
Certified Parsing

Background

Parsing is the act of transforming plain text into
some structure that can be analyzed by computers
for further processing. One might think that pars-
ing has been studied to death and after yacc and lex
no new results can be obtained in this area. How-
ever recent results and novel approaches make it
increasingly clear, that this is not true anymore.

We propose to approach the subject of pars-
ing from a certification point of view. Parser-
s are increasingly part of certified compilers, like
CompCert, which are guaranteed to be correct and
bug-free. Such certified compilers are crucial in
areas where software just cannot fail. However, so
far the parsers of these compilers have been left
out of the certification. This is because parsing
algorithms are often ad hoc and their semantics
is not clearly specified. Unfortunately, this means
parsers can harbour errors that potentially invali-
date the whole certification and correctness of the
compiler. In this project, we like to change that.

Only in the last few years, theorem prover-
s have become good enough for establishing the
correctness of some standard lexing and parsing
algorithms. For this, the algorithms need to be
formulated in way so that it is easy to reason
about them. In earlier work about lexing and
regular languages, the authors showed that this
precludes well-known algorithms working over
graphs. However regular languages can be formu-
lated and reasoned about entirely in terms regu-
lar expressions, which can be easily represented
in theorem provers. This work uses the device of
derivatives of regular expressions. We like to ex-
tend this device to parsers and grammars. The aim
is to come up with elegant and useful parsing algo-
rithms whose correctness and the absence of bugs
can be certified in a theorem prover.

Proposed Work

One new development in formal grammar is
the introduction of Parsing Expression Grammar
(PEG) as an extension of the standard Contex-
t Free Grammar (CFG)[6]. The extension intro-
duces new regular operators such as negation and
conjunction to the right hand side of production-
s, as well as well as an priority ordering on pro-
ductions. With these extensions, PEG becomes
more powerful such that disambiguation former-

ly expressed using semantic filters can now be
expressed directly using production expressions.
This means a simpler and more systematic treat-
ment of ambiguity and more concise grammar
specification for programming languages.

However, one disadvantage of PEG is that it
does not allow left recursion in grammar specifi-
cation, because the accompanying algorithms of
PEG[5] can not deal with left recursions. Although
some authors claimed new PEG parsing algorith-
m for left recursion[11], there is no correctness
proof, not even in paper-and-pencil form. One aim
of this research is to formalize a fixed point seman-
tics of PEG, based on which an efficient, certified
parsing algorithm is given.

There are several existing works we can draw
upon:

1. The works on PEG.

(a) An operation semantics for PEG has al-
ready been given in [6], but it is not
adequate to deal with left recursions.
But this work gives at least a precise
description of what the original PEG
meant for. This will serve an a basis to
show the conservativeness of the fixed
point semantics we are going to devel-
op.

(b) The new algorithm[11] which claimed
to be able to deal with left recursions.
Although there is no correctness proof
yet, this may provide some useful inspi-
rations for our new algorithm design.

2. The works on Boolean Grammar[9].
Boolean Grammar is very closely related to
PEG, because it also contains negative and
conjunctive grammars. The main differences
are: First, Boolean Grammar has no ordering
on productions; Second: Boolean Grammar
does not contain STAR operator. There are
two works about Boolean Grammar which
might be useful for this research:

(a) A fixed point semantics for Boolean
Grammar[7]. The idea to define the se-
mantics of negative and conjunctive op-
erators is certainly what we can borrow.
Therefore, this work gives the basis on
which we can add in production order-
ing and STAR operator.



(b) A parsing algorithm for Boolean Gram-
mar based on CYK parsing[7]. The
draw back of CYK parsing is that: the
original grammar specification needs to
be transformed into a normal form.
This transformation may lead to gram-
mar explosion and is undesirable. One
aim of this research is to see whether
this transformation can be avoided. For
this purpose, other parsing style may
provide useful inspirations, for exam-
ple:

i. Derivative Parsing[3, 1, 10, 8].
Christian Urban has used derivative
methods to establish the correct-
ness of a regular expression match-
er, as well the the finite partition
property of regular expression[12].
There are well founded envisage
that the derivative methods may
provide the foundation to the new
parsing algorithms of PEG.

ii. Early parsing[4, 2]. It is a refine-
ment of CYK parsing which does
not require the transformation to
normal forms, and therefore pro-
vide one possible direction to adapt
the current CYK based parsing al-
gorithm of Boolean Grammar for
PEG grammar.

iii. The new parsing algorithm pro-
posed by Tom Ridge[???]. Recent-
ly, T. Ridge has proposed and cer-
tified an combinator style parsing
algorithm for CFG, which borrows
some ideas from Early parsing. The
proposed algorithm is very simple
and elegant. We are going to strive
for a parsing algorithm as elegant
as this one.

Which of the above possibilities will fi-
nally get into our final solutions is an
interesting point about this current re-
search.

Based on these works, we are quite confident that
our idea may lead to some concrete results.

References

[1] J. B. Almeida, N. Moriera, D. Pereira, and S. M.
de Sousa. Partial Derivative Automata Formalized
in Coq. In Proc. of the 15th International Confer-
ence on Implementation and Application of Automa-
ta, volume 6482 of LNCS, pages 59–68, 2010.

[2] Aycock and Horspool. Practical Earley Parsing.
COMPJ: The Computer Journal, 45, 2002.

[3] J. A. Brzozowski. Derivatives of Regular Expres-
sions. Journal of the ACM, 11:481–494, 1964.

[4] J. Earley. An Efficient Context-Free Parsing Algo-
rithm. Communications of the ACM (CACM), 13(2),
Feb. 1970.

[5] B. Ford. Packrat Parsing: a Practical Linear-Time
Algorithm with Backtracking. In ICFP ’02: Pro-
ceedings of the seventh ACM SIGPLAN international
conference on Functional programming, 2002.

[6] B. Ford. Parsing Expression Grammars: A
Recognition-based Syntactic Foundation. In POPL
’04: Proceedings of the 31st ACM SIGPLAN-SIGACT
symposium on Principles of programming lan-
guages, pages 111–122, New York, NY, USA, 2004.
ACM.

[7] V. Kountouriotis, C. Nomikos, and P. Rondogian-
nis. Well-founded Semantics for boolean Gram-
mars. Inf. Comput, 207(9):945–967, 2009.

2



[8] M. Might and D. Darais. Yacc is Dead. CoRR, ab-
s/1010.5023, 2010. informal publication.

[9] A. Okhotin. Boolean Grammars. Inf. Comput.,
194(1):19–48, 2004.

[10] S. Owens, J. Reppy, and A. Turon. Regular-
Expression Derivatives Re-Examined. Journal of
Functional Programming, 19(2):173–190, 2009.

[11] A. Warth, J. R. Douglass, and T. D. Millstein. Pack-
rat Parsers Can Support Left Recursion. In R. Glück
and O. de Moor, editors, PEPM, pages 103–110.
ACM, 2008.

[12] C. Wu, X. Zhang, and C. Urban. A Formalisation of
the Myhill-Nerode Theorem based on Regular Ex-
pressions (Proof Pearl). In Proc. of the 2nd Interna-
tional Conference on Interactive Theorem Proving,
volume 6898 of LNCS, pages 341–356, 2011.

3


