theory Myhill_2+ −
imports Myhill_1 Prefix_subtract+ −
"~~/src/HOL/Library/List_Prefix"+ −
begin+ −
+ −
section {* Direction @{text "regular language \<Rightarrow> finite partition"} *}+ −
+ −
definition+ −
str_eq :: "string \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> bool" ("_ \<approx>_ _")+ −
where+ −
"x \<approx>A y \<equiv> (x, y) \<in> (\<approx>A)"+ −
+ −
lemma str_eq_def2:+ −
shows "\<approx>A = {(x, y) | x y. x \<approx>A y}"+ −
unfolding str_eq_def+ −
by simp+ −
+ −
definition + −
tag_eq_rel :: "(string \<Rightarrow> 'b) \<Rightarrow> (string \<times> string) set" ("=_=")+ −
where+ −
"=tag= \<equiv> {(x, y). tag x = tag y}"+ −
+ −
lemma finite_eq_tag_rel:+ −
assumes rng_fnt: "finite (range tag)"+ −
shows "finite (UNIV // =tag=)"+ −
proof -+ −
let "?f" = "\<lambda>X. tag ` X" and ?A = "(UNIV // =tag=)"+ −
have "finite (?f ` ?A)" + −
proof -+ −
have "range ?f \<subseteq> (Pow (range tag))" unfolding Pow_def by auto+ −
moreover + −
have "finite (Pow (range tag))" using rng_fnt by simp+ −
ultimately + −
have "finite (range ?f)" unfolding image_def by (blast intro: finite_subset)+ −
moreover+ −
have "?f ` ?A \<subseteq> range ?f" by auto+ −
ultimately show "finite (?f ` ?A)" by (rule rev_finite_subset) + −
qed+ −
moreover+ −
have "inj_on ?f ?A"+ −
proof -+ −
{ fix X Y+ −
assume X_in: "X \<in> ?A"+ −
and Y_in: "Y \<in> ?A"+ −
and tag_eq: "?f X = ?f Y"+ −
then obtain x y + −
where "x \<in> X" "y \<in> Y" "tag x = tag y"+ −
unfolding quotient_def Image_def image_def tag_eq_rel_def+ −
by (simp) (blast)+ −
with X_in Y_in + −
have "X = Y"+ −
unfolding quotient_def tag_eq_rel_def by auto+ −
} + −
then show "inj_on ?f ?A" unfolding inj_on_def by auto+ −
qed+ −
ultimately show "finite (UNIV // =tag=)" by (rule finite_imageD)+ −
qed+ −
+ −
lemma refined_partition_finite:+ −
assumes fnt: "finite (UNIV // R1)"+ −
and refined: "R1 \<subseteq> R2"+ −
and eq1: "equiv UNIV R1" and eq2: "equiv UNIV R2"+ −
shows "finite (UNIV // R2)"+ −
proof -+ −
let ?f = "\<lambda>X. {R1 `` {x} | x. x \<in> X}" + −
and ?A = "UNIV // R2" and ?B = "UNIV // R1"+ −
have "?f ` ?A \<subseteq> Pow ?B"+ −
unfolding image_def Pow_def quotient_def by auto+ −
moreover+ −
have "finite (Pow ?B)" using fnt by simp+ −
ultimately + −
have "finite (?f ` ?A)" by (rule finite_subset)+ −
moreover+ −
have "inj_on ?f ?A"+ −
proof -+ −
{ fix X Y+ −
assume X_in: "X \<in> ?A" and Y_in: "Y \<in> ?A" and eq_f: "?f X = ?f Y"+ −
from quotientE [OF X_in]+ −
obtain x where "X = R2 `` {x}" by blast+ −
with equiv_class_self[OF eq2] have x_in: "x \<in> X" by simp+ −
then have "R1 ``{x} \<in> ?f X" by auto+ −
with eq_f have "R1 `` {x} \<in> ?f Y" by simp+ −
then obtain y + −
where y_in: "y \<in> Y" and eq_r1_xy: "R1 `` {x} = R1 `` {y}" by auto+ −
with eq_equiv_class[OF _ eq1] + −
have "(x, y) \<in> R1" by blast+ −
with refined have "(x, y) \<in> R2" by auto+ −
with quotient_eqI [OF eq2 X_in Y_in x_in y_in]+ −
have "X = Y" .+ −
} + −
then show "inj_on ?f ?A" unfolding inj_on_def by blast + −
qed+ −
ultimately show "finite (UNIV // R2)" by (rule finite_imageD)+ −
qed+ −
+ −
lemma tag_finite_imageD:+ −
assumes rng_fnt: "finite (range tag)" + −
and same_tag_eqvt: "\<And>m n. tag m = tag n \<Longrightarrow> m \<approx>A n"+ −
shows "finite (UNIV // \<approx>A)"+ −
proof (rule_tac refined_partition_finite [of "=tag="])+ −
show "finite (UNIV // =tag=)" by (rule finite_eq_tag_rel[OF rng_fnt])+ −
next+ −
from same_tag_eqvt+ −
show "=tag= \<subseteq> \<approx>A" unfolding tag_eq_rel_def str_eq_def+ −
by auto+ −
next+ −
show "equiv UNIV =tag="+ −
unfolding equiv_def tag_eq_rel_def refl_on_def sym_def trans_def+ −
by auto+ −
next+ −
show "equiv UNIV (\<approx>A)" + −
unfolding equiv_def str_eq_rel_def sym_def refl_on_def trans_def+ −
by blast+ −
qed+ −
+ −
+ −
subsection {* The proof *}+ −
+ −
subsubsection {* The base case for @{const "NULL"} *}+ −
+ −
lemma quot_null_eq:+ −
shows "UNIV // \<approx>{} = {UNIV}"+ −
unfolding quotient_def Image_def str_eq_rel_def by auto+ −
+ −
lemma quot_null_finiteI [intro]:+ −
shows "finite (UNIV // \<approx>{})"+ −
unfolding quot_null_eq by simp+ −
+ −
+ −
subsubsection {* The base case for @{const "EMPTY"} *}+ −
+ −
lemma quot_empty_subset:+ −
shows "UNIV // \<approx>{[]} \<subseteq> {{[]}, UNIV - {[]}}"+ −
proof+ −
fix x+ −
assume "x \<in> UNIV // \<approx>{[]}"+ −
then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[]}}" + −
unfolding quotient_def Image_def by blast+ −
show "x \<in> {{[]}, UNIV - {[]}}"+ −
proof (cases "y = []")+ −
case True with h+ −
have "x = {[]}" by (auto simp: str_eq_rel_def)+ −
thus ?thesis by simp+ −
next+ −
case False with h+ −
have "x = UNIV - {[]}" by (auto simp: str_eq_rel_def)+ −
thus ?thesis by simp+ −
qed+ −
qed+ −
+ −
lemma quot_empty_finiteI [intro]:+ −
shows "finite (UNIV // \<approx>{[]})"+ −
by (rule finite_subset[OF quot_empty_subset]) (simp)+ −
+ −
+ −
subsubsection {* The base case for @{const "CHAR"} *}+ −
+ −
lemma quot_char_subset:+ −
"UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}"+ −
proof + −
fix x + −
assume "x \<in> UNIV // \<approx>{[c]}"+ −
then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[c]}}" + −
unfolding quotient_def Image_def by blast+ −
show "x \<in> {{[]},{[c]}, UNIV - {[], [c]}}"+ −
proof -+ −
{ assume "y = []" hence "x = {[]}" using h + −
by (auto simp:str_eq_rel_def) } + −
moreover + −
{ assume "y = [c]" hence "x = {[c]}" using h + −
by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def) } + −
moreover + −
{ assume "y \<noteq> []" and "y \<noteq> [c]"+ −
hence "\<forall> z. (y @ z) \<noteq> [c]" by (case_tac y, auto)+ −
moreover have "\<And> p. (p \<noteq> [] \<and> p \<noteq> [c]) = (\<forall> q. p @ q \<noteq> [c])" + −
by (case_tac p, auto)+ −
ultimately have "x = UNIV - {[],[c]}" using h+ −
by (auto simp add:str_eq_rel_def)+ −
} + −
ultimately show ?thesis by blast+ −
qed+ −
qed+ −
+ −
lemma quot_char_finiteI [intro]:+ −
shows "finite (UNIV // \<approx>{[c]})"+ −
by (rule finite_subset[OF quot_char_subset]) (simp)+ −
+ −
+ −
subsubsection {* The inductive case for @{const ALT} *}+ −
+ −
definition + −
tag_str_ALT :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang)"+ −
where+ −
"tag_str_ALT A B \<equiv> (\<lambda>x. (\<approx>A `` {x}, \<approx>B `` {x}))"+ −
+ −
lemma quot_union_finiteI [intro]:+ −
assumes finite1: "finite (UNIV // \<approx>A)"+ −
and finite2: "finite (UNIV // \<approx>B)"+ −
shows "finite (UNIV // \<approx>(A \<union> B))"+ −
proof (rule_tac tag = "tag_str_ALT A B" in tag_finite_imageD)+ −
have "finite ((UNIV // \<approx>A) \<times> (UNIV // \<approx>B))" + −
using finite1 finite2 by auto+ −
then show "finite (range (tag_str_ALT A B))"+ −
unfolding tag_str_ALT_def quotient_def+ −
by (rule rev_finite_subset) (auto)+ −
next+ −
show "\<And>x y. tag_str_ALT A B x = tag_str_ALT A B y \<Longrightarrow> x \<approx>(A \<union> B) y"+ −
unfolding tag_str_ALT_def+ −
unfolding str_eq_def+ −
unfolding str_eq_rel_def+ −
by auto+ −
qed+ −
+ −
+ −
subsubsection {* The inductive case for @{text "SEQ"}*}+ −
+ −
definition + −
tag_str_SEQ :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang set)"+ −
where+ −
"tag_str_SEQ L1 L2 \<equiv>+ −
(\<lambda>x. (\<approx>L1 `` {x}, {(\<approx>L2 `` {x - xa}) | xa. xa \<le> x \<and> xa \<in> L1}))"+ −
+ −
lemma Seq_in_cases:+ −
assumes "x @ z \<in> A \<cdot> B"+ −
shows "(\<exists> x' \<le> x. x' \<in> A \<and> (x - x') @ z \<in> B) \<or> + −
(\<exists> z' \<le> z. (x @ z') \<in> A \<and> (z - z') \<in> B)"+ −
using assms+ −
unfolding Seq_def prefix_def+ −
by (auto simp add: append_eq_append_conv2)+ −
+ −
lemma tag_str_SEQ_injI:+ −
assumes eq_tag: "tag_str_SEQ A B x = tag_str_SEQ A B y" + −
shows "x \<approx>(A \<cdot> B) y"+ −
proof -+ −
{ fix x y z+ −
assume xz_in_seq: "x @ z \<in> A \<cdot> B"+ −
and tag_xy: "tag_str_SEQ A B x = tag_str_SEQ A B y"+ −
have"y @ z \<in> A \<cdot> B" + −
proof -+ −
{ (* first case with x' in A and (x - x') @ z in B *)+ −
fix x'+ −
assume h1: "x' \<le> x" and h2: "x' \<in> A" and h3: "(x - x') @ z \<in> B"+ −
obtain y' + −
where "y' \<le> y" + −
and "y' \<in> A" + −
and "(y - y') @ z \<in> B"+ −
proof -+ −
have "{\<approx>B `` {x - x'} |x'. x' \<le> x \<and> x' \<in> A} = + −
{\<approx>B `` {y - y'} |y'. y' \<le> y \<and> y' \<in> A}" (is "?Left = ?Right")+ −
using tag_xy unfolding tag_str_SEQ_def by simp+ −
moreover + −
have "\<approx>B `` {x - x'} \<in> ?Left" using h1 h2 by auto+ −
ultimately + −
have "\<approx>B `` {x - x'} \<in> ?Right" by simp+ −
then obtain y' + −
where eq_xy': "\<approx>B `` {x - x'} = \<approx>B `` {y - y'}" + −
and pref_y': "y' \<le> y" and y'_in: "y' \<in> A"+ −
by simp blast+ −
+ −
have "(x - x') \<approx>B (y - y')" using eq_xy'+ −
unfolding Image_def str_eq_rel_def str_eq_def by auto+ −
with h3 have "(y - y') @ z \<in> B" + −
unfolding str_eq_rel_def str_eq_def by simp+ −
with pref_y' y'_in + −
show ?thesis using that by blast+ −
qed+ −
then have "y @ z \<in> A \<cdot> B" by (erule_tac prefixE) (auto simp: Seq_def)+ −
} + −
moreover + −
{ (* second case with x @ z' in A and z - z' in B *)+ −
fix z'+ −
assume h1: "z' \<le> z" and h2: "(x @ z') \<in> A" and h3: "z - z' \<in> B"+ −
have "\<approx>A `` {x} = \<approx>A `` {y}" + −
using tag_xy unfolding tag_str_SEQ_def by simp+ −
with h2 have "y @ z' \<in> A"+ −
unfolding Image_def str_eq_rel_def str_eq_def by auto+ −
with h1 h3 have "y @ z \<in> A \<cdot> B"+ −
unfolding prefix_def Seq_def+ −
by (auto) (metis append_assoc)+ −
}+ −
ultimately show "y @ z \<in> A \<cdot> B" + −
using Seq_in_cases [OF xz_in_seq] by blast+ −
qed+ −
}+ −
from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]]+ −
show "x \<approx>(A \<cdot> B) y" unfolding str_eq_def str_eq_rel_def by blast+ −
qed + −
+ −
lemma quot_seq_finiteI [intro]:+ −
fixes L1 L2::"lang"+ −
assumes fin1: "finite (UNIV // \<approx>L1)" + −
and fin2: "finite (UNIV // \<approx>L2)" + −
shows "finite (UNIV // \<approx>(L1 \<cdot> L2))"+ −
proof (rule_tac tag = "tag_str_SEQ L1 L2" in tag_finite_imageD)+ −
show "\<And>x y. tag_str_SEQ L1 L2 x = tag_str_SEQ L1 L2 y \<Longrightarrow> x \<approx>(L1 \<cdot> L2) y"+ −
by (rule tag_str_SEQ_injI)+ −
next+ −
have *: "finite ((UNIV // \<approx>L1) \<times> (Pow (UNIV // \<approx>L2)))" + −
using fin1 fin2 by auto+ −
show "finite (range (tag_str_SEQ L1 L2))" + −
unfolding tag_str_SEQ_def+ −
apply(rule finite_subset[OF _ *])+ −
unfolding quotient_def+ −
by auto+ −
qed+ −
+ −
+ −
subsubsection {* The inductive case for @{const "STAR"} *}+ −
+ −
definition + −
tag_str_STAR :: "lang \<Rightarrow> string \<Rightarrow> lang set"+ −
where+ −
"tag_str_STAR L1 \<equiv> (\<lambda>x. {\<approx>L1 `` {x - xa} | xa. xa < x \<and> xa \<in> L1\<star>})"+ −
+ −
text {* A technical lemma. *}+ −
lemma finite_set_has_max: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> + −
(\<exists> max \<in> A. \<forall> a \<in> A. f a <= (f max :: nat))"+ −
proof (induct rule:finite.induct)+ −
case emptyI thus ?case by simp+ −
next+ −
case (insertI A a)+ −
show ?case+ −
proof (cases "A = {}")+ −
case True thus ?thesis by (rule_tac x = a in bexI, auto)+ −
next+ −
case False+ −
with insertI.hyps and False + −
obtain max + −
where h1: "max \<in> A" + −
and h2: "\<forall>a\<in>A. f a \<le> f max" by blast+ −
show ?thesis+ −
proof (cases "f a \<le> f max")+ −
assume "f a \<le> f max"+ −
with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto)+ −
next+ −
assume "\<not> (f a \<le> f max)"+ −
thus ?thesis using h2 by (rule_tac x = a in bexI, auto)+ −
qed+ −
qed+ −
qed+ −
+ −
+ −
text {* The following is a technical lemma, which helps to show the range finiteness of tag function. *}+ −
+ −
lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}"+ −
apply (induct x rule:rev_induct, simp)+ −
apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \<union> {xs}")+ −
by (auto simp:strict_prefix_def)+ −
+ −
+ −
lemma tag_str_STAR_injI:+ −
assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w"+ −
shows "v \<approx>(L\<^isub>1\<star>) w"+ −
proof-+ −
{ fix x y z+ −
assume xz_in_star: "x @ z \<in> L\<^isub>1\<star>" + −
and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y"+ −
have "y @ z \<in> L\<^isub>1\<star>"+ −
proof(cases "x = []")+ −
case True+ −
with tag_xy have "y = []" + −
by (auto simp add: tag_str_STAR_def strict_prefix_def)+ −
thus ?thesis using xz_in_star True by simp+ −
next+ −
case False+ −
let ?S = "{xa. xa < x \<and> xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>}"+ −
have "finite ?S"+ −
by (rule_tac B = "{xa. xa < x}" in finite_subset, + −
auto simp:finite_strict_prefix_set)+ −
moreover have "?S \<noteq> {}" using False xz_in_star+ −
by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def)+ −
ultimately have "\<exists> xa_max \<in> ?S. \<forall> xa \<in> ?S. length xa \<le> length xa_max" + −
using finite_set_has_max by blast+ −
then obtain xa_max + −
where h1: "xa_max < x" + −
and h2: "xa_max \<in> L\<^isub>1\<star>" + −
and h3: "(x - xa_max) @ z \<in> L\<^isub>1\<star>" + −
and h4:"\<forall> xa < x. xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star> + −
\<longrightarrow> length xa \<le> length xa_max"+ −
by blast+ −
obtain ya + −
where h5: "ya < y" and h6: "ya \<in> L\<^isub>1\<star>" + −
and eq_xya: "(x - xa_max) \<approx>L\<^isub>1 (y - ya)"+ −
proof-+ −
from tag_xy have "{\<approx>L\<^isub>1 `` {x - xa} |xa. xa < x \<and> xa \<in> L\<^isub>1\<star>} = + −
{\<approx>L\<^isub>1 `` {y - xa} |xa. xa < y \<and> xa \<in> L\<^isub>1\<star>}" (is "?left = ?right")+ −
by (auto simp:tag_str_STAR_def)+ −
moreover have "\<approx>L\<^isub>1 `` {x - xa_max} \<in> ?left" using h1 h2 by auto+ −
ultimately have "\<approx>L\<^isub>1 `` {x - xa_max} \<in> ?right" by simp+ −
thus ?thesis using that + −
apply (simp add:Image_def str_eq_rel_def str_eq_def) by blast+ −
qed + −
have "(y - ya) @ z \<in> L\<^isub>1\<star>" + −
proof-+ −
obtain za zb where eq_zab: "z = za @ zb" + −
and l_za: "(y - ya)@za \<in> L\<^isub>1" and ls_zb: "zb \<in> L\<^isub>1\<star>"+ −
proof -+ −
from h1 have "(x - xa_max) @ z \<noteq> []" + −
by (auto simp:strict_prefix_def elim:prefixE)+ −
from star_decom [OF h3 this]+ −
obtain a b where a_in: "a \<in> L\<^isub>1" + −
and a_neq: "a \<noteq> []" and b_in: "b \<in> L\<^isub>1\<star>" + −
and ab_max: "(x - xa_max) @ z = a @ b" by blast+ −
let ?za = "a - (x - xa_max)" and ?zb = "b"+ −
have pfx: "(x - xa_max) \<le> a" (is "?P1") + −
and eq_z: "z = ?za @ ?zb" (is "?P2")+ −
proof -+ −
have "((x - xa_max) \<le> a \<and> (a - (x - xa_max)) @ b = z) \<or> + −
(a < (x - xa_max) \<and> ((x - xa_max) - a) @ z = b)" + −
using append_eq_dest[OF ab_max] by (auto simp:strict_prefix_def)+ −
moreover {+ −
assume np: "a < (x - xa_max)" + −
and b_eqs: "((x - xa_max) - a) @ z = b"+ −
have "False"+ −
proof -+ −
let ?xa_max' = "xa_max @ a"+ −
have "?xa_max' < x" + −
using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) + −
moreover have "?xa_max' \<in> L\<^isub>1\<star>" + −
using a_in h2 by (simp add:star_intro3) + −
moreover have "(x - ?xa_max') @ z \<in> L\<^isub>1\<star>" + −
using b_eqs b_in np h1 by (simp add:diff_diff_append)+ −
moreover have "\<not> (length ?xa_max' \<le> length xa_max)" + −
using a_neq by simp+ −
ultimately show ?thesis using h4 by blast+ −
qed }+ −
ultimately show ?P1 and ?P2 by auto+ −
qed+ −
hence "(x - xa_max)@?za \<in> L\<^isub>1" using a_in by (auto elim:prefixE)+ −
with eq_xya have "(y - ya) @ ?za \<in> L\<^isub>1" + −
by (auto simp:str_eq_def str_eq_rel_def)+ −
with eq_z and b_in + −
show ?thesis using that by blast+ −
qed+ −
have "((y - ya) @ za) @ zb \<in> L\<^isub>1\<star>" using l_za ls_zb by blast+ −
with eq_zab show ?thesis by simp+ −
qed+ −
with h5 h6 show ?thesis + −
by (drule_tac star_intro1) (auto simp:strict_prefix_def elim: prefixE)+ −
qed+ −
} + −
from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]]+ −
show ?thesis unfolding str_eq_def str_eq_rel_def by blast+ −
qed+ −
+ −
lemma quot_star_finiteI [intro]:+ −
assumes finite1: "finite (UNIV // \<approx>A)"+ −
shows "finite (UNIV // \<approx>(A\<star>))"+ −
proof (rule_tac tag = "tag_str_STAR A" in tag_finite_imageD)+ −
show "\<And>x y. tag_str_STAR A x = tag_str_STAR A y \<Longrightarrow> x \<approx>(A\<star>) y"+ −
by (rule tag_str_STAR_injI)+ −
next+ −
have *: "finite (Pow (UNIV // \<approx>A))" + −
using finite1 by auto+ −
show "finite (range (tag_str_STAR A))"+ −
unfolding tag_str_STAR_def+ −
apply(rule finite_subset[OF _ *])+ −
unfolding quotient_def+ −
by auto+ −
qed+ −
+ −
subsubsection{* The conclusion *}+ −
+ −
lemma Myhill_Nerode2:+ −
shows "finite (UNIV // \<approx>(L_rexp r))"+ −
by (induct r) (auto)+ −
+ −
+ −
theorem Myhill_Nerode:+ −
shows "(\<exists>r. A = L_rexp r) \<longleftrightarrow> finite (UNIV // \<approx>A)"+ −
using Myhill_Nerode1 Myhill_Nerode2 by auto+ −
+ −
end+ −