diff -r bba9c80735f9 -r f901a26bf1ac Myhill_1.thy --- a/Myhill_1.thy Tue Feb 08 15:50:26 2011 +0000 +++ b/Myhill_1.thy Tue Feb 08 15:59:47 2011 +0000 @@ -528,13 +528,6 @@ definition "rexp_of rhs X \ \ {r. Trn X r \ rhs}" -text {* - The following @{text "lam_of rhs"} returns all pure regular expression trns in @{text "rhs"}. -*} - -definition - "lam_of rhs \ {Lam r | r. Lam r \ rhs}" - text {* The following @{text "rexp_of_lam rhs"} combines pure regular expression items in @{text "rhs"} using @{text "ALT"} to form a single regular expression. @@ -1253,8 +1246,6 @@ def A \ "arden_variate X xrhs" have "?P (rexp_of_lam A)" proof - - thm lam_of_def - thm rexp_of_lam_def have "L (\{r. Lam r \ A}) = L ({Lam r | r. Lam r \ A})" proof(rule rexp_of_lam_eq_lam_set) show "finite A" @@ -1265,7 +1256,7 @@ qed also have "\ = L A" proof- - have "lam_of A = A" + have "{Lam r | r. Lam r \ A} = A" proof- have "classes_of A = {}" using Inv_ES ES_single unfolding A_def @@ -1273,9 +1264,9 @@ self_contained_def Inv_def lefts_of_def) thus ?thesis unfolding A_def - by (auto simp only:lam_of_def classes_of_def, case_tac x, auto) + by (auto simp only: classes_of_def, case_tac x, auto) qed - thus ?thesis unfolding lam_of_def by simp + thus ?thesis by simp qed also have "\ = X" unfolding A_def