added the most current versions of the theories.
theory Prefix_subtract
imports Main "~~/src/HOL/Library/List_Prefix"
begin
section {* A small theory of prefix subtraction *}
text {*
The notion of @{text "prefix_subtract"} makes
the second direction of the Myhill-Nerode theorem
more readable.
*}
instantiation list :: (type) minus
begin
fun minus_list :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
where
"minus_list [] xs = []"
| "minus_list (x#xs) [] = x#xs"
| "minus_list (x#xs) (y#ys) = (if x = y then minus_list xs ys else (x#xs))"
instance by default
end
lemma [simp]: "x - [] = x"
by (induct x) (auto)
lemma [simp]: "(x @ y) - x = y"
by (induct x) (auto)
lemma [simp]: "x - x = []"
by (induct x) (auto)
lemma [simp]: "x = z @ y \<Longrightarrow> x - z = y "
by (induct x) (auto)
lemma diff_prefix:
"\<lbrakk>c \<le> a - b; b \<le> a\<rbrakk> \<Longrightarrow> b @ c \<le> a"
by (auto elim: prefixE)
lemma diff_diff_append:
"\<lbrakk>c < a - b; b < a\<rbrakk> \<Longrightarrow> (a - b) - c = a - (b @ c)"
apply (clarsimp simp:strict_prefix_def)
by (drule diff_prefix, auto elim:prefixE)
lemma append_eq_cases:
assumes a: "x @ y = m @ n"
shows "x \<le> m \<or> m \<le> x"
unfolding prefix_def using a
by (auto simp add: append_eq_append_conv2)
lemma append_eq_dest:
assumes a: "x @ y = m @ n"
shows "(x \<le> m \<and> (m - x) @ n = y) \<or> (m \<le> x \<and> (x - m) @ y = n)"
using append_eq_cases[OF a] a
by (auto elim: prefixE)
end