diff -r 070f543e2560 -r d94209ad2880 Myhill.thy --- a/Myhill.thy Thu Feb 03 09:54:19 2011 +0000 +++ b/Myhill.thy Thu Feb 03 12:00:06 2011 +0000 @@ -1,900 +1,11 @@ theory Myhill - imports Myhill_1 + imports Myhill_2 begin section {* Direction @{text "regular language \finite partition"} *} -subsection {* The scheme*} - -text {* - The following convenient notation @{text "x \Lang y"} means: - string @{text "x"} and @{text "y"} are equivalent with respect to - language @{text "Lang"}. - *} - -definition - str_eq :: "string \ lang \ string \ bool" ("_ \_ _") -where - "x \Lang y \ (x, y) \ (\Lang)" - text {* - The main lemma (@{text "rexp_imp_finite"}) is proved by a structural induction over regular expressions. - While base cases (cases for @{const "NULL"}, @{const "EMPTY"}, @{const "CHAR"}) are quite straight forward, - the inductive cases are rather involved. What we have when starting to prove these inductive caes is that - the partitions induced by the componet language are finite. The basic idea to show the finiteness of the - partition induced by the composite language is to attach a tag @{text "tag(x)"} to every string - @{text "x"}. The tags are made of equivalent classes from the component partitions. Let @{text "tag"} - be the tagging function and @{text "Lang"} be the composite language, it can be proved that - if strings with the same tag are equivalent with respect to @{text "Lang"}, expressed as: - \[ - @{text "tag(x) = tag(y) \ x \Lang y"} - \] - then the partition induced by @{text "Lang"} must be finite. There are two arguments for this. - The first goes as the following: - \begin{enumerate} - \item First, the tagging function @{text "tag"} induces an equivalent relation @{text "(=tag=)"} - (defiintion of @{text "f_eq_rel"} and lemma @{text "equiv_f_eq_rel"}). - \item It is shown that: if the range of @{text "tag"} (denoted @{text "range(tag)"}) is finite, - the partition given rise by @{text "(=tag=)"} is finite (lemma @{text "finite_eq_f_rel"}). - Since tags are made from equivalent classes from component partitions, and the inductive - hypothesis ensures the finiteness of these partitions, it is not difficult to prove - the finiteness of @{text "range(tag)"}. - \item It is proved that if equivalent relation @{text "R1"} is more refined than @{text "R2"} - (expressed as @{text "R1 \ R2"}), - and the partition induced by @{text "R1"} is finite, then the partition induced by @{text "R2"} - is finite as well (lemma @{text "refined_partition_finite"}). - \item The injectivity assumption @{text "tag(x) = tag(y) \ x \Lang y"} implies that - @{text "(=tag=)"} is more refined than @{text "(\Lang)"}. - \item Combining the points above, we have: the partition induced by language @{text "Lang"} - is finite (lemma @{text "tag_finite_imageD"}). - \end{enumerate} -*} - -definition - f_eq_rel ("=_=") -where - "(=f=) = {(x, y) | x y. f x = f y}" - -lemma equiv_f_eq_rel:"equiv UNIV (=f=)" - by (auto simp:equiv_def f_eq_rel_def refl_on_def sym_def trans_def) - -lemma finite_range_image: "finite (range f) \ finite (f ` A)" - by (rule_tac B = "{y. \x. y = f x}" in finite_subset, auto simp:image_def) - -lemma finite_eq_f_rel: - assumes rng_fnt: "finite (range tag)" - shows "finite (UNIV // (=tag=))" -proof - - let "?f" = "op ` tag" and ?A = "(UNIV // (=tag=))" - show ?thesis - proof (rule_tac f = "?f" and A = ?A in finite_imageD) - -- {* - The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}: - *} - show "finite (?f ` ?A)" - proof - - have "\ X. ?f X \ (Pow (range tag))" by (auto simp:image_def Pow_def) - moreover from rng_fnt have "finite (Pow (range tag))" by simp - ultimately have "finite (range ?f)" - by (auto simp only:image_def intro:finite_subset) - from finite_range_image [OF this] show ?thesis . - qed - next - -- {* - The injectivity of @{text "f"}-image is a consequence of the definition of @{text "(=tag=)"}: - *} - show "inj_on ?f ?A" - proof- - { fix X Y - assume X_in: "X \ ?A" - and Y_in: "Y \ ?A" - and tag_eq: "?f X = ?f Y" - have "X = Y" - proof - - from X_in Y_in tag_eq - obtain x y - where x_in: "x \ X" and y_in: "y \ Y" and eq_tg: "tag x = tag y" - unfolding quotient_def Image_def str_eq_rel_def - str_eq_def image_def f_eq_rel_def - apply simp by blast - with X_in Y_in show ?thesis - by (auto simp:quotient_def str_eq_rel_def str_eq_def f_eq_rel_def) - qed - } thus ?thesis unfolding inj_on_def by auto - qed - qed -qed - -lemma finite_image_finite: "\\ x \ A. f x \ B; finite B\ \ finite (f ` A)" - by (rule finite_subset [of _ B], auto) - -lemma refined_partition_finite: - fixes R1 R2 A - assumes fnt: "finite (A // R1)" - and refined: "R1 \ R2" - and eq1: "equiv A R1" and eq2: "equiv A R2" - shows "finite (A // R2)" -proof - - let ?f = "\ X. {R1 `` {x} | x. x \ X}" - and ?A = "(A // R2)" and ?B = "(A // R1)" - show ?thesis - proof(rule_tac f = ?f and A = ?A in finite_imageD) - show "finite (?f ` ?A)" - proof(rule finite_subset [of _ "Pow ?B"]) - from fnt show "finite (Pow (A // R1))" by simp - next - from eq2 - show " ?f ` A // R2 \ Pow ?B" - unfolding image_def Pow_def quotient_def - apply auto - by (rule_tac x = xb in bexI, simp, - unfold equiv_def sym_def refl_on_def, blast) - qed - next - show "inj_on ?f ?A" - proof - - { fix X Y - assume X_in: "X \ ?A" and Y_in: "Y \ ?A" - and eq_f: "?f X = ?f Y" (is "?L = ?R") - have "X = Y" using X_in - proof(rule quotientE) - fix x - assume "X = R2 `` {x}" and "x \ A" with eq2 - have x_in: "x \ X" - unfolding equiv_def quotient_def refl_on_def by auto - with eq_f have "R1 `` {x} \ ?R" by auto - then obtain y where - y_in: "y \ Y" and eq_r: "R1 `` {x} = R1 ``{y}" by auto - have "(x, y) \ R1" - proof - - from x_in X_in y_in Y_in eq2 - have "x \ A" and "y \ A" - unfolding equiv_def quotient_def refl_on_def by auto - from eq_equiv_class_iff [OF eq1 this] and eq_r - show ?thesis by simp - qed - with refined have xy_r2: "(x, y) \ R2" by auto - from quotient_eqI [OF eq2 X_in Y_in x_in y_in this] - show ?thesis . - qed - } thus ?thesis by (auto simp:inj_on_def) - qed - qed -qed - -lemma equiv_lang_eq: "equiv UNIV (\Lang)" - unfolding equiv_def str_eq_rel_def sym_def refl_on_def trans_def - by blast - -lemma tag_finite_imageD: - fixes tag - assumes rng_fnt: "finite (range tag)" - -- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *} - and same_tag_eqvt: "\ m n. tag m = tag (n::string) \ m \Lang n" - -- {* And strings with same tag are equivalent *} - shows "finite (UNIV // (\Lang))" -proof - - let ?R1 = "(=tag=)" - show ?thesis - proof(rule_tac refined_partition_finite [of _ ?R1]) - from finite_eq_f_rel [OF rng_fnt] - show "finite (UNIV // =tag=)" . - next - from same_tag_eqvt - show "(=tag=) \ (\Lang)" - by (auto simp:f_eq_rel_def str_eq_def) - next - from equiv_f_eq_rel - show "equiv UNIV (=tag=)" by blast - next - from equiv_lang_eq - show "equiv UNIV (\Lang)" by blast - qed -qed - -text {* - A more concise, but less intelligible argument for @{text "tag_finite_imageD"} - is given as the following. The basic idea is still using standard library - lemma @{thm [source] "finite_imageD"}: - \[ - @{thm "finite_imageD" [no_vars]} - \] - which says: if the image of injective function @{text "f"} over set @{text "A"} is - finite, then @{text "A"} must be finte, as we did in the lemmas above. - *} - -lemma - fixes tag - assumes rng_fnt: "finite (range tag)" - -- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *} - and same_tag_eqvt: "\ m n. tag m = tag (n::string) \ m \Lang n" - -- {* And strings with same tag are equivalent *} - shows "finite (UNIV // (\Lang))" - -- {* Then the partition generated by @{text "(\Lang)"} is finite. *} -proof - - -- {* The particular @{text "f"} and @{text "A"} used in @{thm [source] "finite_imageD"} are:*} - let "?f" = "op ` tag" and ?A = "(UNIV // \Lang)" - show ?thesis - proof (rule_tac f = "?f" and A = ?A in finite_imageD) - -- {* - The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}: - *} - show "finite (?f ` ?A)" - proof - - have "\ X. ?f X \ (Pow (range tag))" by (auto simp:image_def Pow_def) - moreover from rng_fnt have "finite (Pow (range tag))" by simp - ultimately have "finite (range ?f)" - by (auto simp only:image_def intro:finite_subset) - from finite_range_image [OF this] show ?thesis . - qed - next - -- {* - The injectivity of @{text "f"} is the consequence of assumption @{text "same_tag_eqvt"}: - *} - show "inj_on ?f ?A" - proof- - { fix X Y - assume X_in: "X \ ?A" - and Y_in: "Y \ ?A" - and tag_eq: "?f X = ?f Y" - have "X = Y" - proof - - from X_in Y_in tag_eq - obtain x y where x_in: "x \ X" and y_in: "y \ Y" and eq_tg: "tag x = tag y" - unfolding quotient_def Image_def str_eq_rel_def str_eq_def image_def - apply simp by blast - from same_tag_eqvt [OF eq_tg] have "x \Lang y" . - with X_in Y_in x_in y_in - show ?thesis by (auto simp:quotient_def str_eq_rel_def str_eq_def) - qed - } thus ?thesis unfolding inj_on_def by auto - qed - qed -qed - -subsection {* The proof*} - -text {* - Each case is given in a separate section, as well as the final main lemma. Detailed explainations accompanied by - illustrations are given for non-trivial cases. - - For ever inductive case, there are two tasks, the easier one is to show the range finiteness of - of the tagging function based on the finiteness of component partitions, the - difficult one is to show that strings with the same tag are equivalent with respect to the - composite language. Suppose the composite language be @{text "Lang"}, tagging function be - @{text "tag"}, it amounts to show: - \[ - @{text "tag(x) = tag(y) \ x \Lang y"} - \] - expanding the definition of @{text "\Lang"}, it amounts to show: - \[ - @{text "tag(x) = tag(y) \ (\ z. x@z \ Lang \ y@z \ Lang)"} - \] - Because the assumed tag equlity @{text "tag(x) = tag(y)"} is symmetric, - it is suffcient to show just one direction: - \[ - @{text "\ x y z. \tag(x) = tag(y); x@z \ Lang\ \ y@z \ Lang"} - \] - This is the pattern followed by every inductive case. - *} - -subsubsection {* The base case for @{const "NULL"} *} - -lemma quot_null_eq: - shows "(UNIV // \{}) = ({UNIV}::lang set)" - unfolding quotient_def Image_def str_eq_rel_def by auto - -lemma quot_null_finiteI [intro]: - shows "finite ((UNIV // \{})::lang set)" -unfolding quot_null_eq by simp - - -subsubsection {* The base case for @{const "EMPTY"} *} - - -lemma quot_empty_subset: - "UNIV // (\{[]}) \ {{[]}, UNIV - {[]}}" -proof - fix x - assume "x \ UNIV // \{[]}" - then obtain y where h: "x = {z. (y, z) \ \{[]}}" - unfolding quotient_def Image_def by blast - show "x \ {{[]}, UNIV - {[]}}" - proof (cases "y = []") - case True with h - have "x = {[]}" by (auto simp: str_eq_rel_def) - thus ?thesis by simp - next - case False with h - have "x = UNIV - {[]}" by (auto simp: str_eq_rel_def) - thus ?thesis by simp - qed -qed - -lemma quot_empty_finiteI [intro]: - shows "finite (UNIV // (\{[]}))" -by (rule finite_subset[OF quot_empty_subset]) (simp) - - -subsubsection {* The base case for @{const "CHAR"} *} - -lemma quot_char_subset: - "UNIV // (\{[c]}) \ {{[]},{[c]}, UNIV - {[], [c]}}" -proof - fix x - assume "x \ UNIV // \{[c]}" - then obtain y where h: "x = {z. (y, z) \ \{[c]}}" - unfolding quotient_def Image_def by blast - show "x \ {{[]},{[c]}, UNIV - {[], [c]}}" - proof - - { assume "y = []" hence "x = {[]}" using h - by (auto simp:str_eq_rel_def) - } moreover { - assume "y = [c]" hence "x = {[c]}" using h - by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def) - } moreover { - assume "y \ []" and "y \ [c]" - hence "\ z. (y @ z) \ [c]" by (case_tac y, auto) - moreover have "\ p. (p \ [] \ p \ [c]) = (\ q. p @ q \ [c])" - by (case_tac p, auto) - ultimately have "x = UNIV - {[],[c]}" using h - by (auto simp add:str_eq_rel_def) - } ultimately show ?thesis by blast - qed -qed - -lemma quot_char_finiteI [intro]: - shows "finite (UNIV // (\{[c]}))" -by (rule finite_subset[OF quot_char_subset]) (simp) - - -subsubsection {* The inductive case for @{const ALT} *} - -definition - tag_str_ALT :: "lang \ lang \ string \ (lang \ lang)" -where - "tag_str_ALT L1 L2 = (\x. (\L1 `` {x}, \L2 `` {x}))" - -lemma quot_union_finiteI [intro]: - fixes L1 L2::"lang" - assumes finite1: "finite (UNIV // \L1)" - and finite2: "finite (UNIV // \L2)" - shows "finite (UNIV // \(L1 \ L2))" -proof (rule_tac tag = "tag_str_ALT L1 L2" in tag_finite_imageD) - show "\x y. tag_str_ALT L1 L2 x = tag_str_ALT L1 L2 y \ x \(L1 \ L2) y" - unfolding tag_str_ALT_def - unfolding str_eq_def - unfolding Image_def - unfolding str_eq_rel_def - by auto -next - have *: "finite ((UNIV // \L1) \ (UNIV // \L2))" - using finite1 finite2 by auto - show "finite (range (tag_str_ALT L1 L2))" - unfolding tag_str_ALT_def - apply(rule finite_subset[OF _ *]) - unfolding quotient_def - by auto -qed - -subsubsection {* The inductive case for @{text "SEQ"}*} - -text {* - For case @{const "SEQ"}, the language @{text "L"} is @{text "L\<^isub>1 ;; L\<^isub>2"}. - Given @{text "x @ z \ L\<^isub>1 ;; L\<^isub>2"}, according to the defintion of @{text " L\<^isub>1 ;; L\<^isub>2"}, - string @{text "x @ z"} can be splitted with the prefix in @{text "L\<^isub>1"} and suffix in @{text "L\<^isub>2"}. - The split point can either be in @{text "x"} (as shown in Fig. \ref{seq_first_split}), - or in @{text "z"} (as shown in Fig. \ref{seq_snd_split}). Whichever way it goes, the structure - on @{text "x @ z"} cn be transfered faithfully onto @{text "y @ z"} - (as shown in Fig. \ref{seq_trans_first_split} and \ref{seq_trans_snd_split}) with the the help of the assumed - tag equality. The following tag function @{text "tag_str_SEQ"} is such designed to facilitate - such transfers and lemma @{text "tag_str_SEQ_injI"} formalizes the informal argument above. The details - of structure transfer will be given their. -\input{fig_seq} - + It is now the time for use to discuss further about the way. *} -definition - tag_str_SEQ :: "lang \ lang \ string \ (lang \ lang set)" -where - "tag_str_SEQ L1 L2 = - (\x. (\L1 `` {x}, {(\L2 `` {x - xa}) | xa. xa \ x \ xa \ L1}))" - -text {* The following is a techical lemma which helps to split the @{text "x @ z \ L\<^isub>1 ;; L\<^isub>2"} mentioned above.*} - -lemma append_seq_elim: - assumes "x @ y \ L\<^isub>1 ;; L\<^isub>2" - shows "(\ xa \ x. xa \ L\<^isub>1 \ (x - xa) @ y \ L\<^isub>2) \ - (\ ya \ y. (x @ ya) \ L\<^isub>1 \ (y - ya) \ L\<^isub>2)" -proof- - from assms obtain s\<^isub>1 s\<^isub>2 - where eq_xys: "x @ y = s\<^isub>1 @ s\<^isub>2" - and in_seq: "s\<^isub>1 \ L\<^isub>1 \ s\<^isub>2 \ L\<^isub>2" - by (auto simp:Seq_def) - from app_eq_dest [OF eq_xys] - have - "(x \ s\<^isub>1 \ (s\<^isub>1 - x) @ s\<^isub>2 = y) \ (s\<^isub>1 \ x \ (x - s\<^isub>1) @ y = s\<^isub>2)" - (is "?Split1 \ ?Split2") . - moreover have "?Split1 \ \ ya \ y. (x @ ya) \ L\<^isub>1 \ (y - ya) \ L\<^isub>2" - using in_seq by (rule_tac x = "s\<^isub>1 - x" in exI, auto elim:prefixE) - moreover have "?Split2 \ \ xa \ x. xa \ L\<^isub>1 \ (x - xa) @ y \ L\<^isub>2" - using in_seq by (rule_tac x = s\<^isub>1 in exI, auto) - ultimately show ?thesis by blast -qed - - -lemma tag_str_SEQ_injI: - fixes v w - assumes eq_tag: "tag_str_SEQ L\<^isub>1 L\<^isub>2 v = tag_str_SEQ L\<^isub>1 L\<^isub>2 w" - shows "v \(L\<^isub>1 ;; L\<^isub>2) w" -proof- - -- {* As explained before, a pattern for just one direction needs to be dealt with:*} - { fix x y z - assume xz_in_seq: "x @ z \ L\<^isub>1 ;; L\<^isub>2" - and tag_xy: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y" - have"y @ z \ L\<^isub>1 ;; L\<^isub>2" - proof- - -- {* There are two ways to split @{text "x@z"}: *} - from append_seq_elim [OF xz_in_seq] - have "(\ xa \ x. xa \ L\<^isub>1 \ (x - xa) @ z \ L\<^isub>2) \ - (\ za \ z. (x @ za) \ L\<^isub>1 \ (z - za) \ L\<^isub>2)" . - -- {* It can be shown that @{text "?thesis"} holds in either case: *} - moreover { - -- {* The case for the first split:*} - fix xa - assume h1: "xa \ x" and h2: "xa \ L\<^isub>1" and h3: "(x - xa) @ z \ L\<^isub>2" - -- {* The following subgoal implements the structure transfer:*} - obtain ya - where "ya \ y" - and "ya \ L\<^isub>1" - and "(y - ya) @ z \ L\<^isub>2" - proof - - -- {* - \begin{minipage}{0.8\textwidth} - By expanding the definition of - @{thm [display] "tag_xy"} - and extracting the second compoent, we get: - \end{minipage} - *} - have "{\L\<^isub>2 `` {x - xa} |xa. xa \ x \ xa \ L\<^isub>1} = - {\L\<^isub>2 `` {y - ya} |ya. ya \ y \ ya \ L\<^isub>1}" (is "?Left = ?Right") - using tag_xy unfolding tag_str_SEQ_def by simp - -- {* Since @{thm "h1"} and @{thm "h2"} hold, it is not difficult to show: *} - moreover have "\L\<^isub>2 `` {x - xa} \ ?Left" using h1 h2 by auto - -- {* - \begin{minipage}{0.7\textwidth} - Through tag equality, equivalent class @{term "\L\<^isub>2 `` {x - xa}"} also - belongs to the @{text "?Right"}: - \end{minipage} - *} - ultimately have "\L\<^isub>2 `` {x - xa} \ ?Right" by simp - -- {* From this, the counterpart of @{text "xa"} in @{text "y"} is obtained:*} - then obtain ya - where eq_xya: "\L\<^isub>2 `` {x - xa} = \L\<^isub>2 `` {y - ya}" - and pref_ya: "ya \ y" and ya_in: "ya \ L\<^isub>1" - by simp blast - -- {* It can be proved that @{text "ya"} has the desired property:*} - have "(y - ya)@z \ L\<^isub>2" - proof - - from eq_xya have "(x - xa) \L\<^isub>2 (y - ya)" - unfolding Image_def str_eq_rel_def str_eq_def by auto - with h3 show ?thesis unfolding str_eq_rel_def str_eq_def by simp - qed - -- {* Now, @{text "ya"} has all properties to be a qualified candidate:*} - with pref_ya ya_in - show ?thesis using that by blast - qed - -- {* From the properties of @{text "ya"}, @{text "y @ z \ L\<^isub>1 ;; L\<^isub>2"} is derived easily.*} - hence "y @ z \ L\<^isub>1 ;; L\<^isub>2" by (erule_tac prefixE, auto simp:Seq_def) - } moreover { - -- {* The other case is even more simpler: *} - fix za - assume h1: "za \ z" and h2: "(x @ za) \ L\<^isub>1" and h3: "z - za \ L\<^isub>2" - have "y @ za \ L\<^isub>1" - proof- - have "\L\<^isub>1 `` {x} = \L\<^isub>1 `` {y}" - using tag_xy unfolding tag_str_SEQ_def by simp - with h2 show ?thesis - unfolding Image_def str_eq_rel_def str_eq_def by auto - qed - with h1 h3 have "y @ z \ L\<^isub>1 ;; L\<^isub>2" - by (drule_tac A = L\<^isub>1 in seq_intro, auto elim:prefixE) - } - ultimately show ?thesis by blast - qed - } - -- {* - \begin{minipage}{0.8\textwidth} - @{text "?thesis"} is proved by exploiting the symmetry of - @{thm [source] "eq_tag"}: - \end{minipage} - *} - from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] - show ?thesis unfolding str_eq_def str_eq_rel_def by blast -qed - -lemma quot_seq_finiteI [intro]: - fixes L1 L2::"lang" - assumes fin1: "finite (UNIV // \L1)" - and fin2: "finite (UNIV // \L2)" - shows "finite (UNIV // \(L1 ;; L2))" -proof (rule_tac tag = "tag_str_SEQ L1 L2" in tag_finite_imageD) - show "\x y. tag_str_SEQ L1 L2 x = tag_str_SEQ L1 L2 y \ x \(L1 ;; L2) y" - by (rule tag_str_SEQ_injI) -next - have *: "finite ((UNIV // \L1) \ (Pow (UNIV // \L2)))" - using fin1 fin2 by auto - show "finite (range (tag_str_SEQ L1 L2))" - unfolding tag_str_SEQ_def - apply(rule finite_subset[OF _ *]) - unfolding quotient_def - by auto -qed - -subsubsection {* The inductive case for @{const "STAR"} *} - -text {* - This turned out to be the trickiest case. The essential goal is - to proved @{text "y @ z \ L\<^isub>1*"} under the assumptions that @{text "x @ z \ L\<^isub>1*"} - and that @{text "x"} and @{text "y"} have the same tag. The reasoning goes as the following: - \begin{enumerate} - \item Since @{text "x @ z \ L\<^isub>1*"} holds, a prefix @{text "xa"} of @{text "x"} can be found - such that @{text "xa \ L\<^isub>1*"} and @{text "(x - xa)@z \ L\<^isub>1*"}, as shown in Fig. \ref{first_split}. - Such a prefix always exists, @{text "xa = []"}, for example, is one. - \item There could be many but fintie many of such @{text "xa"}, from which we can find the longest - and name it @{text "xa_max"}, as shown in Fig. \ref{max_split}. - \item The next step is to split @{text "z"} into @{text "za"} and @{text "zb"} such that - @{text "(x - xa_max) @ za \ L\<^isub>1"} and @{text "zb \ L\<^isub>1*"} as shown in Fig. \ref{last_split}. - Such a split always exists because: - \begin{enumerate} - \item Because @{text "(x - x_max) @ z \ L\<^isub>1*"}, it can always be splitted into prefix @{text "a"} - and suffix @{text "b"}, such that @{text "a \ L\<^isub>1"} and @{text "b \ L\<^isub>1*"}, - as shown in Fig. \ref{ab_split}. - \item But the prefix @{text "a"} CANNOT be shorter than @{text "x - xa_max"} - (as shown in Fig. \ref{ab_split_wrong}), becasue otherwise, - @{text "ma_max@a"} would be in the same kind as @{text "xa_max"} but with - a larger size, conflicting with the fact that @{text "xa_max"} is the longest. - \end{enumerate} - \item \label{tansfer_step} - By the assumption that @{text "x"} and @{text "y"} have the same tag, the structure on @{text "x @ z"} - can be transferred to @{text "y @ z"} as shown in Fig. \ref{trans_split}. The detailed steps are: - \begin{enumerate} - \item A @{text "y"}-prefix @{text "ya"} corresponding to @{text "xa"} can be found, - which satisfies conditions: @{text "ya \ L\<^isub>1*"} and @{text "(y - ya)@za \ L\<^isub>1"}. - \item Since we already know @{text "zb \ L\<^isub>1*"}, we get @{text "(y - ya)@za@zb \ L\<^isub>1*"}, - and this is just @{text "(y - ya)@z \ L\<^isub>1*"}. - \item With fact @{text "ya \ L\<^isub>1*"}, we finally get @{text "y@z \ L\<^isub>1*"}. - \end{enumerate} - \end{enumerate} - - The formal proof of lemma @{text "tag_str_STAR_injI"} faithfully follows this informal argument - while the tagging function @{text "tag_str_STAR"} is defined to make the transfer in step - \ref{ansfer_step} feasible. - - \input{fig_star} -*} - -definition - tag_str_STAR :: "lang \ string \ lang set" -where - "tag_str_STAR L1 = (\x. {\L1 `` {x - xa} | xa. xa < x \ xa \ L1\})" - -text {* A technical lemma. *} -lemma finite_set_has_max: "\finite A; A \ {}\ \ - (\ max \ A. \ a \ A. f a <= (f max :: nat))" -proof (induct rule:finite.induct) - case emptyI thus ?case by simp -next - case (insertI A a) - show ?case - proof (cases "A = {}") - case True thus ?thesis by (rule_tac x = a in bexI, auto) - next - case False - with insertI.hyps and False - obtain max - where h1: "max \ A" - and h2: "\a\A. f a \ f max" by blast - show ?thesis - proof (cases "f a \ f max") - assume "f a \ f max" - with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto) - next - assume "\ (f a \ f max)" - thus ?thesis using h2 by (rule_tac x = a in bexI, auto) - qed - qed -qed - - -text {* The following is a technical lemma.which helps to show the range finiteness of tag function. *} -lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}" -apply (induct x rule:rev_induct, simp) -apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \ {xs}") -by (auto simp:strict_prefix_def) - - -lemma tag_str_STAR_injI: - fixes v w - assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w" - shows "(v::string) \(L\<^isub>1\) w" -proof- - -- {* As explained before, a pattern for just one direction needs to be dealt with:*} - { fix x y z - assume xz_in_star: "x @ z \ L\<^isub>1\" - and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y" - have "y @ z \ L\<^isub>1\" - proof(cases "x = []") - -- {* - The degenerated case when @{text "x"} is a null string is easy to prove: - *} - case True - with tag_xy have "y = []" - by (auto simp add: tag_str_STAR_def strict_prefix_def) - thus ?thesis using xz_in_star True by simp - next - -- {* The nontrival case: - *} - case False - -- {* - \begin{minipage}{0.8\textwidth} - Since @{text "x @ z \ L\<^isub>1\"}, @{text "x"} can always be splitted - by a prefix @{text "xa"} together with its suffix @{text "x - xa"}, such - that both @{text "xa"} and @{text "(x - xa) @ z"} are in @{text "L\<^isub>1\"}, - and there could be many such splittings.Therefore, the following set @{text "?S"} - is nonempty, and finite as well: - \end{minipage} - *} - let ?S = "{xa. xa < x \ xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\}" - have "finite ?S" - by (rule_tac B = "{xa. xa < x}" in finite_subset, - auto simp:finite_strict_prefix_set) - moreover have "?S \ {}" using False xz_in_star - by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def) - -- {* \begin{minipage}{0.7\textwidth} - Since @{text "?S"} is finite, we can always single out the longest and name it @{text "xa_max"}: - \end{minipage} - *} - ultimately have "\ xa_max \ ?S. \ xa \ ?S. length xa \ length xa_max" - using finite_set_has_max by blast - then obtain xa_max - where h1: "xa_max < x" - and h2: "xa_max \ L\<^isub>1\" - and h3: "(x - xa_max) @ z \ L\<^isub>1\" - and h4:"\ xa < x. xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\ - \ length xa \ length xa_max" - by blast - -- {* - \begin{minipage}{0.8\textwidth} - By the equality of tags, the counterpart of @{text "xa_max"} among - @{text "y"}-prefixes, named @{text "ya"}, can be found: - \end{minipage} - *} - obtain ya - where h5: "ya < y" and h6: "ya \ L\<^isub>1\" - and eq_xya: "(x - xa_max) \L\<^isub>1 (y - ya)" - proof- - from tag_xy have "{\L\<^isub>1 `` {x - xa} |xa. xa < x \ xa \ L\<^isub>1\} = - {\L\<^isub>1 `` {y - xa} |xa. xa < y \ xa \ L\<^isub>1\}" (is "?left = ?right") - by (auto simp:tag_str_STAR_def) - moreover have "\L\<^isub>1 `` {x - xa_max} \ ?left" using h1 h2 by auto - ultimately have "\L\<^isub>1 `` {x - xa_max} \ ?right" by simp - thus ?thesis using that - apply (simp add:Image_def str_eq_rel_def str_eq_def) by blast - qed - -- {* - \begin{minipage}{0.8\textwidth} - The @{text "?thesis"}, @{prop "y @ z \ L\<^isub>1\"}, is a simple consequence - of the following proposition: - \end{minipage} - *} - have "(y - ya) @ z \ L\<^isub>1\" - proof- - -- {* The idea is to split the suffix @{text "z"} into @{text "za"} and @{text "zb"}, - such that: *} - obtain za zb where eq_zab: "z = za @ zb" - and l_za: "(y - ya)@za \ L\<^isub>1" and ls_zb: "zb \ L\<^isub>1\" - proof - - -- {* - \begin{minipage}{0.8\textwidth} - Since @{thm "h1"}, @{text "x"} can be splitted into - @{text "a"} and @{text "b"} such that: - \end{minipage} - *} - from h1 have "(x - xa_max) @ z \ []" - by (auto simp:strict_prefix_def elim:prefixE) - from star_decom [OF h3 this] - obtain a b where a_in: "a \ L\<^isub>1" - and a_neq: "a \ []" and b_in: "b \ L\<^isub>1\" - and ab_max: "(x - xa_max) @ z = a @ b" by blast - -- {* Now the candiates for @{text "za"} and @{text "zb"} are found:*} - let ?za = "a - (x - xa_max)" and ?zb = "b" - have pfx: "(x - xa_max) \ a" (is "?P1") - and eq_z: "z = ?za @ ?zb" (is "?P2") - proof - - -- {* - \begin{minipage}{0.8\textwidth} - Since @{text "(x - xa_max) @ z = a @ b"}, string @{text "(x - xa_max) @ z"} - can be splitted in two ways: - \end{minipage} - *} - have "((x - xa_max) \ a \ (a - (x - xa_max)) @ b = z) \ - (a < (x - xa_max) \ ((x - xa_max) - a) @ z = b)" - using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def) - moreover { - -- {* However, the undsired way can be refuted by absurdity: *} - assume np: "a < (x - xa_max)" - and b_eqs: "((x - xa_max) - a) @ z = b" - have "False" - proof - - let ?xa_max' = "xa_max @ a" - have "?xa_max' < x" - using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) - moreover have "?xa_max' \ L\<^isub>1\" - using a_in h2 by (simp add:star_intro3) - moreover have "(x - ?xa_max') @ z \ L\<^isub>1\" - using b_eqs b_in np h1 by (simp add:diff_diff_appd) - moreover have "\ (length ?xa_max' \ length xa_max)" - using a_neq by simp - ultimately show ?thesis using h4 by blast - qed } - -- {* Now it can be shown that the splitting goes the way we desired. *} - ultimately show ?P1 and ?P2 by auto - qed - hence "(x - xa_max)@?za \ L\<^isub>1" using a_in by (auto elim:prefixE) - -- {* Now candidates @{text "?za"} and @{text "?zb"} have all the requred properteis. *} - with eq_xya have "(y - ya) @ ?za \ L\<^isub>1" - by (auto simp:str_eq_def str_eq_rel_def) - with eq_z and b_in - show ?thesis using that by blast - qed - -- {* - @{text "?thesis"} can easily be shown using properties of @{text "za"} and @{text "zb"}: - *} - have "((y - ya) @ za) @ zb \ L\<^isub>1\" using l_za ls_zb by blast - with eq_zab show ?thesis by simp - qed - with h5 h6 show ?thesis - by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE) - qed - } - -- {* By instantiating the reasoning pattern just derived for both directions:*} - from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] - -- {* The thesis is proved as a trival consequence: *} - show ?thesis unfolding str_eq_def str_eq_rel_def by blast -qed - -lemma -- {* The oringal version with less explicit details. *} - fixes v w - assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w" - shows "(v::string) \(L\<^isub>1\) w" -proof- - -- {* - \begin{minipage}{0.8\textwidth} - According to the definition of @{text "\Lang"}, - proving @{text "v \(L\<^isub>1\) w"} amounts to - showing: for any string @{text "u"}, - if @{text "v @ u \ (L\<^isub>1\)"} then @{text "w @ u \ (L\<^isub>1\)"} and vice versa. - The reasoning pattern for both directions are the same, as derived - in the following: - \end{minipage} - *} - { fix x y z - assume xz_in_star: "x @ z \ L\<^isub>1\" - and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y" - have "y @ z \ L\<^isub>1\" - proof(cases "x = []") - -- {* - The degenerated case when @{text "x"} is a null string is easy to prove: - *} - case True - with tag_xy have "y = []" - by (auto simp:tag_str_STAR_def strict_prefix_def) - thus ?thesis using xz_in_star True by simp - next - -- {* - \begin{minipage}{0.8\textwidth} - The case when @{text "x"} is not null, and - @{text "x @ z"} is in @{text "L\<^isub>1\"}, - \end{minipage} - *} - case False - obtain x_max - where h1: "x_max < x" - and h2: "x_max \ L\<^isub>1\" - and h3: "(x - x_max) @ z \ L\<^isub>1\" - and h4:"\ xa < x. xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\ - \ length xa \ length x_max" - proof- - let ?S = "{xa. xa < x \ xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\}" - have "finite ?S" - by (rule_tac B = "{xa. xa < x}" in finite_subset, - auto simp:finite_strict_prefix_set) - moreover have "?S \ {}" using False xz_in_star - by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def) - ultimately have "\ max \ ?S. \ a \ ?S. length a \ length max" - using finite_set_has_max by blast - thus ?thesis using that by blast - qed - obtain ya - where h5: "ya < y" and h6: "ya \ L\<^isub>1\" and h7: "(x - x_max) \L\<^isub>1 (y - ya)" - proof- - from tag_xy have "{\L\<^isub>1 `` {x - xa} |xa. xa < x \ xa \ L\<^isub>1\} = - {\L\<^isub>1 `` {y - xa} |xa. xa < y \ xa \ L\<^isub>1\}" (is "?left = ?right") - by (auto simp:tag_str_STAR_def) - moreover have "\L\<^isub>1 `` {x - x_max} \ ?left" using h1 h2 by auto - ultimately have "\L\<^isub>1 `` {x - x_max} \ ?right" by simp - with that show ?thesis apply - (simp add:Image_def str_eq_rel_def str_eq_def) by blast - qed - have "(y - ya) @ z \ L\<^isub>1\" - proof- - from h3 h1 obtain a b where a_in: "a \ L\<^isub>1" - and a_neq: "a \ []" and b_in: "b \ L\<^isub>1\" - and ab_max: "(x - x_max) @ z = a @ b" - by (drule_tac star_decom, auto simp:strict_prefix_def elim:prefixE) - have "(x - x_max) \ a \ (a - (x - x_max)) @ b = z" - proof - - have "((x - x_max) \ a \ (a - (x - x_max)) @ b = z) \ - (a < (x - x_max) \ ((x - x_max) - a) @ z = b)" - using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def) - moreover { - assume np: "a < (x - x_max)" and b_eqs: " ((x - x_max) - a) @ z = b" - have "False" - proof - - let ?x_max' = "x_max @ a" - have "?x_max' < x" - using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) - moreover have "?x_max' \ L\<^isub>1\" - using a_in h2 by (simp add:star_intro3) - moreover have "(x - ?x_max') @ z \ L\<^isub>1\" - using b_eqs b_in np h1 by (simp add:diff_diff_appd) - moreover have "\ (length ?x_max' \ length x_max)" - using a_neq by simp - ultimately show ?thesis using h4 by blast - qed - } ultimately show ?thesis by blast - qed - then obtain za where z_decom: "z = za @ b" - and x_za: "(x - x_max) @ za \ L\<^isub>1" - using a_in by (auto elim:prefixE) - from x_za h7 have "(y - ya) @ za \ L\<^isub>1" - by (auto simp:str_eq_def str_eq_rel_def) - with b_in have "((y - ya) @ za) @ b \ L\<^isub>1\" by blast - with z_decom show ?thesis by auto - qed - with h5 h6 show ?thesis - by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE) - qed - } - -- {* By instantiating the reasoning pattern just derived for both directions:*} - from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] - -- {* The thesis is proved as a trival consequence: *} - show ?thesis unfolding str_eq_def str_eq_rel_def by blast -qed - -lemma quot_star_finiteI [intro]: - fixes L1::"lang" - assumes finite1: "finite (UNIV // \L1)" - shows "finite (UNIV // \(L1\))" -proof (rule_tac tag = "tag_str_STAR L1" in tag_finite_imageD) - show "\x y. tag_str_STAR L1 x = tag_str_STAR L1 y \ x \(L1\) y" - by (rule tag_str_STAR_injI) -next - have *: "finite (Pow (UNIV // \L1))" - using finite1 by auto - show "finite (range (tag_str_STAR L1))" - unfolding tag_str_STAR_def - apply(rule finite_subset[OF _ *]) - unfolding quotient_def - by auto -qed - -subsubsection{* The conclusion *} - -lemma rexp_imp_finite: - fixes r::"rexp" - shows "finite (UNIV // \(L r))" -by (induct r) (auto) - end