(*<*)theory Paperimports "../Myhill" "LaTeXsugar"begindeclare [[show_question_marks = false]]notation (latex output) str_eq_rel ("\<approx>\<^bsub>_\<^esub>") and Seq (infixr "\<cdot>" 100) and Star ("_\<^bsup>\<star>\<^esup>") and pow ("_\<^bsup>_\<^esup>" [100, 100] 100) and Suc ("_+1" [100] 100) and quotient ("_ \<^raw:\ensuremath{\sslash}> _ " [90, 90] 90)(*>*)section {* Introduction *}text {**}section {* Preliminaries *}text {* Central to our proof will be the solution of equational systems involving regular expressions. For this we will use the following ``reverse'' version of Arden's lemma. \begin{lemma}[Reverse Arden's Lemma]\mbox{}\\ If @{thm (prem 1) ardens_revised} then @{thm (lhs) ardens_revised} has the unique solution @{thm (rhs) ardens_revised}. \end{lemma} \begin{proof} For the right-to-left direction we assume @{thm (rhs) ardens_revised} and show that @{thm (lhs) ardens_revised} holds. From Lemma ??? we have @{term "A\<star> = {[]} \<union> A ;; A\<star>"}, which is equal to @{term "A\<star> = {[]} \<union> A\<star> ;; A"}. Adding @{text B} to both sides gives @{term "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"}, whose right-hand side is equal to @{term "(B ;; A\<star>) ;; A \<union> B"}. This completes this direction. For the other direction we assume @{thm (lhs) ardens_revised}. By a simple induction on @{text n}, we can establish the property \begin{center} @{text "(*)"}\hspace{5mm} @{thm (concl) ardens_helper} \end{center} \noindent Using this property we can show that @{term "B ;; (A \<up> n) \<subseteq> X"} holds for all @{text n}. From this we can infer @{term "B ;; A\<star> \<subseteq> X"} using Lemma ???. For the inclusion in the other direction we assume a string @{text s} with length @{text k} is element in @{text X}. Since @{thm (prem 1) ardens_revised} we know that @{term "s \<notin> X ;; (A \<up> Suc k)"} since its length is only @{text k} (the strings in @{term "X ;; (A \<up> Suc k)"} are all longer). From @{text "(*)"} it follows then that @{term s} must be element in @{term "(\<Union>m\<in>{0..k}. B ;; (A \<up> m))"}. This in turn implies that @{term s} is in @{term "(\<Union>n. B ;; (A \<up> n))"}. Using Lemma ??? this is equal to @{term "B ;; A\<star>"}, as we needed to show.\qed \end{proof}*}section {* Regular expressions have finitely many partitions *}text {* \begin{lemma} Given @{text "r"} is a regular expressions, then @{thm rexp_imp_finite}. \end{lemma} \begin{proof} By induction on the structure of @{text r}. The cases for @{const NULL}, @{const EMPTY} and @{const CHAR} are straightforward, because we can easily establish \begin{center} \begin{tabular}{l} @{thm quot_null_eq}\\ @{thm quot_empty_subset}\\ @{thm quot_char_subset} \end{tabular} \end{center} \end{proof}*}(*<*)end(*>*)