diff -r 4f303da0cd2a -r a0bcf886b8ef utm/UF.thy --- a/utm/UF.thy Mon Mar 04 21:01:55 2013 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,4873 +0,0 @@ -theory UF -imports Main rec_def turing_basic GCD abacus -begin - -text {* - This theory file constructs the Universal Function @{text "rec_F"}, which is the UTM defined - in terms of recursive functions. This @{text "rec_F"} is essentially an - interpreter of Turing Machines. Once the correctness of @{text "rec_F"} is established, - UTM can easil be obtained by compling @{text "rec_F"} into the corresponding Turing Machine. -*} - -section {* Univeral Function *} - -subsection {* The construction of component functions *} - -text {* - This section constructs a set of component functions used to construct @{text "rec_F"}. - *} - -text {* - The recursive function used to do arithmatic addition. -*} -definition rec_add :: "recf" - where - "rec_add \ Pr 1 (id 1 0) (Cn 3 s [id 3 2])" - -text {* - The recursive function used to do arithmatic multiplication. -*} -definition rec_mult :: "recf" - where - "rec_mult = Pr 1 z (Cn 3 rec_add [id 3 0, id 3 2])" - -text {* - The recursive function used to do arithmatic precede. -*} -definition rec_pred :: "recf" - where - "rec_pred = Cn 1 (Pr 1 z (id 3 1)) [id 1 0, id 1 0]" - -text {* - The recursive function used to do arithmatic subtraction. -*} -definition rec_minus :: "recf" - where - "rec_minus = Pr 1 (id 1 0) (Cn 3 rec_pred [id 3 2])" - -text {* - @{text "constn n"} is the recursive function which computes - nature number @{text "n"}. -*} -fun constn :: "nat \ recf" - where - "constn 0 = z" | - "constn (Suc n) = Cn 1 s [constn n]" - - -text {* - Signal function, which returns 1 when the input argument is greater than @{text "0"}. -*} -definition rec_sg :: "recf" - where - "rec_sg = Cn 1 rec_minus [constn 1, - Cn 1 rec_minus [constn 1, id 1 0]]" - -text {* - @{text "rec_less"} compares its two arguments, returns @{text "1"} if - the first is less than the second; otherwise returns @{text "0"}. - *} -definition rec_less :: "recf" - where - "rec_less = Cn 2 rec_sg [Cn 2 rec_minus [id 2 1, id 2 0]]" - -text {* - @{text "rec_not"} inverse its argument: returns @{text "1"} when the - argument is @{text "0"}; returns @{text "0"} otherwise. - *} -definition rec_not :: "recf" - where - "rec_not = Cn 1 rec_minus [constn 1, id 1 0]" - -text {* - @{text "rec_eq"} compares its two arguments: returns @{text "1"} - if they are equal; return @{text "0"} otherwise. - *} -definition rec_eq :: "recf" - where - "rec_eq = Cn 2 rec_minus [Cn 2 (constn 1) [id 2 0], - Cn 2 rec_add [Cn 2 rec_minus [id 2 0, id 2 1], - Cn 2 rec_minus [id 2 1, id 2 0]]]" - -text {* - @{text "rec_conj"} computes the conjunction of its two arguments, - returns @{text "1"} if both of them are non-zero; returns @{text "0"} - otherwise. - *} -definition rec_conj :: "recf" - where - "rec_conj = Cn 2 rec_sg [Cn 2 rec_mult [id 2 0, id 2 1]] " - -text {* - @{text "rec_disj"} computes the disjunction of its two arguments, - returns @{text "0"} if both of them are zero; returns @{text "0"} - otherwise. - *} -definition rec_disj :: "recf" - where - "rec_disj = Cn 2 rec_sg [Cn 2 rec_add [id 2 0, id 2 1]]" - - -text {* - Computes the arity of recursive function. - *} - -fun arity :: "recf \ nat" - where - "arity z = 1" -| "arity s = 1" -| "arity (id m n) = m" -| "arity (Cn n f gs) = n" -| "arity (Pr n f g) = Suc n" -| "arity (Mn n f) = n" - -text {* - @{text "get_fstn_args n (Suc k)"} returns - @{text "[id n 0, id n 1, id n 2, \, id n k]"}, - the effect of which is to take out the first @{text "Suc k"} - arguments out of the @{text "n"} input arguments. - *} - -fun get_fstn_args :: "nat \ nat \ recf list" - where - "get_fstn_args n 0 = []" -| "get_fstn_args n (Suc y) = get_fstn_args n y @ [id n y]" - -text {* - @{text "rec_sigma f"} returns the recursive functions which - sums up the results of @{text "f"}: - \[ - (rec\_sigma f)(x, y) = f(x, 0) + f(x, 1) + \cdots + f(x, y) - \] -*} -fun rec_sigma :: "recf \ recf" - where - "rec_sigma rf = - (let vl = arity rf in - Pr (vl - 1) (Cn (vl - 1) rf (get_fstn_args (vl - 1) (vl - 1) @ - [Cn (vl - 1) (constn 0) [id (vl - 1) 0]])) - (Cn (Suc vl) rec_add [id (Suc vl) vl, - Cn (Suc vl) rf (get_fstn_args (Suc vl) (vl - 1) - @ [Cn (Suc vl) s [id (Suc vl) (vl - 1)]])]))" - -text {* - @{text "rec_exec"} is the interpreter function for - reursive functions. The function is defined such that - it always returns meaningful results for primitive recursive - functions. - *} -function rec_exec :: "recf \ nat list \ nat" - where - "rec_exec z xs = 0" | - "rec_exec s xs = (Suc (xs ! 0))" | - "rec_exec (id m n) xs = (xs ! n)" | - "rec_exec (Cn n f gs) xs = - (let ys = (map (\ a. rec_exec a xs) gs) in - rec_exec f ys)" | - "rec_exec (Pr n f g) xs = - (if last xs = 0 then - rec_exec f (butlast xs) - else rec_exec g (butlast xs @ [last xs - 1] @ - [rec_exec (Pr n f g) (butlast xs @ [last xs - 1])]))" | - "rec_exec (Mn n f) xs = (LEAST x. rec_exec f (xs @ [x]) = 0)" -by pat_completeness auto -termination -proof - show "wf (measures [\ (r, xs). size r, (\ (r, xs). last xs)])" - by auto -next - fix n f gs xs x - assume "(x::recf) \ set gs" - thus "((x, xs), Cn n f gs, xs) \ - measures [\(r, xs). size r, \(r, xs). last xs]" - by(induct gs, auto) -next - fix n f gs xs x - assume "x = map (\a. rec_exec a xs) gs" - "\x. x \ set gs \ rec_exec_dom (x, xs)" - thus "((f, x), Cn n f gs, xs) \ - measures [\(r, xs). size r, \(r, xs). last xs]" - by(auto) -next - fix n f g xs - show "((f, butlast xs), Pr n f g, xs) \ - measures [\(r, xs). size r, \(r, xs). last xs]" - by auto -next - fix n f g xs - assume "last xs \ (0::nat)" thus - "((Pr n f g, butlast xs @ [last xs - 1]), Pr n f g, xs) - \ measures [\(r, xs). size r, \(r, xs). last xs]" - by auto -next - fix n f g xs - show "((g, butlast xs @ [last xs - 1] @ [rec_exec (Pr n f g) (butlast xs @ [last xs - 1])]), - Pr n f g, xs) \ measures [\(r, xs). size r, \(r, xs). last xs]" - by auto -next - fix n f xs x - show "((f, xs @ [x]), Mn n f, xs) \ - measures [\(r, xs). size r, \(r, xs). last xs]" - by auto -qed - -declare rec_exec.simps[simp del] constn.simps[simp del] - -text {* - Correctness of @{text "rec_add"}. - *} -lemma add_lemma: "\ x y. rec_exec rec_add [x, y] = x + y" -by(induct_tac y, auto simp: rec_add_def rec_exec.simps) - -text {* - Correctness of @{text "rec_mult"}. - *} -lemma mult_lemma: "\ x y. rec_exec rec_mult [x, y] = x * y" -by(induct_tac y, auto simp: rec_mult_def rec_exec.simps add_lemma) - -text {* - Correctness of @{text "rec_pred"}. - *} -lemma pred_lemma: "\ x. rec_exec rec_pred [x] = x - 1" -by(induct_tac x, auto simp: rec_pred_def rec_exec.simps) - -text {* - Correctness of @{text "rec_minus"}. - *} -lemma minus_lemma: "\ x y. rec_exec rec_minus [x, y] = x - y" -by(induct_tac y, auto simp: rec_exec.simps rec_minus_def pred_lemma) - -text {* - Correctness of @{text "rec_sg"}. - *} -lemma sg_lemma: "\ x. rec_exec rec_sg [x] = (if x = 0 then 0 else 1)" -by(auto simp: rec_sg_def minus_lemma rec_exec.simps constn.simps) - -text {* - Correctness of @{text "constn"}. - *} -lemma constn_lemma: "rec_exec (constn n) [x] = n" -by(induct n, auto simp: rec_exec.simps constn.simps) - -text {* - Correctness of @{text "rec_less"}. - *} -lemma less_lemma: "\ x y. rec_exec rec_less [x, y] = - (if x < y then 1 else 0)" -by(induct_tac y, auto simp: rec_exec.simps - rec_less_def minus_lemma sg_lemma) - -text {* - Correctness of @{text "rec_not"}. - *} -lemma not_lemma: - "\ x. rec_exec rec_not [x] = (if x = 0 then 1 else 0)" -by(induct_tac x, auto simp: rec_exec.simps rec_not_def - constn_lemma minus_lemma) - -text {* - Correctness of @{text "rec_eq"}. - *} -lemma eq_lemma: "\ x y. rec_exec rec_eq [x, y] = (if x = y then 1 else 0)" -by(induct_tac y, auto simp: rec_exec.simps rec_eq_def constn_lemma add_lemma minus_lemma) - -text {* - Correctness of @{text "rec_conj"}. - *} -lemma conj_lemma: "\ x y. rec_exec rec_conj [x, y] = (if x = 0 \ y = 0 then 0 - else 1)" -by(induct_tac y, auto simp: rec_exec.simps sg_lemma rec_conj_def mult_lemma) - - -text {* - Correctness of @{text "rec_disj"}. - *} -lemma disj_lemma: "\ x y. rec_exec rec_disj [x, y] = (if x = 0 \ y = 0 then 0 - else 1)" -by(induct_tac y, auto simp: rec_disj_def sg_lemma add_lemma rec_exec.simps) - - -text {* - @{text "primrec recf n"} is true iff - @{text "recf"} is a primitive recursive function - with arity @{text "n"}. - *} -inductive primerec :: "recf \ nat \ bool" - where -prime_z[intro]: "primerec z (Suc 0)" | -prime_s[intro]: "primerec s (Suc 0)" | -prime_id[intro!]: "\n < m\ \ primerec (id m n) m" | -prime_cn[intro!]: "\primerec f k; length gs = k; - \ i < length gs. primerec (gs ! i) m; m = n\ - \ primerec (Cn n f gs) m" | -prime_pr[intro!]: "\primerec f n; - primerec g (Suc (Suc n)); m = Suc n\ - \ primerec (Pr n f g) m" - -inductive_cases prime_cn_reverse'[elim]: "primerec (Cn n f gs) n" -inductive_cases prime_mn_reverse: "primerec (Mn n f) m" -inductive_cases prime_z_reverse[elim]: "primerec z n" -inductive_cases prime_s_reverse[elim]: "primerec s n" -inductive_cases prime_id_reverse[elim]: "primerec (id m n) k" -inductive_cases prime_cn_reverse[elim]: "primerec (Cn n f gs) m" -inductive_cases prime_pr_reverse[elim]: "primerec (Pr n f g) m" - -declare mult_lemma[simp] add_lemma[simp] pred_lemma[simp] - minus_lemma[simp] sg_lemma[simp] constn_lemma[simp] - less_lemma[simp] not_lemma[simp] eq_lemma[simp] - conj_lemma[simp] disj_lemma[simp] - -text {* - @{text "Sigma"} is the logical specification of - the recursive function @{text "rec_sigma"}. - *} -function Sigma :: "(nat list \ nat) \ nat list \ nat" - where - "Sigma g xs = (if last xs = 0 then g xs - else (Sigma g (butlast xs @ [last xs - 1]) + - g xs)) " -by pat_completeness auto -termination -proof - show "wf (measure (\ (f, xs). last xs))" by auto -next - fix g xs - assume "last (xs::nat list) \ 0" - thus "((g, butlast xs @ [last xs - 1]), g, xs) - \ measure (\(f, xs). last xs)" - by auto -qed - -declare rec_exec.simps[simp del] get_fstn_args.simps[simp del] - arity.simps[simp del] Sigma.simps[simp del] - rec_sigma.simps[simp del] - -lemma [simp]: "arity z = 1" - by(simp add: arity.simps) - -lemma rec_pr_0_simp_rewrite: " - rec_exec (Pr n f g) (xs @ [0]) = rec_exec f xs" -by(simp add: rec_exec.simps) - -lemma rec_pr_0_simp_rewrite_single_param: " - rec_exec (Pr n f g) [0] = rec_exec f []" -by(simp add: rec_exec.simps) - -lemma rec_pr_Suc_simp_rewrite: - "rec_exec (Pr n f g) (xs @ [Suc x]) = - rec_exec g (xs @ [x] @ - [rec_exec (Pr n f g) (xs @ [x])])" -by(simp add: rec_exec.simps) - -lemma rec_pr_Suc_simp_rewrite_single_param: - "rec_exec (Pr n f g) ([Suc x]) = - rec_exec g ([x] @ [rec_exec (Pr n f g) ([x])])" -by(simp add: rec_exec.simps) - -lemma Sigma_0_simp_rewrite_single_param: - "Sigma f [0] = f [0]" -by(simp add: Sigma.simps) - -lemma Sigma_0_simp_rewrite: - "Sigma f (xs @ [0]) = f (xs @ [0])" -by(simp add: Sigma.simps) - -lemma Sigma_Suc_simp_rewrite: - "Sigma f (xs @ [Suc x]) = Sigma f (xs @ [x]) + f (xs @ [Suc x])" -by(simp add: Sigma.simps) - -lemma Sigma_Suc_simp_rewrite_single: - "Sigma f ([Suc x]) = Sigma f ([x]) + f ([Suc x])" -by(simp add: Sigma.simps) - -lemma [simp]: "(xs @ ys) ! (Suc (length xs)) = ys ! 1" -by(simp add: nth_append) - -lemma get_fstn_args_take: "\length xs = m; n \ m\ \ - map (\ f. rec_exec f xs) (get_fstn_args m n)= take n xs" -proof(induct n) - case 0 thus "?case" - by(simp add: get_fstn_args.simps) -next - case (Suc n) thus "?case" - by(simp add: get_fstn_args.simps rec_exec.simps - take_Suc_conv_app_nth) -qed - -lemma [simp]: "primerec f n \ arity f = n" - apply(case_tac f) - apply(auto simp: arity.simps ) - apply(erule_tac prime_mn_reverse) - done - -lemma rec_sigma_Suc_simp_rewrite: - "primerec f (Suc (length xs)) - \ rec_exec (rec_sigma f) (xs @ [Suc x]) = - rec_exec (rec_sigma f) (xs @ [x]) + rec_exec f (xs @ [Suc x])" - apply(induct x) - apply(auto simp: rec_sigma.simps Let_def rec_pr_Suc_simp_rewrite - rec_exec.simps get_fstn_args_take) - done - -text {* - The correctness of @{text "rec_sigma"} with respect to its specification. - *} -lemma sigma_lemma: - "primerec rg (Suc (length xs)) - \ rec_exec (rec_sigma rg) (xs @ [x]) = Sigma (rec_exec rg) (xs @ [x])" -apply(induct x) -apply(auto simp: rec_exec.simps rec_sigma.simps Let_def - get_fstn_args_take Sigma_0_simp_rewrite - Sigma_Suc_simp_rewrite) -done - -text {* - @{text "rec_accum f (x1, x2, \, xn, k) = - f(x1, x2, \, xn, 0) * - f(x1, x2, \, xn, 1) * - \ - f(x1, x2, \, xn, k)"} -*} -fun rec_accum :: "recf \ recf" - where - "rec_accum rf = - (let vl = arity rf in - Pr (vl - 1) (Cn (vl - 1) rf (get_fstn_args (vl - 1) (vl - 1) @ - [Cn (vl - 1) (constn 0) [id (vl - 1) 0]])) - (Cn (Suc vl) rec_mult [id (Suc vl) (vl), - Cn (Suc vl) rf (get_fstn_args (Suc vl) (vl - 1) - @ [Cn (Suc vl) s [id (Suc vl) (vl - 1)]])]))" - -text {* - @{text "Accum"} is the formal specification of @{text "rec_accum"}. - *} -function Accum :: "(nat list \ nat) \ nat list \ nat" - where - "Accum f xs = (if last xs = 0 then f xs - else (Accum f (butlast xs @ [last xs - 1]) * - f xs))" -by pat_completeness auto -termination -proof - show "wf (measure (\ (f, xs). last xs))" - by auto -next - fix f xs - assume "last xs \ (0::nat)" - thus "((f, butlast xs @ [last xs - 1]), f, xs) \ - measure (\(f, xs). last xs)" - by auto -qed - -lemma rec_accum_Suc_simp_rewrite: - "primerec f (Suc (length xs)) - \ rec_exec (rec_accum f) (xs @ [Suc x]) = - rec_exec (rec_accum f) (xs @ [x]) * rec_exec f (xs @ [Suc x])" - apply(induct x) - apply(auto simp: rec_sigma.simps Let_def rec_pr_Suc_simp_rewrite - rec_exec.simps get_fstn_args_take) - done - -text {* - The correctness of @{text "rec_accum"} with respect to its specification. -*} -lemma accum_lemma : - "primerec rg (Suc (length xs)) - \ rec_exec (rec_accum rg) (xs @ [x]) = Accum (rec_exec rg) (xs @ [x])" -apply(induct x) -apply(auto simp: rec_exec.simps rec_sigma.simps Let_def - get_fstn_args_take) -done - -declare rec_accum.simps [simp del] - -text {* - @{text "rec_all t f (x1, x2, \, xn)"} - computes the charactrization function of the following FOL formula: - @{text "(\ x \ t(x1, x2, \, xn). (f(x1, x2, \, xn, x) > 0))"} -*} -fun rec_all :: "recf \ recf \ recf" - where - "rec_all rt rf = - (let vl = arity rf in - Cn (vl - 1) rec_sg [Cn (vl - 1) (rec_accum rf) - (get_fstn_args (vl - 1) (vl - 1) @ [rt])])" - -lemma rec_accum_ex: "primerec rf (Suc (length xs)) \ - (rec_exec (rec_accum rf) (xs @ [x]) = 0) = - (\ t \ x. rec_exec rf (xs @ [t]) = 0)" -apply(induct x, simp_all add: rec_accum_Suc_simp_rewrite) -apply(simp add: rec_exec.simps rec_accum.simps get_fstn_args_take, - auto) -apply(rule_tac x = ta in exI, simp) -apply(case_tac "t = Suc x", simp_all) -apply(rule_tac x = t in exI, simp) -done - -text {* - The correctness of @{text "rec_all"}. - *} -lemma all_lemma: - "\primerec rf (Suc (length xs)); - primerec rt (length xs)\ - \ rec_exec (rec_all rt rf) xs = (if (\ x \ (rec_exec rt xs). 0 < rec_exec rf (xs @ [x])) then 1 - else 0)" -apply(auto simp: rec_all.simps) -apply(simp add: rec_exec.simps map_append get_fstn_args_take split: if_splits) -apply(drule_tac x = "rec_exec rt xs" in rec_accum_ex) -apply(case_tac "rec_exec (rec_accum rf) (xs @ [rec_exec rt xs]) = 0", simp_all) -apply(erule_tac exE, erule_tac x = t in allE, simp) -apply(simp add: rec_exec.simps map_append get_fstn_args_take) -apply(drule_tac x = "rec_exec rt xs" in rec_accum_ex) -apply(case_tac "rec_exec (rec_accum rf) (xs @ [rec_exec rt xs]) = 0", simp, simp) -apply(erule_tac x = x in allE, simp) -done - -text {* - @{text "rec_ex t f (x1, x2, \, xn)"} - computes the charactrization function of the following FOL formula: - @{text "(\ x \ t(x1, x2, \, xn). (f(x1, x2, \, xn, x) > 0))"} -*} -fun rec_ex :: "recf \ recf \ recf" - where - "rec_ex rt rf = - (let vl = arity rf in - Cn (vl - 1) rec_sg [Cn (vl - 1) (rec_sigma rf) - (get_fstn_args (vl - 1) (vl - 1) @ [rt])])" - -lemma rec_sigma_ex: "primerec rf (Suc (length xs)) - \ (rec_exec (rec_sigma rf) (xs @ [x]) = 0) = - (\ t \ x. rec_exec rf (xs @ [t]) = 0)" -apply(induct x, simp_all add: rec_sigma_Suc_simp_rewrite) -apply(simp add: rec_exec.simps rec_sigma.simps - get_fstn_args_take, auto) -apply(case_tac "t = Suc x", simp_all) -done - -text {* - The correctness of @{text "ex_lemma"}. - *} -lemma ex_lemma:" - \primerec rf (Suc (length xs)); - primerec rt (length xs)\ -\ (rec_exec (rec_ex rt rf) xs = - (if (\ x \ (rec_exec rt xs). 0 bool) \ nat list \ nat \ nat" - where "Minr Rr xs w = (let setx = {y | y. (y \ w) \ Rr (xs @ [y])} in - if (setx = {}) then (Suc w) - else (Min setx))" - -declare Minr.simps[simp del] rec_all.simps[simp del] - -text {* - The following is a set of auxilliary lemmas about @{text "Minr"}. -*} -lemma Minr_range: "Minr Rr xs w \ w \ Minr Rr xs w = Suc w" -apply(auto simp: Minr.simps) -apply(subgoal_tac "Min {x. x \ w \ Rr (xs @ [x])} \ x") -apply(erule_tac order_trans, simp) -apply(rule_tac Min_le, auto) -done - -lemma [simp]: "{x. x \ Suc w \ Rr (xs @ [x])} - = (if Rr (xs @ [Suc w]) then insert (Suc w) - {x. x \ w \ Rr (xs @ [x])} - else {x. x \ w \ Rr (xs @ [x])})" -by(auto, case_tac "x = Suc w", auto) - -lemma [simp]: "Minr Rr xs w \ w \ Minr Rr xs (Suc w) = Minr Rr xs w" -apply(simp add: Minr.simps, auto) -apply(case_tac "\x\w. \ Rr (xs @ [x])", auto) -done - -lemma [simp]: "\x\w. \ Rr (xs @ [x]) \ - {x. x \ w \ Rr (xs @ [x])} = {} " -by auto - -lemma [simp]: "\Minr Rr xs w = Suc w; Rr (xs @ [Suc w])\ \ - Minr Rr xs (Suc w) = Suc w" -apply(simp add: Minr.simps) -apply(case_tac "\x\w. \ Rr (xs @ [x])", auto) -done - -lemma [simp]: "\Minr Rr xs w = Suc w; \ Rr (xs @ [Suc w])\ \ - Minr Rr xs (Suc w) = Suc (Suc w)" -apply(simp add: Minr.simps) -apply(case_tac "\x\w. \ Rr (xs @ [x])", auto) -apply(subgoal_tac "Min {x. x \ w \ Rr (xs @ [x])} \ - {x. x \ w \ Rr (xs @ [x])}", simp) -apply(rule_tac Min_in, auto) -done - -lemma Minr_Suc_simp: - "Minr Rr xs (Suc w) = - (if Minr Rr xs w \ w then Minr Rr xs w - else if (Rr (xs @ [Suc w])) then (Suc w) - else Suc (Suc w))" -by(insert Minr_range[of Rr xs w], auto) - -text {* - @{text "rec_Minr"} is the recursive function - used to implement @{text "Minr"}: - if @{text "Rr"} is implemented by a recursive function @{text "recf"}, - then @{text "rec_Minr recf"} is the recursive function used to - implement @{text "Minr Rr"} - *} -fun rec_Minr :: "recf \ recf" - where - "rec_Minr rf = - (let vl = arity rf - in let rq = rec_all (id vl (vl - 1)) (Cn (Suc vl) - rec_not [Cn (Suc vl) rf - (get_fstn_args (Suc vl) (vl - 1) @ - [id (Suc vl) (vl)])]) - in rec_sigma rq)" - -lemma length_getpren_params[simp]: "length (get_fstn_args m n) = n" -by(induct n, auto simp: get_fstn_args.simps) - -lemma length_app: - "(length (get_fstn_args (arity rf - Suc 0) - (arity rf - Suc 0) - @ [Cn (arity rf - Suc 0) (constn 0) - [recf.id (arity rf - Suc 0) 0]])) - = (Suc (arity rf - Suc 0))" - apply(simp) -done - -lemma primerec_accum: "primerec (rec_accum rf) n \ primerec rf n" -apply(auto simp: rec_accum.simps Let_def) -apply(erule_tac prime_pr_reverse, simp) -apply(erule_tac prime_cn_reverse, simp only: length_app) -done - -lemma primerec_all: "primerec (rec_all rt rf) n \ - primerec rt n \ primerec rf (Suc n)" -apply(simp add: rec_all.simps Let_def) -apply(erule_tac prime_cn_reverse, simp) -apply(erule_tac prime_cn_reverse, simp) -apply(erule_tac x = n in allE, simp add: nth_append primerec_accum) -done - -lemma min_Suc_Suc[simp]: "min (Suc (Suc x)) x = x" - by auto - -declare numeral_3_eq_3[simp] - -lemma [intro]: "primerec rec_pred (Suc 0)" -apply(simp add: rec_pred_def) -apply(rule_tac prime_cn, auto) -apply(case_tac i, auto intro: prime_id) -done - -lemma [intro]: "primerec rec_minus (Suc (Suc 0))" - apply(auto simp: rec_minus_def) - done - -lemma [intro]: "primerec (constn n) (Suc 0)" - apply(induct n) - apply(auto simp: constn.simps intro: prime_z prime_cn prime_s) - done - -lemma [intro]: "primerec rec_sg (Suc 0)" - apply(simp add: rec_sg_def) - apply(rule_tac k = "Suc (Suc 0)" in prime_cn, auto) - apply(case_tac i, auto) - apply(case_tac ia, auto intro: prime_id) - done - -lemma [simp]: "length (get_fstn_args m n) = n" - apply(induct n) - apply(auto simp: get_fstn_args.simps) - done - -lemma primerec_getpren[elim]: "\i < n; n \ m\ \ primerec (get_fstn_args m n ! i) m" -apply(induct n, auto simp: get_fstn_args.simps) -apply(case_tac "i = n", auto simp: nth_append intro: prime_id) -done - -lemma [intro]: "primerec rec_add (Suc (Suc 0))" -apply(simp add: rec_add_def) -apply(rule_tac prime_pr, auto) -done - -lemma [intro]:"primerec rec_mult (Suc (Suc 0))" -apply(simp add: rec_mult_def ) -apply(rule_tac prime_pr, auto intro: prime_z) -apply(case_tac i, auto intro: prime_id) -done - -lemma [elim]: "\primerec rf n; n \ Suc (Suc 0)\ \ - primerec (rec_accum rf) n" -apply(auto simp: rec_accum.simps) -apply(simp add: nth_append, auto) -apply(case_tac i, auto intro: prime_id) -apply(auto simp: nth_append) -done - -lemma primerec_all_iff: - "\primerec rt n; primerec rf (Suc n); n > 0\ \ - primerec (rec_all rt rf) n" - apply(simp add: rec_all.simps, auto) - apply(auto, simp add: nth_append, auto) - done - -lemma [simp]: "Rr (xs @ [0]) \ - Min {x. x = (0::nat) \ Rr (xs @ [x])} = 0" -by(rule_tac Min_eqI, simp, simp, simp) - -lemma [intro]: "primerec rec_not (Suc 0)" -apply(simp add: rec_not_def) -apply(rule prime_cn, auto) -apply(case_tac i, auto intro: prime_id) -done - -lemma Min_false1[simp]: "\\ Min {uu. uu \ w \ 0 < rec_exec rf (xs @ [uu])} \ w; - x \ w; 0 < rec_exec rf (xs @ [x])\ - \ False" -apply(subgoal_tac "finite {uu. uu \ w \ 0 < rec_exec rf (xs @ [uu])}") -apply(subgoal_tac "{uu. uu \ w \ 0 < rec_exec rf (xs @ [uu])} \ {}") -apply(simp add: Min_le_iff, simp) -apply(rule_tac x = x in exI, simp) -apply(simp) -done - -lemma sigma_minr_lemma: - assumes prrf: "primerec rf (Suc (length xs))" - shows "UF.Sigma (rec_exec (rec_all (recf.id (Suc (length xs)) (length xs)) - (Cn (Suc (Suc (length xs))) rec_not - [Cn (Suc (Suc (length xs))) rf (get_fstn_args (Suc (Suc (length xs))) - (length xs) @ [recf.id (Suc (Suc (length xs))) (Suc (length xs))])]))) - (xs @ [w]) = - Minr (\args. 0 < rec_exec rf args) xs w" -proof(induct w) - let ?rt = "(recf.id (Suc (length xs)) ((length xs)))" - let ?rf = "(Cn (Suc (Suc (length xs))) - rec_not [Cn (Suc (Suc (length xs))) rf - (get_fstn_args (Suc (Suc (length xs))) (length xs) @ - [recf.id (Suc (Suc (length xs))) - (Suc ((length xs)))])])" - let ?rq = "(rec_all ?rt ?rf)" - have prrf: "primerec ?rf (Suc (length (xs @ [0]))) \ - primerec ?rt (length (xs @ [0]))" - apply(auto simp: prrf nth_append)+ - done - show "Sigma (rec_exec (rec_all ?rt ?rf)) (xs @ [0]) - = Minr (\args. 0 < rec_exec rf args) xs 0" - apply(simp add: Sigma.simps) - apply(simp only: prrf all_lemma, - auto simp: rec_exec.simps get_fstn_args_take Minr.simps) - apply(rule_tac Min_eqI, auto) - done -next - fix w - let ?rt = "(recf.id (Suc (length xs)) ((length xs)))" - let ?rf = "(Cn (Suc (Suc (length xs))) - rec_not [Cn (Suc (Suc (length xs))) rf - (get_fstn_args (Suc (Suc (length xs))) (length xs) @ - [recf.id (Suc (Suc (length xs))) - (Suc ((length xs)))])])" - let ?rq = "(rec_all ?rt ?rf)" - assume ind: - "Sigma (rec_exec (rec_all ?rt ?rf)) (xs @ [w]) = Minr (\args. 0 < rec_exec rf args) xs w" - have prrf: "primerec ?rf (Suc (length (xs @ [Suc w]))) \ - primerec ?rt (length (xs @ [Suc w]))" - apply(auto simp: prrf nth_append)+ - done - show "UF.Sigma (rec_exec (rec_all ?rt ?rf)) - (xs @ [Suc w]) = - Minr (\args. 0 < rec_exec rf args) xs (Suc w)" - apply(auto simp: Sigma_Suc_simp_rewrite ind Minr_Suc_simp) - apply(simp_all only: prrf all_lemma) - apply(auto simp: rec_exec.simps get_fstn_args_take Let_def Minr.simps split: if_splits) - apply(drule_tac Min_false1, simp, simp, simp) - apply(case_tac "x = Suc w", simp, simp) - apply(drule_tac Min_false1, simp, simp, simp) - apply(drule_tac Min_false1, simp, simp, simp) - done -qed - -text {* - The correctness of @{text "rec_Minr"}. - *} -lemma Minr_lemma: " - \primerec rf (Suc (length xs))\ - \ rec_exec (rec_Minr rf) (xs @ [w]) = - Minr (\ args. (0 < rec_exec rf args)) xs w" -proof - - let ?rt = "(recf.id (Suc (length xs)) ((length xs)))" - let ?rf = "(Cn (Suc (Suc (length xs))) - rec_not [Cn (Suc (Suc (length xs))) rf - (get_fstn_args (Suc (Suc (length xs))) (length xs) @ - [recf.id (Suc (Suc (length xs))) - (Suc ((length xs)))])])" - let ?rq = "(rec_all ?rt ?rf)" - assume h: "primerec rf (Suc (length xs))" - have h1: "primerec ?rq (Suc (length xs))" - apply(rule_tac primerec_all_iff) - apply(auto simp: h nth_append)+ - done - moreover have "arity rf = Suc (length xs)" - using h by auto - ultimately show "rec_exec (rec_Minr rf) (xs @ [w]) = - Minr (\ args. (0 < rec_exec rf args)) xs w" - apply(simp add: rec_exec.simps rec_Minr.simps arity.simps Let_def - sigma_lemma all_lemma) - apply(rule_tac sigma_minr_lemma) - apply(simp add: h) - done -qed - -text {* - @{text "rec_le"} is the comparasion function - which compares its two arguments, testing whether the - first is less or equal to the second. - *} -definition rec_le :: "recf" - where - "rec_le = Cn (Suc (Suc 0)) rec_disj [rec_less, rec_eq]" - -text {* - The correctness of @{text "rec_le"}. - *} -lemma le_lemma: - "\x y. rec_exec rec_le [x, y] = (if (x \ y) then 1 else 0)" -by(auto simp: rec_le_def rec_exec.simps) - -text {* - Defintiion of @{text "Max[Rr]"} on page 77 of Boolos's book. -*} - -fun Maxr :: "(nat list \ bool) \ nat list \ nat \ nat" - where - "Maxr Rr xs w = (let setx = {y. y \ w \ Rr (xs @[y])} in - if setx = {} then 0 - else Max setx)" - -text {* - @{text "rec_maxr"} is the recursive function - used to implementation @{text "Maxr"}. - *} -fun rec_maxr :: "recf \ recf" - where - "rec_maxr rr = (let vl = arity rr in - let rt = id (Suc vl) (vl - 1) in - let rf1 = Cn (Suc (Suc vl)) rec_le - [id (Suc (Suc vl)) - ((Suc vl)), id (Suc (Suc vl)) (vl)] in - let rf2 = Cn (Suc (Suc vl)) rec_not - [Cn (Suc (Suc vl)) - rr (get_fstn_args (Suc (Suc vl)) - (vl - 1) @ - [id (Suc (Suc vl)) ((Suc vl))])] in - let rf = Cn (Suc (Suc vl)) rec_disj [rf1, rf2] in - let rq = rec_all rt rf in - let Qf = Cn (Suc vl) rec_not [rec_all rt rf] - in Cn vl (rec_sigma Qf) (get_fstn_args vl vl @ - [id vl (vl - 1)]))" - -declare rec_maxr.simps[simp del] Maxr.simps[simp del] -declare le_lemma[simp] -lemma [simp]: "(min (Suc (Suc (Suc (x)))) (x)) = x" -by simp - -declare numeral_2_eq_2[simp] - -lemma [intro]: "primerec rec_disj (Suc (Suc 0))" - apply(simp add: rec_disj_def, auto) - apply(auto) - apply(case_tac ia, auto intro: prime_id) - done - -lemma [intro]: "primerec rec_less (Suc (Suc 0))" - apply(simp add: rec_less_def, auto) - apply(auto) - apply(case_tac ia , auto intro: prime_id) - done - -lemma [intro]: "primerec rec_eq (Suc (Suc 0))" - apply(simp add: rec_eq_def) - apply(rule_tac prime_cn, auto) - apply(case_tac i, auto) - apply(case_tac ia, auto) - apply(case_tac [!] i, auto intro: prime_id) - done - -lemma [intro]: "primerec rec_le (Suc (Suc 0))" - apply(simp add: rec_le_def) - apply(rule_tac prime_cn, auto) - apply(case_tac i, auto) - done - -lemma [simp]: - "length ys = Suc n \ (take n ys @ [ys ! n, ys ! n]) = - ys @ [ys ! n]" -apply(simp) -apply(subgoal_tac "\ xs y. ys = xs @ [y]", auto) -apply(rule_tac x = "butlast ys" in exI, rule_tac x = "last ys" in exI) -apply(case_tac "ys = []", simp_all) -done - -lemma Maxr_Suc_simp: - "Maxr Rr xs (Suc w) =(if Rr (xs @ [Suc w]) then Suc w - else Maxr Rr xs w)" -apply(auto simp: Maxr.simps) -apply(rule_tac max_absorb1) -apply(subgoal_tac "(Max {y. y \ w \ Rr (xs @ [y])} \ (Suc w)) = - (\a\{y. y \ w \ Rr (xs @ [y])}. a \ (Suc w))", simp) -apply(rule_tac Max_le_iff, auto) -done - - -lemma [simp]: "min (Suc n) n = n" by simp - -lemma Sigma_0: "\ i \ n. (f (xs @ [i]) = 0) \ - Sigma f (xs @ [n]) = 0" -apply(induct n, simp add: Sigma.simps) -apply(simp add: Sigma_Suc_simp_rewrite) -done - -lemma [elim]: "\k Sigma f (xs @ [w]) = Suc w" -apply(induct w) -apply(simp add: Sigma.simps, simp) -apply(simp add: Sigma.simps) -done - -lemma Sigma_max_point: "\\ k < ma. f (xs @ [k]) = 1; - \ k \ ma. f (xs @ [k]) = 0; ma \ w\ - \ Sigma f (xs @ [w]) = ma" -apply(induct w, auto) -apply(rule_tac Sigma_0, simp) -apply(simp add: Sigma_Suc_simp_rewrite) -apply(case_tac "ma = Suc w", auto) -done - -lemma Sigma_Max_lemma: - assumes prrf: "primerec rf (Suc (length xs))" - shows "UF.Sigma (rec_exec (Cn (Suc (Suc (length xs))) rec_not - [rec_all (recf.id (Suc (Suc (length xs))) (length xs)) - (Cn (Suc (Suc (Suc (length xs)))) rec_disj - [Cn (Suc (Suc (Suc (length xs)))) rec_le - [recf.id (Suc (Suc (Suc (length xs)))) (Suc (Suc (length xs))), - recf.id (Suc (Suc (Suc (length xs)))) (Suc (length xs))], - Cn (Suc (Suc (Suc (length xs)))) rec_not - [Cn (Suc (Suc (Suc (length xs)))) rf - (get_fstn_args (Suc (Suc (Suc (length xs)))) (length xs) @ - [recf.id (Suc (Suc (Suc (length xs)))) (Suc (Suc (length xs)))])]])])) - ((xs @ [w]) @ [w]) = - Maxr (\args. 0 < rec_exec rf args) xs w" -proof - - let ?rt = "(recf.id (Suc (Suc (length xs))) ((length xs)))" - let ?rf1 = "Cn (Suc (Suc (Suc (length xs)))) - rec_le [recf.id (Suc (Suc (Suc (length xs)))) - ((Suc (Suc (length xs)))), recf.id - (Suc (Suc (Suc (length xs)))) ((Suc (length xs)))]" - let ?rf2 = "Cn (Suc (Suc (Suc (length xs)))) rf - (get_fstn_args (Suc (Suc (Suc (length xs)))) - (length xs) @ - [recf.id (Suc (Suc (Suc (length xs)))) - ((Suc (Suc (length xs))))])" - let ?rf3 = "Cn (Suc (Suc (Suc (length xs)))) rec_not [?rf2]" - let ?rf = "Cn (Suc (Suc (Suc (length xs)))) rec_disj [?rf1, ?rf3]" - let ?rq = "rec_all ?rt ?rf" - let ?notrq = "Cn (Suc (Suc (length xs))) rec_not [?rq]" - show "?thesis" - proof(auto simp: Maxr.simps) - assume h: "\x\w. rec_exec rf (xs @ [x]) = 0" - have "primerec ?rf (Suc (length (xs @ [w, i]))) \ - primerec ?rt (length (xs @ [w, i]))" - using prrf - apply(auto) - apply(case_tac i, auto) - apply(case_tac ia, auto simp: h nth_append) - done - hence "Sigma (rec_exec ?notrq) ((xs@[w])@[w]) = 0" - apply(rule_tac Sigma_0) - apply(auto simp: rec_exec.simps all_lemma - get_fstn_args_take nth_append h) - done - thus "UF.Sigma (rec_exec ?notrq) - (xs @ [w, w]) = 0" - by simp - next - fix x - assume h: "x \ w" "0 < rec_exec rf (xs @ [x])" - hence "\ ma. Max {y. y \ w \ 0 < rec_exec rf (xs @ [y])} = ma" - by auto - from this obtain ma where k1: - "Max {y. y \ w \ 0 < rec_exec rf (xs @ [y])} = ma" .. - hence k2: "ma \ w \ 0 < rec_exec rf (xs @ [ma])" - using h - apply(subgoal_tac - "Max {y. y \ w \ 0 < rec_exec rf (xs @ [y])} \ {y. y \ w \ 0 < rec_exec rf (xs @ [y])}") - apply(erule_tac CollectE, simp) - apply(rule_tac Max_in, auto) - done - hence k3: "\ k < ma. (rec_exec ?notrq (xs @ [w, k]) = 1)" - apply(auto simp: nth_append) - apply(subgoal_tac "primerec ?rf (Suc (length (xs @ [w, k]))) \ - primerec ?rt (length (xs @ [w, k]))") - apply(auto simp: rec_exec.simps all_lemma get_fstn_args_take nth_append) - using prrf - apply(case_tac i, auto) - apply(case_tac ia, auto simp: h nth_append) - done - have k4: "\ k \ ma. (rec_exec ?notrq (xs @ [w, k]) = 0)" - apply(auto) - apply(subgoal_tac "primerec ?rf (Suc (length (xs @ [w, k]))) \ - primerec ?rt (length (xs @ [w, k]))") - apply(auto simp: rec_exec.simps all_lemma get_fstn_args_take nth_append) - apply(subgoal_tac "x \ Max {y. y \ w \ 0 < rec_exec rf (xs @ [y])}", - simp add: k1) - apply(rule_tac Max_ge, auto) - using prrf - apply(case_tac i, auto) - apply(case_tac ia, auto simp: h nth_append) - done - from k3 k4 k1 have "Sigma (rec_exec ?notrq) ((xs @ [w]) @ [w]) = ma" - apply(rule_tac Sigma_max_point, simp, simp, simp add: k2) - done - from k1 and this show "Sigma (rec_exec ?notrq) (xs @ [w, w]) = - Max {y. y \ w \ 0 < rec_exec rf (xs @ [y])}" - by simp - qed -qed - -text {* - The correctness of @{text "rec_maxr"}. - *} -lemma Maxr_lemma: - assumes h: "primerec rf (Suc (length xs))" - shows "rec_exec (rec_maxr rf) (xs @ [w]) = - Maxr (\ args. 0 < rec_exec rf args) xs w" -proof - - from h have "arity rf = Suc (length xs)" - by auto - thus "?thesis" - proof(simp add: rec_exec.simps rec_maxr.simps nth_append get_fstn_args_take) - let ?rt = "(recf.id (Suc (Suc (length xs))) ((length xs)))" - let ?rf1 = "Cn (Suc (Suc (Suc (length xs)))) - rec_le [recf.id (Suc (Suc (Suc (length xs)))) - ((Suc (Suc (length xs)))), recf.id - (Suc (Suc (Suc (length xs)))) ((Suc (length xs)))]" - let ?rf2 = "Cn (Suc (Suc (Suc (length xs)))) rf - (get_fstn_args (Suc (Suc (Suc (length xs)))) - (length xs) @ - [recf.id (Suc (Suc (Suc (length xs)))) - ((Suc (Suc (length xs))))])" - let ?rf3 = "Cn (Suc (Suc (Suc (length xs)))) rec_not [?rf2]" - let ?rf = "Cn (Suc (Suc (Suc (length xs)))) rec_disj [?rf1, ?rf3]" - let ?rq = "rec_all ?rt ?rf" - let ?notrq = "Cn (Suc (Suc (length xs))) rec_not [?rq]" - have prt: "primerec ?rt (Suc (Suc (length xs)))" - by(auto intro: prime_id) - have prrf: "primerec ?rf (Suc (Suc (Suc (length xs))))" - apply(auto) - apply(case_tac i, auto) - apply(case_tac ia, auto intro: prime_id) - apply(simp add: h) - apply(simp add: nth_append, auto intro: prime_id) - done - from prt and prrf have prrq: "primerec ?rq - (Suc (Suc (length xs)))" - by(erule_tac primerec_all_iff, auto) - hence prnotrp: "primerec ?notrq (Suc (length ((xs @ [w]))))" - by(rule_tac prime_cn, auto) - have g1: "rec_exec (rec_sigma ?notrq) ((xs @ [w]) @ [w]) - = Maxr (\args. 0 < rec_exec rf args) xs w" - using prnotrp - using sigma_lemma - apply(simp only: sigma_lemma) - apply(rule_tac Sigma_Max_lemma) - apply(simp add: h) - done - thus "rec_exec (rec_sigma ?notrq) - (xs @ [w, w]) = - Maxr (\args. 0 < rec_exec rf args) xs w" - apply(simp) - done - qed -qed - -text {* - @{text "quo"} is the formal specification of division. - *} -fun quo :: "nat list \ nat" - where - "quo [x, y] = (let Rr = - (\ zs. ((zs ! (Suc 0) * zs ! (Suc (Suc 0)) - \ zs ! 0) \ zs ! Suc 0 \ (0::nat))) - in Maxr Rr [x, y] x)" - -declare quo.simps[simp del] - -text {* - The following lemmas shows more directly the menaing of @{text "quo"}: - *} -lemma [elim!]: "y > 0 \ quo [x, y] = x div y" -proof(simp add: quo.simps Maxr.simps, auto, - rule_tac Max_eqI, simp, auto) - fix xa ya - assume h: "y * ya \ x" "y > 0" - hence "(y * ya) div y \ x div y" - by(insert div_le_mono[of "y * ya" x y], simp) - from this and h show "ya \ x div y" by simp -next - fix xa - show "y * (x div y) \ x" - apply(subgoal_tac "y * (x div y) + x mod y = x") - apply(rule_tac k = "x mod y" in add_leD1, simp) - apply(simp) - done -qed - -lemma [intro]: "quo [x, 0] = 0" -by(simp add: quo.simps Maxr.simps) - -lemma quo_div: "quo [x, y] = x div y" -by(case_tac "y=0", auto) - -text {* - @{text "rec_noteq"} is the recursive function testing whether its - two arguments are not equal. - *} -definition rec_noteq:: "recf" - where - "rec_noteq = Cn (Suc (Suc 0)) rec_not [Cn (Suc (Suc 0)) - rec_eq [id (Suc (Suc 0)) (0), id (Suc (Suc 0)) - ((Suc 0))]]" - -text {* - The correctness of @{text "rec_noteq"}. - *} -lemma noteq_lemma: - "\ x y. rec_exec rec_noteq [x, y] = - (if x \ y then 1 else 0)" -by(simp add: rec_exec.simps rec_noteq_def) - -declare noteq_lemma[simp] - -text {* - @{text "rec_quo"} is the recursive function used to implement @{text "quo"} - *} -definition rec_quo :: "recf" - where - "rec_quo = (let rR = Cn (Suc (Suc (Suc 0))) rec_conj - [Cn (Suc (Suc (Suc 0))) rec_le - [Cn (Suc (Suc (Suc 0))) rec_mult - [id (Suc (Suc (Suc 0))) (Suc 0), - id (Suc (Suc (Suc 0))) ((Suc (Suc 0)))], - id (Suc (Suc (Suc 0))) (0)], - Cn (Suc (Suc (Suc 0))) rec_noteq - [id (Suc (Suc (Suc 0))) (Suc (0)), - Cn (Suc (Suc (Suc 0))) (constn 0) - [id (Suc (Suc (Suc 0))) (0)]]] - in Cn (Suc (Suc 0)) (rec_maxr rR)) [id (Suc (Suc 0)) - (0),id (Suc (Suc 0)) (Suc (0)), - id (Suc (Suc 0)) (0)]" - -lemma [intro]: "primerec rec_conj (Suc (Suc 0))" - apply(simp add: rec_conj_def) - apply(rule_tac prime_cn, auto)+ - apply(case_tac i, auto intro: prime_id) - done - -lemma [intro]: "primerec rec_noteq (Suc (Suc 0))" -apply(simp add: rec_noteq_def) -apply(rule_tac prime_cn, auto)+ -apply(case_tac i, auto intro: prime_id) -done - - -lemma quo_lemma1: "rec_exec rec_quo [x, y] = quo [x, y]" -proof(simp add: rec_exec.simps rec_quo_def) - let ?rR = "(Cn (Suc (Suc (Suc 0))) rec_conj - [Cn (Suc (Suc (Suc 0))) rec_le - [Cn (Suc (Suc (Suc 0))) rec_mult - [recf.id (Suc (Suc (Suc 0))) (Suc (0)), - recf.id (Suc (Suc (Suc 0))) (Suc (Suc (0)))], - recf.id (Suc (Suc (Suc 0))) (0)], - Cn (Suc (Suc (Suc 0))) rec_noteq - [recf.id (Suc (Suc (Suc 0))) - (Suc (0)), Cn (Suc (Suc (Suc 0))) (constn 0) - [recf.id (Suc (Suc (Suc 0))) (0)]]])" - have "rec_exec (rec_maxr ?rR) ([x, y]@ [ x]) = Maxr (\ args. 0 < rec_exec ?rR args) [x, y] x" - proof(rule_tac Maxr_lemma, simp) - show "primerec ?rR (Suc (Suc (Suc 0)))" - apply(auto) - apply(case_tac i, auto) - apply(case_tac [!] ia, auto) - apply(case_tac i, auto) - done - qed - hence g1: "rec_exec (rec_maxr ?rR) ([x, y, x]) = - Maxr (\ args. if rec_exec ?rR args = 0 then False - else True) [x, y] x" - by simp - have g2: "Maxr (\ args. if rec_exec ?rR args = 0 then False - else True) [x, y] x = quo [x, y]" - apply(simp add: rec_exec.simps) - apply(simp add: Maxr.simps quo.simps, auto) - done - from g1 and g2 show - "rec_exec (rec_maxr ?rR) ([x, y, x]) = quo [x, y]" - by simp -qed - -text {* - The correctness of @{text "quo"}. - *} -lemma quo_lemma2: "rec_exec rec_quo [x, y] = x div y" - using quo_lemma1[of x y] quo_div[of x y] - by simp - -text {* - @{text "rec_mod"} is the recursive function used to implement - the reminder function. - *} -definition rec_mod :: "recf" - where - "rec_mod = Cn (Suc (Suc 0)) rec_minus [id (Suc (Suc 0)) (0), - Cn (Suc (Suc 0)) rec_mult [rec_quo, id (Suc (Suc 0)) - (Suc (0))]]" - -text {* - The correctness of @{text "rec_mod"}: - *} -lemma mod_lemma: "\ x y. rec_exec rec_mod [x, y] = (x mod y)" -proof(simp add: rec_exec.simps rec_mod_def quo_lemma2) - fix x y - show "x - x div y * y = x mod (y::nat)" - using mod_div_equality2[of y x] - apply(subgoal_tac "y * (x div y) = (x div y ) * y", arith, simp) - done -qed - -text{* lemmas for embranch function*} -type_synonym ftype = "nat list \ nat" -type_synonym rtype = "nat list \ bool" - -text {* - The specifation of the mutli-way branching statement on - page 79 of Boolos's book. - *} -fun Embranch :: "(ftype * rtype) list \ nat list \ nat" - where - "Embranch [] xs = 0" | - "Embranch (gc # gcs) xs = ( - let (g, c) = gc in - if c xs then g xs else Embranch gcs xs)" - -fun rec_embranch' :: "(recf * recf) list \ nat \ recf" - where - "rec_embranch' [] vl = Cn vl z [id vl (vl - 1)]" | - "rec_embranch' ((rg, rc) # rgcs) vl = Cn vl rec_add - [Cn vl rec_mult [rg, rc], rec_embranch' rgcs vl]" - -text {* - @{text "rec_embrach"} is the recursive function used to implement - @{text "Embranch"}. - *} -fun rec_embranch :: "(recf * recf) list \ recf" - where - "rec_embranch ((rg, rc) # rgcs) = - (let vl = arity rg in - rec_embranch' ((rg, rc) # rgcs) vl)" - -declare Embranch.simps[simp del] rec_embranch.simps[simp del] - -lemma embranch_all0: - "\\ j < length rcs. rec_exec (rcs ! j) xs = 0; - length rgs = length rcs; - rcs \ []; - list_all (\ rf. primerec rf (length xs)) (rgs @ rcs)\ \ - rec_exec (rec_embranch (zip rgs rcs)) xs = 0" -proof(induct rcs arbitrary: rgs, simp, case_tac rgs, simp) - fix a rcs rgs aa list - assume ind: - "\rgs. \\j []; - list_all (\rf. primerec rf (length xs)) (rgs @ rcs)\ \ - rec_exec (rec_embranch (zip rgs rcs)) xs = 0" - and h: "\j []" - "list_all (\rf. primerec rf (length xs)) (rgs @ a # rcs)" - "rgs = aa # list" - have g: "rcs \ [] \ rec_exec (rec_embranch (zip list rcs)) xs = 0" - using h - by(rule_tac ind, auto) - show "rec_exec (rec_embranch (zip rgs (a # rcs))) xs = 0" - proof(case_tac "rcs = []", simp) - show "rec_exec (rec_embranch (zip rgs [a])) xs = 0" - using h - apply(simp add: rec_embranch.simps rec_exec.simps) - apply(erule_tac x = 0 in allE, simp) - done - next - assume "rcs \ []" - hence "rec_exec (rec_embranch (zip list rcs)) xs = 0" - using g by simp - thus "rec_exec (rec_embranch (zip rgs (a # rcs))) xs = 0" - using h - apply(simp add: rec_embranch.simps rec_exec.simps) - apply(case_tac rcs, - auto simp: rec_exec.simps rec_embranch.simps) - apply(case_tac list, - auto simp: rec_exec.simps rec_embranch.simps) - done - qed -qed - - -lemma embranch_exec_0: "\rec_exec aa xs = 0; zip rgs list \ []; - list_all (\ rf. primerec rf (length xs)) ([a, aa] @ rgs @ list)\ - \ rec_exec (rec_embranch ((a, aa) # zip rgs list)) xs - = rec_exec (rec_embranch (zip rgs list)) xs" -apply(simp add: rec_exec.simps rec_embranch.simps) -apply(case_tac "zip rgs list", simp, case_tac ab, - simp add: rec_embranch.simps rec_exec.simps) -apply(subgoal_tac "arity a = length xs", auto) -apply(subgoal_tac "arity aaa = length xs", auto) -apply(case_tac rgs, simp, case_tac list, simp, simp) -done - -lemma zip_null_iff: "\length xs = k; length ys = k; zip xs ys = []\ \ xs = [] \ ys = []" -apply(case_tac xs, simp, simp) -apply(case_tac ys, simp, simp) -done - -lemma zip_null_gr: "\length xs = k; length ys = k; zip xs ys \ []\ \ 0 < k" -apply(case_tac xs, simp, simp) -done - -lemma Embranch_0: - "\length rgs = k; length rcs = k; k > 0; - \ j < k. rec_exec (rcs ! j) xs = 0\ \ - Embranch (zip (map rec_exec rgs) (map (\r args. 0 < rec_exec r args) rcs)) xs = 0" -proof(induct rgs arbitrary: rcs k, simp, simp) - fix a rgs rcs k - assume ind: - "\rcs k. \length rgs = k; length rcs = k; 0 < k; \j - \ Embranch (zip (map rec_exec rgs) (map (\r args. 0 < rec_exec r args) rcs)) xs = 0" - and h: "Suc (length rgs) = k" "length rcs = k" - "\jr args. 0 < rec_exec r args) rcs)) xs = 0" - apply(case_tac rcs, simp, case_tac "rgs = []", simp) - apply(simp add: Embranch.simps) - apply(erule_tac x = 0 in allE, simp) - apply(simp add: Embranch.simps) - apply(erule_tac x = 0 in all_dupE, simp) - apply(rule_tac ind, simp, simp, simp, auto) - apply(erule_tac x = "Suc j" in allE, simp) - done -qed - -text {* - The correctness of @{text "rec_embranch"}. - *} -lemma embranch_lemma: - assumes branch_num: - "length rgs = n" "length rcs = n" "n > 0" - and partition: - "(\ i < n. (rec_exec (rcs ! i) xs = 1 \ (\ j < n. j \ i \ - rec_exec (rcs ! j) xs = 0)))" - and prime_all: "list_all (\ rf. primerec rf (length xs)) (rgs @ rcs)" - shows "rec_exec (rec_embranch (zip rgs rcs)) xs = - Embranch (zip (map rec_exec rgs) - (map (\ r args. 0 < rec_exec r args) rcs)) xs" - using branch_num partition prime_all -proof(induct rgs arbitrary: rcs n, simp) - fix a rgs rcs n - assume ind: - "\rcs n. \length rgs = n; length rcs = n; 0 < n; - \i (\j i \ rec_exec (rcs ! j) xs = 0); - list_all (\rf. primerec rf (length xs)) (rgs @ rcs)\ - \ rec_exec (rec_embranch (zip rgs rcs)) xs = - Embranch (zip (map rec_exec rgs) (map (\r args. 0 < rec_exec r args) rcs)) xs" - and h: "length (a # rgs) = n" "length (rcs::recf list) = n" "0 < n" - " \i - (\j i \ rec_exec (rcs ! j) xs = 0)" - "list_all (\rf. primerec rf (length xs)) ((a # rgs) @ rcs)" - from h show "rec_exec (rec_embranch (zip (a # rgs) rcs)) xs = - Embranch (zip (map rec_exec (a # rgs)) (map (\r args. - 0 < rec_exec r args) rcs)) xs" - apply(case_tac rcs, simp, simp) - apply(case_tac "rec_exec aa xs = 0") - apply(case_tac [!] "zip rgs list = []", simp) - apply(subgoal_tac "rgs = [] \ list = []", simp add: Embranch.simps rec_exec.simps rec_embranch.simps) - apply(rule_tac zip_null_iff, simp, simp, simp) - proof - - fix aa list - assume g: - "Suc (length rgs) = n" "Suc (length list) = n" - "\i - (\j i \ rec_exec ((aa # list) ! j) xs = 0)" - "primerec a (length xs) \ - list_all (\rf. primerec rf (length xs)) rgs \ - primerec aa (length xs) \ - list_all (\rf. primerec rf (length xs)) list" - "rec_exec aa xs = 0" "rcs = aa # list" "zip rgs list \ []" - have "rec_exec (rec_embranch ((a, aa) # zip rgs list)) xs - = rec_exec (rec_embranch (zip rgs list)) xs" - apply(rule embranch_exec_0, simp_all add: g) - done - from g and this show "rec_exec (rec_embranch ((a, aa) # zip rgs list)) xs = - Embranch ((rec_exec a, \args. 0 < rec_exec aa args) # - zip (map rec_exec rgs) (map (\r args. 0 < rec_exec r args) list)) xs" - apply(simp add: Embranch.simps) - apply(rule_tac n = "n - Suc 0" in ind) - apply(case_tac n, simp, simp) - apply(case_tac n, simp, simp) - apply(case_tac n, simp, simp add: zip_null_gr ) - apply(auto) - apply(case_tac i, simp, simp) - apply(rule_tac x = nat in exI, simp) - apply(rule_tac allI, erule_tac x = "Suc j" in allE, simp) - done - next - fix aa list - assume g: "Suc (length rgs) = n" "Suc (length list) = n" - "\i - (\j i \ rec_exec ((aa # list) ! j) xs = 0)" - "primerec a (length xs) \ list_all (\rf. primerec rf (length xs)) rgs \ - primerec aa (length xs) \ list_all (\rf. primerec rf (length xs)) list" - "rcs = aa # list" "rec_exec aa xs \ 0" "zip rgs list = []" - thus "rec_exec (rec_embranch ((a, aa) # zip rgs list)) xs = - Embranch ((rec_exec a, \args. 0 < rec_exec aa args) # - zip (map rec_exec rgs) (map (\r args. 0 < rec_exec r args) list)) xs" - apply(subgoal_tac "rgs = [] \ list = []", simp) - prefer 2 - apply(rule_tac zip_null_iff, simp, simp, simp) - apply(simp add: rec_exec.simps rec_embranch.simps Embranch.simps, auto) - done - next - fix aa list - assume g: "Suc (length rgs) = n" "Suc (length list) = n" - "\i - (\j i \ rec_exec ((aa # list) ! j) xs = 0)" - "primerec a (length xs) \ list_all (\rf. primerec rf (length xs)) rgs - \ primerec aa (length xs) \ list_all (\rf. primerec rf (length xs)) list" - "rcs = aa # list" "rec_exec aa xs \ 0" "zip rgs list \ []" - have "rec_exec aa xs = Suc 0" - using g - apply(case_tac "rec_exec aa xs", simp, auto) - done - moreover have "rec_exec (rec_embranch' (zip rgs list) (length xs)) xs = 0" - proof - - have "rec_embranch' (zip rgs list) (length xs) = rec_embranch (zip rgs list)" - using g - apply(case_tac "zip rgs list", simp, case_tac ab) - apply(simp add: rec_embranch.simps) - apply(subgoal_tac "arity aaa = length xs", simp, auto) - apply(case_tac rgs, simp, simp, case_tac list, simp, simp) - done - moreover have "rec_exec (rec_embranch (zip rgs list)) xs = 0" - proof(rule embranch_all0) - show " \j []" - using g - apply(case_tac list, simp, simp) - done - next - show "list_all (\rf. primerec rf (length xs)) (rgs @ list)" - using g - apply auto - done - qed - ultimately show "rec_exec (rec_embranch' (zip rgs list) (length xs)) xs = 0" - by simp - qed - moreover have - "Embranch (zip (map rec_exec rgs) - (map (\r args. 0 < rec_exec r args) list)) xs = 0" - using g - apply(rule_tac k = "length rgs" in Embranch_0) - apply(simp, case_tac n, simp, simp) - apply(case_tac rgs, simp, simp) - apply(auto) - apply(case_tac i, simp) - apply(erule_tac x = "Suc j" in allE, simp) - apply(simp) - apply(rule_tac x = 0 in allE, auto) - done - moreover have "arity a = length xs" - using g - apply(auto) - done - ultimately show "rec_exec (rec_embranch ((a, aa) # zip rgs list)) xs = - Embranch ((rec_exec a, \args. 0 < rec_exec aa args) # - zip (map rec_exec rgs) (map (\r args. 0 < rec_exec r args) list)) xs" - apply(simp add: rec_exec.simps rec_embranch.simps Embranch.simps) - done - qed -qed - -text{* - @{text "prime n"} means @{text "n"} is a prime number. -*} -fun Prime :: "nat \ bool" - where - "Prime x = (1 < x \ (\ u < x. (\ v < x. u * v \ x)))" - -declare Prime.simps [simp del] - -lemma primerec_all1: - "primerec (rec_all rt rf) n \ primerec rt n" - by (simp add: primerec_all) - -lemma primerec_all2: "primerec (rec_all rt rf) n \ - primerec rf (Suc n)" -by(insert primerec_all[of rt rf n], simp) - -text {* - @{text "rec_prime"} is the recursive function used to implement - @{text "Prime"}. - *} -definition rec_prime :: "recf" - where - "rec_prime = Cn (Suc 0) rec_conj - [Cn (Suc 0) rec_less [constn 1, id (Suc 0) (0)], - rec_all (Cn 1 rec_minus [id 1 0, constn 1]) - (rec_all (Cn 2 rec_minus [id 2 0, Cn 2 (constn 1) - [id 2 0]]) (Cn 3 rec_noteq - [Cn 3 rec_mult [id 3 1, id 3 2], id 3 0]))]" - -declare numeral_2_eq_2[simp del] numeral_3_eq_3[simp del] - -lemma exec_tmp: - "rec_exec (rec_all (Cn 2 rec_minus [recf.id 2 0, Cn 2 (constn (Suc 0)) [recf.id 2 0]]) - (Cn 3 rec_noteq [Cn 3 rec_mult [recf.id 3 (Suc 0), recf.id 3 2], recf.id 3 0])) [x, k] = - ((if (\w\rec_exec (Cn 2 rec_minus [recf.id 2 0, Cn 2 (constn (Suc 0)) [recf.id 2 0]]) ([x, k]). - 0 < rec_exec (Cn 3 rec_noteq [Cn 3 rec_mult [recf.id 3 (Suc 0), recf.id 3 2], recf.id 3 0]) - ([x, k] @ [w])) then 1 else 0))" -apply(rule_tac all_lemma) -apply(auto) -apply(case_tac [!] i, auto) -apply(case_tac ia, auto simp: numeral_3_eq_3 numeral_2_eq_2) -done - -text {* - The correctness of @{text "Prime"}. - *} -lemma prime_lemma: "rec_exec rec_prime [x] = (if Prime x then 1 else 0)" -proof(simp add: rec_exec.simps rec_prime_def) - let ?rt1 = "(Cn 2 rec_minus [recf.id 2 0, - Cn 2 (constn (Suc 0)) [recf.id 2 0]])" - let ?rf1 = "(Cn 3 rec_noteq [Cn 3 rec_mult - [recf.id 3 (Suc 0), recf.id 3 2], recf.id 3 (0)])" - let ?rt2 = "(Cn (Suc 0) rec_minus - [recf.id (Suc 0) 0, constn (Suc 0)])" - let ?rf2 = "rec_all ?rt1 ?rf1" - have h1: "rec_exec (rec_all ?rt2 ?rf2) ([x]) = - (if (\k\rec_exec ?rt2 ([x]). 0 < rec_exec ?rf2 ([x] @ [k])) then 1 else 0)" - proof(rule_tac all_lemma, simp_all) - show "primerec ?rf2 (Suc (Suc 0))" - apply(rule_tac primerec_all_iff) - apply(auto) - apply(case_tac [!] i, auto simp: numeral_2_eq_2) - apply(case_tac ia, auto simp: numeral_3_eq_3) - done - next - show "primerec (Cn (Suc 0) rec_minus - [recf.id (Suc 0) 0, constn (Suc 0)]) (Suc 0)" - apply(auto) - apply(case_tac i, auto) - done - qed - from h1 show - "(Suc 0 < x \ (rec_exec (rec_all ?rt2 ?rf2) [x] = 0 \ - \ Prime x) \ - (0 < rec_exec (rec_all ?rt2 ?rf2) [x] \ Prime x)) \ - (\ Suc 0 < x \ \ Prime x \ (rec_exec (rec_all ?rt2 ?rf2) [x] = 0 - \ \ Prime x))" - apply(auto simp:rec_exec.simps) - apply(simp add: exec_tmp rec_exec.simps) - proof - - assume "\k\x - Suc 0. (0::nat) < (if \w\x - Suc 0. - 0 < (if k * w \ x then 1 else (0 :: nat)) then 1 else 0)" "Suc 0 < x" - thus "Prime x" - apply(simp add: rec_exec.simps split: if_splits) - apply(simp add: Prime.simps, auto) - apply(erule_tac x = u in allE, auto) - apply(case_tac u, simp, case_tac nat, simp, simp) - apply(case_tac v, simp, case_tac nat, simp, simp) - done - next - assume "\ Suc 0 < x" "Prime x" - thus "False" - apply(simp add: Prime.simps) - done - next - fix k - assume "rec_exec (rec_all ?rt1 ?rf1) - [x, k] = 0" "k \ x - Suc 0" "Prime x" - thus "False" - apply(simp add: exec_tmp rec_exec.simps Prime.simps split: if_splits) - done - next - fix k - assume "rec_exec (rec_all ?rt1 ?rf1) - [x, k] = 0" "k \ x - Suc 0" "Prime x" - thus "False" - apply(simp add: exec_tmp rec_exec.simps Prime.simps split: if_splits) - done - qed -qed - -definition rec_dummyfac :: "recf" - where - "rec_dummyfac = Pr 1 (constn 1) - (Cn 3 rec_mult [id 3 2, Cn 3 s [id 3 1]])" - -text {* - The recursive function used to implment factorization. - *} -definition rec_fac :: "recf" - where - "rec_fac = Cn 1 rec_dummyfac [id 1 0, id 1 0]" - -text {* - Formal specification of factorization. - *} -fun fac :: "nat \ nat" ("_!" [100] 99) - where - "fac 0 = 1" | - "fac (Suc x) = (Suc x) * fac x" - -lemma [simp]: "rec_exec rec_dummyfac [0, 0] = Suc 0" -by(simp add: rec_dummyfac_def rec_exec.simps) - -lemma rec_cn_simp: "rec_exec (Cn n f gs) xs = - (let rgs = map (\ g. rec_exec g xs) gs in - rec_exec f rgs)" -by(simp add: rec_exec.simps) - -lemma rec_id_simp: "rec_exec (id m n) xs = xs ! n" - by(simp add: rec_exec.simps) - -lemma fac_dummy: "rec_exec rec_dummyfac [x, y] = y !" -apply(induct y) -apply(auto simp: rec_dummyfac_def rec_exec.simps) -done - -text {* - The correctness of @{text "rec_fac"}. - *} -lemma fac_lemma: "rec_exec rec_fac [x] = x!" -apply(simp add: rec_fac_def rec_exec.simps fac_dummy) -done - -declare fac.simps[simp del] - -text {* - @{text "Np x"} returns the first prime number after @{text "x"}. - *} -fun Np ::"nat \ nat" - where - "Np x = Min {y. y \ Suc (x!) \ x < y \ Prime y}" - -declare Np.simps[simp del] rec_Minr.simps[simp del] - -text {* - @{text "rec_np"} is the recursive function used to implement - @{text "Np"}. - *} -definition rec_np :: "recf" - where - "rec_np = (let Rr = Cn 2 rec_conj [Cn 2 rec_less [id 2 0, id 2 1], - Cn 2 rec_prime [id 2 1]] - in Cn 1 (rec_Minr Rr) [id 1 0, Cn 1 s [rec_fac]])" - -lemma [simp]: "n < Suc (n!)" -apply(induct n, simp) -apply(simp add: fac.simps) -apply(case_tac n, auto simp: fac.simps) -done - -lemma divsor_ex: -"\\ Prime x; x > Suc 0\ \ (\ u > Suc 0. (\ v > Suc 0. u * v = x))" - by(auto simp: Prime.simps) - -lemma divsor_prime_ex: "\\ Prime x; x > Suc 0\ \ - \ p. Prime p \ p dvd x" -apply(induct x rule: wf_induct[where r = "measure (\ y. y)"], simp) -apply(drule_tac divsor_ex, simp, auto) -apply(erule_tac x = u in allE, simp) -apply(case_tac "Prime u", simp) -apply(rule_tac x = u in exI, simp, auto) -done - -lemma [intro]: "0 < n!" -apply(induct n) -apply(auto simp: fac.simps) -done - -lemma fac_Suc: "Suc n! = (Suc n) * (n!)" by(simp add: fac.simps) - -lemma fac_dvd: "\0 < q; q \ n\ \ q dvd n!" -apply(induct n, simp) -apply(case_tac "q \ n", simp add: fac_Suc) -apply(subgoal_tac "q = Suc n", simp only: fac_Suc) -apply(rule_tac dvd_mult2, simp, simp) -done - -lemma fac_dvd2: "\Suc 0 < q; q dvd n!; q \ n\ \ \ q dvd Suc (n!)" -proof(auto simp: dvd_def) - fix k ka - assume h1: "Suc 0 < q" "q \ n" - and h2: "Suc (q * k) = q * ka" - have "k < ka" - proof - - have "q * k < q * ka" - using h2 by arith - thus "k < ka" - using h1 - by(auto) - qed - hence "\d. d > 0 \ ka = d + k" - by(rule_tac x = "ka - k" in exI, simp) - from this obtain d where "d > 0 \ ka = d + k" .. - from h2 and this and h1 show "False" - by(simp add: add_mult_distrib2) -qed - -lemma prime_ex: "\ p. n < p \ p \ Suc (n!) \ Prime p" -proof(cases "Prime (n! + 1)") - case True thus "?thesis" - by(rule_tac x = "Suc (n!)" in exI, simp) -next - assume h: "\ Prime (n! + 1)" - hence "\ p. Prime p \ p dvd (n! + 1)" - by(erule_tac divsor_prime_ex, auto) - from this obtain q where k: "Prime q \ q dvd (n! + 1)" .. - thus "?thesis" - proof(cases "q > n") - case True thus "?thesis" - using k - apply(rule_tac x = q in exI, auto) - apply(rule_tac dvd_imp_le, auto) - done - next - case False thus "?thesis" - proof - - assume g: "\ n < q" - have j: "q > Suc 0" - using k by(case_tac q, auto simp: Prime.simps) - hence "q dvd n!" - using g - apply(rule_tac fac_dvd, auto) - done - hence "\ q dvd Suc (n!)" - using g j - by(rule_tac fac_dvd2, auto) - thus "?thesis" - using k by simp - qed - qed -qed - -lemma Suc_Suc_induct[elim!]: "\i < Suc (Suc 0); - primerec (ys ! 0) n; primerec (ys ! 1) n\ \ primerec (ys ! i) n" -by(case_tac i, auto) - -lemma [intro]: "primerec rec_prime (Suc 0)" -apply(auto simp: rec_prime_def, auto) -apply(rule_tac primerec_all_iff, auto, auto) -apply(rule_tac primerec_all_iff, auto, auto simp: - numeral_2_eq_2 numeral_3_eq_3) -done - -text {* - The correctness of @{text "rec_np"}. - *} -lemma np_lemma: "rec_exec rec_np [x] = Np x" -proof(auto simp: rec_np_def rec_exec.simps Let_def fac_lemma) - let ?rr = "(Cn 2 rec_conj [Cn 2 rec_less [recf.id 2 0, - recf.id 2 (Suc 0)], Cn 2 rec_prime [recf.id 2 (Suc 0)]])" - let ?R = "\ zs. zs ! 0 < zs ! 1 \ Prime (zs ! 1)" - have g1: "rec_exec (rec_Minr ?rr) ([x] @ [Suc (x!)]) = - Minr (\ args. 0 < rec_exec ?rr args) [x] (Suc (x!))" - by(rule_tac Minr_lemma, auto simp: rec_exec.simps - prime_lemma, auto simp: numeral_2_eq_2 numeral_3_eq_3) - have g2: "Minr (\ args. 0 < rec_exec ?rr args) [x] (Suc (x!)) = Np x" - using prime_ex[of x] - apply(auto simp: Minr.simps Np.simps rec_exec.simps) - apply(erule_tac x = p in allE, simp add: prime_lemma) - apply(simp add: prime_lemma split: if_splits) - apply(subgoal_tac - "{uu. (Prime uu \ (x < uu \ uu \ Suc (x!)) \ x < uu) \ Prime uu} - = {y. y \ Suc (x!) \ x < y \ Prime y}", auto) - done - from g1 and g2 show "rec_exec (rec_Minr ?rr) ([x, Suc (x!)]) = Np x" - by simp -qed - -text {* - @{text "rec_power"} is the recursive function used to implement - power function. - *} -definition rec_power :: "recf" - where - "rec_power = Pr 1 (constn 1) (Cn 3 rec_mult [id 3 0, id 3 2])" - -text {* - The correctness of @{text "rec_power"}. - *} -lemma power_lemma: "rec_exec rec_power [x, y] = x^y" - by(induct y, auto simp: rec_exec.simps rec_power_def) - -text{* - @{text "Pi k"} returns the @{text "k"}-th prime number. - *} -fun Pi :: "nat \ nat" - where - "Pi 0 = 2" | - "Pi (Suc x) = Np (Pi x)" - -definition rec_dummy_pi :: "recf" - where - "rec_dummy_pi = Pr 1 (constn 2) (Cn 3 rec_np [id 3 2])" - -text {* - @{text "rec_pi"} is the recursive function used to implement - @{text "Pi"}. - *} -definition rec_pi :: "recf" - where - "rec_pi = Cn 1 rec_dummy_pi [id 1 0, id 1 0]" - -lemma pi_dummy_lemma: "rec_exec rec_dummy_pi [x, y] = Pi y" -apply(induct y) -by(auto simp: rec_exec.simps rec_dummy_pi_def Pi.simps np_lemma) - -text {* - The correctness of @{text "rec_pi"}. - *} -lemma pi_lemma: "rec_exec rec_pi [x] = Pi x" -apply(simp add: rec_pi_def rec_exec.simps pi_dummy_lemma) -done - -fun loR :: "nat list \ bool" - where - "loR [x, y, u] = (x mod (y^u) = 0)" - -declare loR.simps[simp del] - -text {* - @{text "Lo"} specifies the @{text "lo"} function given on page 79 of - Boolos's book. It is one of the two notions of integeral logarithmatic - operation on that page. The other is @{text "lg"}. - *} -fun lo :: " nat \ nat \ nat" - where - "lo x y = (if x > 1 \ y > 1 \ {u. loR [x, y, u]} \ {} then Max {u. loR [x, y, u]} - else 0)" - -declare lo.simps[simp del] - -lemma [elim]: "primerec rf n \ n > 0" -apply(induct rule: primerec.induct, auto) -done - -lemma primerec_sigma[intro!]: - "\n > Suc 0; primerec rf n\ \ - primerec (rec_sigma rf) n" -apply(simp add: rec_sigma.simps) -apply(auto, auto simp: nth_append) -done - -lemma [intro!]: "\primerec rf n; n > 0\ \ primerec (rec_maxr rf) n" -apply(simp add: rec_maxr.simps) -apply(rule_tac prime_cn, auto) -apply(rule_tac primerec_all_iff, auto, auto simp: nth_append) -done - -lemma Suc_Suc_Suc_induct[elim!]: - "\i < Suc (Suc (Suc (0::nat))); primerec (ys ! 0) n; - primerec (ys ! 1) n; - primerec (ys ! 2) n\ \ primerec (ys ! i) n" -apply(case_tac i, auto, case_tac nat, simp, simp add: numeral_2_eq_2) -done - -lemma [intro]: "primerec rec_quo (Suc (Suc 0))" -apply(simp add: rec_quo_def) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}] 1*}, auto+)+ -done - -lemma [intro]: "primerec rec_mod (Suc (Suc 0))" -apply(simp add: rec_mod_def) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}] 1*}, auto+)+ -done - -lemma [intro]: "primerec rec_power (Suc (Suc 0))" -apply(simp add: rec_power_def numeral_2_eq_2 numeral_3_eq_3) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+ -done - -text {* - @{text "rec_lo"} is the recursive function used to implement @{text "Lo"}. -*} -definition rec_lo :: "recf" - where - "rec_lo = (let rR = Cn 3 rec_eq [Cn 3 rec_mod [id 3 0, - Cn 3 rec_power [id 3 1, id 3 2]], - Cn 3 (constn 0) [id 3 1]] in - let rb = Cn 2 (rec_maxr rR) [id 2 0, id 2 1, id 2 0] in - let rcond = Cn 2 rec_conj [Cn 2 rec_less [Cn 2 (constn 1) - [id 2 0], id 2 0], - Cn 2 rec_less [Cn 2 (constn 1) - [id 2 0], id 2 1]] in - let rcond2 = Cn 2 rec_minus - [Cn 2 (constn 1) [id 2 0], rcond] - in Cn 2 rec_add [Cn 2 rec_mult [rb, rcond], - Cn 2 rec_mult [Cn 2 (constn 0) [id 2 0], rcond2]])" - -lemma rec_lo_Maxr_lor: - "\Suc 0 < x; Suc 0 < y\ \ - rec_exec rec_lo [x, y] = Maxr loR [x, y] x" -proof(auto simp: rec_exec.simps rec_lo_def Let_def - numeral_2_eq_2 numeral_3_eq_3) - let ?rR = "(Cn (Suc (Suc (Suc 0))) rec_eq - [Cn (Suc (Suc (Suc 0))) rec_mod [recf.id (Suc (Suc (Suc 0))) 0, - Cn (Suc (Suc (Suc 0))) rec_power [recf.id (Suc (Suc (Suc 0))) - (Suc 0), recf.id (Suc (Suc (Suc 0))) (Suc (Suc 0))]], - Cn (Suc (Suc (Suc 0))) (constn 0) [recf.id (Suc (Suc (Suc 0))) (Suc 0)]])" - have h: "rec_exec (rec_maxr ?rR) ([x, y] @ [x]) = - Maxr (\ args. 0 < rec_exec ?rR args) [x, y] x" - by(rule_tac Maxr_lemma, auto simp: rec_exec.simps - mod_lemma power_lemma, auto simp: numeral_2_eq_2 numeral_3_eq_3) - have "Maxr loR [x, y] x = Maxr (\ args. 0 < rec_exec ?rR args) [x, y] x" - apply(simp add: rec_exec.simps mod_lemma power_lemma) - apply(simp add: Maxr.simps loR.simps) - done - from h and this show "rec_exec (rec_maxr ?rR) [x, y, x] = - Maxr loR [x, y] x" - apply(simp) - done -qed - -lemma [simp]: "Max {ya. ya = 0 \ loR [0, y, ya]} = 0" -apply(rule_tac Max_eqI, auto simp: loR.simps) -done - -lemma [simp]: "Suc 0 < y \ Suc (Suc 0) < y * y" -apply(induct y, simp) -apply(case_tac y, simp, simp) -done - -lemma less_mult: "\x > 0; y > Suc 0\ \ x < y * x" -apply(case_tac y, simp, simp) -done - -lemma x_less_exp: "\y > Suc 0\ \ x < y^x" -apply(induct x, simp, simp) -apply(case_tac x, simp, auto) -apply(rule_tac y = "y* y^nat" in le_less_trans, simp) -apply(rule_tac less_mult, auto) -done - -lemma le_mult: "y \ (0::nat) \ x \ x * y" - by(induct y, simp, simp) - -lemma uplimit_loR: "\Suc 0 < x; Suc 0 < y; loR [x, y, xa]\ \ - xa \ x" -apply(simp add: loR.simps) -apply(rule_tac classical, auto) -apply(subgoal_tac "xa < y^xa") -apply(subgoal_tac "y^xa \ y^xa * q", simp) -apply(rule_tac le_mult, case_tac q, simp, simp) -apply(rule_tac x_less_exp, simp) -done - -lemma [simp]: "\xa \ x; loR [x, y, xa]; Suc 0 < x; Suc 0 < y\ \ - {u. loR [x, y, u]} = {ya. ya \ x \ loR [x, y, ya]}" -apply(rule_tac Collect_cong, auto) -apply(erule_tac uplimit_loR, simp, simp) -done - -lemma Maxr_lo: "\Suc 0 < x; Suc 0 < y\ \ - Maxr loR [x, y] x = lo x y" -apply(simp add: Maxr.simps lo.simps, auto) -apply(erule_tac x = xa in allE, simp, simp add: uplimit_loR) -done - -lemma lo_lemma': "\Suc 0 < x; Suc 0 < y\ \ - rec_exec rec_lo [x, y] = lo x y" -by(simp add: Maxr_lo rec_lo_Maxr_lor) - -lemma lo_lemma'': "\\ Suc 0 < x\ \ rec_exec rec_lo [x, y] = lo x y" -apply(case_tac x, auto simp: rec_exec.simps rec_lo_def - Let_def lo.simps) -done - -lemma lo_lemma''': "\\ Suc 0 < y\ \ rec_exec rec_lo [x, y] = lo x y" -apply(case_tac y, auto simp: rec_exec.simps rec_lo_def - Let_def lo.simps) -done - -text {* - The correctness of @{text "rec_lo"}: -*} -lemma lo_lemma: "rec_exec rec_lo [x, y] = lo x y" -apply(case_tac "Suc 0 < x \ Suc 0 < y") -apply(auto simp: lo_lemma' lo_lemma'' lo_lemma''') -done - -fun lgR :: "nat list \ bool" - where - "lgR [x, y, u] = (y^u \ x)" - -text {* - @{text "lg"} specifies the @{text "lg"} function given on page 79 of - Boolos's book. It is one of the two notions of integeral logarithmatic - operation on that page. The other is @{text "lo"}. - *} -fun lg :: "nat \ nat \ nat" - where - "lg x y = (if x > 1 \ y > 1 \ {u. lgR [x, y, u]} \ {} then - Max {u. lgR [x, y, u]} - else 0)" - -declare lg.simps[simp del] lgR.simps[simp del] - -text {* - @{text "rec_lg"} is the recursive function used to implement @{text "lg"}. - *} -definition rec_lg :: "recf" - where - "rec_lg = (let rec_lgR = Cn 3 rec_le - [Cn 3 rec_power [id 3 1, id 3 2], id 3 0] in - let conR1 = Cn 2 rec_conj [Cn 2 rec_less - [Cn 2 (constn 1) [id 2 0], id 2 0], - Cn 2 rec_less [Cn 2 (constn 1) - [id 2 0], id 2 1]] in - let conR2 = Cn 2 rec_not [conR1] in - Cn 2 rec_add [Cn 2 rec_mult - [conR1, Cn 2 (rec_maxr rec_lgR) - [id 2 0, id 2 1, id 2 0]], - Cn 2 rec_mult [conR2, Cn 2 (constn 0) - [id 2 0]]])" - -lemma lg_maxr: "\Suc 0 < x; Suc 0 < y\ \ - rec_exec rec_lg [x, y] = Maxr lgR [x, y] x" -proof(simp add: rec_exec.simps rec_lg_def Let_def) - assume h: "Suc 0 < x" "Suc 0 < y" - let ?rR = "(Cn 3 rec_le [Cn 3 rec_power - [recf.id 3 (Suc 0), recf.id 3 2], recf.id 3 0])" - have "rec_exec (rec_maxr ?rR) ([x, y] @ [x]) - = Maxr ((\ args. 0 < rec_exec ?rR args)) [x, y] x" - proof(rule Maxr_lemma) - show "primerec (Cn 3 rec_le [Cn 3 rec_power - [recf.id 3 (Suc 0), recf.id 3 2], recf.id 3 0]) (Suc (length [x, y]))" - apply(auto simp: numeral_3_eq_3)+ - done - qed - moreover have "Maxr lgR [x, y] x = Maxr ((\ args. 0 < rec_exec ?rR args)) [x, y] x" - apply(simp add: rec_exec.simps power_lemma) - apply(simp add: Maxr.simps lgR.simps) - done - ultimately show "rec_exec (rec_maxr ?rR) [x, y, x] = Maxr lgR [x, y] x" - by simp -qed - -lemma [simp]: "\Suc 0 < y; lgR [x, y, xa]\ \ xa \ x" -apply(simp add: lgR.simps) -apply(subgoal_tac "y^xa > xa", simp) -apply(erule x_less_exp) -done - -lemma [simp]: "\Suc 0 < x; Suc 0 < y; lgR [x, y, xa]\ \ - {u. lgR [x, y, u]} = {ya. ya \ x \ lgR [x, y, ya]}" -apply(rule_tac Collect_cong, auto) -done - -lemma maxr_lg: "\Suc 0 < x; Suc 0 < y\ \ Maxr lgR [x, y] x = lg x y" -apply(simp add: lg.simps Maxr.simps, auto) -apply(erule_tac x = xa in allE, simp) -done - -lemma lg_lemma': "\Suc 0 < x; Suc 0 < y\ \ rec_exec rec_lg [x, y] = lg x y" -apply(simp add: maxr_lg lg_maxr) -done - -lemma lg_lemma'': "\ Suc 0 < x \ rec_exec rec_lg [x, y] = lg x y" -apply(simp add: rec_exec.simps rec_lg_def Let_def lg.simps) -done - -lemma lg_lemma''': "\ Suc 0 < y \ rec_exec rec_lg [x, y] = lg x y" -apply(simp add: rec_exec.simps rec_lg_def Let_def lg.simps) -done - -text {* - The correctness of @{text "rec_lg"}. - *} -lemma lg_lemma: "rec_exec rec_lg [x, y] = lg x y" -apply(case_tac "Suc 0 < x \ Suc 0 < y", auto simp: - lg_lemma' lg_lemma'' lg_lemma''') -done - -text {* - @{text "Entry sr i"} returns the @{text "i"}-th entry of a list of natural - numbers encoded by number @{text "sr"} using Godel's coding. - *} -fun Entry :: "nat \ nat \ nat" - where - "Entry sr i = lo sr (Pi (Suc i))" - -text {* - @{text "rec_entry"} is the recursive function used to implement - @{text "Entry"}. - *} -definition rec_entry:: "recf" - where - "rec_entry = Cn 2 rec_lo [id 2 0, Cn 2 rec_pi [Cn 2 s [id 2 1]]]" - -declare Pi.simps[simp del] - -text {* - The correctness of @{text "rec_entry"}. - *} -lemma entry_lemma: "rec_exec rec_entry [str, i] = Entry str i" - by(simp add: rec_entry_def rec_exec.simps lo_lemma pi_lemma) - - -subsection {* The construction of F *} - -text {* - Using the auxilliary functions obtained in last section, - we are going to contruct the function @{text "F"}, - which is an interpreter of Turing Machines. - *} - -fun listsum2 :: "nat list \ nat \ nat" - where - "listsum2 xs 0 = 0" -| "listsum2 xs (Suc n) = listsum2 xs n + xs ! n" - -fun rec_listsum2 :: "nat \ nat \ recf" - where - "rec_listsum2 vl 0 = Cn vl z [id vl 0]" -| "rec_listsum2 vl (Suc n) = Cn vl rec_add - [rec_listsum2 vl n, id vl (n)]" - -declare listsum2.simps[simp del] rec_listsum2.simps[simp del] - -lemma listsum2_lemma: "\length xs = vl; n \ vl\ \ - rec_exec (rec_listsum2 vl n) xs = listsum2 xs n" -apply(induct n, simp_all) -apply(simp_all add: rec_exec.simps rec_listsum2.simps listsum2.simps) -done - -fun strt' :: "nat list \ nat \ nat" - where - "strt' xs 0 = 0" -| "strt' xs (Suc n) = (let dbound = listsum2 xs n + n in - strt' xs n + (2^(xs ! n + dbound) - 2^dbound))" - -fun rec_strt' :: "nat \ nat \ recf" - where - "rec_strt' vl 0 = Cn vl z [id vl 0]" -| "rec_strt' vl (Suc n) = (let rec_dbound = - Cn vl rec_add [rec_listsum2 vl n, Cn vl (constn n) [id vl 0]] - in Cn vl rec_add [rec_strt' vl n, Cn vl rec_minus - [Cn vl rec_power [Cn vl (constn 2) [id vl 0], Cn vl rec_add - [id vl (n), rec_dbound]], - Cn vl rec_power [Cn vl (constn 2) [id vl 0], rec_dbound]]])" - -declare strt'.simps[simp del] rec_strt'.simps[simp del] - -lemma strt'_lemma: "\length xs = vl; n \ vl\ \ - rec_exec (rec_strt' vl n) xs = strt' xs n" -apply(induct n) -apply(simp_all add: rec_exec.simps rec_strt'.simps strt'.simps - Let_def power_lemma listsum2_lemma) -done - -text {* - @{text "strt"} corresponds to the @{text "strt"} function on page 90 of B book, but - this definition generalises the original one to deal with multiple input arguments. - *} -fun strt :: "nat list \ nat" - where - "strt xs = (let ys = map Suc xs in - strt' ys (length ys))" - -fun rec_map :: "recf \ nat \ recf list" - where - "rec_map rf vl = map (\ i. Cn vl rf [id vl (i)]) [0.. recf" - where - "rec_strt vl = Cn vl (rec_strt' vl vl) (rec_map s vl)" - -lemma map_s_lemma: "length xs = vl \ - map ((\a. rec_exec a xs) \ (\i. Cn vl s [recf.id vl i])) - [0.. ys y. xs = ys @ [y]", auto) -proof - - fix ys y - assume ind: "\xs. length xs = length (ys::nat list) \ - map ((\a. rec_exec a xs) \ (\i. Cn (length ys) s - [recf.id (length ys) (i)])) [0..a. rec_exec a (ys @ [y])) \ (\i. Cn (Suc (length ys)) s - [recf.id (Suc (length ys)) (i)])) [0..a. rec_exec a ys) \ (\i. Cn (length ys) s - [recf.id (length ys) (i)])) [0..a. rec_exec a (ys @ [y])) \ (\i. Cn (Suc (length ys)) s - [recf.id (Suc (length ys)) (i)])) [0..a. rec_exec a ys) \ (\i. Cn (length ys) s - [recf.id (length ys) (i)])) [0..ys y. xs = ys @ [y]" - apply(rule_tac x = "butlast xs" in exI, rule_tac x = "last xs" in exI) - apply(subgoal_tac "xs \ []", auto) - done -qed - -text {* - The correctness of @{text "rec_strt"}. - *} -lemma strt_lemma: "length xs = vl \ - rec_exec (rec_strt vl) xs = strt xs" -apply(simp add: strt.simps rec_exec.simps strt'_lemma) -apply(subgoal_tac "(map ((\a. rec_exec a xs) \ (\i. Cn vl s [recf.id vl (i)])) [0.. nat" - where - "scan r = r mod 2" - -text {* - @{text "rec_scan"} is the implemention of @{text "scan"}. - *} -definition rec_scan :: "recf" - where "rec_scan = Cn 1 rec_mod [id 1 0, constn 2]" - -text {* - The correctness of @{text "scan"}. - *} -lemma scan_lemma: "rec_exec rec_scan [r] = r mod 2" - by(simp add: rec_exec.simps rec_scan_def mod_lemma) - -fun newleft0 :: "nat list \ nat" - where - "newleft0 [p, r] = p" - -definition rec_newleft0 :: "recf" - where - "rec_newleft0 = id 2 0" - -fun newrgt0 :: "nat list \ nat" - where - "newrgt0 [p, r] = r - scan r" - -definition rec_newrgt0 :: "recf" - where - "rec_newrgt0 = Cn 2 rec_minus [id 2 1, Cn 2 rec_scan [id 2 1]]" - -(*newleft1, newrgt1: left rgt number after execute on step*) -fun newleft1 :: "nat list \ nat" - where - "newleft1 [p, r] = p" - -definition rec_newleft1 :: "recf" - where - "rec_newleft1 = id 2 0" - -fun newrgt1 :: "nat list \ nat" - where - "newrgt1 [p, r] = r + 1 - scan r" - -definition rec_newrgt1 :: "recf" - where - "rec_newrgt1 = - Cn 2 rec_minus [Cn 2 rec_add [id 2 1, Cn 2 (constn 1) [id 2 0]], - Cn 2 rec_scan [id 2 1]]" - -fun newleft2 :: "nat list \ nat" - where - "newleft2 [p, r] = p div 2" - -definition rec_newleft2 :: "recf" - where - "rec_newleft2 = Cn 2 rec_quo [id 2 0, Cn 2 (constn 2) [id 2 0]]" - -fun newrgt2 :: "nat list \ nat" - where - "newrgt2 [p, r] = 2 * r + p mod 2" - -definition rec_newrgt2 :: "recf" - where - "rec_newrgt2 = - Cn 2 rec_add [Cn 2 rec_mult [Cn 2 (constn 2) [id 2 0], id 2 1], - Cn 2 rec_mod [id 2 0, Cn 2 (constn 2) [id 2 0]]]" - -fun newleft3 :: "nat list \ nat" - where - "newleft3 [p, r] = 2 * p + r mod 2" - -definition rec_newleft3 :: "recf" - where - "rec_newleft3 = - Cn 2 rec_add [Cn 2 rec_mult [Cn 2 (constn 2) [id 2 0], id 2 0], - Cn 2 rec_mod [id 2 1, Cn 2 (constn 2) [id 2 0]]]" - -fun newrgt3 :: "nat list \ nat" - where - "newrgt3 [p, r] = r div 2" - -definition rec_newrgt3 :: "recf" - where - "rec_newrgt3 = Cn 2 rec_quo [id 2 1, Cn 2 (constn 2) [id 2 0]]" - -text {* - The @{text "new_left"} function on page 91 of B book. - *} -fun newleft :: "nat \ nat \ nat \ nat" - where - "newleft p r a = (if a = 0 \ a = 1 then newleft0 [p, r] - else if a = 2 then newleft2 [p, r] - else if a = 3 then newleft3 [p, r] - else p)" - -text {* - @{text "rec_newleft"} is the recursive function used to - implement @{text "newleft"}. - *} -definition rec_newleft :: "recf" - where - "rec_newleft = - (let g0 = - Cn 3 rec_newleft0 [id 3 0, id 3 1] in - let g1 = Cn 3 rec_newleft2 [id 3 0, id 3 1] in - let g2 = Cn 3 rec_newleft3 [id 3 0, id 3 1] in - let g3 = id 3 0 in - let r0 = Cn 3 rec_disj - [Cn 3 rec_eq [id 3 2, Cn 3 (constn 0) [id 3 0]], - Cn 3 rec_eq [id 3 2, Cn 3 (constn 1) [id 3 0]]] in - let r1 = Cn 3 rec_eq [id 3 2, Cn 3 (constn 2) [id 3 0]] in - let r2 = Cn 3 rec_eq [id 3 2, Cn 3 (constn 3) [id 3 0]] in - let r3 = Cn 3 rec_less [Cn 3 (constn 3) [id 3 0], id 3 2] in - let gs = [g0, g1, g2, g3] in - let rs = [r0, r1, r2, r3] in - rec_embranch (zip gs rs))" - -declare newleft.simps[simp del] - - -lemma Suc_Suc_Suc_Suc_induct: - "\i < Suc (Suc (Suc (Suc 0))); i = 0 \ P i; - i = 1 \ P i; i =2 \ P i; - i =3 \ P i\ \ P i" -apply(case_tac i, simp, case_tac nat, simp, - case_tac nata, simp, case_tac natb, simp, simp) -done - -declare quo_lemma2[simp] mod_lemma[simp] - -text {* - The correctness of @{text "rec_newleft"}. - *} -lemma newleft_lemma: - "rec_exec rec_newleft [p, r, a] = newleft p r a" -proof(simp only: rec_newleft_def Let_def) - let ?rgs = "[Cn 3 rec_newleft0 [recf.id 3 0, recf.id 3 1], Cn 3 rec_newleft2 - [recf.id 3 0, recf.id 3 1], Cn 3 rec_newleft3 [recf.id 3 0, recf.id 3 1], recf.id 3 0]" - let ?rrs = - "[Cn 3 rec_disj [Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 0) - [recf.id 3 0]], Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 1) [recf.id 3 0]]], - Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 2) [recf.id 3 0]], - Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 3) [recf.id 3 0]], - Cn 3 rec_less [Cn 3 (constn 3) [recf.id 3 0], recf.id 3 2]]" - thm embranch_lemma - have k1: "rec_exec (rec_embranch (zip ?rgs ?rrs)) [p, r, a] - = Embranch (zip (map rec_exec ?rgs) (map (\r args. 0 < rec_exec r args) ?rrs)) [p, r, a]" - apply(rule_tac embranch_lemma ) - apply(auto simp: numeral_3_eq_3 numeral_2_eq_2 rec_newleft0_def - rec_newleft1_def rec_newleft2_def rec_newleft3_def)+ - apply(case_tac "a = 0 \ a = 1", rule_tac x = 0 in exI) - prefer 2 - apply(case_tac "a = 2", rule_tac x = "Suc 0" in exI) - prefer 2 - apply(case_tac "a = 3", rule_tac x = "2" in exI) - prefer 2 - apply(case_tac "a > 3", rule_tac x = "3" in exI, auto) - apply(auto simp: rec_exec.simps) - apply(erule_tac [!] Suc_Suc_Suc_Suc_induct, auto simp: rec_exec.simps) - done - have k2: "Embranch (zip (map rec_exec ?rgs) (map (\r args. 0 < rec_exec r args) ?rrs)) [p, r, a] = newleft p r a" - apply(simp add: Embranch.simps) - apply(simp add: rec_exec.simps) - apply(auto simp: newleft.simps rec_newleft0_def rec_exec.simps - rec_newleft1_def rec_newleft2_def rec_newleft3_def) - done - from k1 and k2 show - "rec_exec (rec_embranch (zip ?rgs ?rrs)) [p, r, a] = newleft p r a" - by simp -qed - -text {* - The @{text "newrght"} function is one similar to @{text "newleft"}, but used to - compute the right number. - *} -fun newrght :: "nat \ nat \ nat \ nat" - where - "newrght p r a = (if a = 0 then newrgt0 [p, r] - else if a = 1 then newrgt1 [p, r] - else if a = 2 then newrgt2 [p, r] - else if a = 3 then newrgt3 [p, r] - else r)" - -text {* - @{text "rec_newrght"} is the recursive function used to implement - @{text "newrgth"}. - *} -definition rec_newrght :: "recf" - where - "rec_newrght = - (let g0 = Cn 3 rec_newrgt0 [id 3 0, id 3 1] in - let g1 = Cn 3 rec_newrgt1 [id 3 0, id 3 1] in - let g2 = Cn 3 rec_newrgt2 [id 3 0, id 3 1] in - let g3 = Cn 3 rec_newrgt3 [id 3 0, id 3 1] in - let g4 = id 3 1 in - let r0 = Cn 3 rec_eq [id 3 2, Cn 3 (constn 0) [id 3 0]] in - let r1 = Cn 3 rec_eq [id 3 2, Cn 3 (constn 1) [id 3 0]] in - let r2 = Cn 3 rec_eq [id 3 2, Cn 3 (constn 2) [id 3 0]] in - let r3 = Cn 3 rec_eq [id 3 2, Cn 3 (constn 3) [id 3 0]] in - let r4 = Cn 3 rec_less [Cn 3 (constn 3) [id 3 0], id 3 2] in - let gs = [g0, g1, g2, g3, g4] in - let rs = [r0, r1, r2, r3, r4] in - rec_embranch (zip gs rs))" -declare newrght.simps[simp del] - -lemma numeral_4_eq_4: "4 = Suc 3" -by auto - -lemma Suc_5_induct: - "\i < Suc (Suc (Suc (Suc (Suc 0)))); i = 0 \ P 0; - i = 1 \ P 1; i = 2 \ P 2; i = 3 \ P 3; i = 4 \ P 4\ \ P i" -apply(case_tac i, auto) -apply(case_tac nat, auto) -apply(case_tac nata, auto simp: numeral_2_eq_2) -apply(case_tac nat, auto simp: numeral_3_eq_3 numeral_4_eq_4) -done - -lemma [intro]: "primerec rec_scan (Suc 0)" -apply(auto simp: rec_scan_def, auto) -done - -text {* - The correctness of @{text "rec_newrght"}. - *} -lemma newrght_lemma: "rec_exec rec_newrght [p, r, a] = newrght p r a" -proof(simp only: rec_newrght_def Let_def) - let ?gs' = "[newrgt0, newrgt1, newrgt2, newrgt3, \ zs. zs ! 1]" - let ?r0 = "\ zs. zs ! 2 = 0" - let ?r1 = "\ zs. zs ! 2 = 1" - let ?r2 = "\ zs. zs ! 2 = 2" - let ?r3 = "\ zs. zs ! 2 = 3" - let ?r4 = "\ zs. zs ! 2 > 3" - let ?gs = "map (\ g. (\ zs. g [zs ! 0, zs ! 1])) ?gs'" - let ?rs = "[?r0, ?r1, ?r2, ?r3, ?r4]" - let ?rgs = - "[Cn 3 rec_newrgt0 [recf.id 3 0, recf.id 3 1], - Cn 3 rec_newrgt1 [recf.id 3 0, recf.id 3 1], - Cn 3 rec_newrgt2 [recf.id 3 0, recf.id 3 1], - Cn 3 rec_newrgt3 [recf.id 3 0, recf.id 3 1], recf.id 3 1]" - let ?rrs = - "[Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 0) [recf.id 3 0]], Cn 3 rec_eq [recf.id 3 2, - Cn 3 (constn 1) [recf.id 3 0]], Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 2) [recf.id 3 0]], - Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 3) [recf.id 3 0]], - Cn 3 rec_less [Cn 3 (constn 3) [recf.id 3 0], recf.id 3 2]]" - - have k1: "rec_exec (rec_embranch (zip ?rgs ?rrs)) [p, r, a] - = Embranch (zip (map rec_exec ?rgs) (map (\r args. 0 < rec_exec r args) ?rrs)) [p, r, a]" - apply(rule_tac embranch_lemma) - apply(auto simp: numeral_3_eq_3 numeral_2_eq_2 rec_newrgt0_def - rec_newrgt1_def rec_newrgt2_def rec_newrgt3_def)+ - apply(case_tac "a = 0", rule_tac x = 0 in exI) - prefer 2 - apply(case_tac "a = 1", rule_tac x = "Suc 0" in exI) - prefer 2 - apply(case_tac "a = 2", rule_tac x = "2" in exI) - prefer 2 - apply(case_tac "a = 3", rule_tac x = "3" in exI) - prefer 2 - apply(case_tac "a > 3", rule_tac x = "4" in exI, auto simp: rec_exec.simps) - apply(erule_tac [!] Suc_5_induct, auto simp: rec_exec.simps) - done - have k2: "Embranch (zip (map rec_exec ?rgs) - (map (\r args. 0 < rec_exec r args) ?rrs)) [p, r, a] = newrght p r a" - apply(auto simp:Embranch.simps rec_exec.simps) - apply(auto simp: newrght.simps rec_newrgt3_def rec_newrgt2_def - rec_newrgt1_def rec_newrgt0_def rec_exec.simps - scan_lemma) - done - from k1 and k2 show - "rec_exec (rec_embranch (zip ?rgs ?rrs)) [p, r, a] = - newrght p r a" by simp -qed - -declare Entry.simps[simp del] - -text {* - The @{text "actn"} function given on page 92 of B book, which is used to - fetch Turing Machine intructions. - In @{text "actn m q r"}, @{text "m"} is the Godel coding of a Turing Machine, - @{text "q"} is the current state of Turing Machine, @{text "r"} is the - right number of Turing Machine tape. - *} -fun actn :: "nat \ nat \ nat \ nat" - where - "actn m q r = (if q \ 0 then Entry m (4*(q - 1) + 2 * scan r) - else 4)" - -text {* - @{text "rec_actn"} is the recursive function used to implement @{text "actn"} - *} -definition rec_actn :: "recf" - where - "rec_actn = - Cn 3 rec_add [Cn 3 rec_mult - [Cn 3 rec_entry [id 3 0, Cn 3 rec_add [Cn 3 rec_mult - [Cn 3 (constn 4) [id 3 0], - Cn 3 rec_minus [id 3 1, Cn 3 (constn 1) [id 3 0]]], - Cn 3 rec_mult [Cn 3 (constn 2) [id 3 0], - Cn 3 rec_scan [id 3 2]]]], - Cn 3 rec_noteq [id 3 1, Cn 3 (constn 0) [id 3 0]]], - Cn 3 rec_mult [Cn 3 (constn 4) [id 3 0], - Cn 3 rec_eq [id 3 1, Cn 3 (constn 0) [id 3 0]]]] " - -text {* - The correctness of @{text "actn"}. - *} -lemma actn_lemma: "rec_exec rec_actn [m, q, r] = actn m q r" - by(auto simp: rec_actn_def rec_exec.simps entry_lemma scan_lemma) - -fun newstat :: "nat \ nat \ nat \ nat" - where - "newstat m q r = (if q \ 0 then Entry m (4*(q - 1) + 2*scan r + 1) - else 0)" - -definition rec_newstat :: "recf" - where - "rec_newstat = Cn 3 rec_add - [Cn 3 rec_mult [Cn 3 rec_entry [id 3 0, - Cn 3 rec_add [Cn 3 rec_mult [Cn 3 (constn 4) [id 3 0], - Cn 3 rec_minus [id 3 1, Cn 3 (constn 1) [id 3 0]]], - Cn 3 rec_add [Cn 3 rec_mult [Cn 3 (constn 2) [id 3 0], - Cn 3 rec_scan [id 3 2]], Cn 3 (constn 1) [id 3 0]]]], - Cn 3 rec_noteq [id 3 1, Cn 3 (constn 0) [id 3 0]]], - Cn 3 rec_mult [Cn 3 (constn 0) [id 3 0], - Cn 3 rec_eq [id 3 1, Cn 3 (constn 0) [id 3 0]]]] " - -lemma newstat_lemma: "rec_exec rec_newstat [m, q, r] = newstat m q r" -by(auto simp: rec_exec.simps entry_lemma scan_lemma rec_newstat_def) - -declare newstat.simps[simp del] actn.simps[simp del] - -text{*code the configuration*} - -fun trpl :: "nat \ nat \ nat \ nat" - where - "trpl p q r = (Pi 0)^p * (Pi 1)^q * (Pi 2)^r" - -definition rec_trpl :: "recf" - where - "rec_trpl = Cn 3 rec_mult [Cn 3 rec_mult - [Cn 3 rec_power [Cn 3 (constn (Pi 0)) [id 3 0], id 3 0], - Cn 3 rec_power [Cn 3 (constn (Pi 1)) [id 3 0], id 3 1]], - Cn 3 rec_power [Cn 3 (constn (Pi 2)) [id 3 0], id 3 2]]" -declare trpl.simps[simp del] -lemma trpl_lemma: "rec_exec rec_trpl [p, q, r] = trpl p q r" -by(auto simp: rec_trpl_def rec_exec.simps power_lemma trpl.simps) - -text{*left, stat, rght: decode func*} -fun left :: "nat \ nat" - where - "left c = lo c (Pi 0)" - -fun stat :: "nat \ nat" - where - "stat c = lo c (Pi 1)" - -fun rght :: "nat \ nat" - where - "rght c = lo c (Pi 2)" - -thm Prime.simps - -fun inpt :: "nat \ nat list \ nat" - where - "inpt m xs = trpl 0 1 (strt xs)" - -fun newconf :: "nat \ nat \ nat" - where - "newconf m c = trpl (newleft (left c) (rght c) - (actn m (stat c) (rght c))) - (newstat m (stat c) (rght c)) - (newrght (left c) (rght c) - (actn m (stat c) (rght c)))" - -declare left.simps[simp del] stat.simps[simp del] rght.simps[simp del] - inpt.simps[simp del] newconf.simps[simp del] - -definition rec_left :: "recf" - where - "rec_left = Cn 1 rec_lo [id 1 0, constn (Pi 0)]" - -definition rec_right :: "recf" - where - "rec_right = Cn 1 rec_lo [id 1 0, constn (Pi 2)]" - -definition rec_stat :: "recf" - where - "rec_stat = Cn 1 rec_lo [id 1 0, constn (Pi 1)]" - -definition rec_inpt :: "nat \ recf" - where - "rec_inpt vl = Cn vl rec_trpl - [Cn vl (constn 0) [id vl 0], - Cn vl (constn 1) [id vl 0], - Cn vl (rec_strt (vl - 1)) - (map (\ i. id vl (i)) [1..a. rec_exec a (m # xs)) \ - (\i. recf.id (Suc (length xs)) (i))) - [Suc 0.. i. xs ! (i - 1)) [Suc 0.. map (\ i. xs ! (i - 1)) - [Suc 0.. ys y. xs = ys @ [y]", auto) -proof - - fix ys y - assume ind: - "\xs. length (ys::nat list) = length (xs::nat list) \ - map (\i. xs ! (i - Suc 0)) [Suc 0.. length (ys::nat list)" - have "map (\i. ys ! (i - Suc 0)) [Suc 0..i. (ys @ [y]) ! (i - Suc 0)) [Suc 0..i. ys ! (i - Suc 0)) [Suc 0..i. (ys @ [y]) ! (i - Suc 0)) - [Suc 0..ys y. xs = ys @ [y]" - apply(rule_tac x = "butlast xs" in exI, - rule_tac x = "last xs" in exI) - apply(case_tac "xs \ []", auto) - done -qed - -lemma [elim]: - "Suc 0 \ length xs \ - (map ((\a. rec_exec a (m # xs)) \ - (\i. recf.id (Suc (length xs)) (i))) - [Suc 0..Suc (length xs) = vl\ \ - rec_exec (rec_inpt vl) (m # xs) = inpt m xs" -apply(auto simp: rec_exec.simps rec_inpt_def - trpl_lemma inpt.simps strt_lemma) -apply(subgoal_tac - "(map ((\a. rec_exec a (m # xs)) \ - (\i. recf.id (Suc (length xs)) (i))) - [Suc 0.. nat \ nat \ nat" - where - "conf m r 0 = trpl 0 (Suc 0) r" -| "conf m r (Suc t) = newconf m (conf m r t)" - -declare conf.simps[simp del] - -text {* - @{text "conf"} is implemented by the following recursive function @{text "rec_conf"}. - *} -definition rec_conf :: "recf" - where - "rec_conf = Pr 2 (Cn 2 rec_trpl [Cn 2 (constn 0) [id 2 0], Cn 2 (constn (Suc 0)) [id 2 0], id 2 1]) - (Cn 4 rec_newconf [id 4 0, id 4 3])" - -lemma conf_step: - "rec_exec rec_conf [m, r, Suc t] = - rec_exec rec_newconf [m, rec_exec rec_conf [m, r, t]]" -proof - - have "rec_exec rec_conf ([m, r] @ [Suc t]) = - rec_exec rec_newconf [m, rec_exec rec_conf [m, r, t]]" - by(simp only: rec_conf_def rec_pr_Suc_simp_rewrite, - simp add: rec_exec.simps) - thus "rec_exec rec_conf [m, r, Suc t] = - rec_exec rec_newconf [m, rec_exec rec_conf [m, r, t]]" - by simp -qed - -text {* - The correctness of @{text "rec_conf"}. - *} -lemma conf_lemma: - "rec_exec rec_conf [m, r, t] = conf m r t" -apply(induct t) -apply(simp add: rec_conf_def rec_exec.simps conf.simps inpt_lemma trpl_lemma) -apply(simp add: conf_step conf.simps) -done - -text {* - @{text "NSTD c"} returns true if the configureation coded by @{text "c"} is no a stardard - final configuration. - *} -fun NSTD :: "nat \ bool" - where - "NSTD c = (stat c \ 0 \ left c \ 0 \ - rght c \ 2^(lg (rght c + 1) 2) - 1 \ rght c = 0)" - -text {* - @{text "rec_NSTD"} is the recursive function implementing @{text "NSTD"}. - *} -definition rec_NSTD :: "recf" - where - "rec_NSTD = - Cn 1 rec_disj [ - Cn 1 rec_disj [ - Cn 1 rec_disj - [Cn 1 rec_noteq [rec_stat, constn 0], - Cn 1 rec_noteq [rec_left, constn 0]] , - Cn 1 rec_noteq [rec_right, - Cn 1 rec_minus [Cn 1 rec_power - [constn 2, Cn 1 rec_lg - [Cn 1 rec_add - [rec_right, constn 1], - constn 2]], constn 1]]], - Cn 1 rec_eq [rec_right, constn 0]]" - -lemma NSTD_lemma1: "rec_exec rec_NSTD [c] = Suc 0 \ - rec_exec rec_NSTD [c] = 0" -by(simp add: rec_exec.simps rec_NSTD_def) - -declare NSTD.simps[simp del] -lemma NSTD_lemma2': "(rec_exec rec_NSTD [c] = Suc 0) \ NSTD c" -apply(simp add: rec_exec.simps rec_NSTD_def stat_lemma left_lemma - lg_lemma right_lemma power_lemma NSTD.simps eq_lemma) -apply(auto) -apply(case_tac "0 < left c", simp, simp) -done - -lemma NSTD_lemma2'': - "NSTD c \ (rec_exec rec_NSTD [c] = Suc 0)" -apply(simp add: rec_exec.simps rec_NSTD_def stat_lemma - left_lemma lg_lemma right_lemma power_lemma NSTD.simps) -apply(auto split: if_splits) -done - -text {* - The correctness of @{text "NSTD"}. - *} -lemma NSTD_lemma2: "(rec_exec rec_NSTD [c] = Suc 0) = NSTD c" -using NSTD_lemma1 -apply(auto intro: NSTD_lemma2' NSTD_lemma2'') -done - -fun nstd :: "nat \ nat" - where - "nstd c = (if NSTD c then 1 else 0)" - -lemma nstd_lemma: "rec_exec rec_NSTD [c] = nstd c" -using NSTD_lemma1 -apply(simp add: NSTD_lemma2, auto) -done - -text{* - @{text "nonstep m r t"} means afer @{text "t"} steps of execution, the TM coded by @{text "m"} - is not at a stardard final configuration. - *} -fun nonstop :: "nat \ nat \ nat \ nat" - where - "nonstop m r t = nstd (conf m r t)" - -text {* - @{text "rec_nonstop"} is the recursive function implementing @{text "nonstop"}. - *} -definition rec_nonstop :: "recf" - where - "rec_nonstop = Cn 3 rec_NSTD [rec_conf]" - -text {* - The correctness of @{text "rec_nonstop"}. - *} -lemma nonstop_lemma: - "rec_exec rec_nonstop [m, r, t] = nonstop m r t" -apply(simp add: rec_exec.simps rec_nonstop_def nstd_lemma conf_lemma) -done - -text{* - @{text "rec_halt"} is the recursive function calculating the steps a TM needs to execute before - to reach a stardard final configuration. This recursive function is the only one - using @{text "Mn"} combinator. So it is the only non-primitive recursive function - needs to be used in the construction of the universal function @{text "F"}. - *} - -definition rec_halt :: "recf" - where - "rec_halt = Mn (Suc (Suc 0)) (rec_nonstop)" - -declare nonstop.simps[simp del] - -lemma primerec_not0: "primerec f n \ n > 0" -by(induct f n rule: primerec.induct, auto) - -lemma [elim]: "primerec f 0 \ RR" -apply(drule_tac primerec_not0, simp) -done - -lemma [simp]: "length xs = Suc n \ length (butlast xs) = n" -apply(subgoal_tac "\ y ys. xs = ys @ [y]", auto) -apply(rule_tac x = "last xs" in exI) -apply(rule_tac x = "butlast xs" in exI) -apply(case_tac "xs = []", auto) -done - -text {* - The lemma relates the interpreter of primitive fucntions with - the calculation relation of general recursive functions. - *} -lemma prime_rel_exec_eq: "primerec r (length xs) - \ rec_calc_rel r xs rs = (rec_exec r xs = rs)" -proof(induct r xs arbitrary: rs rule: rec_exec.induct, simp_all) - fix xs rs - assume "primerec z (length (xs::nat list))" - hence "length xs = Suc 0" by(erule_tac prime_z_reverse, simp) - thus "rec_calc_rel z xs rs = (rec_exec z xs = rs)" - apply(case_tac xs, simp, auto) - apply(erule_tac calc_z_reverse, simp add: rec_exec.simps) - apply(simp add: rec_exec.simps, rule_tac calc_z) - done -next - fix xs rs - assume "primerec s (length (xs::nat list))" - hence "length xs = Suc 0" .. - thus "rec_calc_rel s xs rs = (rec_exec s xs = rs)" - by(case_tac xs, auto simp: rec_exec.simps intro: calc_s - elim: calc_s_reverse) -next - fix m n xs rs - assume "primerec (recf.id m n) (length (xs::nat list))" - thus - "rec_calc_rel (recf.id m n) xs rs = - (rec_exec (recf.id m n) xs = rs)" - apply(erule_tac prime_id_reverse) - apply(simp add: rec_exec.simps, auto) - apply(erule_tac calc_id_reverse, simp) - apply(rule_tac calc_id, auto) - done -next - fix n f gs xs rs - assume ind1: - "\x rs. \x \ set gs; primerec x (length xs)\ \ - rec_calc_rel x xs rs = (rec_exec x xs = rs)" - and ind2: - "\x rs. \x = map (\a. rec_exec a xs) gs; - primerec f (length gs)\ \ - rec_calc_rel f (map (\a. rec_exec a xs) gs) rs = - (rec_exec f (map (\a. rec_exec a xs) gs) = rs)" - and h: "primerec (Cn n f gs) (length xs)" - show "rec_calc_rel (Cn n f gs) xs rs = - (rec_exec (Cn n f gs) xs = rs)" - proof(auto simp: rec_exec.simps, erule_tac calc_cn_reverse, auto) - fix ys - assume g1:"\ka. rec_exec a xs) gs) rs = - (rec_exec f (map (\a. rec_exec a xs) gs) = rs)" - apply(rule_tac ind2, auto) - using h - apply(erule_tac prime_cn_reverse, simp) - done - moreover have "ys = (map (\a. rec_exec a xs) gs)" - proof(rule_tac nth_equalityI, auto simp: g2) - fix i - assume "i < length gs" thus "ys ! i = rec_exec (gs!i) xs" - using ind1[of "gs ! i" "ys ! i"] g1 h - apply(erule_tac prime_cn_reverse, simp) - done - qed - ultimately show "rec_exec f (map (\a. rec_exec a xs) gs) = rs" - using g3 - by(simp) - next - from h show - "rec_calc_rel (Cn n f gs) xs - (rec_exec f (map (\a. rec_exec a xs) gs))" - apply(rule_tac rs = "(map (\a. rec_exec a xs) gs)" in calc_cn, - auto) - apply(erule_tac [!] prime_cn_reverse, auto) - proof - - fix k - assume "k < length gs" "primerec f (length gs)" - "\iia. rec_exec a xs) gs) - (rec_exec f (map (\a. rec_exec a xs) gs))" - using ind2[of "(map (\a. rec_exec a xs) gs)" - "(rec_exec f (map (\a. rec_exec a xs) gs))"] - by simp - qed - qed -next - fix n f g xs rs - assume ind1: - "\rs. \last xs = 0; primerec f (length xs - Suc 0)\ - \ rec_calc_rel f (butlast xs) rs = - (rec_exec f (butlast xs) = rs)" - and ind2 : - "\rs. \0 < last xs; - primerec (Pr n f g) (Suc (length xs - Suc 0))\ \ - rec_calc_rel (Pr n f g) (butlast xs @ [last xs - Suc 0]) rs - = (rec_exec (Pr n f g) (butlast xs @ [last xs - Suc 0]) = rs)" - and ind3: - "\rs. \0 < last xs; primerec g (Suc (Suc (length xs - Suc 0)))\ - \ rec_calc_rel g (butlast xs @ - [last xs - Suc 0, rec_exec (Pr n f g) - (butlast xs @ [last xs - Suc 0])]) rs = - (rec_exec g (butlast xs @ [last xs - Suc 0, - rec_exec (Pr n f g) - (butlast xs @ [last xs - Suc 0])]) = rs)" - and h: "primerec (Pr n f g) (length (xs::nat list))" - show "rec_calc_rel (Pr n f g) xs rs = (rec_exec (Pr n f g) xs = rs)" - proof(auto) - assume "rec_calc_rel (Pr n f g) xs rs" - thus "rec_exec (Pr n f g) xs = rs" - proof(erule_tac calc_pr_reverse) - fix l - assume g: "xs = l @ [0]" - "rec_calc_rel f l rs" - "n = length l" - thus "rec_exec (Pr n f g) xs = rs" - using ind1[of rs] h - apply(simp add: rec_exec.simps, - erule_tac prime_pr_reverse, simp) - done - next - fix l y ry - assume d:"xs = l @ [Suc y]" - "rec_calc_rel (Pr (length l) f g) (l @ [y]) ry" - "n = length l" - "rec_calc_rel g (l @ [y, ry]) rs" - moreover hence "primerec g (Suc (Suc n))" using h - proof(erule_tac prime_pr_reverse) - assume "primerec g (Suc (Suc n))" "length xs = Suc n" - thus "?thesis" by simp - qed - ultimately show "rec_exec (Pr n f g) xs = rs" - apply(simp) - using ind3[of rs] - apply(simp add: rec_pr_Suc_simp_rewrite) - using ind2[of ry] h - apply(simp) - done - qed - next - show "rec_calc_rel (Pr n f g) xs (rec_exec (Pr n f g) xs)" - proof - - have "rec_calc_rel (Pr n f g) (butlast xs @ [last xs]) - (rec_exec (Pr n f g) (butlast xs @ [last xs]))" - using h - apply(erule_tac prime_pr_reverse, simp) - apply(case_tac "last xs", simp) - apply(rule_tac calc_pr_zero, simp) - using ind1[of "rec_exec (Pr n f g) (butlast xs @ [0])"] - apply(simp add: rec_exec.simps, simp, simp, simp) - thm calc_pr_ind - apply(rule_tac rk = "rec_exec (Pr n f g) - (butlast xs@[last xs - Suc 0])" in calc_pr_ind) - using ind2[of "rec_exec (Pr n f g) - (butlast xs @ [last xs - Suc 0])"] h - apply(simp, simp, simp) - proof - - fix nat - assume "length xs = Suc n" - "primerec g (Suc (Suc n))" - "last xs = Suc nat" - thus - "rec_calc_rel g (butlast xs @ [nat, rec_exec (Pr n f g) - (butlast xs @ [nat])]) (rec_exec (Pr n f g) (butlast xs @ [Suc nat]))" - using ind3[of "rec_exec (Pr n f g) - (butlast xs @ [Suc nat])"] - apply(simp add: rec_exec.simps) - done - qed - thus "rec_calc_rel (Pr n f g) xs (rec_exec (Pr n f g) xs)" - using h - apply(erule_tac prime_pr_reverse, simp) - apply(subgoal_tac "butlast xs @ [last xs] = xs", simp) - apply(case_tac xs, simp, simp) - done - qed - qed -next - fix n f xs rs - assume "primerec (Mn n f) (length (xs::nat list))" - thus "rec_calc_rel (Mn n f) xs rs = (rec_exec (Mn n f) xs = rs)" - by(erule_tac prime_mn_reverse) -qed - -declare numeral_2_eq_2[simp] numeral_3_eq_3[simp] - -lemma [intro]: "primerec rec_right (Suc 0)" -apply(simp add: rec_right_def rec_lo_def Let_def) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+ -done - -lemma [simp]: -"rec_calc_rel rec_right [r] rs = (rec_exec rec_right [r] = rs)" -apply(rule_tac prime_rel_exec_eq, auto) -done - -lemma [intro]: "primerec rec_pi (Suc 0)" -apply(simp add: rec_pi_def rec_dummy_pi_def - rec_np_def rec_fac_def rec_prime_def - rec_Minr.simps Let_def get_fstn_args.simps - arity.simps - rec_all.simps rec_sigma.simps rec_accum.simps) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+ -apply(simp add: rec_dummyfac_def) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+ -done - -lemma [intro]: "primerec rec_trpl (Suc (Suc (Suc 0)))" -apply(simp add: rec_trpl_def) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+ -done - -lemma [intro!]: "\0 < vl; n \ vl\ \ primerec (rec_listsum2 vl n) vl" -apply(induct n) -apply(simp_all add: rec_strt'.simps Let_def rec_listsum2.simps) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+ -done - -lemma [elim]: "\0 < vl; n \ vl\ \ primerec (rec_strt' vl n) vl" -apply(induct n) -apply(simp_all add: rec_strt'.simps Let_def) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}, @{thm prime_pr}] 1*}, auto+) -done - -lemma [elim]: "vl > 0 \ primerec (rec_strt vl) vl" -apply(simp add: rec_strt.simps rec_strt'.simps) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+ -done - -lemma [elim]: - "i < vl \ primerec ((map (\i. recf.id (Suc vl) (i)) - [Suc 0.. primerec (rec_inpt (Suc vl)) (Suc vl)" -apply(simp add: rec_inpt_def) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+ -done - -lemma [intro]: "primerec rec_conf (Suc (Suc (Suc 0)))" -apply(simp add: rec_conf_def) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+ -apply(auto simp: numeral_4_eq_4) -done - -lemma [simp]: - "rec_calc_rel rec_conf [m, r, t] rs = - (rec_exec rec_conf [m, r, t] = rs)" -apply(rule_tac prime_rel_exec_eq, auto) -done - -lemma [intro]: "primerec rec_lg (Suc (Suc 0))" -apply(simp add: rec_lg_def Let_def) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+ -done - -lemma [intro]: "primerec rec_nonstop (Suc (Suc (Suc 0)))" -apply(simp add: rec_nonstop_def rec_NSTD_def rec_stat_def - rec_lo_def Let_def rec_left_def rec_right_def rec_newconf_def - rec_newstat_def) -apply(tactic {* resolve_tac [@{thm prime_cn}, - @{thm prime_id}, @{thm prime_pr}] 1*}, auto+)+ -done - -lemma nonstop_eq[simp]: - "rec_calc_rel rec_nonstop [m, r, t] rs = - (rec_exec rec_nonstop [m, r, t] = rs)" -apply(rule prime_rel_exec_eq, auto) -done - -lemma halt_lemma': - "rec_calc_rel rec_halt [m, r] t = - (rec_calc_rel rec_nonstop [m, r, t] 0 \ - (\ t'< t. - (\ y. rec_calc_rel rec_nonstop [m, r, t'] y \ - y \ 0)))" -apply(auto simp: rec_halt_def) -apply(erule calc_mn_reverse, simp) -apply(erule_tac calc_mn_reverse) -apply(erule_tac x = t' in allE, simp) -apply(rule_tac calc_mn, simp_all) -done - -text {* - The following lemma gives the correctness of @{text "rec_halt"}. - It says: if @{text "rec_halt"} calculates that the TM coded by @{text "m"} - will reach a standard final configuration after @{text "t"} steps of execution, then it is indeed so. - *} -lemma halt_lemma: - "rec_calc_rel (rec_halt) [m, r] t = - (rec_exec rec_nonstop [m, r, t] = 0 \ - (\ t'< t. (\ y. rec_exec rec_nonstop [m, r, t'] = y - \ y \ 0)))" -using halt_lemma'[of m r t] -by simp - -text {*F: universal machine*} - -text {* - @{text "valu r"} extracts computing result out of the right number @{text "r"}. - *} -fun valu :: "nat \ nat" - where - "valu r = (lg (r + 1) 2) - 1" - -text {* - @{text "rec_valu"} is the recursive function implementing @{text "valu"}. -*} -definition rec_valu :: "recf" - where - "rec_valu = Cn 1 rec_minus [Cn 1 rec_lg [s, constn 2], constn 1]" - -text {* - The correctness of @{text "rec_valu"}. -*} -lemma value_lemma: "rec_exec rec_valu [r] = valu r" -apply(simp add: rec_exec.simps rec_valu_def lg_lemma) -done - -lemma [intro]: "primerec rec_valu (Suc 0)" -apply(simp add: rec_valu_def) -apply(rule_tac k = "Suc (Suc 0)" in prime_cn) -apply(auto simp: prime_s) -proof - - show "primerec rec_lg (Suc (Suc 0))" by auto -next - show "Suc (Suc 0) = Suc (Suc 0)" by simp -next - show "primerec (constn (Suc (Suc 0))) (Suc 0)" by auto -qed - -lemma [simp]: "rec_calc_rel rec_valu [r] rs = - (rec_exec rec_valu [r] = rs)" -apply(rule_tac prime_rel_exec_eq, auto) -done - -declare valu.simps[simp del] - -text {* - The definition of the universal function @{text "rec_F"}. - *} -definition rec_F :: "recf" - where - "rec_F = Cn (Suc (Suc 0)) rec_valu [Cn (Suc (Suc 0)) rec_right [Cn (Suc (Suc 0)) - rec_conf ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt])]]" - -lemma get_fstn_args_nth: - "k < n \ (get_fstn_args m n ! k) = id m (k)" -apply(induct n, simp) -apply(case_tac "k = n", simp_all add: get_fstn_args.simps - nth_append) -done - -lemma [simp]: - "\ys \ []; k < length ys\ \ - (get_fstn_args (length ys) (length ys) ! k) = - id (length ys) (k)" -by(erule_tac get_fstn_args_nth) - -lemma calc_rel_get_pren: - "\ys \ []; k < length ys\ \ - rec_calc_rel (get_fstn_args (length ys) (length ys) ! k) ys - (ys ! k)" -apply(simp) -apply(rule_tac calc_id, auto) -done - -lemma [elim]: - "\xs \ []; k < Suc (length xs)\ \ - rec_calc_rel (get_fstn_args (Suc (length xs)) - (Suc (length xs)) ! k) (m # xs) ((m # xs) ! k)" -using calc_rel_get_pren[of "m#xs" k] -apply(simp) -done - -text {* - The correctness of @{text "rec_F"}, halt case. - *} -lemma F_lemma: - "rec_calc_rel rec_halt [m, r] t \ - rec_calc_rel rec_F [m, r] (valu (rght (conf m r t)))" -apply(simp add: rec_F_def) -apply(rule_tac rs = "[rght (conf m r t)]" in calc_cn, - auto simp: value_lemma) -apply(rule_tac rs = "[conf m r t]" in calc_cn, - auto simp: right_lemma) -apply(rule_tac rs = "[m, r, t]" in calc_cn, auto) -apply(subgoal_tac " k = 0 \ k = Suc 0 \ k = Suc (Suc 0)", - auto simp:nth_append) -apply(rule_tac [1-2] calc_id, simp_all add: conf_lemma) -done - - -text {* - The correctness of @{text "rec_F"}, nonhalt case. - *} -lemma F_lemma2: - "\ t. \ rec_calc_rel rec_halt [m, r] t \ - \ rs. \ rec_calc_rel rec_F [m, r] rs" -apply(auto simp: rec_F_def) -apply(erule_tac calc_cn_reverse, simp (no_asm_use))+ -proof - - fix rs rsa rsb rsc - assume h: - "\t. \ rec_calc_rel rec_halt [m, r] t" - "length rsa = Suc 0" - "rec_calc_rel rec_valu rsa rs" - "length rsb = Suc 0" - "rec_calc_rel rec_right rsb (rsa ! 0)" - "length rsc = (Suc (Suc (Suc 0)))" - "rec_calc_rel rec_conf rsc (rsb ! 0)" - and g: "\k nat \ nat" - where - "bl2nat [] n = 0" -| "bl2nat (Bk#bl) n = bl2nat bl (Suc n)" -| "bl2nat (Oc#bl) n = 2^n + bl2nat bl (Suc n)" - -fun bl2wc :: "block list \ nat" - where - "bl2wc xs = bl2nat xs 0" - -fun trpl_code :: "t_conf \ nat" - where - "trpl_code (st, l, r) = trpl (bl2wc l) st (bl2wc r)" - -declare bl2nat.simps[simp del] bl2wc.simps[simp del] - trpl_code.simps[simp del] - -fun action_map :: "taction \ nat" - where - "action_map W0 = 0" -| "action_map W1 = 1" -| "action_map L = 2" -| "action_map R = 3" -| "action_map Nop = 4" - -fun action_map_iff :: "nat \ taction" - where - "action_map_iff (0::nat) = W0" -| "action_map_iff (Suc 0) = W1" -| "action_map_iff (Suc (Suc 0)) = L" -| "action_map_iff (Suc (Suc (Suc 0))) = R" -| "action_map_iff n = Nop" - -fun block_map :: "block \ nat" - where - "block_map Bk = 0" -| "block_map Oc = 1" - -fun godel_code' :: "nat list \ nat \ nat" - where - "godel_code' [] n = 1" -| "godel_code' (x#xs) n = (Pi n)^x * godel_code' xs (Suc n) " - -fun godel_code :: "nat list \ nat" - where - "godel_code xs = (let lh = length xs in - 2^lh * (godel_code' xs (Suc 0)))" - -fun modify_tprog :: "tprog \ nat list" - where - "modify_tprog [] = []" -| "modify_tprog ((ac, ns)#nl) = action_map ac # ns # modify_tprog nl" - -text {* - @{text "code tp"} gives the Godel coding of TM program @{text "tp"}. - *} -fun code :: "tprog \ nat" - where - "code tp = (let nl = modify_tprog tp in - godel_code nl)" - -subsection {* Relating interperter functions to the execution of TMs *} - -lemma [simp]: "bl2wc [] = 0" by(simp add: bl2wc.simps bl2nat.simps) -term trpl - -lemma [simp]: "\fetch tp 0 b = (nact, ns)\ \ action_map nact = 4" -apply(simp add: fetch.simps) -done - -lemma Pi_gr_1[simp]: "Pi n > Suc 0" -proof(induct n, auto simp: Pi.simps Np.simps) - fix n - let ?setx = "{y. y \ Suc (Pi n!) \ Pi n < y \ Prime y}" - have "finite ?setx" by auto - moreover have "?setx \ {}" - using prime_ex[of "Pi n"] - apply(auto) - done - ultimately show "Suc 0 < Min ?setx" - apply(simp add: Min_gr_iff) - apply(auto simp: Prime.simps) - done -qed - -lemma Pi_not_0[simp]: "Pi n > 0" -using Pi_gr_1[of n] -by arith - -declare godel_code.simps[simp del] - -lemma [simp]: "0 < godel_code' nl n" -apply(induct nl arbitrary: n) -apply(auto simp: godel_code'.simps) -done - -lemma godel_code_great: "godel_code nl > 0" -apply(simp add: godel_code.simps) -done - -lemma godel_code_eq_1: "(godel_code nl = 1) = (nl = [])" -apply(auto simp: godel_code.simps) -done - -lemma [elim]: - "\i < length nl; \ Suc 0 < godel_code nl\ \ nl ! i = 0" -using godel_code_great[of nl] godel_code_eq_1[of nl] -apply(simp) -done - -term set_of -lemma prime_coprime: "\Prime x; Prime y; x\y\ \ coprime x y" -proof(simp only: Prime.simps coprime_nat, auto simp: dvd_def, - rule_tac classical, simp) - fix d k ka - assume case_ka: "\uv d * ka" - and case_k: "\uv d * k" - and h: "(0::nat) < d" "d \ Suc 0" "Suc 0 < d * ka" - "ka \ k" "Suc 0 < d * k" - from h have "k > Suc 0 \ ka >Suc 0" - apply(auto) - apply(case_tac ka, simp, simp) - apply(case_tac k, simp, simp) - done - from this show "False" - proof(erule_tac disjE) - assume "(Suc 0::nat) < k" - hence "k < d*k \ d < d*k" - using h - by(auto) - thus "?thesis" - using case_k - apply(erule_tac x = d in allE) - apply(simp) - apply(erule_tac x = k in allE) - apply(simp) - done - next - assume "(Suc 0::nat) < ka" - hence "ka < d * ka \ d < d*ka" - using h by auto - thus "?thesis" - using case_ka - apply(erule_tac x = d in allE) - apply(simp) - apply(erule_tac x = ka in allE) - apply(simp) - done - qed -qed - -lemma Pi_inc: "Pi (Suc i) > Pi i" -proof(simp add: Pi.simps Np.simps) - let ?setx = "{y. y \ Suc (Pi i!) \ Pi i < y \ Prime y}" - have "finite ?setx" by simp - moreover have "?setx \ {}" - using prime_ex[of "Pi i"] - apply(auto) - done - ultimately show "Pi i < Min ?setx" - apply(simp add: Min_gr_iff) - done -qed - -lemma Pi_inc_gr: "i < j \ Pi i < Pi j" -proof(induct j, simp) - fix j - assume ind: "i < j \ Pi i < Pi j" - and h: "i < Suc j" - from h show "Pi i < Pi (Suc j)" - proof(cases "i < j") - case True thus "?thesis" - proof - - assume "i < j" - hence "Pi i < Pi j" by(erule_tac ind) - moreover have "Pi j < Pi (Suc j)" - apply(simp add: Pi_inc) - done - ultimately show "?thesis" - by simp - qed - next - assume "i < Suc j" "\ i < j" - hence "i = j" - by arith - thus "Pi i < Pi (Suc j)" - apply(simp add: Pi_inc) - done - qed -qed - -lemma Pi_notEq: "i \ j \ Pi i \ Pi j" -apply(case_tac "i < j") -using Pi_inc_gr[of i j] -apply(simp) -using Pi_inc_gr[of j i] -apply(simp) -done - -lemma [intro]: "Prime (Suc (Suc 0))" -apply(auto simp: Prime.simps) -apply(case_tac u, simp, case_tac nat, simp, simp) -done - -lemma Prime_Pi[intro]: "Prime (Pi n)" -proof(induct n, auto simp: Pi.simps Np.simps) - fix n - let ?setx = "{y. y \ Suc (Pi n!) \ Pi n < y \ Prime y}" - show "Prime (Min ?setx)" - proof - - have "finite ?setx" by simp - moreover have "?setx \ {}" - using prime_ex[of "Pi n"] - apply(simp) - done - ultimately show "?thesis" - apply(drule_tac Min_in, simp, simp) - done - qed -qed - -lemma Pi_coprime: "i \ j \ coprime (Pi i) (Pi j)" -using Prime_Pi[of i] -using Prime_Pi[of j] -apply(rule_tac prime_coprime, simp_all add: Pi_notEq) -done - -lemma Pi_power_coprime: "i \ j \ coprime ((Pi i)^m) ((Pi j)^n)" -by(rule_tac coprime_exp2_nat, erule_tac Pi_coprime) - -lemma coprime_dvd_mult_nat2: "\coprime (k::nat) n; k dvd n * m\ \ k dvd m" -apply(erule_tac coprime_dvd_mult_nat) -apply(simp add: dvd_def, auto) -apply(rule_tac x = ka in exI) -apply(subgoal_tac "n * m = m * n", simp) -apply(simp add: nat_mult_commute) -done - -declare godel_code'.simps[simp del] - -lemma godel_code'_butlast_last_id' : - "godel_code' (ys @ [y]) (Suc j) = godel_code' ys (Suc j) * - Pi (Suc (length ys + j)) ^ y" -proof(induct ys arbitrary: j, simp_all add: godel_code'.simps) -qed - -lemma godel_code'_butlast_last_id: -"xs \ [] \ godel_code' xs (Suc j) = - godel_code' (butlast xs) (Suc j) * Pi (length xs + j)^(last xs)" -apply(subgoal_tac "\ ys y. xs = ys @ [y]") -apply(erule_tac exE, erule_tac exE, simp add: - godel_code'_butlast_last_id') -apply(rule_tac x = "butlast xs" in exI) -apply(rule_tac x = "last xs" in exI, auto) -done - -lemma godel_code'_not0: "godel_code' xs n \ 0" -apply(induct xs, auto simp: godel_code'.simps) -done - -lemma godel_code_append_cons: - "length xs = i \ godel_code' (xs@y#ys) (Suc 0) - = godel_code' xs (Suc 0) * Pi (Suc i)^y * godel_code' ys (i + 2)" -proof(induct "length xs" arbitrary: i y ys xs, simp add: godel_code'.simps,simp) - fix x xs i y ys - assume ind: - "\xs i y ys. \x = i; length xs = i\ \ - godel_code' (xs @ y # ys) (Suc 0) - = godel_code' xs (Suc 0) * Pi (Suc i) ^ y * - godel_code' ys (Suc (Suc i))" - and h: "Suc x = i" - "length (xs::nat list) = i" - have - "godel_code' (butlast xs @ last xs # ((y::nat)#ys)) (Suc 0) = - godel_code' (butlast xs) (Suc 0) * Pi (Suc (i - 1))^(last xs) - * godel_code' (y#ys) (Suc (Suc (i - 1)))" - apply(rule_tac ind) - using h - by(auto) - moreover have - "godel_code' xs (Suc 0)= godel_code' (butlast xs) (Suc 0) * - Pi (i)^(last xs)" - using godel_code'_butlast_last_id[of xs] h - apply(case_tac "xs = []", simp, simp) - done - moreover have "butlast xs @ last xs # y # ys = xs @ y # ys" - using h - apply(case_tac xs, auto) - done - ultimately show - "godel_code' (xs @ y # ys) (Suc 0) = - godel_code' xs (Suc 0) * Pi (Suc i) ^ y * - godel_code' ys (Suc (Suc i))" - using h - apply(simp add: godel_code'_not0 Pi_not_0) - apply(simp add: godel_code'.simps) - done -qed - -lemma Pi_coprime_pre: - "length ps \ i \ coprime (Pi (Suc i)) (godel_code' ps (Suc 0))" -proof(induct "length ps" arbitrary: ps, simp add: godel_code'.simps) - fix x ps - assume ind: - "\ps. \x = length ps; length ps \ i\ \ - coprime (Pi (Suc i)) (godel_code' ps (Suc 0))" - and h: "Suc x = length ps" - "length (ps::nat list) \ i" - have g: "coprime (Pi (Suc i)) (godel_code' (butlast ps) (Suc 0))" - apply(rule_tac ind) - using h by auto - have k: "godel_code' ps (Suc 0) = - godel_code' (butlast ps) (Suc 0) * Pi (length ps)^(last ps)" - using godel_code'_butlast_last_id[of ps 0] h - by(case_tac ps, simp, simp) - from g have - "coprime (Pi (Suc i)) (godel_code' (butlast ps) (Suc 0) * - Pi (length ps)^(last ps)) " - proof(rule_tac coprime_mult_nat, simp) - show "coprime (Pi (Suc i)) (Pi (length ps) ^ last ps)" - apply(rule_tac coprime_exp_nat, rule prime_coprime, auto) - using Pi_notEq[of "Suc i" "length ps"] h by simp - qed - from this and k show "coprime (Pi (Suc i)) (godel_code' ps (Suc 0))" - by simp -qed - -lemma Pi_coprime_suf: "i < j \ coprime (Pi i) (godel_code' ps j)" -proof(induct "length ps" arbitrary: ps, simp add: godel_code'.simps) - fix x ps - assume ind: - "\ps. \x = length ps; i < j\ \ - coprime (Pi i) (godel_code' ps j)" - and h: "Suc x = length (ps::nat list)" "i < j" - have g: "coprime (Pi i) (godel_code' (butlast ps) j)" - apply(rule ind) using h by auto - have k: "(godel_code' ps j) = godel_code' (butlast ps) j * - Pi (length ps + j - 1)^last ps" - using h godel_code'_butlast_last_id[of ps "j - 1"] - apply(case_tac "ps = []", simp, simp) - done - from g have - "coprime (Pi i) (godel_code' (butlast ps) j * - Pi (length ps + j - 1)^last ps)" - apply(rule_tac coprime_mult_nat, simp) - using Pi_power_coprime[of i "length ps + j - 1" 1 "last ps"] h - apply(auto) - done - from k and this show "coprime (Pi i) (godel_code' ps j)" - by auto -qed - -lemma godel_finite: - "finite {u. Pi (Suc i) ^ u dvd godel_code' nl (Suc 0)}" -proof(rule_tac n = "godel_code' nl (Suc 0)" in - bounded_nat_set_is_finite, auto, - case_tac "ia < godel_code' nl (Suc 0)", auto) - fix ia - assume g1: "Pi (Suc i) ^ ia dvd godel_code' nl (Suc 0)" - and g2: "\ ia < godel_code' nl (Suc 0)" - from g1 have "Pi (Suc i)^ia \ godel_code' nl (Suc 0)" - apply(erule_tac dvd_imp_le) - using godel_code'_not0[of nl "Suc 0"] by simp - moreover have "ia < Pi (Suc i)^ia" - apply(rule x_less_exp) - using Pi_gr_1 by auto - ultimately show "False" - using g2 - by(auto) -qed - - -lemma godel_code_in: - "i < length nl \ nl ! i \ {u. Pi (Suc i) ^ u dvd - godel_code' nl (Suc 0)}" -proof - - assume h: "i {u. Pi (Suc i) ^ u dvd godel_code' nl (Suc 0)}" - by(simp) -qed - -lemma godel_code'_get_nth: - "i < length nl \ Max {u. Pi (Suc i) ^ u dvd - godel_code' nl (Suc 0)} = nl ! i" -proof(rule_tac Max_eqI) - let ?gc = "godel_code' nl (Suc 0)" - assume h: "i < length nl" thus "finite {u. Pi (Suc i) ^ u dvd ?gc}" - by (simp add: godel_finite) -next - fix y - let ?suf ="godel_code' (drop (Suc i) nl) (i + 2)" - let ?pref = "godel_code' (take i nl) (Suc 0)" - assume h: "i < length nl" - "y \ {u. Pi (Suc i) ^ u dvd godel_code' nl (Suc 0)}" - moreover hence - "godel_code' (take i nl@(nl!i)#drop (Suc i) nl) (Suc 0) - = ?pref * Pi (Suc i)^(nl!i) * ?suf" - by(rule_tac godel_code_append_cons, simp) - moreover from h have "take i nl @ (nl!i) # drop (Suc i) nl = nl" - using upd_conv_take_nth_drop[of i nl "nl!i"] - by simp - ultimately show "y\nl!i" - proof(simp) - let ?suf' = "godel_code' (drop (Suc i) nl) (Suc (Suc i))" - assume mult_dvd: - "Pi (Suc i) ^ y dvd ?pref * Pi (Suc i) ^ nl ! i * ?suf'" - hence "Pi (Suc i) ^ y dvd ?pref * Pi (Suc i) ^ nl ! i" - proof(rule_tac coprime_dvd_mult_nat) - show "coprime (Pi (Suc i)^y) ?suf'" - proof - - have "coprime (Pi (Suc i) ^ y) (?suf'^(Suc 0))" - apply(rule_tac coprime_exp2_nat) - apply(rule_tac Pi_coprime_suf, simp) - done - thus "?thesis" by simp - qed - qed - hence "Pi (Suc i) ^ y dvd Pi (Suc i) ^ nl ! i" - proof(rule_tac coprime_dvd_mult_nat2) - show "coprime (Pi (Suc i) ^ y) ?pref" - proof - - have "coprime (Pi (Suc i)^y) (?pref^Suc 0)" - apply(rule_tac coprime_exp2_nat) - apply(rule_tac Pi_coprime_pre, simp) - done - thus "?thesis" by simp - qed - qed - hence "Pi (Suc i) ^ y \ Pi (Suc i) ^ nl ! i " - apply(rule_tac dvd_imp_le, auto) - done - thus "y \ nl ! i" - apply(rule_tac power_le_imp_le_exp, auto) - done - qed -next - assume h: "i {u. Pi (Suc i) ^ u dvd godel_code' nl (Suc 0)}" - by(rule_tac godel_code_in, simp) -qed - -lemma [simp]: - "{u. Pi (Suc i) ^ u dvd (Suc (Suc 0)) ^ length nl * - godel_code' nl (Suc 0)} = - {u. Pi (Suc i) ^ u dvd godel_code' nl (Suc 0)}" -apply(rule_tac Collect_cong, auto) -apply(rule_tac n = " (Suc (Suc 0)) ^ length nl" in - coprime_dvd_mult_nat2) -proof - - fix u - show "coprime (Pi (Suc i) ^ u) ((Suc (Suc 0)) ^ length nl)" - proof(rule_tac coprime_exp2_nat) - have "Pi 0 = (2::nat)" - apply(simp add: Pi.simps) - done - moreover have "coprime (Pi (Suc i)) (Pi 0)" - apply(rule_tac Pi_coprime, simp) - done - ultimately show "coprime (Pi (Suc i)) (Suc (Suc 0))" by simp - qed -qed - -lemma godel_code_get_nth: - "i < length nl \ - Max {u. Pi (Suc i) ^ u dvd godel_code nl} = nl ! i" -by(simp add: godel_code.simps godel_code'_get_nth) - -lemma "trpl l st r = godel_code' [l, st, r] 0" -apply(simp add: trpl.simps godel_code'.simps) -done - -lemma mod_dvd_simp: "(x mod y = (0::nat)) = (y dvd x)" -by(simp add: dvd_def, auto) - -lemma dvd_power_le: "\a > Suc 0; a ^ y dvd a ^ l\ \ y \ l" -apply(case_tac "y \ l", simp, simp) -apply(subgoal_tac "\ d. y = l + d", auto simp: power_add) -apply(rule_tac x = "y - l" in exI, simp) -done - - -lemma [elim]: "Pi n = 0 \ RR" - using Pi_not_0[of n] by simp - -lemma [elim]: "Pi n = Suc 0 \ RR" - using Pi_gr_1[of n] by simp - -lemma finite_power_dvd: - "\(a::nat) > Suc 0; y \ 0\ \ finite {u. a^u dvd y}" -apply(auto simp: dvd_def) -apply(rule_tac n = y in bounded_nat_set_is_finite, auto) -apply(case_tac k, simp,simp) -apply(rule_tac trans_less_add1) -apply(erule_tac x_less_exp) -done - -lemma conf_decode1: "\m \ n; m \ k; k \ n\ \ - Max {u. Pi m ^ u dvd Pi m ^ l * Pi n ^ st * Pi k ^ r} = l" -proof - - let ?setx = "{u. Pi m ^ u dvd Pi m ^ l * Pi n ^ st * Pi k ^ r}" - assume g: "m \ n" "m \ k" "k \ n" - show "Max ?setx = l" - proof(rule_tac Max_eqI) - show "finite ?setx" - apply(rule_tac finite_power_dvd, auto simp: Pi_gr_1) - done - next - fix y - assume h: "y \ ?setx" - have "Pi m ^ y dvd Pi m ^ l" - proof - - have "Pi m ^ y dvd Pi m ^ l * Pi n ^ st" - using h g - apply(rule_tac n = "Pi k^r" in coprime_dvd_mult_nat) - apply(rule Pi_power_coprime, simp, simp) - done - thus "Pi m^y dvd Pi m^l" - apply(rule_tac n = " Pi n ^ st" in coprime_dvd_mult_nat) - using g - apply(rule_tac Pi_power_coprime, simp, simp) - done - qed - thus "y \ (l::nat)" - apply(rule_tac a = "Pi m" in power_le_imp_le_exp) - apply(simp_all add: Pi_gr_1) - apply(rule_tac dvd_power_le, auto) - done - next - show "l \ ?setx" by simp - qed -qed - -lemma conf_decode2: - "\m \ n; m \ k; n \ k; - \ Suc 0 < Pi m ^ l * Pi n ^ st * Pi k ^ r\ \ l = 0" -apply(case_tac "Pi m ^ l * Pi n ^ st * Pi k ^ r", auto) -done - -lemma [simp]: "left (trpl l st r) = l" -apply(simp add: left.simps trpl.simps lo.simps - loR.simps mod_dvd_simp, auto simp: conf_decode1) -apply(case_tac "Pi 0 ^ l * Pi (Suc 0) ^ st * Pi (Suc (Suc 0)) ^ r", - auto) -apply(erule_tac x = l in allE, auto) -done - -lemma [simp]: "stat (trpl l st r) = st" -apply(simp add: stat.simps trpl.simps lo.simps - loR.simps mod_dvd_simp, auto) -apply(subgoal_tac "Pi 0 ^ l * Pi (Suc 0) ^ st * Pi (Suc (Suc 0)) ^ r - = Pi (Suc 0)^st * Pi 0 ^ l * Pi (Suc (Suc 0)) ^ r") -apply(simp (no_asm_simp) add: conf_decode1, simp) -apply(case_tac "Pi 0 ^ l * Pi (Suc 0) ^ st * - Pi (Suc (Suc 0)) ^ r", auto) -apply(erule_tac x = st in allE, auto) -done - -lemma [simp]: "rght (trpl l st r) = r" -apply(simp add: rght.simps trpl.simps lo.simps - loR.simps mod_dvd_simp, auto) -apply(subgoal_tac "Pi 0 ^ l * Pi (Suc 0) ^ st * Pi (Suc (Suc 0)) ^ r - = Pi (Suc (Suc 0))^r * Pi 0 ^ l * Pi (Suc 0) ^ st") -apply(simp (no_asm_simp) add: conf_decode1, simp) -apply(case_tac "Pi 0 ^ l * Pi (Suc 0) ^ st * Pi (Suc (Suc 0)) ^ r", - auto) -apply(erule_tac x = r in allE, auto) -done - -lemma max_lor: - "i < length nl \ Max {u. loR [godel_code nl, Pi (Suc i), u]} - = nl ! i" -apply(simp add: loR.simps godel_code_get_nth mod_dvd_simp) -done - -lemma godel_decode: - "i < length nl \ Entry (godel_code nl) i = nl ! i" -apply(auto simp: Entry.simps lo.simps max_lor) -apply(erule_tac x = "nl!i" in allE) -using max_lor[of i nl] godel_finite[of i nl] -apply(simp) -apply(drule_tac Max_in, auto simp: loR.simps - godel_code.simps mod_dvd_simp) -using godel_code_in[of i nl] -apply(simp) -done - -lemma Four_Suc: "4 = Suc (Suc (Suc (Suc 0)))" -by auto - -declare numeral_2_eq_2[simp del] - -lemma modify_tprog_fetch_even: - "\st \ length tp div 2; st > 0\ \ - modify_tprog tp ! (4 * (st - Suc 0) ) = - action_map (fst (tp ! (2 * (st - Suc 0))))" -proof(induct st arbitrary: tp, simp) - fix tp st - assume ind: - "\tp. \st \ length tp div 2; 0 < st\ \ - modify_tprog tp ! (4 * (st - Suc 0)) = - action_map (fst ((tp::tprog) ! (2 * (st - Suc 0))))" - and h: "Suc st \ length (tp::tprog) div 2" "0 < Suc st" - thus "modify_tprog tp ! (4 * (Suc st - Suc 0)) = - action_map (fst (tp ! (2 * (Suc st - Suc 0))))" - proof(cases "st = 0") - case True thus "?thesis" - using h - apply(auto) - apply(cases tp, simp, case_tac a, simp add: modify_tprog.simps) - done - next - case False - assume g: "st \ 0" - hence "\ aa ab ba bb tp'. tp = (aa, ab) # (ba, bb) # tp'" - using h - apply(case_tac tp, simp, case_tac list, simp, simp) - done - from this obtain aa ab ba bb tp' where g1: - "tp = (aa, ab) # (ba, bb) # tp'" by blast - hence g2: - "modify_tprog tp' ! (4 * (st - Suc 0)) = - action_map (fst ((tp'::tprog) ! (2 * (st - Suc 0))))" - apply(rule_tac ind) - using h g by auto - thus "?thesis" - using g1 g - apply(case_tac st, simp, simp add: Four_Suc) - done - qed -qed - -lemma modify_tprog_fetch_odd: - "\st \ length tp div 2; st > 0\ \ - modify_tprog tp ! (Suc (Suc (4 * (st - Suc 0)))) = - action_map (fst (tp ! (Suc (2 * (st - Suc 0)))))" -proof(induct st arbitrary: tp, simp) - fix tp st - assume ind: - "\tp. \st \ length tp div 2; 0 < st\ \ - modify_tprog tp ! Suc (Suc (4 * (st - Suc 0))) = - action_map (fst (tp ! Suc (2 * (st - Suc 0))))" - and h: "Suc st \ length (tp::tprog) div 2" "0 < Suc st" - thus "modify_tprog tp ! Suc (Suc (4 * (Suc st - Suc 0))) - = action_map (fst (tp ! Suc (2 * (Suc st - Suc 0))))" - proof(cases "st = 0") - case True thus "?thesis" - using h - apply(auto) - apply(cases tp, simp, case_tac a, simp add: modify_tprog.simps) - apply(case_tac list, simp, case_tac ab, - simp add: modify_tprog.simps) - done - next - case False - assume g: "st \ 0" - hence "\ aa ab ba bb tp'. tp = (aa, ab) # (ba, bb) # tp'" - using h - apply(case_tac tp, simp, case_tac list, simp, simp) - done - from this obtain aa ab ba bb tp' where g1: - "tp = (aa, ab) # (ba, bb) # tp'" by blast - hence g2: "modify_tprog tp' ! Suc (Suc (4 * (st - Suc 0))) = - action_map (fst (tp' ! Suc (2 * (st - Suc 0))))" - apply(rule_tac ind) - using h g by auto - thus "?thesis" - using g1 g - apply(case_tac st, simp, simp add: Four_Suc) - done - qed -qed - -lemma modify_tprog_fetch_action: - "\st \ length tp div 2; st > 0; b = 1 \ b = 0\ \ - modify_tprog tp ! (4 * (st - Suc 0) + 2* b) = - action_map (fst (tp ! ((2 * (st - Suc 0)) + b)))" -apply(erule_tac disjE, auto elim: modify_tprog_fetch_odd - modify_tprog_fetch_even) -done - -lemma length_modify: "length (modify_tprog tp) = 2 * length tp" -apply(induct tp, auto) -done - -declare fetch.simps[simp del] - -lemma fetch_action_eq: - "\block_map b = scan r; fetch tp st b = (nact, ns); - st \ length tp div 2\ \ actn (code tp) st r = action_map nact" -proof(simp add: actn.simps, auto) - let ?i = "4 * (st - Suc 0) + 2 * (r mod 2)" - assume h: "block_map b = r mod 2" "fetch tp st b = (nact, ns)" - "st \ length tp div 2" "0 < st" - have "?i < length (modify_tprog tp)" - proof - - have "length (modify_tprog tp) = 2 * length tp" - by(simp add: length_modify) - thus "?thesis" - using h - by(auto) - qed - hence - "Entry (godel_code (modify_tprog tp))?i = - (modify_tprog tp) ! ?i" - by(erule_tac godel_decode) - moreover have - "modify_tprog tp ! ?i = - action_map (fst (tp ! (2 * (st - Suc 0) + r mod 2)))" - apply(rule_tac modify_tprog_fetch_action) - using h - by(auto) - moreover have "(fst (tp ! (2 * (st - Suc 0) + r mod 2))) = nact" - using h - apply(simp add: fetch.simps nth_of.simps) - apply(case_tac b, auto simp: block_map.simps nth_of.simps split: if_splits) - done - ultimately show - "Entry (godel_code (modify_tprog tp)) - (4 * (st - Suc 0) + 2 * (r mod 2)) - = action_map nact" - by simp -qed - -lemma [simp]: "fetch tp 0 b = (nact, ns) \ ns = 0" -by(simp add: fetch.simps) - -lemma Five_Suc: "5 = Suc 4" by simp - -lemma modify_tprog_fetch_state: - "\st \ length tp div 2; st > 0; b = 1 \ b = 0\ \ - modify_tprog tp ! Suc (4 * (st - Suc 0) + 2 * b) = - (snd (tp ! (2 * (st - Suc 0) + b)))" -proof(induct st arbitrary: tp, simp) - fix st tp - assume ind: - "\tp. \st \ length tp div 2; 0 < st; b = 1 \ b = 0\ \ - modify_tprog tp ! Suc (4 * (st - Suc 0) + 2 * b) = - snd (tp ! (2 * (st - Suc 0) + b))" - and h: - "Suc st \ length (tp::tprog) div 2" - "0 < Suc st" - "b = 1 \ b = 0" - show "modify_tprog tp ! Suc (4 * (Suc st - Suc 0) + 2 * b) = - snd (tp ! (2 * (Suc st - Suc 0) + b))" - proof(cases "st = 0") - case True - thus "?thesis" - using h - apply(cases tp, simp, case_tac a, simp add: modify_tprog.simps) - apply(case_tac list, simp, case_tac ab, - simp add: modify_tprog.simps, auto) - done - next - case False - assume g: "st \ 0" - hence "\ aa ab ba bb tp'. tp = (aa, ab) # (ba, bb) # tp'" - using h - apply(case_tac tp, simp, case_tac list, simp, simp) - done - from this obtain aa ab ba bb tp' where g1: - "tp = (aa, ab) # (ba, bb) # tp'" by blast - hence g2: - "modify_tprog tp' ! Suc (4 * (st - Suc 0) + 2 * b) = - snd (tp' ! (2 * (st - Suc 0) + b))" - apply(rule_tac ind) - using h g by auto - thus "?thesis" - using g1 g - apply(case_tac st, simp, simp) - done - qed -qed - -lemma fetch_state_eq: - "\block_map b = scan r; - fetch tp st b = (nact, ns); - st \ length tp div 2\ \ newstat (code tp) st r = ns" -proof(simp add: newstat.simps, auto) - let ?i = "Suc (4 * (st - Suc 0) + 2 * (r mod 2))" - assume h: "block_map b = r mod 2" "fetch tp st b = - (nact, ns)" "st \ length tp div 2" "0 < st" - have "?i < length (modify_tprog tp)" - proof - - have "length (modify_tprog tp) = 2 * length tp" - apply(simp add: length_modify) - done - thus "?thesis" - using h - by(auto) - qed - hence "Entry (godel_code (modify_tprog tp)) (?i) = - (modify_tprog tp) ! ?i" - by(erule_tac godel_decode) - moreover have - "modify_tprog tp ! ?i = - (snd (tp ! (2 * (st - Suc 0) + r mod 2)))" - apply(rule_tac modify_tprog_fetch_state) - using h - by(auto) - moreover have "(snd (tp ! (2 * (st - Suc 0) + r mod 2))) = ns" - using h - apply(simp add: fetch.simps nth_of.simps) - apply(case_tac b, auto simp: block_map.simps nth_of.simps - split: if_splits) - done - ultimately show "Entry (godel_code (modify_tprog tp)) (?i) - = ns" - by simp -qed - - -lemma [intro!]: - "\a = a'; b = b'; c = c'\ \ trpl a b c = trpl a' b' c'" -by simp - -lemma [simp]: "bl2wc [Bk] = 0" -by(simp add: bl2wc.simps bl2nat.simps) - -lemma bl2nat_double: "bl2nat xs (Suc n) = 2 * bl2nat xs n" -proof(induct xs arbitrary: n) - case Nil thus "?case" - by(simp add: bl2nat.simps) -next - case (Cons x xs) thus "?case" - proof - - assume ind: "\n. bl2nat xs (Suc n) = 2 * bl2nat xs n " - show "bl2nat (x # xs) (Suc n) = 2 * bl2nat (x # xs) n" - proof(cases x) - case Bk thus "?thesis" - apply(simp add: bl2nat.simps) - using ind[of "Suc n"] by simp - next - case Oc thus "?thesis" - apply(simp add: bl2nat.simps) - using ind[of "Suc n"] by simp - qed - qed -qed - - -lemma [simp]: "c \ [] \ 2 * bl2wc (tl c) = bl2wc c - bl2wc c mod 2 " -apply(case_tac c, simp, case_tac a) -apply(auto simp: bl2wc.simps bl2nat.simps bl2nat_double) -done - -lemma [simp]: - "c \ [] \ bl2wc (Oc # tl c) = Suc (bl2wc c) - bl2wc c mod 2 " -apply(case_tac c, simp, case_tac a) -apply(auto simp: bl2wc.simps bl2nat.simps bl2nat_double) -done - -lemma [simp]: "bl2wc (Bk # c) = 2*bl2wc (c)" -apply(simp add: bl2wc.simps bl2nat.simps bl2nat_double) -done - -lemma [simp]: "bl2wc [Oc] = Suc 0" - by(simp add: bl2wc.simps bl2nat.simps) - -lemma [simp]: "b \ [] \ bl2wc (tl b) = bl2wc b div 2" -apply(case_tac b, simp, case_tac a) -apply(auto simp: bl2wc.simps bl2nat.simps bl2nat_double) -done - -lemma [simp]: "b \ [] \ bl2wc ([hd b]) = bl2wc b mod 2" -apply(case_tac b, simp, case_tac a) -apply(auto simp: bl2wc.simps bl2nat.simps bl2nat_double) -done - -lemma [simp]: "\b \ []; c \ []\ \ bl2wc (hd b # c) = 2 * bl2wc c + bl2wc b mod 2" -apply(case_tac b, simp, case_tac a) -apply(auto simp: bl2wc.simps bl2nat.simps bl2nat_double) -done - -lemma [simp]: " 2 * (bl2wc c div 2) = bl2wc c - bl2wc c mod 2" - by(simp add: mult_div_cancel) - -lemma [simp]: "bl2wc (Oc # list) mod 2 = Suc 0" - by(simp add: bl2wc.simps bl2nat.simps bl2nat_double) - - -declare code.simps[simp del] -declare nth_of.simps[simp del] -declare new_tape.simps[simp del] - -text {* - The lemma relates the one step execution of TMs with the interpreter function @{text "rec_newconf"}. - *} -lemma rec_t_eq_step: - "(\ (s, l, r). s \ length tp div 2) c \ - trpl_code (tstep c tp) = - rec_exec rec_newconf [code tp, trpl_code c]" -apply(cases c, auto simp: tstep.simps) -proof(case_tac "fetch tp a (case c of [] \ Bk | x # xs \ x)", - simp add: newconf.simps trpl_code.simps) - fix a b c aa ba - assume h: "(a::nat) \ length tp div 2" - "fetch tp a (case c of [] \ Bk | x # xs \ x) = (aa, ba)" - moreover hence "actn (code tp) a (bl2wc c) = action_map aa" - apply(rule_tac b = "(case c of [] \ Bk | x # xs \ x)" - in fetch_action_eq, auto) - apply(auto split: list.splits) - apply(case_tac ab, auto) - done - moreover from h have "(newstat (code tp) a (bl2wc c)) = ba" - apply(rule_tac b = "(case c of [] \ Bk | x # xs \ x)" - in fetch_state_eq, auto split: list.splits) - apply(case_tac ab, auto) - done - ultimately show - "trpl_code (ba, new_tape aa (b, c)) = - trpl (newleft (bl2wc b) (bl2wc c) (actn (code tp) a (bl2wc c))) - (newstat (code tp) a (bl2wc c)) (newrght (bl2wc b) (bl2wc c) - (actn (code tp) a (bl2wc c)))" - by(auto simp: new_tape.simps trpl_code.simps - newleft.simps newrght.simps split: taction.splits) -qed - -lemma [simp]: "a\<^bsup>0\<^esup> = []" -apply(simp add: exp_zero) -done -lemma [simp]: "bl2nat (Oc # Oc\<^bsup>x\<^esup>) 0 = (2 * 2 ^ x - Suc 0)" -apply(induct x) -apply(simp add: bl2nat.simps) -apply(simp add: bl2nat.simps bl2nat_double exp_ind_def) -done - -lemma [simp]: "bl2nat (Oc\<^bsup>y\<^esup>) 0 = 2^y - Suc 0" -apply(induct y, auto simp: bl2nat.simps exp_ind_def bl2nat_double) -apply(case_tac "(2::nat)^y", auto) -done - -lemma [simp]: "bl2nat (Bk\<^bsup>l\<^esup>) n = 0" -apply(induct l, auto simp: bl2nat.simps bl2nat_double exp_ind_def) -done - -lemma bl2nat_cons_bk: "bl2nat (ks @ [Bk]) 0 = bl2nat ks 0" -apply(induct ks, auto simp: bl2nat.simps split: block.splits) -apply(case_tac a, auto simp: bl2nat.simps bl2nat_double) -done - -lemma bl2nat_cons_oc: - "bl2nat (ks @ [Oc]) 0 = bl2nat ks 0 + 2 ^ length ks" -apply(induct ks, auto simp: bl2nat.simps split: block.splits) -apply(case_tac a, auto simp: bl2nat.simps bl2nat_double) -done - -lemma bl2nat_append: - "bl2nat (xs @ ys) 0 = bl2nat xs 0 + bl2nat ys (length xs) " -proof(induct "length xs" arbitrary: xs ys, simp add: bl2nat.simps) - fix x xs ys - assume ind: - "\xs ys. x = length xs \ - bl2nat (xs @ ys) 0 = bl2nat xs 0 + bl2nat ys (length xs)" - and h: "Suc x = length (xs::block list)" - have "\ ks k. xs = ks @ [k]" - apply(rule_tac x = "butlast xs" in exI, - rule_tac x = "last xs" in exI) - using h - apply(case_tac xs, auto) - done - from this obtain ks k where "xs = ks @ [k]" by blast - moreover hence - "bl2nat (ks @ (k # ys)) 0 = bl2nat ks 0 + - bl2nat (k # ys) (length ks)" - apply(rule_tac ind) using h by simp - ultimately show "bl2nat (xs @ ys) 0 = - bl2nat xs 0 + bl2nat ys (length xs)" - apply(case_tac k, simp_all add: bl2nat.simps) - apply(simp_all only: bl2nat_cons_bk bl2nat_cons_oc) - done -qed - -lemma bl2nat_exp: "n \ 0 \ bl2nat bl n = 2^n * bl2nat bl 0" -apply(induct bl) -apply(auto simp: bl2nat.simps) -apply(case_tac a, auto simp: bl2nat.simps bl2nat_double) -done - -lemma nat_minus_eq: "\a = b; c = d\ \ a - c = b - d" -by auto - -lemma tape_of_nat_list_butlast_last: - "ys \ [] \ = @ Bk # Oc\<^bsup>Suc y\<^esup>" -apply(induct ys, simp, simp) -apply(case_tac "ys = []", simp add: tape_of_nl_abv - tape_of_nat_list.simps) -apply(simp) -done - -lemma listsum2_append: - "\n \ length xs\ \ listsum2 (xs @ ys) n = listsum2 xs n" -apply(induct n) -apply(auto simp: listsum2.simps nth_append) -done - -lemma strt'_append: - "\n \ length xs\ \ strt' xs n = strt' (xs @ ys) n" -proof(induct n arbitrary: xs ys) - fix xs ys - show "strt' xs 0 = strt' (xs @ ys) 0" by(simp add: strt'.simps) -next - fix n xs ys - assume ind: - "\ xs ys. n \ length xs \ strt' xs n = strt' (xs @ ys) n" - and h: "Suc n \ length (xs::nat list)" - show "strt' xs (Suc n) = strt' (xs @ ys) (Suc n)" - using ind[of xs ys] h - apply(simp add: strt'.simps nth_append listsum2_append) - done -qed - -lemma length_listsum2_eq: - "\length (ys::nat list) = k\ - \ length () = listsum2 (map Suc ys) k + k - 1" -apply(induct k arbitrary: ys, simp_all add: listsum2.simps) -apply(subgoal_tac "\ xs x. ys = xs @ [x]", auto) -proof - - fix xs x - assume ind: "\ys. length ys = length xs \ length () - = listsum2 (map Suc ys) (length xs) + - length (xs::nat list) - Suc 0" - have "length () - = listsum2 (map Suc xs) (length xs) + length xs - Suc 0" - apply(rule_tac ind, simp) - done - thus "length () = - Suc (listsum2 (map Suc xs @ [Suc x]) (length xs) + x + length xs)" - apply(case_tac "xs = []") - apply(simp add: tape_of_nl_abv listsum2.simps - tape_of_nat_list.simps) - apply(simp add: tape_of_nat_list_butlast_last) - using listsum2_append[of "length xs" "map Suc xs" "[Suc x]"] - apply(simp) - done -next - fix k ys - assume "length ys = Suc k" - thus "\xs x. ys = xs @ [x]" - apply(rule_tac x = "butlast ys" in exI, - rule_tac x = "last ys" in exI) - apply(case_tac ys, auto) - done -qed - -lemma tape_of_nat_list_length: - "length (<(ys::nat list)>) = - listsum2 (map Suc ys) (length ys) + length ys - 1" - using length_listsum2_eq[of ys "length ys"] - apply(simp) - done - - - -lemma [simp]: - "trpl_code (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp 0) = - rec_exec rec_conf [code tp, bl2wc (), 0]" -apply(simp add: steps.simps rec_exec.simps conf_lemma conf.simps - inpt.simps trpl_code.simps bl2wc.simps) -done - -text {* - The following lemma relates the multi-step interpreter function @{text "rec_conf"} - with the multi-step execution of TMs. - *} -lemma rec_t_eq_steps: - "turing_basic.t_correct tp \ - trpl_code (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp) = - rec_exec rec_conf [code tp, bl2wc (), stp]" -proof(induct stp) - case 0 thus "?case" by(simp) -next - case (Suc n) thus "?case" - proof - - assume ind: - "t_correct tp \ trpl_code (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp n) - = rec_exec rec_conf [code tp, bl2wc (), n]" - and h: "t_correct tp" - show - "trpl_code (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp (Suc n)) = - rec_exec rec_conf [code tp, bl2wc (), Suc n]" - proof(case_tac "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp n", - simp only: tstep_red conf_lemma conf.simps) - fix a b c - assume g: "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp n = (a, b, c) " - hence "conf (code tp) (bl2wc ()) n= trpl_code (a, b, c)" - using ind h - apply(simp add: conf_lemma) - done - moreover hence - "trpl_code (tstep (a, b, c) tp) = - rec_exec rec_newconf [code tp, trpl_code (a, b, c)]" - apply(rule_tac rec_t_eq_step) - using h g - apply(simp add: s_keep) - done - ultimately show - "trpl_code (tstep (a, b, c) tp) = - newconf (code tp) (conf (code tp) (bl2wc ()) n)" - by(simp add: newconf_lemma) - qed - qed -qed - -lemma [simp]: "bl2wc (Bk\<^bsup>m\<^esup>) = 0" -apply(induct m) -apply(simp, simp) -done - -lemma [simp]: "bl2wc (Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>) = bl2wc (Oc\<^bsup>rs\<^esup>)" -apply(induct rs, simp, - simp add: bl2wc.simps bl2nat.simps bl2nat_double) -done - -lemma lg_power: "x > Suc 0 \ lg (x ^ rs) x = rs" -proof(simp add: lg.simps, auto) - fix xa - assume h: "Suc 0 < x" - show "Max {ya. ya \ x ^ rs \ lgR [x ^ rs, x, ya]} = rs" - apply(rule_tac Max_eqI, simp_all add: lgR.simps) - apply(simp add: h) - using x_less_exp[of x rs] h - apply(simp) - done -next - assume "\ Suc 0 < x ^ rs" "Suc 0 < x" - thus "rs = 0" - apply(case_tac "x ^ rs", simp, simp) - done -next - assume "Suc 0 < x" "\xa. \ lgR [x ^ rs, x, xa]" - thus "rs = 0" - apply(simp only:lgR.simps) - apply(erule_tac x = rs in allE, simp) - done -qed - -text {* - The following lemma relates execution of TMs with - the multi-step interpreter function @{text "rec_nonstop"}. Note, - @{text "rec_nonstop"} is constructed using @{text "rec_conf"}. - *} -lemma nonstop_t_eq: - "\steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>); - turing_basic.t_correct tp; - rs > 0\ - \ rec_exec rec_nonstop [code tp, bl2wc (), stp] = 0" -proof(simp add: nonstop_lemma nonstop.simps nstd.simps) - assume h: "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" - and tc_t: "turing_basic.t_correct tp" "rs > 0" - have g: "rec_exec rec_conf [code tp, bl2wc (), stp] = - trpl_code (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>)" - using rec_t_eq_steps[of tp l lm stp] tc_t h - by(simp) - thus "\ NSTD (conf (code tp) (bl2wc ()) stp)" - proof(auto simp: NSTD.simps) - show "stat (conf (code tp) (bl2wc ()) stp) = 0" - using g - by(auto simp: conf_lemma trpl_code.simps) - next - show "left (conf (code tp) (bl2wc ()) stp) = 0" - using g - by(simp add: conf_lemma trpl_code.simps) - next - show "rght (conf (code tp) (bl2wc ()) stp) = - 2 ^ lg (Suc (rght (conf (code tp) (bl2wc ()) stp))) 2 - Suc 0" - using g h - proof(simp add: conf_lemma trpl_code.simps) - have "2 ^ lg (Suc (bl2wc (Oc\<^bsup>rs\<^esup>))) 2 = Suc (bl2wc (Oc\<^bsup>rs\<^esup>))" - apply(simp add: bl2wc.simps lg_power) - done - thus "bl2wc (Oc\<^bsup>rs\<^esup>) = 2 ^ lg (Suc (bl2wc (Oc\<^bsup>rs\<^esup>))) 2 - Suc 0" - apply(simp) - done - qed - next - show "0 < rght (conf (code tp) (bl2wc ()) stp)" - using g h tc_t - apply(simp add: conf_lemma trpl_code.simps bl2wc.simps - bl2nat.simps) - apply(case_tac rs, simp, simp add: bl2nat.simps) - done - qed -qed - -lemma [simp]: "actn m 0 r = 4" -by(simp add: actn.simps) - -lemma [simp]: "newstat m 0 r = 0" -by(simp add: newstat.simps) - -declare exp_def[simp del] - -lemma halt_least_step: - "\steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs \<^esup> @ Bk\<^bsup>n\<^esup>); - turing_basic.t_correct tp; - 0 \ - \ stp. (nonstop (code tp) (bl2wc ()) stp = 0 \ - (\ stp'. nonstop (code tp) (bl2wc ()) stp' = 0 \ stp \ stp'))" -proof(induct stp, simp add: steps.simps, simp) - fix stp - assume ind: - "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>) \ - \stp. nonstop (code tp) (bl2wc ()) stp = 0 \ - (\stp'. nonstop (code tp) (bl2wc ()) stp' = 0 \ stp \ stp')" - and h: - "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp (Suc stp) = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" - "turing_basic.t_correct tp" - "0 < rs" - from h show - "\stp. nonstop (code tp) (bl2wc ()) stp = 0 - \ (\stp'. nonstop (code tp) (bl2wc ()) stp' = 0 \ stp \ stp')" - proof(simp add: tstep_red, - case_tac "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp", simp, - case_tac a, simp add: tstep_0) - assume "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" - thus "\stp. nonstop (code tp) (bl2wc ()) stp = 0 \ - (\stp'. nonstop (code tp) (bl2wc ()) stp' = 0 \ stp \ stp')" - apply(erule_tac ind) - done - next - fix a b c nat - assume "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (a, b, c)" - "a = Suc nat" - thus "\stp. nonstop (code tp) (bl2wc ()) stp = 0 \ - (\stp'. nonstop (code tp) (bl2wc ()) stp' = 0 \ stp \ stp')" - using h - apply(rule_tac x = "Suc stp" in exI, auto) - apply(drule_tac nonstop_t_eq, simp_all add: nonstop_lemma) - proof - - fix stp' - assume g:"steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (Suc nat, b, c)" - "nonstop (code tp) (bl2wc ()) stp' = 0" - thus "Suc stp \ stp'" - proof(case_tac "Suc stp \ stp'", simp, simp) - assume "\ Suc stp \ stp'" - hence "stp' \ stp" by simp - hence "\ isS0 (steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp')" - using g - apply(case_tac "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp'",auto, - simp add: isS0_def) - apply(subgoal_tac "\ n. stp = stp' + n", - auto simp: steps_add steps_0) - apply(rule_tac x = "stp - stp'" in exI, simp) - done - hence "nonstop (code tp) (bl2wc ()) stp' = 1" - proof(case_tac "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp'", - simp add: isS0_def nonstop.simps) - fix a b c - assume k: - "0 < a" "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp' = (a, b, c)" - thus " NSTD (conf (code tp) (bl2wc ()) stp')" - using rec_t_eq_steps[of tp l lm stp'] h - proof(simp add: conf_lemma) - assume "trpl_code (a, b, c) = conf (code tp) (bl2wc ()) stp'" - moreover have "NSTD (trpl_code (a, b, c))" - using k - apply(auto simp: trpl_code.simps NSTD.simps) - done - ultimately show "NSTD (conf (code tp) (bl2wc ()) stp')" by simp - qed - qed - thus "False" using g by simp - qed - qed - qed -qed - -lemma conf_trpl_ex: "\ p q r. conf m (bl2wc ()) stp = trpl p q r" -apply(induct stp, auto simp: conf.simps inpt.simps trpl.simps - newconf.simps) -apply(rule_tac x = 0 in exI, rule_tac x = 1 in exI, - rule_tac x = "bl2wc ()" in exI) -apply(simp) -done - -lemma nonstop_rgt_ex: - "nonstop m (bl2wc ()) stpa = 0 \ \ r. conf m (bl2wc ()) stpa = trpl 0 0 r" -apply(auto simp: nonstop.simps NSTD.simps split: if_splits) -using conf_trpl_ex[of m lm stpa] -apply(auto) -done - -lemma [elim]: "x > Suc 0 \ Max {u. x ^ u dvd x ^ r} = r" -proof(rule_tac Max_eqI) - assume "x > Suc 0" - thus "finite {u. x ^ u dvd x ^ r}" - apply(rule_tac finite_power_dvd, auto) - done -next - fix y - assume "Suc 0 < x" "y \ {u. x ^ u dvd x ^ r}" - thus "y \ r" - apply(case_tac "y\ r", simp) - apply(subgoal_tac "\ d. y = r + d") - apply(auto simp: power_add) - apply(rule_tac x = "y - r" in exI, simp) - done -next - show "r \ {u. x ^ u dvd x ^ r}" by simp -qed - -lemma lo_power: "x > Suc 0 \ lo (x ^ r) x = r" -apply(auto simp: lo.simps loR.simps mod_dvd_simp) -apply(case_tac "x^r", simp_all) -done - -lemma lo_rgt: "lo (trpl 0 0 r) (Pi 2) = r" -apply(simp add: trpl.simps lo_power) -done - -lemma conf_keep: - "conf m lm stp = trpl 0 0 r \ - conf m lm (stp + n) = trpl 0 0 r" -apply(induct n) -apply(auto simp: conf.simps newconf.simps newleft.simps - newrght.simps rght.simps lo_rgt) -done - -lemma halt_state_keep_steps_add: - "\nonstop m (bl2wc ()) stpa = 0\ \ - conf m (bl2wc ()) stpa = conf m (bl2wc ()) (stpa + n)" -apply(drule_tac nonstop_rgt_ex, auto simp: conf_keep) -done - -lemma halt_state_keep: - "\nonstop m (bl2wc ()) stpa = 0; nonstop m (bl2wc ()) stpb = 0\ \ - conf m (bl2wc ()) stpa = conf m (bl2wc ()) stpb" -apply(case_tac "stpa > stpb") -using halt_state_keep_steps_add[of m lm stpb "stpa - stpb"] -apply simp -using halt_state_keep_steps_add[of m lm stpa "stpb - stpa"] -apply(simp) -done - -text {* - The correntess of @{text "rec_F"} which relates the interpreter function @{text "rec_F"} with the - execution of of TMs. - *} -lemma F_t_halt_eq: - "\steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>); - turing_basic.t_correct tp; - 0 - \ rec_calc_rel rec_F [code tp, (bl2wc ())] (rs - Suc 0)" -apply(frule_tac halt_least_step, auto) -apply(frule_tac nonstop_t_eq, auto simp: nonstop_lemma) -using rec_t_eq_steps[of tp l lm stp] -apply(simp add: conf_lemma) -proof - - fix stpa - assume h: - "nonstop (code tp) (bl2wc ()) stpa = 0" - "\stp'. nonstop (code tp) (bl2wc ()) stp' = 0 \ stpa \ stp'" - "nonstop (code tp) (bl2wc ()) stp = 0" - "trpl_code (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>) = conf (code tp) (bl2wc ()) stp" - "steps (Suc 0, Bk\<^bsup>l\<^esup>, ) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" - hence g1: "conf (code tp) (bl2wc ()) stpa = trpl_code (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" - using halt_state_keep[of "code tp" lm stpa stp] - by(simp) - moreover have g2: - "rec_calc_rel rec_halt [code tp, (bl2wc ())] stpa" - using h - apply(simp add: halt_lemma nonstop_lemma, auto) - done - show - "rec_calc_rel rec_F [code tp, (bl2wc ())] (rs - Suc 0)" - proof - - have - "rec_calc_rel rec_F [code tp, (bl2wc ())] - (valu (rght (conf (code tp) (bl2wc ()) stpa)))" - apply(rule F_lemma) using g2 h by auto - moreover have - "valu (rght (conf (code tp) (bl2wc ()) stpa)) = rs - Suc 0" - using g1 - apply(simp add: valu.simps trpl_code.simps - bl2wc.simps bl2nat_append lg_power) - done - ultimately show "?thesis" by simp - qed -qed - - -end \ No newline at end of file