diff -r a8a442ba0dbf -r e93760534354 Journal/document/root.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Journal/document/root.tex Wed May 18 19:54:43 2011 +0000 @@ -0,0 +1,73 @@ +\documentclass[runningheads]{llncs} +\usepackage{isabelle} +\usepackage{isabellesym} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{tikz} +\usepackage{pgf} +\usetikzlibrary{arrows,automata,decorations,fit,calc} +\usetikzlibrary{shapes,shapes.arrows,snakes,positioning} +\usepgflibrary{shapes.misc} % LATEX and plain TEX and pure pgf +\usetikzlibrary{matrix} +\usepackage{pdfsetup} +\usepackage{ot1patch} +\usepackage{times} +%%\usepackage{proof} +%%\usepackage{mathabx} +\usepackage{stmaryrd} + +\titlerunning{Myhill-Nerode using Regular Expressions} + + +\urlstyle{rm} +\isabellestyle{it} +\renewcommand{\isastyleminor}{\it}% +\renewcommand{\isastyle}{\normalsize\it}% + + +\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,} +\renewcommand{\isasymequiv}{$\dn$} +\renewcommand{\isasymemptyset}{$\varnothing$} +\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}} + +\newcommand{\isasymcalL}{\ensuremath{\cal{L}}} +\newcommand{\isasymbigplus}{\ensuremath{\bigplus}} + +\newcommand{\bigplus}{\mbox{\Large\bf$+$}} +\begin{document} + +\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular + Expressions (Proof Pearl)} +\author{Chunhan Wu\inst{1} \and Xingyuan Zhang\inst{1} \and Christian Urban\inst{2}} +\institute{PLA University of Science and Technology, China \and TU Munich, Germany} +\maketitle + +%\mbox{}\\[-10mm] +\begin{abstract} +There are numerous textbooks on regular languages. Nearly all of them +introduce the subject by describing finite automata and only mentioning on the +side a connection with regular expressions. Unfortunately, automata are difficult +to formalise in HOL-based theorem provers. The reason is that +they need to be represented as graphs, matrices or functions, none of which +are inductive datatypes. Also convenient operations for disjoint unions of +graphs and functions are not easily formalisiable in HOL. In contrast, regular +expressions can be defined conveniently as a datatype and a corresponding +reasoning infrastructure comes for free. We show in this paper that a central +result from formal language theory---the Myhill-Nerode theorem---can be +recreated using only regular expressions. + +\end{abstract} + + +\input{session} + +%%\mbox{}\\[-10mm] +\bibliographystyle{plain} +\bibliography{root} + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: t +%%% End: