedy left-to-right match.

AC} is the

The POSIX match respects the structure of the pattern. Hémee
first match is chosen where the binding ABAA is longer than
the bindingz : ABA in the second match. The pattern structure is

data RE where

Phi :: RE -- empty language
Empty :: RE -- empty word
L :: Char -> RE -- letter
Choice :: RE -> RE -> RE -—rl + r2
Seq :: RE -> RE -> RE -- (r1,r2)
Star :: RE -> RE -= r*
derivRE :: RE -> Char -> RE
derivRE Phi _ = Phi
derivRE Empty _ = Phi

derivRE (L 11) 12
| 11 == 12 = Empty
| otherwise = Phi
derivRE (Choice rl1 r2) 1 =
Choice (derivRE r1 1) (derivRE r2 1)
derivRE (Seq r1 r2) 1 =
if isEmpty ri
then Choice (Seq (derivRE r1 1) r2) (derivRE r2 1)
else Seq (derivRE r1 1) r2
derivRE (this@(Star r)) 1 =
Seq (derivRE r 1) this

Figure 3. Regular Expression Derivatives

ignored by the greedy left-to-right match which selectsriach
based on the base variables only. Hence, greedy choosexthes
match.

Our next goal is to implement the POSIX and greedy left-to-
right matching.

3. Derivatives for Matching

In a first step, we implement the matching relation from Féglr
by using Brzozowski’s regular expression derivatives [2].

3.1 Regular Expression Derivatives
Derivatives provide for an elegant solution to the word peoi
lw e L(r) iff we L(r\l)

wherer\[is the derivative of- with respect td. In language terms,
we can specify derivatives as follows:

L(r\l) = {w]lw e L(r)}

Constructively, we obtaim\/ from r by taking away the letter
I while traversing the structure of. For example/\! = € and
(r14r2)\ 1 = r1\l 4+ r2\l.

In Figure 3 we implement the\- operation via the Haskell
functionderivRE. The Haskell data typeE is a literate translation
of the expression syntaxfrom Figure 1.

The pair caseSeq), checks if the first componemt is empty
or not. If empty, the lettet can be taken away from eithey or r».

If non-empty, we take awalfrom r;. In case of the Kleene star,
we unfoldr* to (r, 7*) and take away the leadirigrom r.

3.2 Pattern Derivatives
Our idea is to transfer derivatives to the pattern matchéettrsy:
lwk p~Tiff wk p\l~T

Word lw matches the patterp and yields environment' iff w
matches the pattern derivativefvith respect td.

The construction of pattern derivatives is similar to regul
expressions. See Figure 4 for an implementation in Haskell.
case of a pattern variable, we build the derivative of thailag
expression (base variable) or inner pattern (group vag)albior
convenience, we record the pattern match in the patterhi bige
appending to the already matched word. The cases for choice

2010/4/24

data Pat where

PVar :: Int -> Word -> RE-> Pat

PPair :: Pat -> Pat -> Pat

PChoice :: Pat -> Pat -> Pat

PStar :: Pat -> Pat

PatVar :: Int -> Word -> Pat -> Pat
derivPat :: Pat -> Char -> Pat

derivPat (PVar x w r) 1 = PVar x (w ++ [1]) (derivRE r 1)
derivPat (PPair pl p2) 1 =

if (isEmpty (strip p1))

then PChoice (PPair (derivPat pl 1) p2)

(PPair (mkEmpPat p1) (derivPat p2 1))

else PPair (derivPat pl 1) p2
derivPat (PChoice pl p2) 1 =

PChoice (derivPat pl 1) (derivPat p2 1)
derivPat (PatVar x w p) 1 = PatVar x (w++[1]) (derivPat p 1)
derivPat (this@(PStar p)) 1 = PPair (derivPat p 1) this

Figure 4. Pattern Derivatives

strip :: Pat -> RE

strip (PVar _w r) = r

strip (PPair pl p2) = Seq (strip pl) (strip p2)
strip (PChoice pl p2) = Choice (strip pl) (strip p2)

strip
strip

(PStar p) = strip p
(PatVar _ w p) = strip p

mkEmpPat :: Pat -> Pat
mkEmpPat (PVar x w r)
| isEmpty r = PVar x w Empty
| otherwise = PVar x w Phi
mkEmpPat (PPair pl p2) = PPair (mkEmpPat pl) (mkEmpPat p2)
mkEmpPat (PChoice pl p2) =
PChoice (mkEmpPat pl) (mkEmpPat p2)
mkEmpPat (PatVar x w p) = PatVar x w (mkEmpPat p)
mkEmpPat (PStar p) = PStar (mkEmpPat p)

isEmpty :: RE -> Bool
isEmpty Phi = False
isEmpty Empty = True

isEmpty (L _) = False

isEmpty (Choice rl r2) = (isEmpty r1) || (isEmpty r2)
isEmpty (Seq rl r2) = (isEmpty r1) && (isEmpty r2)
isEmpty (Star r) = True

Figure 5. Helper Functions

and star are similar to the regular expression case. Therpatt
match for star records the binding for each iteration.

The pair case differs slightly compared to the regular esgioa
case. Thestrip helper function, see Figure 5, extracts the regular
expression to test if the first pattesnis empty. If empty, all further
matchings will only considep,. However, we can't simply drop;
because we record the variable binding in the pattern itssifead,
we make the pattern empty such that the resulting pattertt can
match any further input. See helper functitEmpPat.

For example, consider the pattern

([ABJz : (A+ B)",[ly : C™)

For convenience, we use the pattern syntax from Figure ¢adst
of the more verbose Haskell data type syntax. Each variahtess
with the already matched word. The first pattern has already c
sumed[A B] while the binding of the second pattern is still empty
represented bfj.

type Word = [Char]
type Env = [(Int,Word)]

allMatch :: Pat
allMatch p w =

-> Word -> Pat
foldl (\ p — \ 1 — derivPat p1l) p w

allBinding :: Pat -> [Env]
allBinding (PVar x w r) =
if isEmpty r then [[(x,w)]] else []
allBinding (PChoice pl p2) =
(allBinding pl) ++ (allBinding p2) -- indet choice
allBinding (PPair pl p2) =
[xs ++ ys | xs « allBinding pl, ys <« allBinding p2]
allBinding (PatVar x w p) =
[(x,w):env | env « allBinding p]
allBinding (PStar p) = allBinding p

match :: Pat -> Word -> [Env]
match p w = allBinding (allMatch p w)

Figure 6. Derivative Matching

Computation of the pattern derivative with respect(topro-
ceeds as follows.

derivPat ([AB]z: (A4 B)",[ly: C*)C

ABC] derivPat (z: (A+ B)*) C,[ly : C*)+
AB] mkEmpPat (z : (A + B)*),derivPat ([Jly : C*) C)

\
~—

= ([ABCJz : (derivRE (A + B)

C,(A+B)"),[ly: C")+
AB]Jz : €,[Cly : (derivRE C' C

,C7))

—~

= ([ABClz: (¢ + ¢, (A+ B)"),[Jly: C*)+
([ABJx : ¢, [Cly : (¢,C™))

The sub-patterti¢ + ¢, (A + B)™*) could be further simplified by
¢ and(e, C*) by C*. We omit this implementation step for brevity.

3.3 Derivative Matching

Figure 6 puts the pieces together and implements the matoblis-
tion from Figure 1. FunctioallMatch iterates over the input word
and applies the pattern derivative function. Functid@Binding
computes the bindings which are recorded in the final pattern

PrROPOSITION3.1 (Pattern Derivative Soundnestet w be a
word, p be a pattern and” a binding such thatv - p ~ T.
Thenmatch p w = envs for someenvs andenv such that

e env is an element oénvs, and

o for all x € dom(T") we have thallookup x env =
wherew’ = T'(z).

Just w’

PROPOSITION3.2 (Pattern Derivative Completeneskptw be a
word andp be a pattern. Ifnatch p w = envs then for all ele-
mentsenv in envs we have that there exisissuch that

ewF p~T,and
o for all x € dom(I") we have thallookup x env =
wherew’ = T'(z).

Just w’

Thelookup function retrieves a variable binding. The construc-
tor Just indicates that the lookup is successful.

The pattern computed yl1Match represents a tree of match-
ings. For example, consider pattefn : A",y : A*) for input
AAA.InFigure 7, we visualize the resulting pattern as a treeghe
every branch corresponds to a choice operator in the patésiva-
tive. Every leaf node corresponds to a potential match teBat
convenience, we simpliffe, A*) by A*.

2010/4/24

/ :
| (Al A"y A) (z: 6 [Aly: AY)
A A A A
[(Adle: A%y A0 (Al Ay 4| [(Ae:o,[Ay:A)| (@6 [A4]y: AY)
A \A A A A/ \A A/ A

Li = ([AAA]z: A*[|ly: AY)
Ls = ([AAlz:¢,[Aly: A")
Ls = ([AA]z:¢,[Aly: A")
Ly = ([Alz:¢,[AAly: A7)

Ly, = ([AA]z:e [Aly: A"

Ly = ([Alz:¢ [AAly: AY)
Le = ([Alx: ¢, [AA]y: A7)
Ls = (= :¢[AAA]y: A7)

Figure 7. Match Tree Example

FunctionallBinding traverses the tree to build all valid vari-
able bindings. For examplé; is invalid because of the non-empty
¢ pattern. Overall, we obtain the bindings

{z: AAAy : e}
{z:AAy: A}
{z:Ay:AA}
{r:ey: AAA}

For most applications, we are not interested in all matching
but only in a specific, for example POSIX, match. We can select
specific match by traversing the tree in a certain order. Feedy
left-to-right we choose a depth-first traversal. A probleithwhis

approach is that we might have to back-track in case we hit an

invalid leaf node. As the example in Figure 7 shows, bac&kiray
can take exponential time.

PrROPOSITION3.3 (Pattern Derivative Complexity-he complex-

ity of match is exponential in the size of the input in the worst case.

To avoid back-tracking, and thus the exponential worsecas
complexity, we explore several match paths simultanedoglys-
ing a non-deterministic automata for matching.

4. Partial Derivatives for Matching

For the non-deterministic match automata construction vakem
use of partial derivatives.

4.1 Regular Expression Partial Derivatives

Derivatives represent the states of a deterministic autbmiereas
partial derivatives introduced by Antimirov [1] represéme states
of a non-deterministic automata. The partial derivativeragion

-\p- yields a set of regular expressions via which we can express

derivatives as follows.

L(r\D)

wherer\pl = {ri,...,rn}

L(ri+ ... +70)

partDeriv :: RE -> Char -> [RE]
partDeriv Phi 1 = []
partDeriv Empty 1 =
partDeriv (L 1°) 1
| 1 ==1° = [Empty]
| otherwise = []
partDeriv (Choice rl r2) 1 =
nub ((partDeriv rl 1) ++ (partDeriv r2 1))
partDeriv (Seq rl r2) 1
| isEmpty rl =
let s1 = [(Seq r1’ r2) | r1’ <- partDeriv rl 1]
s2 = partDeriv r2 1
in nub (s1 ++ s2)
| otherwise = [(Seq r1’ r2) | r1’ <- partDeriv r1 1]
partDeriv (Star r) 1 =
[(Seq r’ (Star r)) | r’ <- partDeriv r 1]

a1

Figure 8. Regular Expression Partial Derivatives

Partial derivatives are computed compositionally by traivegy
the structure of the regular expression. For example, denshe
choice case

(rL+r2)\pl = (r1\pl) U (r2\pl)

Figure 8 implements the operatéy,- via the Haskell function
partDeriv. The definition is similar to theerivRE function but
we now put sub-results into a set instead of combining thenthe
choice operatos-. We use lists to represent sets and therefore use
thenub function to remove duplicate elements.

For expressiom* we find

partDeriv A" A = [(¢, A™)]

which is equivalent toA*. Our formulation of the partial derivative
operation slightly departs from the formulation given if. [An-
timirov immediately computest™ as the partial derivative ot

2010/4/24

data Pat where

PVar :: Int -> RE -> Pat
PPair :: Pat -> Pat -> Pat
PChoice :: Pat -> Pat -> Pat
PStar :: Pat -> Pat

PatVar :: Int -> Pat -> Pat

deriving Eq

pdPat :: Pat -> Char -> [(Pat,Env->Env)]
pdPat (PVar x r) 1 =
let pds = partDeriv r 1
in if null pds then []
else [(PVar x (resToRE pds),
\ env -> update (x,1) env)]
pdPat (PPair pl p2) 1 =
if (isEmpty (strip p1))
then nub2 ([(PPair pl’ p2,f)
pdPat p2 1)
else [(PPair p1’ p2,f) |
pdPat (PChoice pl p2) 1 =
nub2 ((pdPat pl 1) ++ (pdPat p2 1))
pdPat (this@(PStar p)) 1 =
[(PPair p’ this, f) | (p’,f) <- pdPat p 1]
pdPat (PatVar x p) 1 =
[(PatVar x p’, f .

| (p1’,f) <- pdPat p1l 1] ++

(p1’,f) <- pdPat p1 1]

(update (x,1))) | (p’,f) <- pdPat p 1]
update :: (Int,Char) -> Env -> Env
update (x,1) [1 = [(x,[1D)]
update (x,1) ((y,w):env)
| (y == x) = (x,w++[1]) : env
| otherwise = (y,w) : update (x,1) env

nub2 = nubBy ((p1,) (p2,) -> pl == p2)

Figure 9. Pattern Partial Derivatives with Matching Functions

with respect toA. This is a minor detail. Importantly, we can re-
state the following result already reported in [1].

PROPOSITION4.1 (Antimirov). For a finite alphabe® and regu-
lar expressiorvr, the set of partial derivatives of and its descen-
dants is finite. The size of the set is linear in the size ofeébalar
expression.

The above result does not hold for derivatives. For example,

derivRE A* A = (¢, A7)
derivRE (e, A") A = (¢,A")+ (e, A")

and so on. On the other hand, for partial derivatives we Haafe t

[(e, A™)]
[(e, A7)]

we reach a fix-point. Note thatrtDeriv el = [].

partDeriv A* A =
partDeriv (¢, A") A =

4.2 Pattern Partial Derivatives

We make use of the finiteness of partial derivatives to buittia-
deterministic finite matching automaton. Each NFA transitjoes
from a regular expression pattern to the set of partial dévies
patterns. To each partial derivative we also associate t@rpat
matching functionf.

p =A@,)10 € P\uD)} @
The matching functiory incrementally records that lettéis con-
sumed by some pattern variabie As we will see shortly, the fi-
nal matching will be computed by composition of the incretaén
matchings.
Figure 9 shows the implementation of the NFA transitionrela
tion (1) in terms of the Haskell functiopdPat. The construction of

isEmptyPat :: Pat -> Bool
greedy2:: [(Pat,Env)] -> Word -> [Env]
greedy2 ps [1 =

[env | (p,env) <- ps, isEmptyPat p]
greedy2 ps (l:w) =

let ps2 = [(p’, f env) | (p,env) <- ps,
(p’,f) <~ pdPat p 1]

ps3 = nub2 ps2

in greedy2 ps3 w

greedy :: Pat -> Word -> Maybe Env
greedy p w =
case (greedy2 [(p,[]1)] w) of
env:_ -> Just env
[1 -> Nothing

Figure 10. Greedy Left-To-Right Matching

pattern partial derivatives follows closely the constiorttof regu-
lar expression derivatives. The cases for pattern vasgaate the
only interesting ones. Fa@Var we build the partial derivative of
the base regular expressionThe incremental matching function
simply updates the current bindirg.v by appending the letter.
The construction is similar fapatVar. In addition, we apply the
incremental matclf of the the sub-patterp.

Antimirov’s result straightforwardly transfers to the tdgr ex-
pression pattern setting.

PrRoOPOSITION4.2 (Finiteness of Pattern Partial DerivativeS)r

a finite alphabet: and patternp, the set of pattern partial deriva-
tives ofp and its descendants computed via funcpdRat is finite.
The size of the set is linear in the size of the pattern.

The above allows us to build a finite, non-deterministic rhatc
ing automata.

4.3 Greedy Left-To-Right Matching

The implementation of greedy left-to-right matching is egivin
Figure 10. For brevity, we omit the straightforward implartaion
of isEmptyPat. The pattern partial derivatives computeddapat
are kept in left-to-right traversal order. We maintain thider while
simultaneously exploring the paths of the non-deternmimisttch-
ing automata. Theaub2 removes duplicate matching statepi®.
For removal of duplicates, we only consider the pattern apmp
nent. An important property is that th@bBy (andnub2) function
is stable. That is, equal elements are not re-ordered. Thaligq
function among patterns is derived automatically, §eeiving
Eq attached to theat data type definition. Proposition 4.2 guaran-
tees that the size of matching statep#iremains finite.

We can summarize the above observations as follows.

PrROPOSITION4.3 (Greedy Correctness and Complexitiyunction
greedy implements the greedy left-to-right matching policy from
Figure 2 and it’s running time is linear in the size of the inpu

A feature of our implementation is that individual bindingfs
Kleene star iterations will be concatenated based on therpat
variables.

For example, fo(z : A,y : B)* and inputA BA B we compute
the final binding[x : AA,y : BB]. We could of course also
compute the individual bindings for each iteratipn : A,y :
B,z : A,y : B]. This requires a few modifications fedPat,
in particular, the case farstar. The details can be found in the
implementation which is available with this paper.

2010/4/24

-- some adjustment because of
-- right-to-left match, append to front
update (x,1) [1 = [(x,[1]1)]

-- some adjustment, keep only last, most recent match
pdPat (this@(PStar p)) 1 =
[(PPair p’ this, f . (reset p)) | (p’,f) <- pdPat p 1]

-- remove earlier bindings of pat
reset :: Pat -> Env -> Env

geqEnv p el e2 =
let xs = getVar p
in geq (map (envToWord el) xs)
(map (envToWord e2) xs)

Pat -> [Int]
Env -> [Int] -> [Word]

getVar ::
envToWord ::

geq [1 [1 = EQ

geq (wl:wsl) (w2:ws2)
| length wi > length w2 = GT
| length wl == length w2 = geq wsl ws2
| otherwise = LT

geq - - = LT

getVar :: Pat -> [Int]

getVar (PVar x) = [x]

getVar (PPair pl p2) = getVar pl ++ getVar p2
getVar (PChoice pl p2) = getVar pl ++ getVar p2
getVar (PStar p) = getVar p

getVar (PatVar x p) = x : getVar p

nubPosix :: Pat -> [(Pat,Env)] -> [(Pat,Env)]

nubPosix - [1 = []

nubPosix p ps =
let pegss = groupBy (\ (p1,.) (p2,.) -> pl == p2) ps
in map (maximumBy (geqEnv p)) pegsss

-- set of all pattern partial derivatives
allPD :: Pat -> [Char] -> [Pat]

-- set of letters in pattern

sigmaPat :: Pat -> [Char]

posix :: Pat -> Word -> Maybe Env
posix init v =
let allPDs = allPD init (sigmaPat init)
finals = [(p,[]) | p <- allPDs, isEmptyPat p]
pMatch ps [] =
[maximumBy (geqEnv init)

[env | (p,env) <- ps, p == init]]
pMatch ps (1:w) =
let ps2 = [(p’,f env) | (p,env) <- ps,
p’ <- allPDs,
(p’?,f) <- pdPat p’ 1,
p’’ =7p]

ps3 = nubPosix init ps2
in pMatch ps3 w
in case (pMatch finals (reverse v)) of
[l -> Nothing
(env:.) -> Just env

Figure 11. POSIX Right-To-Left Matching

4.4 POSIX Right-To-Left Matching

Implementing POSIX matching turns out to be more challeggin
We can't rely anymore on a specific traversal strategy, eft: |
most, but must follow the POSIX matching order

Recall the earlier examplecyz : (z: A+y: AB+z: B)¥).
For inputABA, we find matchings

o {zyz: ABA,y: AB,z: A}, and
o {zyz: ABA,x: A,z: B,x: A}

The second one is the greedy left-to-right match and thedimstis
the POSIX match.

One possible strategy to compute the POSIX match is to keep
track of the individual (incremental) matchings and aftesud-
pattern match is complete to perform the POSIX check. See rul
(POSIX-Star). But this strategy demands a lot of book-kegpi
which in turn requires extra space [7].

The key idea is to perform the POSIX match from right-to-left
and only perform the POSIX check for the last, most recentmat
We owe this insight to [4]. Explanations of why this approach
works is missing in [4]. We finally provide some explanatioisgg
our running examplézyz : (z: A+y: AB+z: B)*).

We first build the automata derived from pattern partial\aéeri
tives. For convenience, we have slightly simplified the ensta by
simplifying (e, 7*) to »*. We also omit the incremental matching
functions.

* States:
p1 = (zyz:(x:A+y: AB+z:B)")
p2 = (zyz:(y:B,(z:A+y: AB+ z: B)"))

e Transitions:

pr — p1
A

pr —— P2
B

pr — p1
B

Let's consider the greedy left-to-right (forward) match:

[p1]
2, [p1,p2] forward choice point
£, [p1,p1] forward conflict point

In the second step, we encounter a conflict. The segancor-
responds to the POSIX match which in our current scheme will b
dropped. If we could foresee the future we could at the choddet
already favomp2 which leads to the POSIX match.

The idea by Cox is to perform the match from right-to-left
(backward):

[p1]
A
— [p]
B
— [p1,p2]
< [p1,p1] backward conflict point

We start off with the final state;. We consume the input from
right-to-left. That is, we build a (backward) path from fibainitial
state. We yet again reach a conflict point.

The important insight, and something which hasn't beeniprev
ously explained, is that the backward conflict point coroes}s to
the forward choice point (well, we are just slightly aheaddme
step). Recall that in case of the forward choice point, wddrou
make any decision yet which duplicate to keep. We havent see
the future yet and therefore must consume further input.eQve
reach a forward conflict point, we can make a decision baséldeon
recorded history of all matchings so far.

In case of the backward conflict point, we have already sen th
future! Simply because we are consuming the input from right
left. That is, we can make a decision based on the currenthmatc
The current match is sufficient because the backward copfliot
represents the latest conflict point. We mean here lateseisdnse
when viewed from left to right. Hence, there is no need to réco
a history of all matchings so far. We aggressively resolvelmts

2010/4/24

at the earliest possible point when going backwards (witidhtest
when going forward).
For our example, we find the following situation

[(p1, [zyz : A)), (p1, [zyz : AB])] backward conflict point

In addition, we provide information about the incrementaitoh
so far. We only record the last, most recent match and focuken
top-most pattern variable. There is now sufficient inforiorato
decide tha{pi, [zryz : AB]) is the POSIX match which we shall
keep.

Figure 11 implements this idea in Haskell. Because of tharig
to-left (backward) match, we need to make some adjustmethet
pattern partial derivative automata construction. Theemental
match appends the lettérto the front. Functionreset remove
earlier bindings. That is, we only keep the last, most reoatth.
For brevity, we omit the straightforward implementationadiis.

FunctiongeqEnv compares two bindings relative to the order
of pattern variables. An important condition for our POSIétah
approach to work is that each node in the pattern tree is atetbt
with a pattern variable. FunctiogetVar extracts the pattern vari-
able in top-down left-to-right order. We follow this order $elect
the POSIX match. See functiarubPosix which removes all du-
plicate states with a smaller binding.

Functionposix builds the POSIX match by traversing the input
from right-to-left. For brevity, we omit the helper funati®al1PD
and sigmaPat whose definitions are straightforward. In each in-
termediate (backward) step, we applypPosix to ensure that we
keep the POSIX match. In the last step, we select the maximum
match among all initial states.

In summary, we can conclude the following.

PrROPOSITION4.4 (POSIX Correctness and Complexitach

node in the pattern tree is annotated with a variable. Thencfion
posix implements the POSIX matching policy from Figure 2 and
it's running time is linear in the size of the input.

5. Experiments and Extensions

The matching algorithms in the previous sections are impleed
in the most straightforward manner in Haskell. They conggiace
leaks and redundant computations and thus will not provaie-c
petitive performance. For example, thesix function repeatedly
builds the reversed NFA transitions instead of caching tfiem
faster access.

We discuss some optimizations to obtain an implementation
which is competitive in terms of performance. We report some
experimental results and also discuss extensions to ddareal-
world applications of regular expression matching.

5.1 Optimization
The following are some optimization techniques that we &dop

5.1.1 General Techniques
e Space leak - This is a common problem in many Haskell imple-

mentations. Because Haskell is lazy, the program memory can
be swarmed by numerous unevaluated thunks. In our optimized

version, we carefully apply th&eq combinator to eliminate un-
wanted lazy-computation;

¢ Inefficiency of theString data type - In HaskellString
is implemented as a linked list of characters. It is a fol&lor

5.1.2 Specific Techniques

e pdPat - In both greedy andposix algorithms, we compute
pattern partial derivatives “on the fly” via th®iPat function,
(see in Figure 10 and Figure 11). These expensive operations
are repeated in the presence of Kleene star. In the optimized
version, we avoid this problem by pre-computing and caching
pattern partial derivatives in a hash table. At run-timegieat
operation is replaced by the hash operation followed by the
look-up operation which then gives G¥1) access.

Indexed pattern partial derivatives - Another immediatéqre
mance gain we got from the above technique is that the pattern
partial derivatives are hashed into integer values. Heooe r
tines that require comparison among patterns are optinirzed
terms of equality test among integers;

Pattern binding representation - In Figure 9 we store the (in
termediate) pattern bindings in string form. In our optiedz
implementations, we useRange data type, i.e. a pair of in-
tegers, to record only the starting and the ending positains
the bindings. Thus, the space required is greatly reducet!, a
the binding update operation is optimized. To keep trackef t
bindings in each iteration of Kleene star patterns, we usgt a |
of Rangess.

5.2 Extensions for Real world Applications

Regular expression patterns used in the real world apjitat
require some extensions. The regular expression syntaaspg

in real world applications is often different from what wepented
so far. For instance, patterns with sub-match binding isesqed
implicitly in the regular expression pattern via groupsd ahe
concatenation requires no constructor. In the followingtise,
we usep (in text mode) to denote a pattern in the real world
application syntax, ang (in math mode) to denote a pattern in our
internal syntax defined earlier. The syntaxpafill be explained by
examples in the following paragraphs

5.2.1 Group Matching

In many mainstream languages that support regular expressi
pattern matchings, such as Perl, python, awk and sed, pnogeas
are allowed to use “group operato(®) to mark a sub-pattern from
the input pattern, and the sub strings matched by the sutrpathn

be retrieved by making reference to integer index of the gréor
instance,(ax) (b*) is equivalent to pattertw : a*,y : b*) in our
notation. Sending the input “aab” t@x) (b*). yields[’aa”,”b"],
where the first element in the list refers to the binding of the
first group (ax) and the second element refers to the binding
of the second groufbx). Group matching is supported in our
implementation by translating the groups into pattern& wittern
variables.

5.2.2 Character Classes

Character class is another extension we consider. Fornicssta
[0-9] denotes a single numeric charactgr=Za-z] denotes one
alphabet character. We translate these two types of cleaicdasses
into regular expressions via the choice operatioiT here are some
other type of character classes that require more work tpastip
Character classes can be negafed-9] denotes any non-numeric
character. Another related extension that is availableah world
application is the dot symbol, which can be used to represent any
character. There are two different approaches to suppertith
symbol and negative character classes. One approach ian tr
late the dot symbol into a union of all ASCII characters and to

problem thatring value uses more space than its equivalent translate negative character classes to unions of all A6i@itac-
forms in other languages such as C and Java. In the optimizedters excluding those characters mentioned in the negatedcter

version we us@yteString [3] instead ofString.

classes. The other approach is to introduce these two oogati

2010/4/24

and [~[;...[,] to our internal regular expression pattern language,
such that

Apl = {e}
) . if 1€ {1, . ln
[l dn]\pl = { }}} Iothgrvf/ise }

In our implementation, we adopt the latter because the tiagul
regular expressions are smaller in size hence it is moreesffic

5.2.3 Non-Greedy Match
The symbol? in the pattern(a*?) (a*) indicates that the first sub

e PCRELight - Text.Regex.PCRELight library [12];
e Parsec - Text.Regex.Parsec library [10];

e POSIX - Text.Regex.POSIX library [13];

e TDFA - Text.Regex.TDFA library [14].

The tests are conducted on an Intel Core 2 Duo machine running
Mac OSX 10.5.8 with 4 giga-byte memory. The test programs are
compiled using GHC 6.10.4. The runtime statistics are captus-
ing the GHC run time flagsstderr. The run times are measured
in the granularity of seconds, and the memory usage is medsur
mega-bytes.

For benchmarking, we use two typical applications of regula

patte_rna* is matChed non-gl’eedily, |e it matches with the shortest expression in real world Computer System. The first regudar@_
possible prefix, as long as the suffix can be consumed by the subsjon pattern is

pattern that follows.

Non-greedy matching can be neatly handled in our implementa
tion. To obtain a non-greedy match for a pair pattem p2) where
p1 is not greedy, we simply reorder the two partial derivatives-
ing from (p1, p2)\p!. We extend the pair pattern casepaPat in
Figure 9 as follows,

pdPat (PPair pl p2) 1 =
if (isEmpty (strip p1))
then if isGreedy pl
then nub2 ([(PPair p1’ p2,f) | (p1’,f)<-pdPat pl 1]
++ pdPat p2 1)
else nub2 (pdPat p2 1 ++
[(PPair p1’ p2,f) | (p1’,f) <- pdPat pi1 1])
else [(PPair p1’ p2,f) | (p1’,f) <- pdPat p1 1]

Extending our pattern language with the greediness symdol i
straight-forward and the definition afsGreedy is omitted for
brevity.

5.2.4 Anchored and Unanchored Match

Given a patternp, “p$ denotes an anchored regular expression
pattern. The match is successful only if the input stringuiyf
matched by. A pattern which is not starting withand not ending

“(.%) ([A-Za-z]{2}) ([0-91{53})(-[0-91{4})7$

which validates whether an input string is a US address. fror i
stance, sending the input strinjountain View, CA 90410" to
the above pattern yields a match"Mountain View," , "CA",
I|90410I| , nn] .

The inputs we use are text files, which contain multiple lioks
entries. Each entry is an address. The total numbers oésmfihe
input files are ranging from 100000 to 300000. Our main pnogra
(omitted for breivity) is reading and matching the input fitee by
line.

In Figure 12, the X-axis in the chart denotes the size of thatin
files. The Y-axis captures the time taken in the matchings;hvis
in logarithmic scale. As we can see from the chart, our imglem
tations (especially GRL) are performing pretty well congzhto
other implementations. In Figure 13, we record the memoages
of the same example. In this graph, the Y-axis is measuriaghh
memory usage. The chart shows that the space efficiency of our
implementation is about the same as that of Parsec, slitgsyef-
ficient than TDFA and more efficient than the the remainingehr
candidates.

In the second benchmark program, we consider the regular

with $ is considered unanchored. An unanchored pattern can matchexpression pattern

with any sub-string of the given input, under some matchiblicp.
Our implementationgreedy andposix are clearly the anchored
matches. To support unanchored match, we could rewritertaie-u
chored pattermp into an equivalent anchored form, *7p. *$, and
proceed with anchored match.

5.2.5 Repetition Pattern

Repetition patterns can be viewed as the syntactic sugae-of s
quence patterns with Kleene stafm} repeats the patterp for
m times; p{n,m} repeats the patterp for at leastn times and at
maximumm times. It is obvious that the repetition pattern can be
“compiled” away using the composition of sequence and Kdeen
star operators.

Other extensions such as unicode encoding and back reésrenc
are not considered in this work.

5.3 Benchmarking

We benchmark ourselves against some existing regular &sipre
libraries available in Haskell. The set of candidates fonparison
are as follows,

¢ GLR - Our greedy left-to-right matching algorithm;

e GRL - Avariant of the GLR algorithm, in which the input string
is matched from right to left;

e POSIX(PD) - Our POSIX right-to-left matching algorithm;

¢ PCRE - Text.Regex.PCRE library [11], a wrapper around the C
PCRE library;

10

SR /D207 /10) (([0-914))7(/ . %)

which parses a HTTP request from a string which records the we
server log. The input files that we used in this benchmark case
are sharing the same number of entries. They only differ ley th
lengths of individual entries. For instance, every entryhia first
input file has 200 characters, every entry in the second oee ha
220 characters, and so on. The run-time performances avensho
in Figure 14. The Y-axis is measuring the run-time which is in
logarithmic scale. The X-axis is measuring the length ofaigies
from the input files. In Figure 15, we benchmark the memorgesa
using the same example. In this example, our implementasion
always in the middle-tier compared to the rest. We beliewa th
there is definitely some room to improve the performance of ou
implementation.

6. Related Work and Discussion

Prior work relies on Thompson NFAs [15] for the construction
of the matching automata. For example, Frisch and Cardslli [
introduce a greedy matching algorithm. They first run theutnp
from right-to-left to prune the search space. A similar aggh is
pursued in some earlier work by Kearns [6]. We adopt this idea
the GLR version of our greedy algorithm.

Laurikari [9, 8] devises a POSIX matching automata and intro
duces the idea of tagged transitions. A tag effectivelyesponds
to our incremental matching functions which are computepaais
of pdPat.

2010/4/24

1000

100 — < <] < - <1 PCRELight
& Parsec

o TDFA

‘& POSIX

% GLR

= POSIX(PD)
= CRL

= PCRE

o1 = |
100000 125000 150000 175000 200000 225000 250000 275000 300000

Figure 12. Time comparison using the US address example

80
50
= PCRE
A0 B POSIX
= PCRELight
30 = CRL
== GLR
20 ' 7 POSIX(PD)
10 g _ % : . Z «J Parsec
% 3 X B TDFA
0 —
100000 125000 150000 175000 200000 225000 250000 275000 300000
Figure 13. Space comparison using the US address example
1000
< < < < Parsec
, - E TDFA
ﬁ ﬁ ¥ POSIX(FD)
, L *# POSIX
Pl S GRL
1 = GLR
A—tr iy syl fy——tX A A +=PCRELight
= PCRE
0.1
200 220 240 260 280 300 320 340 360
Figure 14. Time comparison using the HTTP request example
Kuklewicz has implemented Laurikari style tagged NFAs in Cox [4] reports on a high-performance implementation ofireg
Haskell. He [7] discusses various optimizations techrsqte lar expression matching and also gives a comprehensiveiacob
bound the space for matching histories which are necessagse the history of regular expression match implementations.rgfer
of (forward) left-to-right POSIX matching. to [4] and the references therein for further details. Heotftices

the idea of right-to-left scanning of the input for POSIX wtahg.

11 2010/4/24

280

240 260

300

= PCRE

<) Parsec

E TOFA

o POSIX

- GRL

i LR

v POSIX(FD)
= PGRELight
360

320 340

Figure 15. Space comparison using the HTTP request example

We adopt this idea to the setting of partial derivatives amdige
informal explanations why this approach works.

As said, all prior work on efficient regular expression match
ing relies on Thompson NFAs or variants of it. To the best af ou
knowledge, we are the first to transfer the concept of pat@aia-
tives to the regular expression setting. Partial deritrest are a
form of NFA with noe-transitions. For a pattern of size the par-
tial derivative NFA ha®)(n) states and(n?) transitions. Thomp-
son NFAs have)(n) states as well bud(n) transitions because of
e-transitions.

The work in [5] considers-transitions as problematic for the
construction of the matching automata. Laurikari [9, 8]réfiere
first removese-transitions whereas Cox [4] builds theclosure.
Cox algorithm has a better theoretical complexity in thegeanf
O(n x m) wherem is the input language. In each of the steps,
we must conside® (n) transitions. With partial derivatives we can-
not do better thai®(n? * m) because there a@(n?) transitions
to consider. However, as shown in [1] the number of partigivde
tives states is often smaller than the number of statesreztaiia
other NFA constructions. Our performance comparisonscatdi
that partial derivatives are competitive. We leave a motaikbe
investigation of this topic for future work.

7. Conclusion

Our work tackles the regular expression matching problexmfa

different angle based on a novel application of regular €sgion

derivatives and partial derivatives. We provide clean aledant

matching algorithms which can be used for educational mepo
Our benchmarks show that our approach yields competitidepe
mance results. In future work, we plan to consider a moreilddta
study of the performance differences between matchingnzatto

build via Thompson NFAs and partial derivative NFAs.

References

[1] V. M. Antimirov. Partial derivatives of regular exprésas and finite
automaton construction¥heoretical Computer ScienckEs5(2):291—
319, 1996.

[2] J. A. Brzozowski. Derivatives of regular expressiond. ACM
11(4):481-494, 1964.

[3] bytestring: Fast, packed, strict and lazy byte arraythvai list
interface.http://www.cse.unsw.edu.au/ dons/fps.html.

[4] R. Cox. Regular expression matching in the wild, 2010.
http://swtch.com/ rsc/regexp/regexp3.html.

[5] A. Frisch and L. Cardelli. Greedy regular expressionchatg. In
Proc. of ICALP’04 pages 618- 629. Spinger-Verlag, 2004.

12

[6] S. M. Kearns. Extending regular expressions with cantgerators
and parse extractiorsoftware - Practice and Experiencgl(8):787—
804, 1991.

[7] C. Kuklewicz. Forward regular expression matching wittunded
space, 200thttp://haskell.org/haskellwiki/RegexpDesign.

[8] V. Laurikari. Nfas with tagged transitions, their coms®n to
deterministic automata and application to regular exjpoass In
SPIRE pages 181-187, 2000.

[9] V. Laurikari. Efficient submatch addressing for reguéaipressions,
2001. Master thesis.

[10] regex-parsec: A better performance, lazy, powerfplaeement of
text.regex and jregex.
http://hackage.haskell.org/package/regex-parsec.
[11] regex-pcre: The pcre backend to accompany regex-base.
http://hackage.haskell.org/package/regex-pcre.
[12] pcre-light: A small, efficient and portable regex libydor perl 5
compatible regular expressions.
http://hackage.haskell.org/package/pcre-light.
[13] regex-posix: The posix regex backend for regex-base.
http://hackage.haskell.org/package/regex-posix.
[14] regex-tdfa: A new all haskell tagged dfa regex enginepired by
libtre.
http://hackage.haskell.org/package/regex-tdfa.
[15] K. Thompson. Programming techniques: Regular expyessearch
algorithm. Commun. ACM11(6):419-422, 1968.

2010/4/24

