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Télécom ParisTech
46 rue Barrault, 75634 Paris Cedex 13, France

e-mail: angrand@enst.fr@telecom-paristech.fr

Sylvain Lombardy

Institut Gaspard-Monge, Université Paris-Est Marne-la-Vallée
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ABSTRACT

Bounds are given on the number of broken derived terms (a variant of Antimirov’s
‘partial derivatives’) of a rational expression E. It is shown that this number is less
than or equal to 2ℓ(E) + 1 in the general case, where ℓ(E) is the literal length of the
expression E, and that the classical bound ℓ(E) + 1 which holds for partial derivatives
also holds for broken derived terms if E is in star normal form.

In a second part of the paper, the influence of the bracketing of an expression on
the number of its derived terms is also discussed.

Keywords: regular expressions, rational expressions, derivatives, derivation of expres-
sions.

1. Introduction

The transformation of a rational (regular) expression into an automaton is as old
as automata and regular language theory. In [6], Glushkov built an automaton, the
position automaton of an expression E, with exactly ℓ(E) + 1 states, where ℓ(E) is
the literal length of the expression E. With the notion of derivatives, Brzozowski

0Full version of the paper published in the Proceedings of the 11th International Workshop on
Descriptional Complexity of Formal Systems, held in Magdeburg, Germany, July 6-9, 2009.
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succeeded in lifting the Myhill-Nerode theorem to the level of expressions [3]. Since
the result is a deterministic automaton the same kind of bound cannot hold. In [1],
Antimirov proposed to compute partial derivatives — which we call derived terms
here — rather than derivatives and built an automaton which is at most as big as the
position automaton. It has even been shown that this automaton is not only smaller
than, but also a quotient of the position automaton [4].

In [7], the notion of breaking derivation was introduced as a possible variant of
Antimirov’s derivation. Like Antimirov’s derivation, the breaking derivation is ulti-
mately intended for building an automaton that recognises the language denoted by
the expression. And as its name indicates, the breaking derivation will break the
derived terms into pieces, leading thus to an automaton which is likely to have more
states than the one built with Antimirov’s procedure; it is easy to produce examples
where this effectively does happen. The motivation for being interested in an appar-
ently less efficient construction comes from an earlier work of the authors (cf. [8, 9])
where it was shown that broken derived terms give very good results when the ex-
pression under derivation is obtained by the state elimination method applied to an
automaton. Somehow, and to some extent, the structure of the automaton is coded
by the the state elimination method into the expression it produces, and the break-
ing derivation is a good candidate for decoding the structure. These considerations
are motivated by the search of a method that would be reversible, in the sense it
could find an expression from an automaton and then recover the automaton from
the expression.

The natural bound that holds for the derived terms no longer holds in general
for broken derived terms and might lead to the computation of an automaton bigger
than the automaton of derived terms – and it is not even a quotient of the position
automaton. The question of finding a bound for the size of the set of broken derived
terms was left open [7, Remark 13]. This paper addresses this question and proves
the following two results, the second one giving for a natural class of expressions the
same bound as for derived terms. Moreover, examples are given which show that both
bounds are tight.

Theorem 1 The number of broken derived terms of an expression E whose starred
subexpressions are not constant is bounded by 2 ℓ(E) + 1.

Theorem 2 The number of broken derived terms of an expression E in star normal
form is bounded by ℓ(E) + 1.

The star normal form is defined in [2] by Brüggemann-Klein in order to compute
the position automaton efficiently in quadratic time. It amounts to avoiding the
star operator on expressions whose constant term is not 1. It is remarkable that
this classical notion pops up again in our problem. For the purpose of the proof
of Theorem 2, we give a recursive definition of star normal form which is slightly
different from the original one, and which is more suitable for proofs by induction on
the depth of expressions.

In Section 2 we recall the definition of broken derived terms. The bounds are
established in Section 3. In the last section, we address another problem related to
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the number of (broken) derived terms. We show that the results of the derivation and
of the broken derivation depend on the bracketing of the rational expression. More
precisely, the left bracketing (of concatenation) in an expression yields a number of
derived and broken derived terms that is always less than or equal to the one obtained
by the right bracketing.

The proof of two already known propositions, in particular the one of Brüggemann-
Klein, are given for sake of completeness but put into an appendix.

2. Definition of the broken derived terms

Let us first briefly recall basic definitions of rational expressions and some of their
properties that we use in the following sections. We also recall the definition of the
derivation as Antimirov defined it in [1] and finally we give the definition of the broken
derived terms (and of the automaton which they allow to build).

2.1. Basic notions

In the sequel, A is a finite alphabet and A∗ the free monoid generated by A. The
empty word, denoted by 1A∗ , is the identity of A∗. We denote by A+ the set of
non-empty words: A+ = A∗ \ {1A∗} .

For any subset L, i.e., language, of A∗, and any word f in A∗, the (left) quotient
of L by f is defined as f−1L = {g ∈ A∗ | f g ∈ L} . The constant term of a
language L, is the Boolean value c (L) which is equal to 1 if 1A∗ belongs to L and
to 0 if it does not.

The set of rational expressions over A, denoted by RatE(A), is the set of well-
formed formulas built inductively from the constants 0 and 1 and the letters a in A

as atomic formulas and with two binary operators + and · and one unary operator ∗:
if E and F are rational expressions, so are (E + F), (E · F), and (E∗). We often write
simply expression instead of rational expression.

With every rational expression E is associated a language of A∗ which is called the
language denoted by E and we write it L (E). Two expressions are equivalent if they
denote the same language.

It is very common to introduce a precedence relation between operators: ‘ ∗ > · >
+ ’ which allows to save parentheses in the writing of expressions — e.g. E + F · G∗

is an unambiguous writing for the expression (E + (F · (G∗))) — but one should be
aware that for instance (E · (F · G)) and ((E · F) · G) are two equivalent but distinct
expressions. The operation that we shall study in this paper gives indeed different
results on these two expressions, as we shall see in the last section.

Even if for the sake of our purpose and the correct definition of the derivation,
we distinguish between expressions that seem to be so obviously equivalent, all the
computations on expressions that will be defined below are performed modulo a set
of seven identities, that we call trivial identities :

E+ 0 ≡ E, 0+ E ≡ E, E · 0 ≡ 0, 0 · E ≡ 0, E · 1 ≡ E, 1 · E ≡ E, 0
∗ ≡ 1.

(T)
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An expression is said to be reduced if it contains no subexpression which is a left-
hand side of one of the above identities; in particular, 0 does not appear in a non-zero
reduced expression. It is not necessary to set up a full theory of rational identities in
order to understand that any expression H can be rewritten in an equivalent reduced
expression H′, and that this H′ is unique and independant from the way the rewriting
is conducted.

In the sequel, most of the operators defined on expressions are implicitely, or ex-
plicitely, extended additively to sets of expressions. For instance, we have:

∀X ⊆ RatE(A) L (X) =
⋃

E∈X

L (E) . (1)

Like any formula, a rational expression E can be canonically represented by a tree,
which is called the syntactic tree of E. Let us denote by ℓ(E) the literal length of the
expression E (i.e., the number of all occurences of letters from A in E) and by d(E)
the depth of E which is defined as the depth – or height – of the syntactic tree of the
expression. We call an expression of zero literal length a constant expression.

Definition 1 Let E be a rational expression. The constant term of E, written c (E),
is the Boolean value defined as follows:

c (0) = 0, c (1) = 1, ∀a ∈ A c (a) = 0,

c (F+ G) = c (F) ∨ c (G) , c (F · G) = c (F) ∧ c (G) , c (F∗) = 1.

The operator ‘constant term’ is extended to any set X of expressions:

c (X) =
∨

E∈X

c (E) . (2)

The notions of constant term of expressions and of languages are consistent, as it
is stated in the following property.

Property 1 The constant term of an expression E is equal to 1 if, and only if, the
empty word 1A∗ is in the language L (E), that is, c (E) = c (L (E)) .

2.2. Derived terms

We now define what we call the derived terms of an expression, which are the partial
derivatives of [1]. We also gives in this subsection an inductive procedure to compute
directly the set of derived terms.

Definition 2 ([1]) Let E be a rational expression over A and let a be a letter in A.
The B-derivation1 of E with respect to a, denoted ∂

∂a E, is a set of rational expressions

1We call it ‘B-derivation’ for two reasons. First in order to avoid confusion with the derivatives
defined by Brzozowski, and second because the formulae depend on the semiring of weights and can
be defined for other semirings (cf. [7]). Here the weight semiring is the Boolean semiring.
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over A, recursively defined by

∂

∂a
0 =

∂

∂a
1 = ∅, ∀b ∈ A

∂

∂a
b =

{

{1} if b = a ,

∅ otherwise,
,

∂

∂a
(F+ G) =

∂

∂a
F ∪

∂

∂a
G, (3)

∂

∂a
(F · G) =

(

∂

∂a
F

)

· G ∪ c (F)
∂

∂a
G, (4)

∂

∂a
(F∗) =

(

∂

∂a
F

)

· F∗. (5)

Equation (4) should be understood as

∂

∂a
(F · G) =

{
(

∂
∂a F

)

· G ∪ ∂
∂a G, if c (F) = 1 ,

(

∂
∂a F

)

· G, if c (F) = 0 .
(6)

That is, the product xX of a set X by a Boolean value x is xX = X if x = 1 and
xX = ∅ if x = 0.

The induction implied by Equations (3–5) should be interpreted by extending
derivation additively (as are always derivation operators) and by distributing (on
the right) the · operator over sets as well:

∂

∂a
X =

⋃

E∈X

∂

∂a
E, (X) · F =

⋃

E∈X

(E · F). (7)

Finally, every operation on rational expressions is computed modulo the trivial iden-
tities (T).

Example 1 Let E1 = (a∗ + b∗) · (a · (a∗ + b∗)) = F1 · (a · F1), with F1 = (a∗ + b∗).
The B-derivation of E1 by a and b yields:

∂

∂a
E1 =

(

∂

∂a
F1

)

· (a · F1) ∪ c (F1)
∂

∂a
(a · F1) = {a∗ · (a · F1) , F1}.

∂

∂b
E1 =

(

∂

∂b
F1

)

· (a · F1) ∪ c (F1)
∂

∂b
(a · F1) = {b∗ · (a · F1)}.

The B-derivation of an expression E over A with respect to a non-empty word f

of A+ is defined by induction on the length of f : either f = a is a letter of A and ∂

∂f
E

is defined above, or f is of length greater than 1: f = g a with g in A+ and a in A

and ∂

∂f
E is defined by

∂

∂ga
E =

∂

∂a

(

∂

∂g
E

)

. (8)
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Definition 3 Let E be a rational expression over A. We call every expression that
belongs to ∂

∂f
E for some word f of A+, a true derived term and we write TD (E)

for the set of true derived terms of E:

TD (E) =
⋃

f∈A+

∂

∂f
E. (9)

The set D (E) = TD (E) ∪ {E} is the set of derived terms of E.2

Example 2 (Ex. 1 continued) We have:

∂

∂aa
E1 =

∂

∂a
({a∗ · (a · F1) , F1}) = {a∗ · (a · F1) , F1} ∪ {a∗},

∂

∂ab
E1 =

∂

∂b
({a∗ · (a · F1) , F1}) = {b∗},

∂

∂ba
E1 =

∂

∂a
({b∗ · (a · F1)}) = {F1},

∂

∂bb
E1 =

∂

∂b
({b∗ · (a · F1)}) = {b∗ · (a · F1)}.

No new terms are found by derivation with respect to any longer word and the process
terminates. Hence we have TD (E1) = {a∗ · (a ·F1) , b

∗ · (a ·F1) , F1 , a
∗ , b∗} and then:

D (E1) = {E1 , a
∗ · (a · F1) , b

∗ · (a · F1) , F1 , a
∗ , b∗}.

Although we shall not make explicit use of it, it is worth mentioning that the derived
terms of an expression E allow to build an automaton AE that recognises L (E): its
states are the derived terms of E, the initial state is the expression E itself, the final
states are those derived terms whose constant term is 1 and there is a transition
labeled by a between the derived terms F and G if, and only if, G belongs to ∂

∂a F.
The key to the proof that AE recognises L (E) is the fact that the derivation of an

expression with respect to a word corresponds to the quotient of the denoted language
by the same word, in the sense that the following holds:

∀f ∈ A+ , ∀E ∈ RatE(A) L

(

∂

∂f
E

)

= f−1L (E) . (10)

And as the language denoted by a non constant rational expression contains at least
one non-empty word, we obtain the following property.

Property 2 Every non-constant rational expression has at least one true derived
term whose constant term is 1, that is:

∀E ∈ RatE(A) ℓ(E) 6= 0 =⇒ c (TD (E)) = 1. (11)

2Derived terms were called partial derivatives by Antimirov in [1]. We have already explained
in [10] the reason for this renaming: first the (Brzozowski) derivative expressions of E were already
‘partial’ inasmuch as they are the result of a derivation with respect to one of the letters, and because
‘partial derivatives’ further overloads an established mathematical term.
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Finally, and to make the picture complete, let us state the result that motivated
the construction of AE by Antimirov: to build a hopefully small automaton that
recognises L (E), at least one not bigger than the position automaton.

Theorem 3 ([1]) Let E be a rational expression. The number of derived terms of E,
and thus the number of states of AE, is finite and less than, or equal to, ℓ(E) + 1.

Example 3 (Ex. 1 continued) Figure 1 shows the derived term automaton of E1.

E1 F1

a∗ · (a · F1)

b∗ · (a · F1)

a∗

b∗

a

a

a

a

b

a

b

a

b

a

b

Figure 1: The derived term automaton of E1

A very important property of derived terms, on which all the results of this paper
are based, is that the set D (E) — the set TD (E) indeed — can be computed by a
direct induction on the depth of E, without reference to the derivation operator.3

Proposition 4 ([7]) Let F and G be two rational expressions. Then, the following
holds.

TD ((F+ G)) = TD (F) ∪ TD (G) , (12)

TD ((F · G)) = (TD (F)) · G ∪ TD (G) , (13)

TD ((F∗)) = (TD (F)) · F∗. (14)

These three equations follow from the application of the inductive definition of the
derivation by words (Equation (8)) to the derivation of a sum, a product, and a star,
of an expression. The complete computations, somewhat tedious, not in line with
the rest of the paper, and which can be infered from the more general formulas given
in [7], are postponed to the appendix.

Corollary 5 The set of derived terms D ((E)) of any rational expression E over A

can be computed by induction on the depth of E by using Equations (12)–(14) and the
base clauses:

TD (0) = ∅, TD (1) = ∅, ∀a ∈ A TD (a) = {1}. (15)

It follows in particular that for every constant expression E, TD (E) = ∅ .

3It is even the way the set D (E) should be defined for weighted rational expressions (cf. [7]).
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2.3. Broken derived terms

The broken derived terms, which are the subject of this paper, were first defined
by the authors (in [7]) for weighted rational expressions as a possible variant of the
derived terms. We have already explained in the introduction that we have used them,
for Boolean expressions, in order to set up a method that would be the converse of
the state elimination method. We have not been able to solve completely this last
problem, but we have shown, in [8], that the broken derived terms will most probably
be part of the solution. We have then discovered in this paper a flaw whose origin was
an inadequate definition of the breaking derivation; this has been corrected in [9].4

The definition of the breaking derived terms makes use of the following notations.

Let X be a set of expressions. We denote by δX the Boolean value equal to 1
if the expression 1 belongs to X and to 0 otherwise. We denote by Xp the set
Xp = X \ {1} . For instance, (X ∪ Y )p = Xp ∪ Yp and δXp

= 0 for any sets X

and Y . It is also immediate to verify the following three identities.

∀X ⊆ RatE(A)
∂

∂a
Xp =

∂

∂a
X, c (Xp) ∨ δX = c (X) , (16)

and Xp ∪ δX{1} = X. (17)

We then define a new operation on rational expressions, which we denote by B () ,
and which, roughly speaking, consists in decomposing an expression into a set of
expressions whose left factor is not a sum.

Definition 4 The set B (E) of broken terms of a rational expression E over A is the
set of expressions inductively defined as follows:

B (0) = {0}, B (1) = {1}, ∀a ∈ A B (a) = {a},

B (F+ G) = B (F) ∪ B (G) , (18)

B (F · G) = (B (F))p · G ∪ δB(F)B (G) , (19)

B (F∗) = {F∗}. (20)

By definition, the breaking operator is additive:

∀X ⊆ RatE(A) B (X) =
⋃

E∈X

B (E) . (21)

And it is immediate to check that it is idempotent.

Example 4 (Ex. 1 continued) The breaking of E1 and F1 gives:

B (E1) = {a∗ · (a · F1) , b
∗ · (a · F1)}, B (F1) = {a∗ , b∗}.

4The publication of [9] has been much delayed for several reasons, and the correct definition of
broken derived terms appears for the first time in print in the present paper.
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Definition 5 The breaking B-derivation of a rational expression E over A with re-
spect to a letter a in A is defined as:

∂b

∂a
E = B

(

∂

∂a
E

)

. (22)

The breaking B-derivation with respect to an non-empty word is defined by induction
on the length of the words:

∂b

∂fa
E =

∂b

∂a

(

∂b

∂f
E

)

. (23)

We call every rational expression that belongs to
∂b

∂f
E, for some word f in A+, a

true broken derived term of E and we write TBD (E) for the set of true broken derived
terms of E:

TBD (E) =
⋃

f∈A+

∂b

∂f
E. (24)

The set of broken derived terms, BD (E), is defined by: BD (E) = TBD (E) ∪ B (E) .

It is easy to check (using (16)) that for any rational expression E over A we have:

∀a ∈ A
∂

∂a
B (E) =

∂

∂a
E, and thus ∀f ∈ A+ ∂b

∂f
E = B

(

∂

∂f
E

)

,(25)

which in turn implies the following property.

Property 3 The broken derived terms and true broken derived terms of an expres-
sion E are obtained by ‘breaking’ the derived terms and true derived terms of E, that
is:

∀E ∈ RatE(A) BD (E) =
⋃

K∈D(E)

B (K) , TBD (E) =
⋃

K∈TD(E)

B (K) . (26)

It follows in particular that for every constant expression E, TBD (E) = ∅ .

Example 5 (Ex. 1 continued) The set of true broken derived terms of E1 is:

TBD (E1) = B ({a∗ · (a · F1) , b
∗ · (a · F1) , F1 , a

∗ , b∗}) ,

= {a∗ · (a · F1) , b
∗ · (a · F1) , a

∗ , b∗}.

Hence the set of broken derived terms is:

BD (E1) = TBD (E1) ∪ B (E1) = {a∗ · (a · F1) , b
∗ · (a · F1) , a

∗ , b∗}.

As above, it is also possible to define the broken derived term automaton of an
expression E: its states are the broken derived terms of E, the initial states are the
broken terms of E, the final states are those broken derived terms whose constant term
is 1, and there is a transition between two broken derived terms, F and G, labeled
by a if, and only if, G belongs to ∂b

∂a F. Of course, the automaton obtained in this way
recognises L (E). And as above, the present paper does not develop along this line.
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Example 6 (Ex. 1 continued) Figure 2 shows the broken derived term automaton
of E1.

a∗ · (a · F1)

b∗ · (a · F1)

a∗

b∗

a

a

a

a

a

b

a

b

Figure 2: The broken derived term automaton of E1

.

As we proved for derived terms, with Proposition 4, and as a consequence of that
result, we now establish that the sets of broken and true broken derived terms of
an expression can be computed by induction on the depth of the expression, and
this definition, without any reference to the derivation operator, happens to be more
suited for the forthcoming proofs.

Proposition 6 Let F and G be two rational expressions. Then, the following holds.

TBD (F+ G) = TBD (F) ∪ TBD (G) , (27)

TBD (F · G) = (TBD (F))p · G ∪ TBD (G) ∪ δTBD(F)B (G) , (28)

TBD (F∗) = (TBD (F)) · F∗. (29)

Proof. This statement is a straightforward consequence of the application of (26)
to the inductive computation of derived terms (Proposition 4, Equations (12)–(14)).
Since Equation (27) is obvious, let us develop (28).

TBD (F · G) = B (TD (F · G)) = B
(

(TD (F)) · G ∪ TD (G)
)

= B ((TD (F)) · G) ∪ B (TD (G))

= (TBD (F))p · G ∪ δTBD(F)B (G) ∪ TBD (G) .

For establishing (29), let us first note that, for any set X of expressions, (B (X))p ⊆

B
(

(X)p

)

and thus, by (17), B
(

(X)p

)

∪ δB(X){1} = B (X) . Then:

TBD (F∗) = B (TD (F∗)) = B
(

(TD (F)) · F∗
)

=
(

B
(

(TD (F))p

))

· F∗ ∪ δB(TD(F))B (F∗)

= B
((

(TD (F))p ∪ {1}
)

· F∗

)

= (TBD (F)) · F∗.

2
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Proposition 7 Let F and G be two rational expressions. Then, the following holds.

BD (F+ G) = BD (F) ∪ BD (G) , (30)

BD (F · G) = (BD (F))p · G ∪ TBD (G) ∪ δBD(F)B (G) , (31)

BD (F∗) = (TBD (F))p · F
∗ ∪ {F∗}. (32)

Proof. As above, (30) is obvious, so let us first develop (31):

BD (F · G) = TBD (F · G) ∪ B (F · G)

= (TBD (F))p · G ∪ (B (F))p · G ∪ TBD (G) ∪ δTBD(F)B (G) ∪ δB(F)B (G)

= (BD (F))p · G ∪ TBD (G) ∪ δBD(F)B (G) .

Equation (32) is obvious as well, with just a writing trick that will be useful later. 2

Corollary 8 The sets of broken derived terms BD (E) and of true broken derived
terms TBD (E) of any rational expression E over A can be computed by induction on
the depth of E by using Equations (27)–(32) and the base clauses:

TBD (0) = ∅, TBD (1) = ∅, ∀a ∈ A TBD (a) = {1},

BD (0) = {0}, BD (1) = {1}, ∀a ∈ A BD (a) = {a, 1}.

We are now ready to establish the two main results stated in the introduction.

3. Bounds on the size of the broken derived term set

A remarkable feature of Antimirov’s derived terms is that their number, for a given
expression E, is bounded by ℓ(E) + 1, that is, the automaton they allow to build is
not bigger than the position automaton. Although such a bound seems, at first sight,
to be out of reach for the number of broken derived terms, we shall see that twice the
same bound, or even the same bound, indeed hold under reasonable, and sensible,
hypotheses. One must say that the situation seems to be rather desesperate when
one consider expressions such as: K4 = 1+ 1

∗ + (1∗)∗ + ((1∗)∗)∗ . The broken terms
of K4 are:

B (K4) = {1, 1∗, (1∗)∗, ((1∗)∗)∗}. (33)

The expression K4 does not contain any letter, and from this example it is easily
seen how to construct an expression without letters and with an arbitrary number of
broken derived terms, making impossible a bound which is a function of the literal
length of the expression. At this point, one should notice that TBD (K4) = ∅ and
that the blowing phenomenon comes from the breaking of such expressions only, not
from their derivation. It seems thus reasonable to rule out the playing with 1 and ∗.
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3.1. A bound for arbitrary (reasonable) expressions

In order to describe ‘reasonable’ expressions, let us call a constant expression which
contains at least one star operator a starred constant expression. Modulo the trivial
identities, the only non-starred constant expressions are the sums of 1’s. Even if we
rule out the starred constant expressions, the bound ℓ(E) + 1 does not hold for the
number of broken derived terms of an arbitrary expression, as the following example
shows.

Example 7 Let Gk = ((a∗)∗ + 1)
k
, for every positive integer k. More precisely, as

bracketing matters (as we show below), let G1 = ((a∗)∗ + 1) and Gk+1 = (G1 · Gk) ,
for every positive integer k. Clearly, ℓ(Gk) = k. We then have:

B (G1) = {(a∗)∗ , 1}, and BD (G1) = {(a∗)∗, a∗(a∗)∗, 1}, (34)

and, for every k, B (Gk+1) = (a∗)∗ ·Gk ∪ B (Gk) . By (31) and since δBD(G1) = 1 , we
have:

BD (Gk+1) = BD (G1 · Gk) = (BD (G1))p · Gk ∪ BD (Gk)

= (a∗)∗ · Gk ∪ (a∗(a∗)∗) · Gk ∪ BD (Gk) .

Since the expressions Gk are pairwise distinct, the same holds for the (a∗)∗ · Gk and
the (a∗(a∗)∗) · Gk. Hence BD (Gk) ∩

(

(a∗)∗ · Gk ∪ (a∗(a∗)∗) · Gk

)

= ∅ , and then:

card (BD (Gk)) = 2 ℓ(Gk) + 1. (35)

The expressions given in this example reach indeed the bound for the generic case
of what we consider reasonable expressions.

Theorem 1 Let E be a rational expression which contains no starred constant subex-
pression. Then, the following holds:

card (BD (E)) 6 2 ℓ(E) + 1.

Theorem 1 is a direct consequence of the following slightly more technical statement
whose detailed form is necessary for the induction:

Proposition 9 Let E be a rational expression that contains no starred constant subex-
pression. Then, the following holds:

card
(

(BD (E))p

)

6 2 ℓ(E), (36)

if ℓ(E) > 1, card (TBD (E)) 6 2 ℓ(E)− 1. (37)

As card (X) 6 card
(

(X)p

)

+ 1 for any set X of expressions, (36) directly im-

plies Theorem 1. The necessity of establishing (37) in the course of proving (36) by
induction comes from the fact that TBD (F) appears in the inductive computation
of BD (F∗) as described by Proposition 7.



On the number of broken derived terms of a rational expression 13

Proof. By induction on the depth of E, that is, E = F + G, E = F · G or E = F∗. In
the first two cases, ℓ(E) = ℓ(F) + ℓ(G) , in the third, ℓ(E) = ℓ(F) . If E contains no
starred constant subexpressions, then the same is true of F and G. We thus have by
induction:

card
(

(BD (F))p

)

6 2 ℓ(F) and card
(

(BD (G))p

)

6 2 ℓ(G). (38)

and, if ℓ(F) > 1,

card (TBD (F)) 6 2 ℓ(F)− 1. (39)

The cases E = 0, E = 1 and E = a trivially satisfy (36) and (37). Moreover E = 0
is not a base case of the induction since a non-zero expression does not contain any
zero subexpression modulo the trivial identities.

Case E = F+ G : By (30), (BD (E))p = (BD (F))p ∪ (BD (G))p and (36) holds.
By (27), TBD (E) = TBD (F) ∪ TBD (G) .

If ℓ(E) > 1, we then may assume that ℓ(F) > 1 and (39) holds.

Then, either ℓ(G) = 0, and TBD (G) = ∅, or ℓ(G) > 1 and then, by induction
card (TBD (G)) 6 2 ℓ(G)− 1 . In both cases, (37) holds.

Case E = F · G (which implies F and G different from 1):

By (31), BD (E) = (BD (F))p · G ∪ TBD (G) ∪ δBD(F)B (G) .

Since G 6= 1,
(

(BD (F))p · G
)

p
= (BD (F))p · G and thus:

(BD (E))p = (BD (F))p · G ∪
(

TBD (G) ∪ δBD(F)B (G)
)

p

⊆ (BD (F))p · G ∪ (BD (G))p .

Then card
(

(BD (E))p

)

6 card
(

(BD (F))p · G
)

+ card
(

(BD (G))p

)

,

and (36) follows as above.

By (28), TBD (E) = (TBD (F))p · G ∪ TBD (G) ∪ δTBD(F)B (G ).

If 1 ∈ TBD (F), then ℓ(F) > 1 and TBD (E) = (TBD (F))p · G ∪ BD (G) . The

induction yields card
(

(TBD (F))p

)

6 2 ℓ(F)−2 and card (BD (G)) 6 2 ℓ(G)+1

and thus (37) holds.

If 1 6∈ TBD (F),

then TBD (E) = (TBD (F))p · G ∪ TBD (G) ⊆ (BD (F))p · G ∪ TBD (G) .

If ℓ(E) > 1 then,

either ℓ(G) > 1 and then card (TBD (F · G)) 6 2 ℓ(F) + 2 ℓ(G)− 1 ,

or ℓ(G) = 0 and then both ℓ(F) > 1 and TBD (G) = ∅, then

card (TBD (F · G)) 6 2 ℓ(F)− 1 .

In both cases, (37) holds.
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Case E = F∗ : The subexpression F is starred, thus not a constant expression and
ℓ(F) > 1. By induction, card (TBD (F)) 6 2 ℓ(F)− 1 = 2 ℓ(E)− 1 .

By (32), BD (F∗) = (TBD (F))p · F
∗ ∪ {F∗} and thus:

card
(

(BD (E))p

)

= card
(

(TBD (F))p

)

+ 1 6 2 ℓ(E).

By (29), TBD (F∗) = TBD (F) · F∗ and thus:

card (TBD (F∗)) = card (TBD (F)) 6 2 ℓ(E)− 1.

2

3.2. A bound for expressions in star normal form

The definition of star normal form of an expression has been introduced by
Brüggemann-Klein (in [2]) in order to design a quadratic algorithm for the construc-
tion of the position automaton. From any expression, it is possible to compute an
equivalent expression which is in star normal form; this computation amounts to
avoiding the star operation on subexpressions whose constant term is 1. In order to
prove Theorem 2, we first introduce an inductive definition of the computation of the
star normal form which is slightly different from the original one and better fitted to
proofs by induction (on depth of expressions).

3.2.1. The star normal form revisited

Let us first recall the definition of an expression in star normal form.5

Definition 6 ([2]) A rational expression E is in star normal form (SNF) if, and
only if, for any F such that F∗ is a subexpression of E, c (F) = 0 .

In order to compute expressions in SNF, two operators on expressions, • and ◦,
were defined in [2]. Both are defined by induction on the depth of the expressions.
The operator • computes an expression in SNF, and calls the operator ◦ when applied
to a starred expression. The inductive definition goes as follows:

5This definition is not exactly the one given in [2] (cf. Definiton 2.6) where a somewhat technical
supplementary condition is given. This condition is not necessary here; whether it is really necessary
for the original purpose of SNF, that is, the quadratic algorithm, is the object of ongoing work of
the authors.
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0
◦ = 0, 1

◦ = 0, for all a ∈ A a◦ = a, (40)

(F+ G)◦ = F
◦ + G

◦, (41)

(F · G)◦ =



















F · G if c (F) = c (G) = 0,

F
◦ · G if c (F) = 0 and c (G) = 1,

F · G◦ if c (F) = 1 and c (G) = 0,

F◦ + G◦ if c (F) = c (G) = 1,

(42)

(F∗)
◦
= F

◦. (43)

and:

0
• = 0, 1

• = 1, for all a ∈ A a• = a, (44)

(F+ G)• = F
• + G

•, (45)

(F · G)• = F
• · G•, (46)

(F∗)• = ((F•)◦)∗. (47)

The following is then established:

Proposition 10 ([2]) For any rational expression E, the expression E• is in star
normal form and is equivalent to E.

The problem with the inductive definition (40)-(47) is that even though every
subexpression of an expression in SNF is in SNF, the same heritage property is not
true for expressions computed with the operator ◦. For instance:

((a∗b∗)∗)◦ = a+ b whereas (c (a∗b∗)∗)◦ = c (a∗b∗)∗.

This difficulty can easily be overcome once it is noticed that in the course of the
computation of E•, the ◦ operator is only used in conjunction with the operator •
(in (47)). We thus define a new operator � by the following:

∀E ∈ RatE(A) E
�

= (E•)
◦
. (48)

We shall derive an inductive definition of � from the properties of ◦ that we first
establish.

Proposition 11 Let E be an expression. Then, the following holds:

c (E◦) = 0, (49)

c (E) = 0 =⇒ E = E
◦ (which implies: E = E

◦ ⇔ c (E) = 0), (50)

(E◦)◦ = E
◦ (i.e., ◦ is idempotent), (51)

c (E•) = c (E) . (52)
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Proof. All these properties are established by an easy induction. The most tedious
one being (50), which we explicitly give. The base clauses obviously satisfy (50).

If E = F+ G, c (E) = 0 implies

c (F) = c (G) = 0 and thus, by induction, (F+ G)
◦
= F◦ + G◦ = F+ G.

If E = F · G, c (E) = 0 implies c (F) c (G) = 0.

If c (F) = c (G) = 0, then (F · G)◦ = F · G.
If c (F) = 0 and c (G) = 1, then (F · G)◦ = F◦ · G = F · G.
If c (F) = 1 and c (G) = 0, then (F · G)◦ = F · G◦ = F · G.

Finally, if c (E) = 0, then E cannot be of the form E = F∗. 2

Proposition 12 Let F and G be two rational expressions. Then the following holds:

(F+ G)
�

= F
�

+ G
�

, (53)

(F · G)
�

=

{

F
� + G

� if c (F) = c (G) = 1

F• · G• otherwise
, (54)

(F∗)
�

= F
�

. (55)

Proof. From (41) and (45), immediately follows (53).

Let (F · G)
�

= ((F · G)•)
◦

= (F• · G•)◦; the remainder of the proof of (54) requires a
case examination (with the implicit use that c (H•) = c (H) for any H).

If c (F) = 0 or c (G) = 0 then c (E) = 0 and, by (50) (F · G)•
◦

= F• · G•.

If c (F) = c (G) = 1, then (F• · G•)
◦
= (F•)

◦
+ (G•)

◦
= F

� + G
�.

Finally, (F∗)
�

= ((F∗)
•
)
◦

= (((F•)
◦
)∗)

◦

= ((F•)
◦
)
◦

= (F•)
◦
by (51). 2

Corollary 13 The expression E
� can be computed by induction on the depth of E by

using Equations (53)–(55) and the base clauses:

0
�

= 0, 1
�

= 0, ∀a ∈ A a
�

= a. (56)

Now, it is clear that (53)–(55), together with (44)–(46) and (47) rewritten as:

(F∗)
•
= (F

�

)∗, (47’)

is a new inductive description of the computation of E•, with the difference that any
subexpression of E� is in SNF. For instance:

((a∗b∗)∗)
�

= a+ b and (c (a∗b∗)∗)
�

= c (a+ b)∗.

This new inductive definition of E• yields a linear time algorithm. As we did in
Proposition 11 for the operator ◦, we list a number of properties for the operators �

and •, all established by obvious inductions.
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Proposition 14 Let E be an expression. Then, the following holds:

c
(

E
�
)

= 0, (57)

c (E) = 0 ⇐⇒ E
• = E

�

, (58)

ℓ(E
�

) = ℓ(E•) = ℓ(E), (59)

E in SNF =⇒ E = E
•. (60)

Proof. Ad (58): True for the base cases.

(F+ G)
�

= (F+ G)
• ⇔ F

�

= F
• and G

�

= G
• ⇔

⇔ c (F) = 0 and c (G) = 0 ⇔ c ((F+ G)) = 0,

(F · G)
�

= (F · G)• = F
• · G• ⇔ c (F) c (G) = c ((F · G)) = 0,

(F∗)
�

= (F∗)•, that is F
�

= (F
�

)∗ never happens, and c (F∗) = 1.

Ad (60): True for the base cases. If E = F+ G or E = F · G and E is in SNF, then
F and G are in SNF, thus F = F• and G = G•, (F+ G)• = F+ G and (F · G)• = F · G.
If E = F∗ and E is in SNF, then c (F) = 0 and F in SNF, that is F• = F

� = F, thus
E• = (F∗)

•
= (F�)∗ = F∗ = E. 2

For the sake of completeness, we give a proof of Proposition 10 with the new
definitions of ◦ and •; for the sake of fluent reading, we postpone it to the appendix.

3.2.2. Proof of Theorem 2

We are now able to prove the main result of this paper, already stated in the intro-
duction.

Theorem 2 If a rational expression E is in star normal form, then:

card (BD (E)) 6 ℓ(E) + 1.

Proof. The result trivially holds for E = 0 , and we suppose now that E, and thus
all its subexpressions, are different from 0. We rather prove the theorem under the
form:

card
(

(BD (E))p

)

6 ℓ(E), (61)

and together with two more precise statements that will be used in the induction:

if c (E) = 0, card
(

(TBD (E))p

)

6 ℓ(E)− 1, (62)

if c (E) = 1 and 1 ∈ TBD (E) , card
(

(TBD (E))p

)

6 ℓ(E)− 1. (63)

We prove these three conditions by induction on the depth of E, using the inductive
equations of Propositions 6 and 7. The base cases E = 1 and E = a are obvious.
Case E = F+ G :

BD (E) = BD (F) ∪ BD (G)
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and (61) holds by induction. Moreover:

TBD (E) = TBD (F) ∪ TBD (G) ⊆ BD (F) ∪ TBD (G) ,

then:

(TBD (E))p = (TBD (F))p ∪ (TBD (G))p ⊆ (BD (F))p ∪ (TBD (G))p .

If c (E) = 0, then c (F) = c (G) = 0 and, by induction,

card
(

(TBD (E))p

)

6 ℓ(F)− 1 + ℓ(G)− 1 = ℓ(E)− 2.

If c (E) = 1, one may assume that c (F) = 1. Then, either c (G) = 0 or c (G) = 1
and, in this latter case, if 1 ∈ TBD (E) then one may assume that 1 ∈ TBD (G) since

F and G play the same role. In both cases, card
(

(TBD (G))p

)

6 ℓ(G) − 1 holds by

induction, and:

card
(

(TBD (E))p

)

6 ℓ(F) + ℓ(G)− 1 = ℓ(E)− 1.

Case E = F · G :

BD (E) = (BD (F))p · G ∪ TBD (G) ∪ δBD(F) ⊆ (BD (F))p · G ∪ BD (G) .

As G 6= 1, (61) holds by induction.

TBD (E) = (TBD (F))p · G ∪ TBD (G) ∪ δTBD(F) ⊆ (BD (F))p · G ∪ BD (G) .

If c (E) = 0 then either c (F) = 0 (case 1) or c (F) = 1 in which case, either
1 ∈ TD (F) (case 2) or not (case 3). In cases 1 and 2, by induction:

card
(

(TBD (E))p

)

6 card
(

(TBD (F))p

)

+card
(

(BD (G))p

)

6 ℓ(F)−1+ℓ(G) = ℓ(E)−1.

In case 3, we have both c (G) = 0 and δTBD(F) = 0 and thus, by induction:

card
(

(TBD (E))p

)

6 card
(

(BD (F))p

)

+card
(

(TBD (G))p

)

6 ℓ(F)+ℓ(G)−1 = ℓ(E)−1.

Case E = F
∗:

BD (E) = (TBD (F))p · F
∗ ∪ {F∗} and TBD (E) = (TBD (F))p · F

∗.

Since E is in SNF, c (F) = 0, thus card
(

(BD (E))p

)

6 (ℓ(F) − 1) + 1 and (61) holds.

Since c (E) = 1 and 1 6∈ TBD (E) (as F 6= 1) both (62) and (63) hold. 2

Remark 1 There is no general relation between card (D (E)) and card (BD (E)) for a
rational expression E even if E is in star normal form.

For instance, Hk = a ·(b1+b2+ ...+bk) has 3 derived terms and k+2 broken derived
terms (Figure 3 shows the derived term and the broken derived term automata for

H3 = a · (b1+b2+b3)). On the contrary, the expression Ek = (a∗+b∗) · (a · (a∗ + b∗))
k

has 3k+3 derived terms and 2k+2 broken derived terms. In the previous examples,
Figure 1 and 2 show the derived term and the broken derived term automata of E1

respectively.
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H3 b1 + b2 + b3 1
a b1, b2, b3

H3

b1

b3

b2 1

a

a

a

b1

b2

b3

Figure 3: The derived term and the broken derived term automata of H3.

4. Derivation and bracketing

We now consider the influence of the bracketing of expressions on the derivation and
on the number of derived terms (broken or not). As the product of languages is
associative, rational expressions are most often written as if the product operator be
associative. This is indeed not the case and (E · F) · G and E · (F · G) are two distinct
expressions that yield different syntactic trees. We prove here that the derived terms,
as well as the broken derived terms, of such expressions may also be different.

Example 8 Let us consider the not completely bracketed expression ab (c (ab))∗

and observe the result of the derivation of the two expressions a (b (c (ab))∗) and
(ab) (c (ab))∗ obtained by different bracketings.

D (a (b (c (ab))∗)) = {a (b (c (ab))∗) , b (c (ab))∗, (c (ab))∗ , (ab) (c (ab))∗}.

D ((ab) (c (ab))∗) = {(ab) (c (ab))∗ , b (c (ab))∗, (c (ab))∗}.

In both cases, the breaking derivation yields the same result as the derivation:
D (a (b (c (ab))∗)) = BD (a (b (c (ab))∗)) and D ((ab) (c (ab))∗) = BD ((ab) (c (ab))∗).

Theorem 15 Let E, F and G be three rational expressions. Then, the following holds:

card (D ((E · F) · G)) 6 card (D (E · (F · G))) , (64)

card (BD ((E · F) · G)) 6 card (BD (E · (F · G))) . (65)

Proof. We only prove (65) since the same proof goes for (64). The idea of this proof
is to compute BD ((E · F) · G) and BD (E · (F · G)) as union of sets and to study the
intersection of these two unions.

The trivial cases are not relevant for the proof and we assume that E,F,G 6= 1. By
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(28) and (31) the following holds:

BD (E · (F · G)) = (BD (E))p · (F · G) ∪ TBD (F · G) ∪ δBD(E)B (F · G)

= (BD (E))p · (F · G) ∪ (TBD (F))p · G ∪ δTBD(F)B (G)

∪ δBD(E) (B (F))p · G ∪ TBD (G) ∪ δBD(E)δB(F)B (G) .

BD ((E · F) · G) = (BD (E · F))p · G ∪ TBD (G) ∪ δBD(E·F)B (G)

=
(

(BD (E))p · F
)

· G ∪ (TBD (F))p · G ∪ δBD(E) (B (F))p · G

∪ TBD (G) ∪ δBD(E·F)B (G) .

Let us first rewrite the last term of the last equation. Since δ(TBD(E))
p
= 0, and by

(31), the following holds:

δBD(E·F) = δTBD(F) + δBD(E)δB(F).

and hence:
δBD(E·F)B (G) = δTBD(F)B (G) ∪ δBD(E)δB(F)B (G) .

Let us denote:

X =
(

TBD (F)p

)

·G ∪ δBD(E)B (F)p ·G, and Y = TBD (G) ∪ δBD(E·F)B (G) .

The following holds:

BD ((E · F) · G) =
(

(BD (E))p · F
)

· G ∪ X ∪ Y,

BD (E · (F · G)) = (BD (E))p · (F · G) ∪ X ∪ Y.

There is a 1-1 correspondence between the sets ((BD (E))p·F)·G and (BD (E))p ·(F · G)
which have then the same cardinality.

It is then sufficient to establish that (BD (E))p · (F · G) ∩ (X ∪ Y ) = ∅ since
BD ((E · F) · G) will then have at most as many elements as BD (E · (F · G)). More
precisely, we study the intersection of (BD (E))p · (F · G) with X and Y .

Every expression in X consists of a concatenation whose right term is G while every
expression in (BD (E))p · (F · G) consists of a concatenation whose right term is F · G.
Since F · G 6= G, we have (BD (E))p · (F · G) ∩ X = ∅.

By definition of the broken derived terms, if H is a broken derived term of G and
H is a concatenation H = H1 · H2 then H2 is a subexpression of G. Since F · G cannot
be a subexpression of G, we have: (BD (E))p · (F · G) ∩ Y = ∅. 2

Remark 2 The derivatives as defined by Brzozowski in [3] are also sensitive to the
bracketing of the product but there is no clear advantage for left or right bracketing.
For instance, the left bracketing of ab (cab)∗ yields a smaller set of derivatives than
the right one (cf. Example 8) whereas the converse holds for (a+ b)∗ab (a + b)∗ (cf.
[10, Exercise I.4.10] for instance).
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appendix

A. Proof of Proposition 4

Proposition 4 ([7]) Let F and G be two rational expressions. Then the following
holds.

TD ((F+ G)) = TD (F) ∪ TD (G) , (12)

TD ((F · G)) = (TD (F)) · G ∪ TD (G) , (13)

TD ((F∗)) = (TD (F)) · F∗. (14)

Proof. These equations follow from the application of the inductive definition of
derivation by words (Equation (8)) to the derivation of a sum, a product, and a star,
of an expression.

For the sum, let us prove the following:

∀f ∈ A+ ∂

∂f
(F+ G) =

∂

∂f
F ∪

∂

∂f
G. (66)

Equation (66) is (3) for words f of length 1; the following sequence of equalities
establishes it by induction for words of greater length.

∀f ∈ A+ , ∀a ∈ RatE(A)

∂

∂fa
(F+ G) =

∂

∂a

(

∂

∂f
(F+ G)

)

=
∂

∂a

(

∂

∂f
F ∪

∂

∂f
G

)

=
∂

∂a

(

∂

∂f
F

)

∪
∂

∂a

(

∂

∂f
G

)

=
∂

∂fa
F ∪

∂

∂fa
G.

The definition (9) of TD (E) applied to (66) yields (12).

For the product, let us prove the following:

∀f ∈ A+ ∂

∂f
(F · G) =

(

∂

∂f
F

)

·G ∪









⋃

g,h∈A+

gh=f

c

(

∂

∂g
F

)

∂

∂h
G









∪ c (F)
∂

∂f
G.(67)

Equation (67) is (4) for words f of length 1; the following sequence of equalities
establishes it by induction for words of greater length.

∀f ∈ A+ , ∀a ∈ RatE(A)

∂

∂fa
(F · G) =

∂

∂a

(

∂

∂f
(F · G)

)

=
∂

∂a









(

∂

∂f
F

)

· G ∪









⋃

g,h∈A+

gh=f

c

(

∂

∂g
F

)

∂

∂h
G









∪ c (F)
∂

∂f
G
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=

(

∂

∂a

(

∂

∂f
F

))

· G ∪ c

(

∂

∂f
F

)

∂

∂a
G

∪









⋃

g,h∈A+

gh=f

c

(

∂

∂g
F

)

∂

∂a

(

∂

∂h
G

)









∪ c (F)
∂

∂a

(

∂

∂f
G

)

=

(

∂

∂fa
F

)

· G ∪









⋃

g,h∈A+

gh=fa

c

(

∂

∂g
F

)

∂

∂h
G









∪ c (F)
∂

∂fa
G.

By Property 2 (and as F is not a constant), there exists a g in A+ such that

c

(

∂
∂g F

)

= 1 and thus the definition (9) of TD (E) applied to (67) yields (13).

For the star, the exact expression of ∂

∂f
(F∗) is long, unnecessarily complicated for

establishing (14) which is our aim. Let us prove instead the following double inclusion:

∀f ∈ A+

(

∂

∂f
F

)

· F∗ ⊆
∂

∂f
(F∗) ⊆

⋃

h∈A+

gh=f

(

∂

∂h
F

)

· F∗. (68)

Equation (5) gives the equality among the three sets in (68) for words f of length 1.
For the words of greater length, both inclusions are established by an easy induction.

∀f ∈ A+ , ∀a ∈ RatE(A)

∂

∂fa
(F∗) =

∂

∂a

(

∂

∂f
(F∗)

)

⊇
∂

∂a

((

∂

∂f
F

)

· F∗

)

=

(

∂

∂a

(

∂

∂f
F

)

∪ c

(

∂

∂f
F

)

∂

∂a
F

)

· F∗

⊇

(

∂

∂fa
F

)

· F∗.

∀f ∈ A+ , ∀a ∈ RatE(A)

∂

∂fa
(F∗) ⊆

∂

∂a









⋃

h∈A+

gh=f

(

∂

∂h
F

)

· F∗









=
⋃

h∈A+

gh=f

((

∂

∂ha
F

)

· F∗ ∪ c

(

∂

∂h
F

)

∂

∂a
F · F∗

)

⊆
⋃

h∈A+

gh=fa

(

∂

∂h
F

)

· F∗.
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If one takes the union of the double inclusion (68) for all f in A+, the two extreme
terms are equal, and thus equal to the middle one, which yields (14). 2

B. Proof of Proposition 10

Proposition 10 relies first on an easy lemma on languages.

Lemma 16 Let L and K be two languages over A∗. If c (L) = c (K) = 1 , then
(L ∪K)∗ = (LK)∗ .

Proof. For a language L, let us denote by Lp the proper part of L : Lp = L \ 1A∗ . If
c (L) = 1, then L = {1A∗} ∪ Lp. As ∗ is an isotone operator, that is, L ⊆ H implies
L∗ ⊆ H∗, the following inclusion holds:

(LK)∗ =
(

(1A∗ ∪ Lp)(1A∗ ∪Kp)
)∗

= (1A∗ ∪ Lp ∪Kp ∪ LpKp)
∗ ⊇ (1A∗ ∪ Lp ∪Kp)

∗ = (L ∪K)∗.

For the converse inclusion, we first note that, for any language L, (L ∪ L2)∗ = L∗.
Indeed, for all n:

⋃

06i6n

Li ⊆
⋃

06i6n

(L ∪ L2)i ⊆
⋃

06i62n

Li.

and the former equality is obtained when n tends to infinity. We then have:

(L ∪K)∗ = ((L ∪K) ∪ (L ∪K)2)∗ = (L ∪K ∪ L2 ∪K2 ∪ LK ∪KL)∗ ⊇ (LK)∗.

2

Proposition 10 ([2]) For any rational expression E, the expression E• is in star
normal form and is equivalent to E.

Proof. In order to lighten the writing, we denote by F ≃ G the fact that F and G

are equivalent rational expressions, that is, if L (F) = L (G) .
We establish by a simultaneous induction the following two equations:

E
• is in SNF and E

• ≃ E (69)

E
�

is in SNF and (E
�

)∗ ≃ E
∗. (70)

Both (69) and (70) clearly hold for the base clauses.

Let E = F+ G: (69) holds trivially by induction.
The expression (F+ G)

�

= F
� + G

� is in SNF by induction. A double application of
the well-known ‘sum-star’ identity (cf. [5] for instance) then yields:

((F+ G)
�

)∗ ≃ (F
�

+ G
�

)∗ ≃ ((F
�

)∗G
�

)∗(F
�

)∗ ≃ (F∗
G

�

)∗F∗ ≃ (F+ G
�

)∗

≃ ((G
�

)∗F)∗(G
�

)∗ ≃ (G∗
F)∗G∗ ≃ (F+ G)∗.

Let E = F · G: E• = F• · G• and (69) holds trivially by induction.
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The expression (F · G)
�

, (F · G)
�

= F
�+G

� or (F · G)
�

= F• ·G•, is in SNF by induction.
If c (F) = c (G) = 1, then:

((F · G)
�

)∗ = ((F+ G)
�

)∗ ≃ (F+ G)∗ as above

≃ (F · G)∗ by lemma

If c (F) c (G) = 0, then (F · G)
�

= F
• · G• ≃ F · G by induction. Thus ((F · G)

�

)∗ ≃
(F · G)∗ .

Let E = F∗: E• = (F�)∗ is in SNF, by induction and since c (F�) = 0. Moreover
(F�)∗ ≃ F∗ by induction.
The expression (F∗)

�

= (F�)∗ is in SNF by induction and (F�)∗ ≃ F∗ ≃ (F∗)∗ . 2


