diff -r 6b4c20714b4f -r f77a7138f791 Myhill_2.thy --- a/Myhill_2.thy Sun Feb 20 17:47:54 2011 +0000 +++ b/Myhill_2.thy Sun Feb 20 18:54:31 2011 +0000 @@ -801,6 +801,9 @@ shows "finite (UNIV // \(L r))" by (induct r) (auto) +theorem Myhill_Nerode: + shows "(\r::rexp. A = L r) \ finite (UNIV // \A)" +using Myhill_Nerode1 Myhill_Nerode2 by metis (* section {* Closure properties *} @@ -811,9 +814,6 @@ "reg A \ \r::rexp. A = L r" -theorem Myhill_Nerode: - shows "reg A \ finite (UNIV // \A)" -using Myhill_Nerode1 Myhill_Nerode2 by auto lemma closure_union[intro]: assumes "reg A" "reg B"