Constructively Formalizing Automata Theory”

Robert L. Constable
Paul B. Jackson

Pavel Naumov

Juan Uribe

Cornell University

February 25, 1997

Abstract

This article and the World Wide Web library display of computer checked proofs is an
experiment in the formalization of computational mathematics. ' Readers are asked to judge
whether this formalization adds value in comparison to a careful informal account. The topic is
state minimization in finite automata theory. We follow the account in Hopcroft and Ullman’s
book Formal Languages and Their Relation to Automata where state minimization is a corollary
to the Myhill/Nerode theorem. That book constitutes one of the most compact and elegant
published accounts. It sets high standards against which to compare any formalization.

The Myhill/Nerode theorem was chosen because it illustrates many points critical to formal-
ization of computational mathematics, especially the extraction of an important algorithm from
a proof as a method of knowing that the algorithm is correct. It also forces us to treat quotient
sets computationally.

The theorem proving methodology used here is based on the concept of tactics pioneered by
Robin Milner. The theorem prover we use is Nuprl (“new pearl”) which, like its companion,
HOL, is a descendent of the LCF system of Milner, Gordon and Wadsworth. It supports
constructive reasoning and computation.

Key Words and Phrases: automata, constructivity, congruence, equivalence relation,
formal languages, LCF, Martin Lof semantics, Myhill-Nerode theorem, Nuprl, program extrac-
tion, propositions-as-types, quotient types, regular languages, state minimization, tactics, type
theory.
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1 Introduction

1.1 Goals

It is widely believed that we know how to formalize large tracts of classical mathematics — namely
write in the style of Bourbaki [3] using some version of set theory and fill in all the details. Indeed,
the Journal of Formalized Mathematics publishes results formalized in set theory and checked by
the Mizar system. Indeed, the topic of state minimization of finite automata has been formalized
in Mizar [15]. Despite this belief, and the many formalizations accomplished, massive formalization
is not a fait accompli, and there are many research issues related to the formalization effort and
its computerization (see [21]). Indeed, some doubt the appropriateness of set theory for expressing
working mathematics [7].

In contrast, there is no general agreement on how to formalize computational mathematics?. This
article is a contribution to understanding that task and exploring one approach toit. Qur approach
stresses that formalized computational mathematics can be useful in carrying out computations.
One of our subgoals is to illustrate this utility in a particular way. We want to show that constructive
proofs can be used to synthesize programs.

Specifically, we want to examine whether constructive type theory is a natural expression of the
basic ideas of computational mathematics in the same sense that set theory is for “purely classical

” We have explored this question for elementary number theory (num_thy_la), for

mathematics.
the algebra of polynomials (general_algebra), for elementary analysis, and for elementary logic, as
well as in other less systematic efforts. The type theory we use is based on Martin-Lof’s semantics

[19].

In this paper we examine these ideas in the setting of basic automata theory. There are several
reasons for this choice.

1. The subject of formalization is closely allied with other subjects in computer science (such as
programming languages and semantics, applied logic, automated deduction, problem solving
environments, computer algebra systems, knowledge representation, and computing theory).
Also automata theory is widely taught in computer science [16] and used in building systems.
So we hope for a large sympathetic audience for the material we create.

2. One of the most basic theorems in finite automata theory, the Myhill/Nerode Theorem,
illustrates beautifully the idea that algorithms can be extracted from constructive proofs; so
it is a good test for our main subgoal.

*Even worse, few people appreciate that this is a significant new problem (see [4]).



3. The account of Myhill/Nerode in Hopcroft and Ullman’s famous book [11] is constructive
except for a few small points, one buried deep in the proof. The nonconstructive steps are
easy to miss. We show how to make the proof entirely constructive with a trivial change in
the theorem.

4. Automata theory appears to be well suited for expression in type theory. If our account is
not convincing on this material, then our task will be harder than we imagine. Moreover, the
formal account seems to be clarifying and helpful even in the case of one of the most compact
and elegant informal expositions of automata theory. So our claim that formalism adds value
is put to a good test.

5. The Myhill/Nerode theorem illustrates a phenomenon that nonspecialists are curious about.
Why does formalization expand the work and the text by such large factors (at least a factor
of 5 in this case and “under the surface” by 3 orders of magnitude)? Moreover, because the
formalization of this theorem relies heavily on many results in list theory and a few in algebra,
we can see the impact of a knowledge base on the formalization task. Because it required
building new basic material about the quotient type, we see why formalization efforts are so
laborious.

6. The existence of an earlier formalization of the pumping lemma from automata theory by
Christoph Krietz in 1988 [17] in Nuprl 3 allows us to compare the progress made in the tactic
collection from version 3 (1988) to version 4.2 (1995).

7. Finally, the formalization reveals some technical problems about how to formalize computa-
tional mathematics. The question involves the well-known methodology of propositions-as-
types. We have found yet another complication in this principle (see also Allen [1]). The issue
concerns the right equality relation on propositions. We will point out that our formalization
is in some sense “pushing the envelope” of the methodology presently being used in the field.

1.2 Interpretations of the Mathematics

Even without formalization, expressing the ideas of Hopcroft and Ullman in type theory (especially
Nuprl) opens the possibility for new interpretations of their mathematics. Their definitions refer
to a fragment of set theory on which they informally define algorithms and procedures, but not
in a systematic way. The first thing we show is how to treat computation systematically and
foundationally with minor changes in their text.

Our presentation then enables a person to imagine that all of the mathematics is classical, as Howe’s
work illustrates [13]. It also allows the interpretation of recursive mathematics that all functions are
given by “Turing machines” or Lisp programs. It also allows an Intuitionistic interpretation. One
way to describe this style is to relate it to the work of Bishop [2] who showed that real, complex,
and abstract analysis could be formalized in this neutral way.

1.3 Outline

In section 1 we present the basic ideas from Nuprl needed for this article. Surprisingly little is
required, and we claim that this basic material is mostly as “readable” as the mathematical prelim-
inaries in any undergraduate textbook at the level of Hopcroft and Ullman. Section 3 corresponds



to Hopcroft and Ullman’s Chapter 1. We try to follow that account closely. Section 4 provides
the preliminaries on automata, following Hopcroft and Ullman very closely. Section 5 proves the
Myhill/Nerode Theorem. Section 6 discusses proofs of state minimization, filling in an omission in
their proof, and simplifying, thereby showing an advantage of formalization. Section 7 discusses an
issue of type theory raised by our work.

The key ideas of the formalization are presented here in a self-contained way, but the reader will un-
derstand the issues more thoroughly by reading either the Web library (www.cs.cornell.edu/Info/Pro-
jects/NuPrl/nuprl.html) or using the Nuprl system to read the actual libraries. Indeed, the article
was originally written as an html document to accompany the actual on-line theorems. Various
references are made to Nuprl libraries in the text. In the html version these were hot references
(one could click on them to open the referenced files).

2 Type Theory Preliminaries

2.1 Basic Types

The integers Z = {0,+1,+2,...} are a primitive type of Nuprl with primitive operations of
+,—, -, +, rem (for remainder).

Equality, x = y in Z, and order, z < y , are also primitive. The natural numbers N are defined as
{i:Z | 0 < i}, and the initial segments Nk are {i:Z |0 < i < k}. The segment [i...j] ={z:Z|i <
z<jtand [i...j7]={z:Z| i<z <j}. SoNk=[0...k"]. Basic facts about these types can be
found in these libraries: int_1, int_2, num_thy_la.

Given any type A, we can form the type of lists whose elements are all from A. This is called
A list. The empty list is denoted nil regardless of the type A. The list_construction (or “consing”)
takes an element h of A and an A list, say t, and forms a new list denoted h.t. It adds the element
h from A to the head of the list ¢.

The append operation on lists is critical in this article; it is denoted @y and is defined in the usual
Tecursive way
nlQy =y

(h.t)Qy = h.(tQy).

The Booleans, B, consists of ¢t and ff denoting true and false. The normal if-then-else case selection
is available along with the standard operations Ay, Vy, =5. We write the subscript “b” to distinguish
these operations from the propositional connectives, A, V,=, (see bool_1).

2.2 Cartesian Products

If A and B are types, then so is their Cartesian product, A x B, whose elements are ordered pairs,
{(a,b) with a € A and b € B. For example Z X Z consists of the points with integer co-ordinates
in the plane. If p € A x B then there are several common ways to denote the first and second
components of the pair. Here are some of the common ways: first(p), lof(p) or p.1 for the first,
and second(p), 20f(p) or p.2 for the second. We have

(a,b).1=ain A and (a,b).2="bin B.



An n-ary product, say A X B x C is regarded as A x (B x (). In general A; X --- x A, is
Ay X (Ag x---x A,). Given p € A X B x C, the 2nd component is p.2.1 and the 3rd is p.2.2. We’ll
see these selectors in the definition of an automaton (section 4.1).

2.3 Function Types

If A and B are types, then A — B denotes the type of all computable (total) functions from A
to B. The canonical elements of this type are lambda terms, A(z.b). If we let bla/z] denote the
substitution of the term « for all free occurrences of z in b, then we require of A(z.b) that b[a/z] € B
for all terms a denoting elements of A. If f € A — B and a € A, then fa denotes the application
of f to argument a. We know that fa € B. See fun_1.

Recursive functions are defined in the style of ML. We use the form [hs ==, rhs to introduce a
recursive definition, for example, fact(n) ==, n if n = 0 then 1 else n* fact(n—1) fi. This invokes
an ML tactic called add_rec_def with lhs,rhs as arguments. The tactic adds an abstraction named
by the function name, e.g. fact. The abstraction is based on a recursion combinator such as Y. For
example, YA fact, n. if n = 0 then 1 else n * fact(n — 1) fi) is the combinator added for factorial.

The abstraction is made invisible by various tactics that fold and unfold instances of the definiton,
so the user need not be aware of the underlying A-calculus foundations. In the automata library
we use a recursive function to define the analogue of ¢* from HU. Informally, the definition is

0%l ==, if null(l) then I(DA) else §(6™(tl1))hd  fi.
The actual definition is

DA(l) ==, if null(l) then I(DA) else dpa(DA(tl 1))hd fi.

2.4 Propositions and Universes

In so-called “classical” accounts of logic, a proposition has a truth value in B. Consequently,
propositions can be treated as boolean expressions. This boolean-valued account is more restrictive
than the one we need in order to discuss computability issues, so we adopt a more abstract account
of propositions. We want to consider both the sense and the truth of a proposition. In particular
we are interested in their computational sense.

We will, of course, talk about the truth value of a proposition as well as its sense. The type of all
propositions needed in this article is denoted P. Nuprl can express “higher order logic” as well, in
which case “larger” propositions are needed. See Jackson [14] or [5] for fuller accounts of higher
order logic.

There are two distinguished atomic propositions, T the canonically true one and L the canonically
false one. Given propositions P, ) we can form compounds in the usual way:

PAQ (also written P & Q) for “P and Q) 7,

Pv@ for “Por@”,

P =@ for “Pimplies Q7 also written “P only if Q”,
P<=@Q for “PifQ”,

P& @ for “P if and only if @7 also written “P iff ¢)”.



A propositional function on a type A is any map P € A — P. Given such a P, then we can form
the propositions:

Va:A.P(z) “for all z of type A, P(z) holds,”
Jz: A.P(x) “for some z of type A, P(z) holds.”

Also associated with every type A is the atomic equality proposition, (z = y in A). The definition
of this equality is given with each type.

In classical logic the boolean value ¢t is considered the same as the true proposition T and ff is
identified with L. But the proposition we associate with a boolean expression bexp is this atomic
equality: bezp = tt in B. Given bexp we denote the corresponding proposition as True(bezp).
Clearly we know True(#t) iff T and True( ff) iff L. Sometimes we denote True(bexp) by | bexp for
short. We call this up arrow “assert.”

The types we need belong to a universe, U.3 If A and B are types then we have seen that A — B
and A [ist are also types.

2.5 Subtypes and Finiteness

We use a natural notion of subtype. If A is a type and P:A — P is a propositional function, then
{z:A| P(z)} denotes the type of all elements of A satisfying P. To know that a € {z: A | P(z)}
we must build the element @ and find a proof of P(a). There is a subtle computational point about
these sets, namely a function f from {z:A | P(2)} to B does not have access to a proof that P(z)
holds when calculating its value f(z).*

A finite type is one which can be put into a 1-1 correspondence with [1...n]; its cardinality is n.
We write Fin(T") to mean that 7' is finite. This means we can find a number n and functions f
and ¢ such that

!
TS[1...n]
g
such that f and ¢ are inverses of each other; that is

Ve:T. (f(g(z))=2inT) & Vi:[1...n]. (¢(f(i)) =iin Z).

The definition of 1-1 correspondence is in fun_I, and finiteness is in automata_2.

Here is an important fact about finite types. We say that a type T is discrete iff there is a function
eq,:T x T — B such that 2 = y in T iff eq,(z,y) = tt, that is, T is discrete iff equality on T is
decidable.

Fact: If T is finite, then it is discrete.

This is true because [1...n] is discrete for any n; thus to decide eq,(z,y), ask whether g(z) =
g(y)in N for the function g witnessing 7’s finiteness.

We only need the universe of small types denoted simply U. For a full discussion of universes, see Allen [1] as
well as Jackson [14].
*A discussion of the constructive meaning of these types is beyond the scope of this work, but see [5, 14, 20].



2.6 Algebraic Structures and Dependent Types

In algebra and automata theory definitions are given using so-called (algebraic) structures. For
example, a monoid is a type M together with a binary operation f: M x M — M and an element,
e € M. The operation is associative and e is an identity. The monoid is the triple (M, f,e). The
“signature” or type of this structureis T:U X op:(T' x T — T) x4:T.

This type is called a dependent product in Nuprl. The basic underlying form is 7:U x F(1T') where
F'is a function from types to types, e.g. F(T)=(T'xT —=T)xT.

We can explain the bound variables T, op, ¢ in two ways. In Jackson’s thesis these arise by iterating
the binary dependent product construction as follows. Let 1 be a type with exactly one element,
say {z:Z | z = 1}. Then take i:7 X 1 as a type with 7" as a parameter. Call it S1(7"). Next build
op:(T xT — T)x 51(T). Call this So(7), finally build 7":U x S3(7"). We see that T', op, i are just
the binding variables used in creating the product.

Another approach is to consider the type of names {op, i} (a subtype of Atom in Nuprl) and define
a function Sy(7): {op,i} — U where Sy(T)(op) = (T' X T — T) and So(T)(i) = T. Then the
monoid signature is 7:U x S3(7"). This is the approach taken by Jason Hickey [10].

2.7 Reading Nuprl Proofs

Proofs in Nuprl are trees. The nodes of the tree consist of sequents and justifications. A sequent is
a list of formulas, called hypotheses, paired with a single formula called the goal. The hypotheses
are numbered Hq,..., H,. These sequents, also called goals, are displayed as

Hy,...,H,FG.

The symbol, F, called a turnstile, separates hypotheses from conclusions. A sequent is provable iff
we can prove the goal G from the hypotheses H;.

The justification component of a node gives a reason that the goal sequent follows from the subgoal
sequents generated by the justification. Justifications are displayed as

by justification text.

A sequent, its justification, and subgoals constitute an individual inference in the proofs. Here is
a schematic example:

1.P = Q 2.PFQby D1

/A
1.P 2.0 - @ by Hyp2. 1.PF P by Hypl.

no subgoals no subgoals

In general an inference can look like



go"GobyJ

/ | \
H+-Gy, HyvbGy---H,FG,
where the H; are lists of formulas and G; are single formulas.

Nuprl provides various tree traversal operations to facilitate “reading” a proof tree and modifying
it. These proof trees are meant to be read with these tree walking operations. But we also want to
print the trees. There are various schemes for doing this. We write vertical lines in the left margin
to connect a subtree to its present goal. Here is how the first example would be printed.

1. P=4qQ

2. P

FQ by D1

I B 2
F by Hypl

3 Languages and their Representation

3.1 Alphabets and Languages

Hopcroft and Ullman begin their book with the question: What is a language? Their answer starts
with a definition of an Alphabet. An Alphabet is any finite set of symbols. They consider only a
countably infinite set from which all symbols will be drawn, and they leave open just what these

symbols will be: “any countable number of additional symbols that the reader finds convenient
may be added.”

We adopt all the ingredients of this definition without needing to specify a countably infinite set.
We simply require that an alphabet, Alph, is a finite type; to say this we first declare Alph € U.
Since U is open, the definition is open. Then we require that Alph be finite, postulating Fin( Alph).
One consequence of finiteness is that the equality relation on Alph is decidable. This is true of any
finite set as we noted in section 2.

In Hopcroft and Ullman we read this:

A sentence over an Alphabet is any string of finite length composed of symbols from
the Alphabet. Synonyms for sentence are string and word.

This definition is incomplete because they do not define string. We have to learn later what it
really means. The lack of a fixed definition allows the authors to switch between equivalent notions



of list or array or string depending on their needs. We will note this later. Essentially they are
introducing an abstract type without fixing the operations in advance.

They introduce these notations. If V is an Alphabet, then V* is the set of all sentences on V.
They include e the empty sentence. V't is V* without . A language is any subset of V*. We use
a concrete definition. A sentence for us is a list of elements from Alpha, that is, members of the
type Alph list. The nil list is what we call the empty sentence. Example: if Alph = {0,1} then
Alph list = {nil, (0), (1),(00),(01),(10),(11),(000), ...}.

A language is given by some condition for membership, say a predicate L that specifies when
an element of Alph list belongs to the language. So a language is a propositional function over
Alph list, namely an element of Alph list — P. We use Language(Alph) to denote the type of
languages over Alph. In the library definitions are called abstractions and have a tag A, as in:

A languages Language( Alph)= = Alph list — P

In the library Lang_1 we give many operations on languages:

union LUM
intersection LNnM
complement =L
product LM
power LTn
closure LT oo

We define equality of languages I = M in Language(Alph).

Hopcroft and Ullman raise these questions. How do we specify a language? Does there exist a
finite representation for any language? They note that Alph list is countably infinite and hence
Language( Alph) is uncountable. So they conclude that there are many more languages than finite
representations.

Our views are consistent with these, but we allow other interpretations as well. We say that a
language is given by a propositional function, say L. (They say by a set but a set is not a finite
representation.) One could consistently take the view that every function is given by an algorithm,
and every algorithm is finitely representable. Hence all languages are finitely representable. This is
the interpretation of so called recursive mathematics. All the work we present is consistent with this
interpretation, as well, but as mentioned in the introduction we take the neutral view characteristic
of “Bishop style” mathematics so all three views of the results are possible.

3.2 Procedures and Algorithms

Section 1.2 of Chapter 1 of Hopcroft and Ullman is concerned with procedures and algorithms. For
us this is part of the basic type theory. Unlike in the case of set theory where computability need
not be mentioned, in type theory computability is a basic concept. So we have covered these ideas
already in section 1.

It is interesting that Hopcroft and Ullman rely on the concept of an effective procedure which is
the same open-ended concept that we axiomatize in type theory. Only later, in Chapter 6, do they
present Turing machines, a formalization of effective computability. Also, Hopcroft and Ullman
consider the subject metamathematically. That is, they look at the mathematics from outside.
For us that is like noticing properties of the underlying procedures. They do not talk about the

10



type or the meaning of the procedures only their computational behavior. This is mathematics as
influenced by the great results of logic, a new 20th century mathematics.

3.3 Representations of Languages

Our definition of a language as a propositional function I € Alph list — P captures the intuition
that to know a language is to know the criteria for saying when a sentence is in it. To say z is
in the language is to know how to prove L(z). This agrees with Hopcroft and Ullman; they are
concerned with certain special ways of knowing L(z).

One especially simple kind of representation of L arises when the proposition is decidable, that is
when there is a function Rj: Alph list — B such that

L(z)iff Rp(z)=ttin B.

Such a language is called decidable or recursive.

Another way to represent a language L with a function is to provide an enumeration of L, that is
a function £y, € N — Alph list such that

L(z) iff 3i:N. (Fr(i)==z.)

The function Fj, can also be said to represent L.

Given the function Fj an interesting procedure arises for specifying a language, the procedure is
called a (real) recognizer. To specify L, we write a function
rg: Alph list — R
=(rg(z)=0inR) iff z €L
re(z) = AMn. if Er(n) = 2 then (uy < n.Er(y) = z)" ! else n71).

Hopcroft and Ullman go on to show that given a real recognizer, we can also define an enumerator.
Basically we enumerate I, = {z: Alph list | r(z)# 0in Rr}. We do this uniformly only if the type
is non-empty. Then given r, there is an operation Enum(r) which produces a function from N onto
L. Since we are interested mainly in automata and the Myhill-Nerode theorem of Chapter 3, we
skip over Chapter 2 on Grammars although it would not be difficult to formalize all of the results
there. (The only interesting result is Theorem 2.2—a context sensitive grammar is recursive.)

4 Finite Automata

4.1 Definition

Hopcroft and Ullman say: a finite automaton M over an alphabet Alph is a system (K, Alph,d, qo, I')
where K is a finite nonempty set of states, Alph is a finite input alphabet, § is a mapping of K x Alph
into K, qgo 'n K is the initial state, and F C K is the set of final states.

In Nuprl this definition is formalized nearly verbatim. The “system” is just an element of a product
type. We use the notation Automata(Alph; States) to denote the type of all automata with input
alphabet Alph and states States. An automaton is a triple of transition, initial state and final
states.

11



A automata

Automata( Alph; States) == (States — Alph — States) x States X (States — B)
A DA_act bda == a.l (the first component of a)

A DA_init I(a) == a.2.1 (the initial state, the second component)

A DA_fin F(a) == a.2.2 (the final states, the third component)

T DA_act_wf Y Alph, States: U. Ya:Automata( Alph; States).6a € States — Alph — States
T DA_init_wf Y Alph, States:U. Va:Automata( Alph; States).I(a) € States
T DA_fin.wf ¥ Alph, States:U. Va: Automata( Alph; States).F(a) € States — B

The leading symbol indicates either an abstraction, A, or a theorem, 7.

4.2 Semantics of Automata

A finite automaton D A can be interpreted as a language recognizer by one of the methods discussed
in section 2. That is, it defines a function from Alph list to B. The language accepted consists of
those sentences on which DA computes true (tt).

This meaning of an automaton is given by providing a meaning function mapping an automaton
DA in Automata( Alph; States) to a formal language, i.e. to a map from Alph list into propositions
P. We give this meaning by composing 3 simpler functions:

1. A function from an automaton and an input string to a state. This is called
M compute_list_ml

DA(l) ==, S if nulll) then I(DA) else éDA DA(t(l))hd(l) fi

2. Associating with the resulting state of compute_list_ml a boolean value using the final state
component, a function F:States — B.

3. Associating with the automaton the propositional function saying that the final state is tt.
Let F° be the final state function.

A auto_lang
L(DA) == A.True(F(DA(l))) (We can also write this as Al. T (F'(DA())).)

Hopcroft and Ullman follow a similar approach but they use only the first function and leave the
other two implicit since they are so simple. They define the first function as

8(g,¢) = q

8(q,za) = 8(8(q,z), a)
for z a string and a a character of the alphabet. They say:

a sentence z is said to be accepted by M if 6(qg,z) = p for some p in F. The set of all
z accepted by M is denoted T'(M). That is, T(M) = {z | 6(¢,z)is in F'}.

This is a very elegant definition, it can be even more compactly written without reference to ¢ in
6, namely

5(¢) = o
o(za) = 8(6(x), a).

12



We adopt this definition. But notice that because Hopcroft and Ullman are not definite about the
meaning of sentences, the symbol za can be read either as z@a or z.a. In the later case the normal
convention is to write the cons operation either as cons(a, z) or a.z. Using the cons operation keeps
the reasoning simple and direct. So our definition of the computation of state of automaton DA
on string = (thought of as hd(z).tl(z)) is:

D A(nil)
DA(z)

I(DA)
§(DA(tl(z)))hd(z).

Recall that I(DA) is the initial state.

This elegant definition has the consequence that we imagine processing a string from tail to head,
and because we normally write lists from head to tail (left to right), this means that we should
think of processing the list from right to left rather than left to right as in Hopcroft and Ullman.

There is potential for real confusion about this, and it is best to banish the notions of “left” and
“right” as much as possible. It is especially confusing to think about “left and right invariant
equivalence relations” in light of our reverse way of processing. (We need to use “left invariance”
when Hopcroft and Ullman use right.)

4.3 Equivalence Relations and Quotient Types

Hopcroft and Ullman say: “A binary relation R on a set S is a set of pairs of elements in 5. If
(a,b) is in R, then we are accustomed to seeing this fact written aRb.”

In set theory a set of pairs R can be defined in terms of its characteristic function R:5 x5 — B. In
type theory these sets are expressed as functions from S x 5 into P the propositions. In type theory
all functions are computable, so we do not use maps into B unless the set or relation is decidable.

A relation R on S is said to be:

1. reflexive iff for each s in 5, sRs,
2. symmetric iff for each s,tin 5, sRt implies tRs,

3. transitive iff for each s,t,u tn S, sRt and tRu imply sRu.

A reflexive, symmetric and transitive relation is called an equivalence relation. For an equivalence
relation, we sometimes write x = y mod R for z Ry and say “z equals y modulo R.” We sometimes
also write z Ry as Rxy when stressing that R is a function. The equivalence class of an element of
S under R is the set {z | zRa} denoted [a] or [a]r. The equivalence classes of S under R are clearly
disjoint or equal since if € [a] N [b] for @ # b, then aRz & bRz, hence zRb and by transitivity
aRb so [a] = [b]. The set of equivalence classes is a partition of S. In set theory this structure is
denoted S/R. The map z — [z] from S to S/R is called the canonical mapping of S onto S/R. It
is common to think of the classes [a] as new elements with equality between them defined by R,

ie. [a] = [b] iff aRb.

If f €S — T then we say that f is functional on S/ R (or compatible with R) iff a Ra’ implies that
f(a) = f(a') in T. Likewise for an (binary) operation on S, g € S x S — 5; we say g is functional
wrt R iff aRa’ and bRY implies f(a,b) = f(a',b") in S.
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Quotient sets and structures are central to mathematics, but their representation in set theory is
not suitable for computation because the elements of a quotient set are equivalence classes which
are infinite objects. To remedy this “computational defect” of set theory, type theory uses the
notion of a quotient type. Given a type T" and an equivalence relation F on T, there is a type called
the quotient of 7" by E, written T'//E (or z,y.T//zFy in fully expanded form). The elements of
T//E are the same as those of T, but the equality relation on T'//F is E.

In order to qualify as a function f € T//E — S, f must be a function f € T — S which is functional
wrt E. The canonical map T" — T//F is just the identity function, so the functionality theorem
becomes f € T — S is functional wrt Riff f € T//R — S.

Here is another important fact about Nuprl’s rules for the quotient type. The elements of T are
elements of T'//E so T is a subtype of T//E. Also knowing zFEy for z,y in T is sufficient to
conclude z = yin T'// E, but not conversely. That is, if we know z = y in T'// E, we need not know
constructively that zEy. (We can conclude this if £ is decidable.)

To understand this feature of the quotient rules, we need to point out that according to Martin-
Lof’s semantics, the computational content of equality propositions, z = y in A, is trivial. The
theory only records that these propositions are proved, but ignores the details. Let us call this the
“computational triviality of equality” principle. To preserve this semantic principle in the presence
of quotient types requires that the rules “forget” the computational information in a proof of z Ky
when asserting x = yin T// E.

4.4 Finite Index Equivalence Relations

An equivalence relation F on T is said to be of finite index iff T//E is finite. E’s index is the
cardinality of T'//FE. A very important result we need is that if £ is decidable and 7 is finite, then
T//E is finite, and its cardinaltiy is less or equal to that of 7. Indeed if T is finite, say of size n,
the index e of any finite index F satisfies e < n. See quo_of_finite in the relation library.

Given two equivalence relations £ and F on T, we say that F refines Fiff  Fy = x F'y. We write
E C F. This means that the equivalences classes of T'//F are possibly refined or decomposed into
smaller classes. A suggestive picture is:

al a2

a4 a3

T//F T

Although we will not discuss subtyping here, we note that in general 77 C T3 iff (z = y in T1)
implies (z = y in T3) (so (z = z in 1) = (z = 2 in T;) which means 77 is a “subtype” of T5). We
have for any equivalence relations, £ C F implies T//EC T//F and T T T//E. (We can think of
T as T//I where zly iff z = y in T; clearly I C E for any K on T, so T//ICT//E.)
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4.5 Equivalence Relations on Strings Induced by Finite Automata

Much of the theory of finite automata is concerned with a natural equivalence relation on strings
induced by the automaton. Given DA in Automata(Alph; States), we say that two strings z and
y in Alph list are equivalent mod DA, z = y mod DA, iff DA(z) = DA(y) in States, that is, iff
the strings are taken to the same state by the action of the automaton.

The remarkable fact is that a finite automaton is characterized by two properties: that the equiv-
alence relation is of finite index and that it is invariant under the eztension of the strings by the
same characters. The last property is stated in terms of appending more characters, say a list z of
them, to the head of the input (which means to the end of the tape).

Def: An equivalence relation £ on Alphlist is called extension invariant®

iff for all z,y,z in Alph list x Fy = (2Qz)E(2Qy).

Fact 1. The equivalence relation R induced by DA € Automata(Alph; States) is of finite index
and extension invariant.

It is easy to see that this is true. The largest number of equivalence class in Alph list//R is the
number of states of DA which is finite, and if DA(z) = DA(y) then clearly

DA(zQz) = §(DA(z),z) = 6(DA(y),z) = DA(2Qy).

Fact 2. Any extension invariant equivalence relation R such that Alph list//R is finite can be
defined by a finite automaton.

We build the automaton by using the elements of Alph list//R as states. Extension invariance
allows us to define §. These links between automata and finite index, extension invariant equivalence
relations is independent of the final states. The link is defined in terms of compute_list.

When we add final state information, we can say more about the equivalence relation. Indeed
another remarkable fact emerges, namely, if we designate those strings belonging to certain equiv-
alence classes of R as “accepted”, then we can find a minimal state automaton whose final states
accept exactly the designated strings. Moreover, the automaton is essentially unique.

Fact 3. Given any language L, it induces an equivalence relation Rlj, defined by z Rl y iff for all
z in Alphlist, zQz € L & 2Qy € L. We call this the equivalence relation induced by L. If L is
accepted by a finite automaton, then we can show that the equivalence relation induced by this
automaton is a refinement of Rl;. Moreover, we can build a finite automaton with Alphlist// Ry,
as states that will be the unique minimal automaton accepting L.

These remarkable facts are aggregated into the well-known Myhill-Nerode Theorem which we dis-
cuss and prove next. [t is the centerpiece of Hopcroft and Ullman’s section 3.2.

5 The Myhill-Nerode Theorem

The first section states and proves the HU version of the Myhill-Nerode theorem. We modified their
account slightly to enable a constructive proof, namely, we require an effective union in statement 2

“Hopcroft and Ullman use zEy = (z@z)E(y@z) and call these relations right invariant since the end of the tape
is on the right. We could call them left invariant since the end of our tape is on the left, but we choose a geometrically
neutral nomenclature.
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and a decidable induced equivalence relation, RI[. These changes are highlighted by enclosing them
in parentheses. We also use the terminology of the induced equivalence relation defined at the end
of section 4 rather than defining that relation in the statement of the theorem as HU do.

After presenting the HU proof, we discuss its constructive formalization and then examine the
details of the proofs of the three implications: (1) = (2) called mn_12, (2) = (3) called mn_23 and
(3) = (1) called mn_31. We include text from the on-line libraries.

5.1 Hopcroft and Ullman Version

Theorem 3.1. The following three statements are equivalent:

1. The set L C Alphlist is accepted by some finite automaton.

2. L is the (effective) union of some of the equivalence classes of an extension invariant
equivalence relation of finite index.

3. The equivalence relation on Alph listinduced by L is of finite index (and decidable).

Proof. (1). = (2). Assume that L is accepted by M = (K, Alph,é, qo, I'). Let R be the equivalence
relation z Ry if and only if 6(qo,z) = é(qo,y). R is extension invariant since, for any z, if 6(qo, z) =

0(qo,y) then
0(qo, 20Qz) = 6(qo, 2Qy).

The index of R is finite since the index is at most the number of states in K. Furthermore, L is
the union of those equivalence classes which include an element z such that 6(go, ) is in F'.

(2) = (3). We show that any equivalence relation R satisfying (2) is a refinement of Rl; that
is, every equivalence class of R is entirely contained in some equivalence class of Rl. Thus the index
of Rl cannot be greater than the index of R and so is finite. Assume that 2 Ry. Then since R is
extension invariant, for each z in Alphlist, zQz RzQy, and thus zQ@Qy is in L if and only if zQz is
in L. Thus z Rly, and hence, the equivalence class of z in R is contained in the equivalence class of
xz in Rl. We conclude that each equivalence class of R is contained within some equivalence class

of RI.

(3) = (1) Assume that z Rly. Then for each w and z in Alph list, zQw@z is in L if and only
if z2Qw@y is in L. Thus w@z Rlw@Qy, and Rl is extension invariant. Now let K’ be the finite set
of equivalence classes of Rl and [z] the element of K’ containing z. Define §([z],a) = [za]. The
definition is consistent, since Rl is extension invariant. Let ¢j = [¢] and let F' = {[z] |z € L}. The
finite automaton M’ = (K', Alph,d’, ¢}, I") accepts L since ¢'(q{,z) = [z], and thus z is in T(M")
if and only if [z] is in F'. Note, F' is computable because we assume L is decidable.

Theorem 3.2. The minimum state automaton accepting L is unique up to an isomor-
phism (i.e., a renaming of the states) and is given by M’ of Theorem 3.1.

Proof. In the proof of Theorem 3.1 we saw that any M = (K, Alph,é, qo, I') accepting L defines
an equivalence relation which is a refinement of R. Thus the number of states of M is greater
than or equal to the number of states of M’ of Theorem 3.1. If equality holds, then each of the
states of M can be identified with one of the states of M’. That is, let ¢ be a state of M. There
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must be some z in Alphlist, such that 6(qo,z) = ¢, otherwise ¢ could be removed from K, and a
smaller automaton found. Identify ¢ with the state ¢'(¢), ) of M’. This identification will will be
consistent. If 6(q),z) = 6'(¢),y) = ¢, then, by Theorem 3.1, z and y are in the same equivalence

class of R. Thus 6'(¢},2z) = (¢}, y) = q.

5.2 Formalizing (1) = (2)

Formalizing the implication form (1) to (2) is quite direct and elegant in type theory. We go through
it now step by step.

To say that a set L C Alphlist is accepted by some finite automaton means that there is an
automaton, say Auto, accepting L. This, in turn, presupposes a set of states, say St such that
Auto € Automata(Alph; St). So there is a mechanical translation of “accepted by some finite
automaton” into

35t:U.3Auto: Automata( Alph; St).Fin(St) A L = L(Auto).

We are implicitly quantifying over L and Alph. This implicit translation is revealed in the first line
of the proof, “let L be accepted by some Auto = (K, Alph,d,qo, I).”

Statement (2) is:

L is the union of some of the equivalence classes of an extension invariant equivalence
relation of finite index.

Translating this requires an equivalence relation, called R in the proof, so we call it R in the
statement

AR :{r: Alph list — Alph list — P | FEquivRel( Alph list; z,y.rzy)}.

EquivRel(Alph list z,y.Rzy) is defined as we would expect. It says that R is an equivalence
relation over Alphlist. It is a specialization of EquivRel(T;z,y.Rzy).

We need to assert that R is of finite index which is just Fin(z,y: Alph list//Rzy). R must be
extension invariant, i.e. Va,y, z: Alph list. (Rzy = R(2Qz)(zQy)).

Next we consider how to express the idea of statement 2, that “L is the (effective) union of some
of the equivalence classes of an extension invariant equivalence relation of finite index.” The most
direct translation of this would use some idea of union of equivalence classes, say eq,..., €, since
there are finitely many. We could write L = U e; where (G is a subset of the indexes 1 to n.
So, to say that the union is effective is to say that (G is a decidable set.

We don’t want to express the union idea this way (even though we could), because we are using
the language of quotient types rather than that of equivalence classes. That is, we don’t need to
bring in the type of equivalence classes because we can use the type Alphlist// R instead.

We can transform L = LEJ e; into a statement about Alph list//R as follows. Suppose that
a function ¢ picks out the classes in the union, so g(e;) = tt iff ¢ € G. Now notice that for
x € Alphlist, the equivalence classes are [z|g. So we have z € L iff g([z]r) = ¢t. The map g must

SRecall that z,y:A//Rzy is the fully expanded notation for A//R.
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respect the equivalence relation R, so it can actually be defined as a function g € Alphlist//R — B.
Each effective union determines such a map ¢ and conversely.

To say that L is the effective union of some of the equivalence classes, we use a boolean valued
function ¢ to pick out which classes.

dg:(z,y: Alphlist //Rz,y) — B.
Vi: Alph list. L(l) <= True(g(l)).

That is, [ is in L iff (g(/) = tt in B). Note, True(g(l)) is also denoted T (g(1)).

Putting all this together we get the fully expanded formulation. It is named mn_12 for Myhill-
Nerode (1) = (2).

*T mn_12
VAlph:U. VL:L(Alph).
Fin(Alph)
= (35t:U. JAuto: DA_(Alph; St). Fin(St) N L = L(Auto))
= (FR:{r: Alph list — Alph list — P | EquivRel(Alphlist;z,y.rzy)}
dg:z,y:(Alphlist)//(Rzy) — B
Fin(z,y:(Alph list)//(Rzy))
A (V1 Alph list. L(1) <1 (g(1)))
A (Vz,y,z: Alph list. Rzy = R(2Qz)(2Qy)))

The above version of the theorem is the one displayed on the Web, but we have worked to make
both the theorem and the proof more readable. It is instructive to see how this can be done.

We first decided to suppress some of the detail in the statement that R is an equivalence relation
by using a less detailed display form. The result is this display

{r:Alph list — Alph list — P | r is an Equivalence over Alph list.}.

Next we agreed to allow the assertion of a boolean without displaying the assert symbol, so
True(g(l)) becomes just g(/). Next we display extension invariance as a simple phrase, “R is
extension invariant.” Finally we use a general abbreviation device of suppressing the leading uni-
versal quantifiers since this is a standard convention in mathematics, indeed used by Hopcroft and
Ullman for this theorem. The result is:
F Fin(Alph) =

(351:U, Auto: DA(Alph; St). Fin(St) & L = L(Auto)) =

AR ({r:(Alphlist — Alph list — P | r is an Equivalence over Alph list}),

Alph list// R — B).

Fin(Alph list//R) A (VI: Alph list. L(l) < g(1)) & R is extension invariant.

The proof of this theorem is simple.

1. We define Rzy to mean Auto(z) = Auto(y). It is immediate that R is extension invariant

since Auto(z@Qz) = 6( Auto(z), z) = 6( Auto(y), z) = Auto(zQy).
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2. To show that R is of finite index is precisely to show Fin(Alph list//R). We know that the
number of states of Auto is an upper bound to this cardinality. The exact size is in fact the
number of accessible states. This fact comes out as we argue finiteness.

Finiteness of Alph list//R is proved by invoking the lemma in Automata_3 inv_of_fin_is_fin,
VT,5:U.Vf:T — 5. Fin(S) A (Vs:5. Dec(I:T. ft =38)) = Fin(z,y:T//(fz = fy)).

We then prove the preconditions of the lemmas, mainly that

*  Vs:St.Dec(3t: Alph list Auto(t) = s).

The proof of * requires showing that if there is a ¢ such that Auto(t) = s, then there is a
“short” t, namely of length less than n, the number of states. This is done by invoking the
pumping lemma and its corollary from Automata_1.

This in turn requires the pigeon hole lemma of Automata_1, phole_lemma. Finally, the proof
of inv_of_fin_is_fin requires the key Automata_3 lemma finite_decidable_subset,

VI':U.VB:T — P. Fin(T) N (Vt:T. Dec(Bt)) = Fin({t:1T| B t}).

3. We define g on Alph list//R to be tt exactly when F(Auto(z)) = tt, i.e. g(z) = F(Auto(z)).
We need to show that g is functional wrt R which follows directly from the definition of R.

The main steps of the on-line proof are displayed below using a presentation format that can be
automatically generated from a mark-up of the original proof. The tools for creating these more
readable proofs were created by Stuart Allen.

The key to this format is that parts of the proof are “put aside” to be read later, if at all. Allen
calls these side proofs. They are indicated by the phrase SidePF followed by a name. In the on-line
version it is possible to click on this proof to read it.

F Fin(Alph) =
(3 5t:U, Auto: Automata( Alph; St). Fin(St) & L = L(Auto)) =
3 R:({r:(Alphlist — Alph list — P |r is an Equivalence over Alph list}),
g:(Alphlist/|R — B).
Fin(Alph list//R) A (VI: Alph list. L(l) <= g¢(l)) & R is extension invariant
Alph:U
L:L(Alph)
Fin(Alph)
St:U
Auto: DA(Alph; St)
Fin(St)
L = L(Auto)
JR:({r:(Alphlist — Alph list — P | r is an Equivalence over Alph list}),
g:(Alphlist/| R — B).
Fin(Alph list//R) A (VI: Alph list. L(l) < g(1)) & R is extension invariant
. Auto(z) = Auto(y)€ St is an Equivalence in z,y: Alph list
F by SidePF — mn_12_read_SidePf07

F Fin(z,y: Alph list] [( Auto(z) = Auto(y)€ St))
(using THM :inv_of_fin_is_fin)
6. n:N

T 1 S Ot b W N

oo
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7. Nn ~ 5t

8. L = L(Auto)

9. Auto(z) = Auto(y)€ St is an Equivalence in z,y: Alph list
10. s:51
11. #(St)=n

F Dec(3t: Alph list. Auto(t) = s€ St)

by SidePF — mn_12_read_SideP f12

F Dec(3k:N(n+1),t:({l: Alph list | ||l|| = kEN}). Auto(t) = s€ St)
(using TH M :auto2_lemma_6 by Side PF — mn_12_read_SideP f13)
12. t:N(n+ 1)

13. t1:{l: Alph list | ||l]| = teN}

F Dec(Auto(tl) = s€ St) (using THM : fin_is_decid)

F Fin(St) — 7

F VI Alph list. L(l) < (Auto accepts l) — 7

 (Az,y. Auto(z) = Auto(y)€ St) is extension invariant
(using TH M :compute_l_inv)

5.3 Formalizing (2) = (3)

We have seen how to formalize (1) and (2). To express (2) = (3) we need to formalize condition
(3). First we define the relation RI (this is how it appears in the libraries). This language is a
function of a given language L, but that parameter is not always displayed although it is implicit.
In Allen’s display of the theorem, RI is written as RIL.

Alang_rel Rl == Az,y. Vz:Alist. L(2Qz) & L(zQy).

T langrel_refl YVA:U. VL:L(A). Rl € Alist — Alist — P.

We establish straight forwardly that Rl is an equivalence relation.

T lang_rel_refl
VA:U. VL:L(A). Refl(Alist;z,y.x Rl y)
T lang_rel_symm

VA:U. VL:L(A). Sym(Alist;z,y.x Rl y)

lang_rel tran

VA:U. VL:L(A). Trans(A list;z,y.x Rl y)

The formulation of (3) as in Hopcroft and Ullman would be that Rl is of finite index. But we will
see that to prove (3) = (1) constructively we need to be explicit that L is a decidable language. So
we take (3) to be: L is decidable and Rl is of finite index.

The proof of (3) from (2) appears to be the simplest of the implications. (From (2) we know
immediately that L is decidable.) We show that if R refines RI, then the index of Rl is no larger
than that of R, that is,

If | Alphlist//R| =k, then | Alphlist//Rl| < k.
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So the only nonroutine step is to show

x Ry = zRly.

This follows directly from the fact that R is extension invariant since (z@z)R(z@Qy), but then
(zQz) € L iff (2@Qy) € L (namely g(zQz) = g(2@y)), hence (zQz)RI(zQy).
This seems to be the whole story until we look at the details of the lemma
R C Rl = index(Rl) < index(R).

It requires that we prove that the relation Rl is decidable (see auto_2_lemma_8). This complication
suggests another more elegant proof which we outline after stating the theorem. This second proof
is the one we formalize.

T mn_23
Vn:{1...}.VA:U. VL:L(A). VR:Alist — Alist — P.
Fin(A)
= FquivRel( A list;z,y.x Ry)
= 1 —1-Corresp (Nn;z,y:(Alist)//(zRy))
= (Vz,y,z: Alist. zRy = (2Qz)R(2Qy))
= (Jg:2,y:(Alist)//(zRy) — B. Vi:Alist. L(l) <1 (9(1)))
= (Im:N. 1 — 1—-Corresp(Nm;z,y:(Alist)//(z Rl y))) N (VI: A list. Dec(L(l))
We can use the same devices as before to render this theorem more readable. Here is Stuart Allen’s
version.
F Fin(A) =
(R is an Equivalence over A list) =
Nn ~ Alist//R =
(R is extension invariant =
(Jg:(Alist//R — B).VI: A list. L(l) < g(l)) =
(3m:N.Nm ~ A list//Rl) & VI: A list. Dec(L(l))

Proof

The key idea in this proof is to show that Alph list//Rl = Alph list// Rg where Ryg is like Rl but
is defined on the quotient type using the boolean valued function g. This function g characterizes L
in a simple way and is easier to work with than L itself. This leads us to work with an equivalence
relation Rg instead of Rl. The proof is essentially establishing two isomorphisms,

Alph list//Rg = Alph list//R//Rg = Nm.

1. The first isomorphism follows from a lemma called quo_of_quo.

2. The second isomorphism follows from the lemma quo_of_finite. This is the heart of the proof.
It requires that Rg is a decidable relation.

Qed

Here is the main line of the Web proof as it appears after applying Allen’s technique to the full

21



Web proof. Recall that Rl will be displayed as RIL. Notice that there are two side proofs as well
as a number of lemma references. These can be expanded in the on-line version just by clicking on
the names.

n:{l...}

A:U

L:L(A)

LeAlist — P

R:Alist = Alist = P

Fin(A)

R is an Equivalence over A list

Nn~ Alist//R

9. R is extension invariant

10. g:Alist//R — B

11. Vi:Alist. L(l) < g(1)

F(3m:N.Nm ~ Alist//RIL) AVI:Alist. Dec(L(l)) byD 0

00 ~1 O U b= W N =

F3m:N.Nm~ A list//RIL by SidePF — mn_23_read_Side P f01

12. Vz,y: Alist//R. Dec(zRgy) (using THM :mn23lem_1_EQUO?2)

13. RIL is an Equivalence over A list (using THM :lang_rel_equi_EQUI2)

14. Rg is an Equivalence over A list//R (using THM :lquo_rel_equi_EQUO2)

15. Alist//RIL = A list//RgeU (using THM :mn23_Rl_equal _Rg_EQUO2)

16. Alist//Rg ~ Alist//R//Rg (using THM :quo_of_quo_EQUO2)

17. 3m:N(n+ 1).Nm ~ A list//R//Rg (using THM :quotient_of_finite_LQUO2)

: F by SidePF — mn_23_read_StdeP f02
FVI:Alist. Dec(L(l)) by RWO”1170....

The real work for us in proving this theorem was actually spent on building general facts about
quotients and in defining Rg and showing that it is an equivalence relation on Alph list//R. This
required a long sequence of lemmas. All of this is left implicit in Hopcroft and Ullman who need
at least the properties of @ on quotient sets and facts about equivalence relations on quotient sets.

A mn_quo_append
2Q,2 == zQx

T mn_quo_append_w f

VA:U. VR:A list — A list — P.

EquivRel(A list;z,y. zRy)

= (Vz,y,z: Alist. xRy = (2Qz)R(zQy))

= (Vz:A list. Vy:z,y:(Alist)//(zRy). zQuyex,y:(Alist)//(zRy))

T mn_quo_append_assoc

VAlph :U.VR: Alph list — Alph list — P.

EquivRel Alph list;z,y. ©Ry)

= (Vz,y,z: Alph list. xRy = (2Qz)R(2Qy))

= (Vz1,22: Alph list. Vy:z,y: Alphlist)//(zRy). 21022Q,y = 21Q,22Q,y
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A lquo_rel
Rg == Xz,y.Vz:Alist. | (g2Q,2) <1 (92Q,y)

T lquo_rel_wf

VA:U.VR: A list — A list — P.
EquivRel(Alist;z,y. ©Ry)

= (Vz,y,z: Alist. t Ry = (2Qz)R(2Qy))

= (Vg:z,y:(Alist)//(zRy) — B
Rgex,y:(Alist)//(zRy) — z,y:(Alist)//(xRy) — P)

T lquo_rel_equi

VA:U.VR:A list = Alist — P.

EquivRel(Alist;z,y. ©Ry)

= (Vz,y,z: Alist. xRy = (2Qz)R(2Qy))

= (Vg:z,y:(Alist)//(zRy) — B. EquivRel(z,y:(Alist)//(zRy); u,v.uRgv))

TRIiff Ry

VA:U.VR: A list — Alist — P.

EquivRel(Alist;z,y. ©Ry)

= (Vz,y,z: Alist. xRy = (2Qz)R(2Qy))

= (Vg:z,y:(Alist)//(zRy) — B. VL:L(A).

(VI:Alist. L(l) <1 (g9(1)) = (Vz,y: Alist. 2Rly < zRgy))

5.4 Formalizing (3) = (1)

Our goal is to build a finite automaton called M’. We follow Hopcroft and Ullman exactly, taking
the set of states to be Alph list//Rl, defining é([z],a) = [az], taking [nil] as the start state and
defining F'([z]) = tt exactly when z € L. In the next section we refer to this automaton as A(g).

To show that M’ as defined is a finite automaton accepting L, we need to show that é§ is well
defined on the equivalence classes, i.e. if [z] = [y] then é([z],a) = é([y],a). Since é([z],a) = [az]
and 6([y], @) = [ay], we need to know that [az] = [ay]. Thisis trueiff az € L iff ay € L. But thisis
an instance of the definition of z = y iff zRly since x Rly iff Vz: Alph list. 2Qz € L & zQy € L.
Here is the formal statement followed by a compressed proof. In the compressed proof we use
...assertion... to indicate that an assertion was cut into the proof; that assertion is the goal of the
following line. Direct Computation is key to the proof, and we display its main step by writing
[ formula]* = formula’

F Fin(Alph) =
(Fin(Alph list//RIL) ANV1: Alph list. Dec(L(l))) =
35t:U, Auto: DA(Alph; St).Fin(St) A L = L(Auto)
Alph:U
L:L(Alph)
RIL is an Equivalence over Alph list (using THM :lang_rel_equi_EQUI2)
Fin( Alph)
Fin(Alph list//RIL)
6. VI: Alph list. Dec(L(l))
F35t:U, Auto: DA(Alph; St).Fin(St) A L = L(Auto)
by SidePF — mn_31_read_SideP f01
7. g: Alph list — B

Uk W N~
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8. Vt: Alph list.L[t] < g[t]
F JAuto: DA(Alph; Alph list/ [ RIL). Fin(Alph list//RIL) AN L = L(Auto)
..... assertion .....
F< (As,a.a.s),nil,g > € DA(Alph; Alph list//RIL)
by SidePF — mn_31_read_SideP f02
9. < (As,a.a.s),nil,g > € DA(Alph; Alph list//RIL)
FL=L(< (As,a.a.8),nil, g >)
10. 1: Alph list
FL(l) & (< (As,a.a.s),nil,g > accepts [)
Fag(l) & (< (As,a.a.s),nil, g > accepts [)
..... assertion .....
Fg(l) =< (As,a.a.s),nil, g > accepts [
by DirComp ¢(I) = [< (As,a.a.s),nil, g > accepts []* = g[< (As,a.a.s),nil,g > (I)]
Fl=<(As,a.a.s),nil, g > ()€ Alph list by ListInd 10
F nil =< (As,a.a.s),nil,g > (nil)€ Alph list
by DirComp nil = ([< (As,a.a.s),nil,g > (nil)]* = nil)e Alph list ....
11. u: Alph
12. v: Alph list
13. v =< (As,a.a.s),nil, g > (v)€ Alph list
F(u.v) =< (As,a.a.s),nil,g > (u.v)€ Alph list
by DirComp

6 State Minimization

6.1 Textbook Proof
Recall Theorem 3.2 reproduced in section 4. We restate it here as:

Theorem 3.2 The automaton M’ of Theorem 3.1 has the least number of states
of any automaton accepting L, and any automaton accepting L with this minimum
number of states is isomorphic to M’.

There are several notable points about this theorem and its proof that bear on their formalization.
First, notice that the statement of the theorem refers to M’ which is defined in the proof of Theorem
3.1. This is a very economical device, but it is more common to make such definitions explicit as
we do with lang_auto. This defines an automaton A(g) given a function g to define the final states.
The definitions are

A lang_auto

A(g) == As,a.(a::5),[]g

T lang_auto_wf 3

VAlph : U. VL : Language(Alph). Vg : z,y: (Alph list)//(z Rly) — B.
A(g)€ Automata( Alph; z,y : (Alph list)//(zRly))

T lang_auto_compute 4

VAlph : U. VL : Language(Alph). Vg :z,y: (Alph list)//(zRly) — B. VI : Alph List.
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Alg)() =1

Let us review the proof exactly as written in [11].

Proof. In the proof of Theorem 3.1 we saw that any finite automaton M = (K, Alph, §, qo,
F") accepting L defines an equivalence relation which is a refinement of R. Thus the
number of states of M is greater than or equal to the number of states of M’ of The-
orem 3.1. If equality holds, then each of the states of M can be identified with one of
the states of M’. That is, let ¢ be a state of M. There must be some z in Alph list,
such that 6(qo,z) = ¢, otherwise ¢ could be removed from K, and a smaller automaton
found. Identify ¢ with the state ¢’(¢},z) of M’. This identification will be consistent.
If 6(qf,z) = 6'(¢),y) = q, then, by Theorem 3.1, z and y are in the same equivalence
class of R. Thus 6'(¢),z) = 6'(¢},y) = ¢.

Notice that the properties of M’ are proved in the context of this specific theorem. There is no effort
to abstract them as general principles. So, for example, the notion of isomorphism is only mentioned
in the proof, but never defined. We make this explicit in Automata_4 discussed below. In addition
the key argument that any automaton M accepting L defines a refinement of R[ is a observation
from the proof of Theorem 3.1 that is not stated as a separate fact. And the consequence that the
number of states of M is greater than the number of M’ is an important general fact that is not
abstracted from the theorem. We state these as separate theorems card_le and card_ge.

*A card_le

|| < |T|==3f:5 = TInj(S;T; f)
A card_ge

|S| > |T| ==3f:8 — T.Surjy(S;T; f)

A notable point about this Hopcroft and Ullman proof is that while it is based on a neat idea, it is
flawed because key details are omitted. The correspondence between states is not shown to be an
isomorphism. (Hopcroft and Ullman don’t hint at the proof they have in mind.) Failing to prove
this led them to insert a derivative fact, namely that the automaton M is connected. This is not
necessary. Let us outline their argument again.

6.2 Filling in Gaps in Textbook Proof

the proof

We are given L and a specific machine they call M’ which accepts it. We call this machine
A(g). They let M be any other machine accepting L; by Theorem 3.1 we know M C M’ hence
|M| > |M'|. If M is also minimal, then |M| = |M’|. Using this equality they define a map from M
to M'; let’s call it f. They show f is well defined and claim without proof that it is an isomorphism.

The definition of f is on the connected set of states, say K = {q:5t | Ja: Alph list 6(qo,z) = q}.
Given such a ¢ let z be any string such that 6(qo,z) = ¢, then define f(q) = [z]. This is well-

defined because if we pick a different string taking us from ¢ to ¢, say y with é(qo,y) = ¢, then
z =ymod M soz =y mod Rl by Theorem 3.1. Thus [z] = [y] in Alph list//RI.

It is not hard to show that f is an isomorphism between K and the states of M’. This implies that
K = St. But Hopcroft and Ullman do not carry out this argument. (Instead, they prove separately
that K = St.) Let us see what the right argument is.
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First we show that f is onto. Given [z] a state of A(g), notice that §(qgo, ) is in K for any = and
that f(6(qo,2)) = [z]. This means that f is onto which means |K| > |A(g)|.

If fis not 1-1, then |K| > |A(g)|. But |K| < |M|=|A(g)|. Since K C M, then |K|<|M]|, and
since we are assuming |M| = |M’|, then |K| < |M’'|. So |K| = |A(g)|. Thus it is contradictory
to assert that f is not 1-1. (By classical logic this means that f is 1-1. Constructively, this is true

as well since the property of being 1-1 in these types is decidable.)

Notice that these final steps are subtle in terms of constructive reasoning. They also use basic facts
about finite sets that are habitually considered “immediately” or “obviously” true. But they are
in fact not “obvious” to Nuprl until we prove them.

a lacuna
There is another gap in the proof that is glossed over even in the above more detailed account. That
account assumes that we can compute with equivalence classes as if they were concrete objects.

” so we have adopted the approach of quotient types discussed in

As sets they are “infinite objects,’
section 4.3.

In order to precisely define the isomorphism f discussed above, we need to assign an element of
Alph list// Rl to q in K. We said that f(q) = [z] for some z such that §(qo,z) = ¢. But how do
we find this 7 The definition of K assures that it exists, but the semantics of the set type does
not allow us to use the witness in a proof of this fact.

We could use a much stronger definition of the connected set of states, requiring the string 2 be
kept with the state. That is, we could take K = ¢q:S5t x {y: Alph list | §(qo,y) = q}. Then the
function f has access to z; it is the witness in the second component of the pair.

An approach that is more similar to the Hopcroft and Ullman proof is to notice that we can actually
compute the string x given ¢ € K. We could for example pick the least string = with respect to
the lexicographical ordering of Alph list. Suppose x < y is this ordering. It is a well-ordering,
and there is a least & such that 6(qo,z) = ¢. So we can define f(q) = [uz.6(qo, ) = q] where ux
computes the least . We will not actually formalize either of these approaches. It turns out that
once we define the lexicographical ordering, then there is a more direct argument than the one in
Hopcroft and Ullman. None of the facts about lexicographical ordering is mentioned in Hopcroft
and Ullman.

We can avoid entirely the argument by contradiction (to f being 1-1) whose computational version
is complex. We briefly discuss our approach next. It is presented in Automata_7 on the Web.

6.3 Minimization Theorem

If we want to compute on an automaton like A(g), then we probably want to use a more convenient
representation where the states are natural numbers. We can define this directly in terms of the
finiteness theorem for A(g)

Suppose A(g) has k states, then there are maps

rep : Alph list// Rl — [l...k]
unrep :[l..k] — Alph list// RI.

We could define the canonical minimal automaton, M(g), in Automata(Alph;|l...k]) by
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om(i, ) =rep(d(y)(unrep(i), z))
I(] )—rep([n ])
Far(i) = Fag)(unrep()).

It is now straight forward to build an isomorphism between A(g) and M(g) and between M (g) and
M of the theorem. (In this case the onto property is proved as Vi:[l...k]. 3¢: K.(f(q) = 1).)

We can summarize the minimization work in the following way. First, we take the disjoint union
of Automata(Alph; St) over all finite types for states. In type theory this is

Automata( Alph) == St:U x Fin(St) X Automata(Alph; 5t)).

The minimization result can be stated as: For every automaton A over Alph, there is an equivalent
one with the minimum number of states. To formalize this, we write A is_equivalent_to M to mean
that they accept the same languages, i.e. Vz:Alph list. L(A)(z) < L(M)(z). Then we say M is
minimal iff for any other A equivalent to M, A has at least as many states.

A is_equivalent to M ==Vz: Alph list. (L(A)(z) & L(M)(z))
Minimal(M) ==VA:Automata(Alph). (A= M = | States(A)| > | States(M)]).

Now we can easily prove

Minimization Theorem:
VAlph : U. Fin(Alph) =
VA : Automata(Alph). IM : Automata(Alph). A is_equivalent_to M & Minimal(M ).

From this theorem we can extract a function Reduce ¢ Automata(Alph) — Automata(Alph) which
produces the minimal machine.

In Automata_b we show also that the minimal automaton is connected, where connected is defined

in Automata4 as Con(A) == Vs:5t.3: Alph list. A(l) =
Define MinAuto( Auto) == A(Al. Auto(l) |) where A(g) was defined before as (As, a.(a.s),[],q).

Theorem (min_auto_con):

VAlph, St:U.VAuto : Automata( Alph, St). Fin(Alph) & Fin(St) = Con(MinAuto( Auto)).

We also show that the minimal automaton is unique up to isomorphism among all connected
automata. Isomorphism is defined in Automata_4 as:
Ay = Ay ==3f 51 — 52 By(51; 52, f) &
(Vs:51.Va: Alph. f(0Ay isa) = 6A3(fs)a) &
(f(I(A1)) = 1(A2)) &
VS:isy. F(Ar)s = F(A2)(fs).
Theorem (any_iso_min_auto):
VAlph, St:U.VAuto: Automata( Alph; 5t). VS:U.VA: Automata( Alph; S).

Fin(Alph) = Fin(S) = Con(A) = 1 — 1 — Correspondence(S;z,y: Alph list//z Rly)

= L(Auto) = L(A) = A = MinAuto(A).
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6.4 Computational Behavior

The Nuprl system is designed to extract and execute the computational content of constructive
theorems even when it is only implicitly mentioned. So it is possible to actually perform state min-
imization on an automaton without the need to write a separate minimization algorithm. Instead,
just as HU mention, we can extract the algorithm from the proof of the Myhill/Nerode theorem.

To illustrate this point concretely, note that given an automaton, Auto, Theorem 3.1 tells us that
Alph list// Rl will be the set of states of the minimal machine and that this set is finite. Indeed,
we should be able to compute the size, | Alph list// Rl |. We have carried out this computation
for some automata in Automata_6.

The algorithms implicit in our proofs of Theorem 3.1 are quite inefficient because we did not
attend to the efficiency issues in the proofs. We saw this as an experiment in using quotient types
to capture the HU results as exactly as we could. It is possible to redo some of the basic lemmas
to achieve acceptable performance for a minimization procedure.

7 Conclusion

It is our view that the Nuprl formalization adds value to the Myhill/Nerode theorem and the state
minimization corollary. With more work the proofs can be rendered as clearly as the informal
ones—this is a challenge for us. We believe it is possible to formalize Hopcroft and Ullman’s
chapters 1-11 at the level exhibited here for Myhill/Nerode and to do it with our four-person team
in less than 18 months. The collaboration methods we have learned would extend to larger teams.
We examine these points in more detail.

1. Added value of Formalization

Of course the formal account is more complete and each step has been checked by a machine,
hence it is more reliable. There are no holes as in the proof Theorem 3.2. We are considerably
more certain of the inferences because each one that we display has been checked by a person
and a machine.

Since the account is complete, we can study it quantitatively. We can talk about shorter
proofs or more abstract ones. We can answer questions of dependence, e.g. does the theory
use the axiom of choice for example?

The formal account is interactive. We can change a formula or justification and replay the
proof. We can mechanically reuse the theorems, tactics, and even individual inferences.

Since the theory is itself a formal mathematical object, we can manipulate it. We could
develop it first classically and then transform it automatically to the explicitly constructive
version seen here. We could uniformly translate it to a constructive set theory (like /ZF).

All of the algorithms of the theory can be evaluated, e.g. we can experiment with state
minimization, we can “run” the automata. Since the algorithms are terms of the theory, we
can transform them to internal models of other languages or transfer them to algorithms in
other programming languages as Nuprl automatically does (into Lisp, SML or Caml Light).

2. Proofs can be variously presented.
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A “raw” Nuprl proof is not guaranteed to be easy to grasp—some are, some aren’t. But the
proof editor allows us to create readings or presentations of the proof by a variety of devices.
We can suppress boring inferences; we can collect inferences into a single node, suppress them
and replace the node with a comment that expands to the full node. We can create a term
that displays the inferences in a more compact form using what Stuart Allen calls side proofs.

We need to systematically explore this aspect of Nuprl. Many ideas are being pursued. The
Mizar work is encouraging that good displays are possible with simple general devices.

. Going further in Hopcroft and Ullman

We have already formalized other parts of Hopcroft and Ullman, for example an account of
grammars from Chapter 2 and nondeterministic automata. We think we could finish Chapter
3 in another month of work by this team. This involves the challenging theorem that two-way
automata are equivalent to one-way.

A more appealing way to accomplish this formalization is with the help of other users world-
wide who collaborate with us on definitions and connections. We judge that Chapters 6, 7,
8, and Chapter 9 would be especially easy to formalize, but Chapter 4 would be challeng-
ing. Chapter 12 on deterministic pushdown automata is not a sufficiently elegant chapter to
formalize, Chapter 13 on stack automata is not of general interest, and the undecidability
results of Chapter 14 could be obtained better in other settings.

. Collaboration methods and related work

Our method of working on Myhill/Nerode was to discuss the formalization at group meetings
weighing the advantages and disadvantages of every definition and theorem statement. Once
the definitions and theorems were fixed and the proof methods discussed, we would continue
on independently with proof details.

There were unexpected difficulties with quotients because the tactics were not strong enough
to make the reasoning natural, but for the automata theory, the proofs could proceed as we
have shown.

This method of work would allow the theorem proving task to be distributed further. The
key point is to agree on definitions and statements of the main theorems, e.g. those in the
text being formalized. These constitute specifications for the task of programming a proof
using tactics.

We believe that with two other teams of provers like ours, Chapters 1 -11 of Hopcroft and
Ullman could be formalized in six months. One way to expedite this endeavor would be
for experienced users to formulate all of the definitions and theorems and invite a wider
community to help with the proofs. We welcome and invite participation in this task.

It would be especially interesting to collaborate with other theorem proving systems as Howe and

his colleagues are doing with HOL and Nuprl. Much of a classical treatment of languages can easily
be re-interpreted constructively (see [12]). It would be especially fruitful to collaborate with other
constructive provers such as Alf, Coq and Lego or with Isabelle which has formalized Martin-Lo6f

type theory. Although these provers are based on different formalizations of constructive mathe-

matics, they all share the critical properties that the computational notion essential to Hopcroft

and Ullman can be expressed, and they all allow extraction of code form proofs.
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