diff -r b794db0b79db -r b1258b7d2789 Derivs.thy --- a/Derivs.thy Fri Jun 03 13:59:21 2011 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,492 +0,0 @@ -theory Derivs -imports Myhill_2 -begin - -section {* Left-Quotients and Derivatives *} - -subsection {* Left-Quotients *} - -definition - Delta :: "lang \ lang" -where - "Delta A = (if [] \ A then {[]} else {})" - -definition - Der :: "char \ lang \ lang" -where - "Der c A \ {s. [c] @ s \ A}" - -definition - Ders :: "string \ lang \ lang" -where - "Ders s A \ {s'. s @ s' \ A}" - -definition - Ders_set :: "lang \ lang \ lang" -where - "Ders_set A B \ {s' | s s'. s @ s' \ B \ s \ A}" - -lemma Ders_set_Ders: - shows "Ders_set A B = (\s \ A. Ders s B)" -unfolding Ders_set_def Ders_def -by auto - -lemma Der_null [simp]: - shows "Der c {} = {}" -unfolding Der_def -by auto - -lemma Der_empty [simp]: - shows "Der c {[]} = {}" -unfolding Der_def -by auto - -lemma Der_char [simp]: - shows "Der c {[d]} = (if c = d then {[]} else {})" -unfolding Der_def -by auto - -lemma Der_union [simp]: - shows "Der c (A \ B) = Der c A \ Der c B" -unfolding Der_def -by auto - -lemma Der_seq [simp]: - shows "Der c (A \ B) = (Der c A) \ B \ (Delta A \ Der c B)" -unfolding Der_def Delta_def -unfolding Seq_def -by (auto simp add: Cons_eq_append_conv) - -lemma Der_star [simp]: - shows "Der c (A\) = (Der c A) \ A\" -proof - - have incl: "Delta A \ Der c (A\) \ (Der c A) \ A\" - unfolding Der_def Delta_def Seq_def - apply(auto) - apply(drule star_decom) - apply(auto simp add: Cons_eq_append_conv) - done - - have "Der c (A\) = Der c ({[]} \ A \ A\)" - by (simp only: star_cases[symmetric]) - also have "... = Der c (A \ A\)" - by (simp only: Der_union Der_empty) (simp) - also have "... = (Der c A) \ A\ \ (Delta A \ Der c (A\))" - by simp - also have "... = (Der c A) \ A\" - using incl by auto - finally show "Der c (A\) = (Der c A) \ A\" . -qed - - -lemma Ders_singleton: - shows "Ders [c] A = Der c A" -unfolding Der_def Ders_def -by simp - -lemma Ders_append: - shows "Ders (s1 @ s2) A = Ders s2 (Ders s1 A)" -unfolding Ders_def by simp - -lemma MN_Rel_Ders: - shows "x \A y \ Ders x A = Ders y A" -unfolding Ders_def str_eq_def str_eq_rel_def -by auto - -subsection {* Brozowsky's derivatives of regular expressions *} - -fun - nullable :: "rexp \ bool" -where - "nullable (NULL) = False" -| "nullable (EMPTY) = True" -| "nullable (CHAR c) = False" -| "nullable (ALT r1 r2) = (nullable r1 \ nullable r2)" -| "nullable (SEQ r1 r2) = (nullable r1 \ nullable r2)" -| "nullable (STAR r) = True" - -fun - der :: "char \ rexp \ rexp" -where - "der c (NULL) = NULL" -| "der c (EMPTY) = NULL" -| "der c (CHAR c') = (if c = c' then EMPTY else NULL)" -| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" -| "der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2) (if nullable r1 then der c r2 else NULL)" -| "der c (STAR r) = SEQ (der c r) (STAR r)" - -function - ders :: "string \ rexp \ rexp" -where - "ders [] r = r" -| "ders (s @ [c]) r = der c (ders s r)" -by (auto) (metis rev_cases) - -termination - by (relation "measure (length o fst)") (auto) - -lemma Delta_nullable: - shows "Delta (L_rexp r) = (if nullable r then {[]} else {})" -unfolding Delta_def -by (induct r) (auto simp add: Seq_def split: if_splits) - -lemma Der_der: - fixes r::rexp - shows "Der c (L_rexp r) = L_rexp (der c r)" -by (induct r) (simp_all add: Delta_nullable) - -lemma Ders_ders: - fixes r::rexp - shows "Ders s (L_rexp r) = L_rexp (ders s r)" -apply(induct s rule: rev_induct) -apply(simp add: Ders_def) -apply(simp only: ders.simps) -apply(simp only: Ders_append) -apply(simp only: Ders_singleton) -apply(simp only: Der_der) -done - - -subsection {* Antimirov's Partial Derivatives *} - -abbreviation - "SEQS R r \ {SEQ r' r | r'. r' \ R}" - -fun - pder :: "char \ rexp \ rexp set" -where - "pder c NULL = {NULL}" -| "pder c EMPTY = {NULL}" -| "pder c (CHAR c') = (if c = c' then {EMPTY} else {NULL})" -| "pder c (ALT r1 r2) = (pder c r1) \ (pder c r2)" -| "pder c (SEQ r1 r2) = SEQS (pder c r1) r2 \ (if nullable r1 then pder c r2 else {})" -| "pder c (STAR r) = SEQS (pder c r) (STAR r)" - -abbreviation - "pder_set c R \ \r \ R. pder c r" - -function - pders :: "string \ rexp \ rexp set" -where - "pders [] r = {r}" -| "pders (s @ [c]) r = pder_set c (pders s r)" -by (auto) (metis rev_cases) - -termination - by (relation "measure (length o fst)") (auto) - -abbreviation - "pders_set A r \ \s \ A. pders s r" - -lemma pders_append: - "pders (s1 @ s2) r = \ (pders s2) ` (pders s1 r)" -apply(induct s2 arbitrary: s1 r rule: rev_induct) -apply(simp) -apply(subst append_assoc[symmetric]) -apply(simp only: pders.simps) -apply(auto) -done - -lemma pders_singleton: - "pders [c] r = pder c r" -apply(subst append_Nil[symmetric]) -apply(simp only: pders.simps) -apply(simp) -done - -lemma pder_set_lang: - shows "(\ (L_rexp ` pder_set c R)) = (\r \ R. (\L_rexp ` (pder c r)))" -unfolding image_def -by auto - -lemma - shows seq_UNION_left: "B \ (\n\C. A n) = (\n\C. B \ A n)" - and seq_UNION_right: "(\n\C. A n) \ B = (\n\C. A n \ B)" -unfolding Seq_def by auto - -lemma Der_pder: - fixes r::rexp - shows "Der c (L_rexp r) = \ L_rexp ` (pder c r)" -by (induct r) (auto simp add: Delta_nullable seq_UNION_right) - -lemma Ders_pders: - fixes r::rexp - shows "Ders s (L_rexp r) = \ L_rexp ` (pders s r)" -proof (induct s rule: rev_induct) - case (snoc c s) - have ih: "Ders s (L_rexp r) = \ L_rexp ` (pders s r)" by fact - have "Ders (s @ [c]) (L_rexp r) = Ders [c] (Ders s (L_rexp r))" - by (simp add: Ders_append) - also have "\ = Der c (\ L_rexp ` (pders s r))" using ih - by (simp add: Ders_singleton) - also have "\ = (\r\pders s r. Der c (L_rexp r))" - unfolding Der_def image_def by auto - also have "\ = (\r\pders s r. (\ L_rexp ` (pder c r)))" - by (simp add: Der_pder) - also have "\ = (\L_rexp ` (pder_set c (pders s r)))" - by (simp add: pder_set_lang) - also have "\ = (\L_rexp ` (pders (s @ [c]) r))" - by simp - finally show "Ders (s @ [c]) (L_rexp r) = \ L_rexp ` pders (s @ [c]) r" . -qed (simp add: Ders_def) - -lemma Ders_set_pders_set: - fixes r::rexp - shows "Ders_set A (L_rexp r) = (\ L_rexp ` (pders_set A r))" -by (simp add: Ders_set_Ders Ders_pders) - -lemma pders_NULL [simp]: - shows "pders s NULL = {NULL}" -by (induct s rule: rev_induct) (simp_all) - -lemma pders_EMPTY [simp]: - shows "pders s EMPTY = (if s = [] then {EMPTY} else {NULL})" -by (induct s rule: rev_induct) (auto) - -lemma pders_CHAR [simp]: - shows "pders s (CHAR c) = (if s = [] then {CHAR c} else (if s = [c] then {EMPTY} else {NULL}))" -by (induct s rule: rev_induct) (auto) - -lemma pders_ALT [simp]: - shows "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \ (pders s r2))" -by (induct s rule: rev_induct) (auto) - -definition - "Suf s \ {v. v \ [] \ (\u. u @ v = s)}" - -lemma Suf: - shows "Suf (s @ [c]) = (Suf s) \ {[c]} \ {[c]}" -unfolding Suf_def Seq_def -by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv) - -lemma Suf_Union: - shows "(\v \ Suf s \ {[c]}. P v) = (\v \ Suf s. P (v @ [c]))" -by (auto simp add: Seq_def) - -lemma inclusion1: - shows "pder_set c (SEQS R r2) \ SEQS (pder_set c R) r2 \ (pder c r2)" -apply(auto simp add: if_splits) -apply(blast) -done - -lemma pders_SEQ: - shows "pders s (SEQ r1 r2) \ SEQS (pders s r1) r2 \ (\v \ Suf s. pders v r2)" -proof (induct s rule: rev_induct) - case (snoc c s) - have ih: "pders s (SEQ r1 r2) \ SEQS (pders s r1) r2 \ (\v \ Suf s. pders v r2)" - by fact - have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))" by simp - also have "\ \ pder_set c (SEQS (pders s r1) r2 \ (\v \ Suf s. pders v r2))" - using ih by (auto) (blast) - also have "\ = pder_set c (SEQS (pders s r1) r2) \ pder_set c (\v \ Suf s. pders v r2)" - by (simp) - also have "\ = pder_set c (SEQS (pders s r1) r2) \ (\v \ Suf s. pder_set c (pders v r2))" - by (simp) - also have "\ \ pder_set c (SEQS (pders s r1) r2) \ (pder c r2) \ (\v \ Suf s. pders (v @ [c]) r2)" - by (auto) - also have "\ \ SEQS (pder_set c (pders s r1)) r2 \ (pder c r2) \ (\v \ Suf s. pders (v @ [c]) r2)" - using inclusion1 by blast - also have "\ = SEQS (pders (s @ [c]) r1) r2 \ (\v \ Suf (s @ [c]). pders v r2)" - apply(subst (2) pders.simps) - apply(simp only: Suf) - apply(simp add: Suf_Union pders_singleton) - apply(auto) - done - finally show ?case . -qed (simp) - -lemma pders_STAR: - assumes a: "s \ []" - shows "pders s (STAR r) \ (\v \ Suf s. SEQS (pders v r) (STAR r))" -using a -proof (induct s rule: rev_induct) - case (snoc c s) - have ih: "s \ [] \ pders s (STAR r) \ (\v\Suf s. SEQS (pders v r) (STAR r))" by fact - { assume asm: "s \ []" - have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by simp - also have "\ \ (pder_set c (\v\Suf s. SEQS (pders v r) (STAR r)))" - using ih[OF asm] by blast - also have "\ = (\v\Suf s. pder_set c (SEQS (pders v r) (STAR r)))" - by simp - also have "\ \ (\v\Suf s. (SEQS (pder_set c (pders v r)) (STAR r) \ pder c (STAR r)))" - using inclusion1 by (auto split: if_splits) - also have "\ = (\v\Suf s. (SEQS (pder_set c (pders v r)) (STAR r))) \ pder c (STAR r)" - using asm by (auto simp add: Suf_def) - also have "\ = (\v\Suf s. (SEQS (pders (v @ [c]) r) (STAR r))) \ (SEQS (pder c r) (STAR r))" - by simp - also have "\ = (\v\Suf (s @ [c]). (SEQS (pders v r) (STAR r)))" - apply(simp only: Suf) - apply(simp add: Suf_Union pders_singleton) - apply(auto) - done - finally have ?case . - } - moreover - { assume asm: "s = []" - then have ?case - apply(simp add: pders_singleton Suf_def) - apply(auto) - apply(rule_tac x="[c]" in exI) - apply(simp add: pders_singleton) - done - } - ultimately show ?case by blast -qed (simp) - -abbreviation - "UNIV1 \ UNIV - {[]}" - -lemma pders_set_NULL: - shows "pders_set UNIV1 NULL = {NULL}" -by auto - -lemma pders_set_EMPTY: - shows "pders_set UNIV1 EMPTY = {NULL}" -by (auto split: if_splits) - -lemma pders_set_CHAR: - shows "pders_set UNIV1 (CHAR c) \ {EMPTY, NULL}" -by (auto split: if_splits) - -lemma pders_set_ALT: - shows "pders_set UNIV1 (ALT r1 r2) = pders_set UNIV1 r1 \ pders_set UNIV1 r2" -by auto - -lemma pders_set_SEQ_aux: - assumes a: "s \ UNIV1" - shows "pders_set (Suf s) r2 \ pders_set UNIV1 r2" -using a by (auto simp add: Suf_def) - -lemma pders_set_SEQ: - shows "pders_set UNIV1 (SEQ r1 r2) \ SEQS (pders_set UNIV1 r1) r2 \ pders_set UNIV1 r2" -apply(rule UN_least) -apply(rule subset_trans) -apply(rule pders_SEQ) -apply(simp) -apply(rule conjI) -apply(auto)[1] -apply(rule subset_trans) -apply(rule pders_set_SEQ_aux) -apply(auto) -done - -lemma pders_set_STAR: - shows "pders_set UNIV1 (STAR r) \ SEQS (pders_set UNIV1 r) (STAR r)" -apply(rule UN_least) -apply(rule subset_trans) -apply(rule pders_STAR) -apply(simp) -apply(simp add: Suf_def) -apply(auto) -done - -lemma finite_SEQS: - assumes a: "finite A" - shows "finite (SEQS A r)" -using a by (auto) - -lemma finite_pders_set_UNIV1: - shows "finite (pders_set UNIV1 r)" -apply(induct r) -apply(simp) -apply(simp only: pders_set_EMPTY) -apply(simp) -apply(rule finite_subset) -apply(rule pders_set_CHAR) -apply(simp) -apply(rule finite_subset) -apply(rule pders_set_SEQ) -apply(simp only: finite_SEQS finite_Un) -apply(simp) -apply(simp only: pders_set_ALT) -apply(simp) -apply(rule finite_subset) -apply(rule pders_set_STAR) -apply(simp only: finite_SEQS) -done - -lemma pders_set_UNIV_UNIV1: - shows "pders_set UNIV r = pders [] r \ pders_set UNIV1 r" -apply(auto) -apply(rule_tac x="[]" in exI) -apply(simp) -done - -lemma finite_pders_set_UNIV: - shows "finite (pders_set UNIV r)" -unfolding pders_set_UNIV_UNIV1 -by (simp add: finite_pders_set_UNIV1) - -lemma finite_pders_set: - shows "finite (pders_set A r)" -apply(rule rev_finite_subset) -apply(rule_tac r="r" in finite_pders_set_UNIV) -apply(auto) -done - -lemma finite_pders: - shows "finite (pders s r)" -using finite_pders_set[where A="{s}" and r="r"] -by simp - -lemma finite_pders2: - shows "finite {pders s r | s. s \ A}" -proof - - have "{pders s r | s. s \ A} \ Pow (pders_set A r)" by auto - moreover - have "finite (Pow (pders_set A r))" - using finite_pders_set by simp - ultimately - show "finite {pders s r | s. s \ A}" - by(rule finite_subset) -qed - - -lemma Myhill_Nerode3: - fixes r::"rexp" - shows "finite (UNIV // \(L_rexp r))" -proof - - have "finite (UNIV // =(\x. pders x r)=)" - proof - - have "range (\x. pders x r) = {pders s r | s. s \ UNIV}" by auto - moreover - have "finite {pders s r | s. s \ UNIV}" by (rule finite_pders2) - ultimately - have "finite (range (\x. pders x r))" - by simp - then show "finite (UNIV // =(\x. pders x r)=)" - by (rule finite_eq_tag_rel) - qed - moreover - have "=(\x. pders x r)= \ \(L_rexp r)" - unfolding tag_eq_rel_def - unfolding str_eq_def2 - unfolding MN_Rel_Ders - unfolding Ders_pders - by auto - moreover - have "equiv UNIV =(\x. pders x r)=" - unfolding equiv_def refl_on_def sym_def trans_def - unfolding tag_eq_rel_def - by auto - moreover - have "equiv UNIV (\(L_rexp r))" - unfolding equiv_def refl_on_def sym_def trans_def - unfolding str_eq_rel_def - by auto - ultimately show "finite (UNIV // \(L_rexp r))" - by (rule refined_partition_finite) -qed - - -section {* Relating derivatives and partial derivatives *} - -lemma - shows "(\ L_rexp ` (pder c r)) = L_rexp (der c r)" -unfolding Der_der[symmetric] Der_pder by simp - -lemma - shows "(\ L_rexp ` (pders s r)) = L_rexp (ders s r)" -unfolding Ders_ders[symmetric] Ders_pders by simp - -end \ No newline at end of file