
The Myhill-Nerode Theorem
in a Theorem Prover

Christian Urban
King's College London

joint work with Chunhan Wu and Xingyuan Zhang from the
PLA University of Science and Technology in Nanjing

London, 29 August 2012 � p. 1/31

The Myhill-Nerode Theorem
in a Theorem Prover

Christian Urban
King's College London

joint work with Chunhan Wu and Xingyuan Zhang from the
PLA University of Science and Technology in Nanjing

London, 29 August 2012 � p. 1/31

Isabelle/HOL

my background is in
programming languages and theorem provers
develop Nominal Isabelle

to formalise and mechanically check proofs from
programming language research, TCS and OS

we found out that the variable convention can
lead to faulty proofs. . .

Variable Convention:
IfM1, . . . ,Mn occur in a certain mathematical context (e.g. de�nition,
proof), then in these terms all bound variables are chosen to be
different from the free variables. Henk Barendregt

London, 29 August 2012 � p. 2/31

my background is in
programming languages and theorem provers
develop Nominal Isabelle

to formalise and mechanically check proofs from
programming language research, TCS and OS

we found out that the variable convention can
lead to faulty proofs. . .

Variable Convention:
IfM1, . . . ,Mn occur in a certain mathematical context (e.g. de�nition,
proof), then in these terms all bound variables are chosen to be
different from the free variables. Henk Barendregt

London, 29 August 2012 � p. 2/31

Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof on LF in
ACM Transactions on
Computational Logic, 2005,
∼31pp

Andrew Appel
(Princeton)

relied on their proof in a
security critical application
(proof-carrying code)

London, 29 August 2012 � p. 3/31

Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof on LF in
ACM Transactions on
Computational Logic, 2005,
∼31pp

Andrew Appel
(Princeton)

relied on their proof in a
security critical application
(proof-carrying code)

London, 29 August 2012 � p. 3/31

London, 29 August 2012 � p. 4/31

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

London, 29 August 2012 � p. 4/31

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

London, 29 August 2012 � p. 4/31

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

London, 29 August 2012 � p. 4/31

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

London, 29 August 2012 � p. 4/31

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

I also found �xable errors in my Ph.D.-thesis
about cut-elimination (examined by Henk
Barendregt and Andy Pitts)

found �aws in a proof about a classic OS
scheduling algorithm � helped us to implement
it correctly and ef�ciently
(the existing literature �proved� correct an incorrect

algorithm; used in the Mars Path�nder mission)

Conclusion:

Pencil-and-paper proofs in TCS are not foolproof,
not even expertproof.

London, 29 August 2012 � p. 5/31

I also found �xable errors in my Ph.D.-thesis
about cut-elimination (examined by Henk
Barendregt and Andy Pitts)

found �aws in a proof about a classic OS
scheduling algorithm � helped us to implement
it correctly and ef�ciently
(the existing literature �proved� correct an incorrect

algorithm; used in the Mars Path�nder mission)

Conclusion:

Pencil-and-paper proofs in TCS are not foolproof,
not even expertproof.

London, 29 August 2012 � p. 5/31

Scott Aaronson (Berkeley/MIT):

�I still remember having to grade hundreds of exams where
the students started out by assuming what had to be proved,
or �lled page after page with gibberish in the hope that,
somewhere in the mess, they might accidentally have said
something correct. . . . innumerable examples of �parrot
proofs� � NP-completeness reductions done in the wrong
direction, arguments that look more like LSD trips than
coherent chains of logic . . . �

Tobias Nipkow calls this the �London Underground Phenomenon�:

students proofs

London, 29 August 2012 � p. 6/31

Scott Aaronson (Berkeley/MIT):

�I still remember having to grade hundreds of exams where
the students started out by assuming what had to be proved,
or �lled page after page with gibberish in the hope that,
somewhere in the mess, they might accidentally have said
something correct. . . . innumerable examples of �parrot
proofs� � NP-completeness reductions done in the wrong
direction, arguments that look more like LSD trips than
coherent chains of logic . . . �

Tobias Nipkow calls this the �London Underground Phenomenon�:

students proofs

London, 29 August 2012 � p. 6/31

formal language theory
⇒ nice textbooks: Kozen, Hopcroft & Ullman. . .

London, 29 August 2012 � p. 7/31

Motivation:

I want to teach students with theorem

provers (especially for inductions).

�b, even and odd

formal language theory
⇒ nice textbooks: Kozen, Hopcroft & Ullman. . .

London, 29 August 2012 � p. 7/31

Motivation:

I want to teach students with theorem

provers (especially for inductions).

�b, even and odd

formal language theory
⇒ nice textbooks: Kozen, Hopcroft & Ullman. . .

London, 29 August 2012 � p. 7/31

Motivation:

I want to teach students with theorem

provers (especially for inductions).

Regular Expressions

London, 29 August 2012 � p. 8/31

r ::= ∅
| []
| c
| r1 · r2
| r1 + r2
| r∗

Isabelle:

students have seen them and
can be motivated about them

nullable (∅) = false
nullable ([]) = true
nullable (c) = false
nullable (r1 + r2) = (nullable r1) ∨ (nullable r2)
nullable (r1 · r2) = (nullable r1) ∧ (nullable r2)
nullable (r∗) = true

der c (∅) = ∅
der c ([]) = ∅
der c (d) = if c = d then [] else ∅
der c (r1 + r2) = (der c r1) + (der c r2)
der c (r1 · r2) = ((der c r1) · r2) +

(if nullable r1 then der c r2 else ∅)
der c (r∗) = (der c r) · (r∗)
derivative [] r = r
derivative (c::s) r = derivative s (der c r)

matches r s = nullable (derivative s r)

London, 29 August 2012 � p. 9/31

nullable (∅) = false
nullable ([]) = true
nullable (c) = false
nullable (r1 + r2) = (nullable r1) ∨ (nullable r2)
nullable (r1 · r2) = (nullable r1) ∧ (nullable r2)
nullable (r∗) = true

der c (∅) = ∅
der c ([]) = ∅
der c (d) = if c = d then [] else ∅
der c (r1 + r2) = (der c r1) + (der c r2)
der c (r1 · r2) = ((der c r1) · r2) +

(if nullable r1 then der c r2 else ∅)
der c (r∗) = (der c r) · (r∗)

derivative [] r = r
derivative (c::s) r = derivative s (der c r)

matches r s = nullable (derivative s r)

London, 29 August 2012 � p. 9/31

nullable (∅) = false
nullable ([]) = true
nullable (c) = false
nullable (r1 + r2) = (nullable r1) ∨ (nullable r2)
nullable (r1 · r2) = (nullable r1) ∧ (nullable r2)
nullable (r∗) = true

der c (∅) = ∅
der c ([]) = ∅
der c (d) = if c = d then [] else ∅
der c (r1 + r2) = (der c r1) + (der c r2)
der c (r1 · r2) = ((der c r1) · r2) +

(if nullable r1 then der c r2 else ∅)
der c (r∗) = (der c r) · (r∗)
derivative [] r = r
derivative (c::s) r = derivative s (der c r)

matches r s = nullable (derivative s r)

London, 29 August 2012 � p. 9/31

Regular Expression Matching
in Education

Harper in JFP'99: �Functional Pearl: Proof-
Directed Debugging�

Yi in JFP'06: �Educational Pearl: `Proof-Directed
Debugging' revisited for a �rst-order version�

Owens et al in JFP'09: �Regular-expression
derivatives re-examined�

�Unfortunately, regular expression derivatives have
been lost in the sands of time, and few computer
scientists are aware of them.�

London, 29 August 2012 � p. 10/31

Regular Expression Matching
in Education

Harper in JFP'99: �Functional Pearl: Proof-
Directed Debugging�

Yi in JFP'06: �Educational Pearl: `Proof-Directed
Debugging' revisited for a �rst-order version�

Owens et al in JFP'09: �Regular-expression
derivatives re-examined�

�Unfortunately, regular expression derivatives have
been lost in the sands of time, and few computer
scientists are aware of them.�

London, 29 August 2012 � p. 10/31

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata / graphs

A1 A2 ⇒ A1 A2

London, 29 August 2012 � p. 11/31

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata / graphs

A1 A2

⇒ A1 A2

London, 29 August 2012 � p. 11/31

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata / graphs

A1 A2 ⇒ A1 A2

London, 29 August 2012 � p. 11/31

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata / graphs

A1 A2 ⇒ A1 A2

disjoint union:

A1]A2
def

= {(1, x) |x ∈ A1} ∪ {(2, y) | y ∈ A2}

London, 29 August 2012 � p. 11/31

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata / graphs

A1 A2 ⇒ A1 A2

disjoint union:

A1]A2
def

= {(1, x) |x ∈ A1} ∪ {(2, y) | y ∈ A2}

London, 29 August 2012 � p. 11/31

Problems with de�nition for regularity:

is_regular(A)
def

= ∃M. is_dfa(M) ∧ L(M) = A

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata / graphs

A1 A2 ⇒ A1 A2

A solution: use nats ⇒ state nodes

London, 29 August 2012 � p. 11/31

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

automata⇒ graphs, matrices, functions

combining automata / graphs

A1 A2 ⇒ A1 A2

A solution: use nats ⇒ state nodes

You have to rename states!

London, 29 August 2012 � p. 11/31

Formal language theory. . .

in Theorem Provers
e.g. Isabelle, Coq, HOL4, . . .

Kozen's paper-proof of Myhill-Nerode:
requires absence of inaccessible states

complementation of automata only works for
complete automata (need sink states)

is_regular(A)
def

= ∃M. is_dfa(M) ∧ L(M) = A

London, 29 August 2012 � p. 12/31

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

London, 29 August 2012 � p. 13/31

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

London, 29 August 2012 � p. 13/31

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

London, 29 August 2012 � p. 13/31

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

London, 29 August 2012 � p. 13/31

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

London, 29 August 2012 � p. 13/31

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

regular expression matching

most textbooks are about automata

London, 29 August 2012 � p. 13/31

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

regular expression matching (⇒Brzozowski'64, Owens et al '09)

most textbooks are about automata

London, 29 August 2012 � p. 13/31

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

regular expression matching (⇒Brzozowski'64, Owens et al '09)

most textbooks are about automata

London, 29 August 2012 � p. 13/31

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

The Myhill-Nerode Theorem

provides necessary and suf�cient conditions
for a language being regular
(pumping lemma only necessary)

key is the equivalence relation:

x ≈A y
def

= ∀z. x@z ∈ A⇔ y@z ∈ A

London, 29 August 2012 � p. 14/31

The Myhill-Nerode Theorem

�nite (UNIV// ≈A) ⇔ A is regular

London, 29 August 2012 � p. 15/31

UNIV

set of all
strings

The Myhill-Nerode Theorem

�nite (UNIV// ≈A) ⇔ A is regular

London, 29 August 2012 � p. 15/31

UNIV

set of all
strings [[s]]≈A

an equivalence class

The Myhill-Nerode Theorem

�nite (UNIV// ≈A) ⇔ A is regular

London, 29 August 2012 � p. 15/31

UNIV

set of all
strings [[s]]≈A

an equivalence class

Two directions:

1.) �nite⇒ regular
�nite (UNIV// ≈A)⇒ ∃r. A = L(r)

2.) regular⇒ �nite
�nite (UNIV// ≈L(r))

Initial and Final States

�nalsA
def

= {[|s|]≈A
| s ∈ A}

we can prove: A =
⋃

�nalsA

London, 29 August 2012 � p. 16/31

Equivalence Classes

Initial and Final States

�nalsA
def

= {[|s|]≈A
| s ∈ A}

we can prove: A =
⋃

�nalsA

London, 29 August 2012 � p. 16/31

Equivalence Classes

[] ∈ X

Initial and Final States

�nalsA
def

= {[|s|]≈A
| s ∈ A}

we can prove: A =
⋃

�nalsA

London, 29 August 2012 � p. 16/31

Equivalence Classes

[] ∈ X

a �nal

Transitions between Eq-Classes

X
Y

c

X
c−→ Y

def

= X; c ⊆ Y

R1start

London, 29 August 2012 � p. 17/31

Systems of Equations
Inspired by a method of Brzozowski '64:

X1start X2

a

b a

b

X1 =X1; b +X2; b

+ λ; []

X2 =X1; a +X2; a

London, 29 August 2012 � p. 18/31

Systems of Equations
Inspired by a method of Brzozowski '64:

X1start X2

a

b a

b

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

London, 29 August 2012 � p. 18/31

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

London, 29 August 2012 � p. 19/31

a

A Variant of Arden’s Lemma

Arden's Lemma:

If [] 6∈ A then

X = X;A + something

has the (unique) solution

X = something;A?

London, 29 August 2012 � p. 20/31

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

London, 29 August 2012 � p. 21/31

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

London, 29 August 2012 � p. 21/31

a

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

London, 29 August 2012 � p. 21/31

a

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

London, 29 August 2012 � p. 21/31

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

London, 29 August 2012 � p. 21/31

a

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

London, 29 August 2012 � p. 21/31

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

London, 29 August 2012 � p. 21/31

X1start X2

a

b a

b

The Other Direction
One has to prove

�nite(UNIV// ≈L(r))

by induction on r. Not trivial, but after a bit of
thinking, one can �nd a re�ned relation:

a1a2

a3 a4

a1.1

a1.2a2.1

a2.2

a3.1

a3.2 a4.1

a4.2

UNIV UNIV// ≈L(r) UNIV//R

London, 29 August 2012 � p. 22/31

a

Derivatives of RExps
introduced by Brzozowski '64

produces a regular expression after a character
has been �parsed�

der c ∅ def

= ∅
der c []

def

= ∅
der c d

def

= if c = d then [] else ∅
der c (r1 + r2)

def

= (der c r1) + (der c r2)

der c (r∗)
def

= (der c r) · (r∗)
der c (r1 · r2)

def

= ((der c r1) · r2) +
(if nullable r1 then der c r2 else ∅)

London, 29 August 2012 � p. 23/31

Derivatives of RExps
introduced by Brzozowski '64

produces a regular expression after a character
has been �parsed�

der c ∅ def

= ∅
der c []

def

= ∅
der c d

def

= if c = d then [] else ∅
der c (r1 + r2)

def

= (der c r1) + (der c r2)

der c (r∗)
def

= (der c r) · (r∗)
der c (r1 · r2)

def

= ((der c r1) · r2) +
(if nullable r1 then der c r2 else ∅)

London, 29 August 2012 � p. 23/31

derivatives re�ne x ≈L(r) y

L(ders x r) = L(ders y r)⇐⇒ x ≈L(r) y

�nite(ders A r), but only modulo ACI

(r1 + r2) + r3 ≡ r1 + (r2 + r3)
r1 + r2 ≡ r2 + r1
r + r ≡ r

Derivatives of RExps
introduced by Brzozowski '64

produces a regular expression after a character
has been �parsed�

der c ∅ def

= ∅
der c []

def

= ∅
der c d

def

= if c = d then [] else ∅
der c (r1 + r2)

def

= (der c r1) + (der c r2)

der c (r∗)
def

= (der c r) · (r∗)
der c (r1 · r2)

def

= ((der c r1) · r2) +
(if nullable r1 then der c r2 else ∅)

London, 29 August 2012 � p. 23/31

derivatives re�ne x ≈L(r) y

ders x r = ders y r =⇒ x ≈L(r) y

�nite(ders A r), but only modulo ACI

(r1 + r2) + r3 ≡ r1 + (r2 + r3)
r1 + r2 ≡ r2 + r1
r + r ≡ r

Partial Derivatives of RExps

pder c ∅ def

= {}
pder c []

def

= {}
pder c d

def

= if c = d then {[]} else {}
pder c (r1 + r2)

def

= (pder c r1) ∪ (der c r2)

pder c (r?)
def

= (pder c r) · r?

pder c (r1 · r2)
def

= (pder c r1) · r2 ∪
if nullable r1 then (pder c r2) else ∅

London, 29 August 2012 � p. 24/31

partial derivatives

by Antimirov '95

Partial Derivatives

pders x r = pders y r re�nes x≈L(r) y

�nite(UNIV//R)

Therefore �nite(UNIV// ≈L(r)). Qed.

London, 29 August 2012 � p. 25/31

Partial Derivatives

pders x r = pders y r︸ ︷︷ ︸
R

re�nes x≈L(r) y

�nite(UNIV//R)

Therefore �nite(UNIV// ≈L(r)). Qed.

London, 29 August 2012 � p. 25/31

a Antimirov '95

Partial Derivatives

pders x r = pders y r︸ ︷︷ ︸
R

re�nes x≈L(r) y

�nite(UNIV//R)

Therefore �nite(UNIV// ≈L(r)). Qed.

London, 29 August 2012 � p. 25/31

a Antimirov '95

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language
build the language of substrings
then this language is regular (anbn⇒ a?b?)

London, 29 August 2012 � p. 26/31

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language
build the language of substrings
then this language is regular (anbn⇒ a?b?)

London, 29 August 2012 � p. 26/31

x ≈A y
def
= ∀z. x@z ∈ A⇔ y@z ∈ A

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language
build the language of substrings
then this language is regular (anbn⇒ a?b?)

London, 29 August 2012 � p. 26/31

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language
build the language of substrings
then this language is regular (anbn⇒ a?b?)

London, 29 August 2012 � p. 26/31

If there exists a suf�ciently large setB
(for example in�nitely large), such that

∀x, y ∈ B. x 6= y ⇒ x 6≈A y.

then A is not regular. (B
def
=

⋃
n a

n)

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language
build the language of substrings

then this language is regular (anbn⇒ a?b?)

London, 29 August 2012 � p. 26/31

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

take any language
build the language of substrings
then this language is regular (anbn⇒ a?b?)

London, 29 August 2012 � p. 26/31

Formal language theory. . .

in Nuprl

Constable, Jackson, Naumov, Uribe

18 months for automata theory from Hopcroft &
Ullman chapters 1�11 (including Myhill-Nerode)

London, 29 August 2012 � p. 27/31

Formal language theory. . .

in Coq

Filliâtre, Briais, Braibant and others
multi-year effort; a number of results in
automata theory, e.g.

Kleene's thm. by Filliâtre (�rather big�)
automata theory by Briais (5400 loc)
Braibant ATBR library, including Myhill-Nerode
(>7000 loc)
Mirkin's partial derivative automaton construction
(10600 loc)

London, 29 August 2012 � p. 28/31

Conclusion
we have never seen a proof of Myhill-Nerode
based on regular expressions only

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

I am not saying automata are bad; just formal
proofs about them are quite dif�cult

parsing with derivatives of grammars
(Matt Might ICFP'11)

London, 29 August 2012 � p. 29/31

Conclusion
we have never seen a proof of Myhill-Nerode
based on regular expressions only

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

I am not saying automata are bad; just formal
proofs about them are quite dif�cult

parsing with derivatives of grammars
(Matt Might ICFP'11)

London, 29 August 2012 � p. 29/31

Conclusion
we have never seen a proof of Myhill-Nerode
based on regular expressions only

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

I am not saying automata are bad; just formal
proofs about them are quite dif�cult

parsing with derivatives of grammars
(Matt Might ICFP'11)

London, 29 August 2012 � p. 29/31

Conclusion
we have never seen a proof of Myhill-Nerode
based on regular expressions only

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

I am not saying automata are bad; just formal
proofs about them are quite dif�cult

parsing with derivatives of grammars
(Matt Might ICFP'11)

London, 29 August 2012 � p. 29/31

An Apology
This should all of course be done co-inductively

From: Jasmin Christian Blanchette
To: isabelle-dev@mailbroy.informatik.tu-muenchen.de
Subject: [isabelle-dev] NEWS
Date: Tue, 28 Aug 2012 17:40:55 +0200

* HOL/Codatatype: New (co)datatype package with support for mixed,
nested recursion and interesting non-free datatypes.

* HOL/Ordinals_and_Cardinals: Theories of ordinals and cardinals
(supersedes the AFP entry of the same name).

Kudos to Andrei and Dmitriy!

Jasmin
������������
isabelle-dev mailing list
isabelle-dev@in.tum.de

London, 29 August 2012 � p. 30/31

Thank you very much!

Questions?

London, 29 August 2012 � p. 31/31

